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Abstract. We study the degree of reliability of extrapolation of complex electromagnetic per-
mittivity functions based on their analyticity properties. Given two analytic functions, representing
extrapolants of the same experimental data, we examine how much they can differ at an extrapolation
point outside of the experimentally accessible frequency band. We give a sharp upper bound on the
worst-case extrapolation error in terms of a solution of an integral equation of Fredholm type. We
conjecture and give numerical evidence that this bound exhibits a power law precision deterioration
as one moves further away from the frequency band containing measurement data.
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1. Introduction. Properties of linear, time-invariant, causal systems are char-
acterized by functions analytic in a complex half-plane. Examples include transfer
functions of digital filters [25], complex impedance and admittance functions of electri-
cal circuits [5], and complex magnetic permeability and complex dielectric permittivity
functions [33, 20]. Arising from the world of real-valued fields, these functions also
possess specific symmetries. The underlying mathematical structure is the Fourier (or
Laplace) transforms of real-valued functions that vanish on negative semiaxis. More
generally, the analyticity arises from the analyticity of resolvents of linear operators,
while their symmetries reflect that these operators are very often real and self-adjoint.

In a typical situation we can measure the values of such analytic functions on
a compact subset of the boundary of their half-plane of analyticity. The real and
imaginary parts of such a function are not independent but are Hilbert transforms of
one another. In the context of the complex dielectric permittivity this fact is expressed
by the Kramers—Kronig relations [15, 31, 44, 29]. It is therefore tempting to use these
relations in order to reconstruct the analytic functions from their measured values.
Unfortunately, such a reconstruction problem is ill-posed (e.g., [37]), and one needs
to place additional constraints on the set of admissible analytic functions for the
extrapolation problem to be mathematically well-posed.

In this paper we propose a physically natural regularization that implies that
the underlying analytic functions can be analytically continued into a larger complex
half-plane. In that case, the idea is to exploit the fact that complex analytic functions
possess a large degree of rigidity, being uniquely determined by values at any infinite
set of points in any finite interval. This rigidity also implies that even very small
measurement errors will produce data mathematically inconsistent with values of an
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analytic function. In such cases the least squares approach [14, 13, 7, 8] that treats
all data points equally is the most natural one. In the first part of the paper we prove
that the least squares problem has a unique solution that yields a mathematically
stable extrapolant. We show that the minimizer must be a rational function and
derive the necessary and sufficient conditions for its optimality.

Recent work [45, 16, 27, 26] shows that, surprisingly, the space of analytic func-
tions is also “flexible” in the sense that the data can often be matched up to a given
precision by two physically admissible functions that are very different away from the
interval, where the data is available. The second part of the paper quantifies this
phenomenon by giving an optimal upper bound on the possible discrepancy between
any two approximate extrapolants. This is done by first reformulating the problem
as a question about analytic functions, which we have already studied in [27, 26], but
without the symmetry constraints. Incorporating symmetry into the methods of [27]
is nontrivial, and we address this question next. Our conclusion is that the symmetry
has a virtually negligible regularizing effect, as far as the optimal upper bound on the
extrapolation uncertainty is concerned.

2. Preliminaries. When an electromagnetic wave passes through material, the
incident electric field E(x,t) interacts with charge carriers inside the matter. We
assume that the induced polarization field P(«,t) depends on the incident electric
field linearly and locally. This is expressed by the constitutive relation

+oo
(2.1) P(x,t) = ; E(x,t — s)a(s)ds,

indicating that the polarization field depends only on the past values of E(x,t). The
function a(t) is called the impulse response or a memory kernel, which is assumed
to decay exponentially. Its decay rate, a(t) ~ e /70t — oo, indicates how fast the
system “forgets” the past values of the incident field. The parameter 7y > 0 is called
the relaxation time, which can be measured for many materials.

Let
a(t), t>0,
ag(t) =
o®) {o, t<0.

Then we can extend the integral in (2.1) to the entire real line and apply the Fourier
transform to convert the convolution into a product:

P(z,w) = o (w) E(z,w),
where

flw) = [ rayeeas

is the Fourier transform. In physics, the function e(w) = &g + @g(w) is called the
complex dielectric permittivity of the material, where ¢ is the dielectric permittivity
of the vacuum. Mathematically, it is more convenient to study @o(w) rather than
¢(w). From now on, we will denote

and refer to it as the complex electromagnetic permittivity, in a convenient abuse of
terminology. Let us recall the well-known analytic properties of isotropic complex
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electromagnetic permittivity as a function of frequency w of the incident electromag-
netic wave [33, 20]:

(a) f(w)=f(-w);

(b) f(w) is analytic in the complex upper half-plane H; = {w € C : Jmw > 0};

(¢) Jm f(w) > 0 for w in the first quadrant Re(w) > 0, Im(w) > 0;
(d) flw)=—-Aw 2+ 0(w™3), A>0asw— .
Property (a) expresses the fact that physical fields are real. Property (b) is the conse-
quence of the causality principle, i.e., independence of P(x,t) of the future values of
E(x,7), 7 > t. Property (c) comes from the fact that the electromagnetic energy gets
absorbed by the material as the electromagnetic wave passes through. Property (d)
is called the plasma limit, where at very high frequencies the electrons in the medium
may be regarded as free. Complex analytic functions with properties (a)—(d), and
their variants, are ubiquitous in physics. The complex impedance of electrical circuits
as a function of frequency has similar properties [23, 5, 10]. Yet another example is
the dependence of effective moduli of composites on the moduli of its constituents
[4, 38, 39]. These functions appear in areas as diverse as optimal design problems
[34] and nuclear physics [36, 35, 6]. Typically! only the values of such a function
on a real line can be measured. In the case of complex electromagnetic permittivity
the measurements are usually made either on a finite interval or at a discrete set of
frequencies. However, the requirements (a)—(d) do not place any analyticity require-
ments on f(w), when w is real (see [2, 24] for the boundary behavior of such functions).
For example, the function

w)=—5—->5, wo>0,
f( ) W% _ w2 0
satisfies properties (a)—(d), but blows up at the frequency wg > 0. We exclude such
examples by assuming that the memory kernel a(t) decays exponentially with relax-
ation time 79 > 0. In this case f(w) will have an analytic extension into the larger
half-plane

(2.2) Hj ={w e C:Imw > —h},

where h = 1/79 > 0 (cf. [43]). In general, the analytic continuation of f(w) need
not have positive imaginary part when Jm(w) > —h and Re(w) > 0. For example,
flw) = —ﬁ satisfies conditions (a)—(d) and is analytic in Hs, but Jm f(z — ie)
takes negative values for any ¢ € (0,3) for some = > 0. We therefore make an
additional regularizing assumption that positivity property (c) continues to hold in
the larger half-plane Hyj. In fact, under the additional assumption that the Elmore
delay [18] is positive, i.e., —if’(0) > 0, the positivity condition can be guaranteed in
some possibly smaller half-plane Hj,, 0 < b’ < h (see the appendix). Thus, the class
of all physically admissible complex dielectric permittivity functions is narrowed in a
natural way to the class ICy,, defined as follows.

DEFINITION 2.1. A complex analytic function f : H; — C belongs to the class Ky,
if it has the following list of physically justified properties:

(S) symmetry: f(w) = f(-w);

(P) passivity: Im(f(w)) > 0, when IJm(w) > —h, Re(w) > 0;

(L) plasma limit: f(w) = —Aw 2+ O0(w™3), A >0 as w — o0.

'n the context of viscoelastic composites, measurements corresponding to values of f(w) in the

upper half-plane are also possible.
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Functions in the set KC;, are closely related to an important class of functions
called Stieltjes functions.

DEFINITION 2.2. A nonconstant function analytic in the complex upper half-plane
is said to be of Stieltjes class & if its imaginary part is positive, and it is analytic
on the negative real axis, where it takes real and nonnegative values. Such functions,
together with all nonnegative constant functions, form the Stieltjes class S.

It is well known that a Stieltjes function F'(z) is uniquely determined by a constant
p > 0 and a Borel-regular positive measure o by the representation

(2.3) F(z):p—i-/oooC)Z\U()\Z)7 /Ooocm<+oo

The measure o is often referred to as the spectral measure [12, 39]. Let us show that
function f € KCj, can be represented by

(2.4) fw)=F((w+ih)?), Fe&, p=0, /Ooo do(\) = A < 400,

where o is the spectral measure for F'(z).
For any f € Kp, consider the function g(¢) = f(¢ — ¢h) which is analytic in H,,

9(¢) = g(=(), TJmg > 0 in the first quadrant, and g(¢) ~ —A¢™? as ( — oo for some
A>0.

Unfolding the first quadrant in the (-plane into the upper half-plane in the z-
plane via z = (2 we obtain a function F(z) = g(y/2), which is analytic in H, and
has a positive imaginary part there. The symmetry of g implies that it is real on
iR~g, but then F is real on R.y. Clearly, analyticity of g on iR~ implies that
of F on R.g. The plasma limit assumption implies that F(—z) > 0 for = large
enough, which is enough to conclude that F' is a Stieltjes function (see the proof of
[32, Theorem A.4]). Thus, F' admits the representation (2.3). But then the asymptotic
relation F(z) ~ —Az~" as z — oo implies that p = 0 and [} do(A) = A < co. Thus,
f(w) = g(w+ih) = F((w + ih)?). Conversely, if f is given by (2.4), then it is
straightforward to check that it satisfies all the required properties of class Cj,.

3. Main results. Let us assume that the experimentally measured data foxp(w)
is known on a band of frequencies I' = [0, B]. The unavoidable random noise makes
the measured values mathematically inconsistent with the analyticity of the complex
dielectric permittivity function. The standard way of dealing with the noise is to use
the “least squares” approach by looking for a function f € KC;, that is closest to the
experimental data fexp(w) in the L? norm on I'. Thus, after rescaling the frequency
interval T to the interval [0, 1] we arrive at the following least squares problem:

(3'1) fienlgh ||f - fepoLz(O,l)-

One approach [11, 12] is to ignore the positivity requirement, while retaining the spec-
tral representation (2.4). The resulting problem constrains f to a vector space, but
becomes ill-posed. It is then solved by Tikhonov regularization techniques. Unfortu-
nately, such an approach cannot guarantee that the solution possesses the required
positivity.

We will see in section 4 that the positivity property of functions in K plays a
regularizing role, making the least squares problem (3.1) well-posed. So the solution to

(3.1) exists, is unique, and lies in the closure ., = K}, with respect to the standard
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F1G. 1. Apparent ill-posedness of the extrapolation process.

topology? of the space H(Hj) of analytic functions on Hj. We then characterize
the set . and obtain stability of analytic continuation in the following sense: if
{fu}, f C S are such that f,, — fin L?(0,1), then f,, — f as n — oo in H(H}). In
section 4.2 we study the properties of the minimizer of (3.1).

Even though we have established well-posedness and stability of the extrapolation
problem, the above-mentioned results are not quantitative, since they do not give rates
of convergence of the extrapolation errors. Figure 1 (corresponding to a small value of
the natural regularization parameter) shows two perfectly admissible functions in Cp
that are virtually indistinguishable on [0, 1], but separate almost immediately beyond
the data window.

It suggests that the quantification of mathematical well-posedness is a matter
of practical importance. While there is no shortage of proposed algorithms for ex-
trapolation of experimental data in the vast literature on the subject, there is no
mathematically rigorous quantitative analysis of uncertainty inherent in such extrap-
olation procedures. We therefore consider two different functions f and g in ICp that
differ by less than a small fraction € of their size on the frequency band [0,1]. Our
goal is to estimate how much f and g can differ at a given point wy > 1. We begin
by giving a precise formulation of this question. For any € > 0 we consider the set of

pairs
1f = 9llzz0.1) < 6} ,
max([lo|[, [log]])

Un(e) = {(f,g> €K

where oy and o, are the spectral measures in the representation (2.4) of f and g,

respectively, and
= doys(N)
= <
losli= | FET <o

is finite interpreted as a “total norm” of f (it is the total variation of the measure
dos/A+1). Our goal is to find an upper bound on the relative extrapolation error at
the point wy,

[/ (wo) = g(wo)|

max([log|[, [logl])

(3.2) Auyn(€) = sup{ (f.9) € Uh<e>} |

2This is a metrizable topology of uniform convergence on compact subsets of Hy,.
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F1a. 2. Numerical support for the power law transition principle.

Two fundamental questions determine the reliability of the extrapolation proce-

dures:

1. Is it true that A, () = 0 ase— 077
2. What is the exact convergence rate of A, (€) to 07

The first insight is the realization that, in fact, these questions are about the differ-
ence ¢ = f — g rather than the pair (f,g). The difference ¢ has the same spectral
representation (2.3), (2.4) as f and g, except the spectral measure is no longer pos-
itive. Our next observation is that the asymptotic behavior of Ay, (€), as € — 0,
is insensitive to certain restrictions on the spectral measures o, as long as the set of
admissible measures is dense (in the weak-* topology) in the space of measures (2.3).
For example, we may work only with absolutely continuous measures with densities
in L2(0, +o0), permitting us to use the theory of Hardy functions and Hilbert space
methods to obtain the exact asymptotic behavior of A, (€). The passage from pairs
(f,g) to a single function ¢ = f — g is described in section 5.1. The analysis of the
Hilbert space problem for the difference ¢ = f — g is in section 5.2, where it is shown
that Ay, n(€) < € for some v € (0,1), giving a positive answer to our first question.
The answer to the second question is more nuanced, if we distinguish what we can
prove rigorously and what we can conjecture based on the numerical and analytical
evidence. The theory in section 5.2 permits numerical computation of the asymptotics
of Ay, n(€) by relating it to a similar problem without the symmetry constraint (prop-
erty (a) from section 2). Figure 2(a) shows that asymptotically A, x(€) ~ €Y(“o:h)
while we also see from Figure 2(b) that the symmetry requirement does not change
the value of the exponent vy(wp, h).

These results demonstrate the power law principle we have formulated in [26, 27],
generalizing the Nevanlinna principle [13, 45]. It says that the largest value a bounded
analytic function which is of order € on a curve I inside its domain of analyticity can
take at a point wy € I' decays as €7, where the exponent 0 < v < 1 depends on the
geometry of the domain, the curve I'; and the point wy. Figure 3 shows how rapidly
~v(wo, h) decays to 0, as wp moves further away from I' for several values of h. The
larger the regularization parameter h is, the better behaved the extrapolation problem
is.

In [27, 26] we have gained some insight into the mathematical structure of the
maximizer function and the underlying mechanisms that cause the power law preci-
sion deterioration in problems without the symmetry constraint. Specifically, in the
absence of symmetry the Hardy function ¢(z) of unit norm maximizing |¢(wp)| is a
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F1G. 3. Power law exponent v as a function of w for several values of h.

rescaled solution of a linear integral equation of Fredholm type,

(3.3) Hpu+ €u = py,,
where

' i
L O B ]

The exponent y(wp, k) can be computed from the unique solution u, = e 4,5 of the
integral equation:

In ||Ue||L2(—1 1)
A hM=1- 1 - -
(3.5) v(wo, 1) e—1>I(I)1+ In(1/e)

The equality of the exponents for problems with and without symmetry shown in
Figure 2(b) can be explained by the “quantitative asymmetry” of the solution w.:

(36) m |U‘€(w0)‘

< 1.
=0 |ue(—wo)|

Indeed, the symmetrized solution ve(w) = ue(w) + u.(—w) has the same order of
magnitude at w = wp as ue(wp), as € — 0. While numerically (3.6) is seen to hold, we
do not have a mathematical proof of this inequality. Nonetheless, the equality of the
exponents for problems with and without symmetry is established in section 5.2.

Once the symmetry constraint is discarded, the problem reduces to the one that
we have already studied in [27]. The insights from that study permit us to construct
a “near-optimal” test function ¢ = f — g and give an analytic formula for an upper
bound on y(wop, k), which is tight for A > 0.6. To explain the construction of the near-
optimal test function, consider the orthonormal eigenbasis {e, : n > 1} C L*(—1,1)
of J¢;,. We observe that by taking u = e, in (3.4) we obtain

(pwoaen)LQ = (l/hen)(wo) = )\nen(wo)a
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Fi1G. 4. Comparison of the eigenvalues \n, of Ky, and p(h)™™.

where ), > 0 are the corresponding eigenvalues. Then the solution of (3.4) can be
written as

The next idea comes from the upper bound on the decay of the eigenvalues \,, from
[3] and an identical asymptotics from [40]. Figure 4 shows that A, ~ p~", where p
is the Riemann invariant of Gj, = C \ ([—1,1] £ ¢h). The Riemann invariant of a
doubly connected region is the unique value of p > 1 such that G}, is conformally
equivalent to the annulus

A, ={zeC:p V2 < |2 < p'/?).

If ¥: Gy — A, is the conformal isomorphism, then it maps I'y, = [—1, 1]+ ih onto the
circle |z| = p~!/2 and the real line® is mapped to the unit circle. In the annulus 4,
the same question we are studying in the upper half-plane can be analyzed completely
(see [26] for details). In A, the eigenfunctions of the corresponding integral operator
are just functions z". Even though it is not true that the eigenfunctions of %} are
U(w)™, we can treat them as such, replacing e, (w) with e, (w) = (\/p¥(w))™ (so that
|€n(w)| =1 on T'y). This gives us the replacement

(5.7 ) =3 T 2L

for the solution u.(w) of (3.4). Lemma 3.1 below shows that

> wo 2n _ n €
) = 32 L) NGQ@OP(M (1/))7

P+ €2 Inp

3In order to explain the structure of the maximizer function it is convenient to work in a shifted
plane Hj, +ih, so that the interval [—1, 1] where frequencies are measured corresponds to I'j, and the
boundary of analyticity Jmw = —h shifts to the real line.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 01/03/22 to 155.247.166.234 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

FEASIBILITY OF EXTRAPOLATION PROCEDURE 7001

where
|2k

P = (e ) >

keZ

is a smooth 1-periodic function of ¢, and

2In |V
o 2]
Inp
The same lemma shows that when w € T'j,, then |¥(w)| = p~/2, and
- _ 1 In|¥(wp)|
~ 204, 9, = =
R

while, when w € R, |¥(w)| = 1, and we have

In [ o) |

A(w)] ~ e 20 fp = 1
i)~ e, fp =14

Then M (w) = 227 (w) is O(1) on R, O(¢) on Ty, and O(e7*) at wy, where

21In | ¥ (wo)|

Y1 (wo) =2(0r — bp) = — mp

The explicit formula for the conformal isomorphism ¥ : G, — A, has been derived
in [1, p. 138] in terms of elliptic functions and integrals, permitting us to compute an
upper bound 71 (wp) on the true exponent y(wp). Figure 5 shows that 1 (wp) is a very
good approximation for v when h > 0.6.

LEMMA 3.1. Let a € C and b > 0 be such that 0 < b < |a| < 1. Let

(38) o(n) = 22% ol

Then the asymptotics of ¢(n), as n — 01, is surprisingly irregular, depending on the

limit |
T n7;
= Jlggo { Inb }

along a sequence n; — 0, as j — oo, where {x} denotes the fractional part of x.
Specifically,

o(nj) ~ do(t)n;
where
gt Z Bt 4 bk
at £~ bt+b
is a smooth 1-periodic function, and
Ina
-1 =
Inb’

In the formulas above, a' = e'™® and In can denote any analytic branch (independent

of 1) that agrees with the usual logarithm for positive real numbers.
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Fic. 5. Comparison of v and ~1.

Proof. We first notice that, unlike ¢(n), the function

oo —
an

¥(n) :ZW

n=1

is regular at n = 0. In fact, ¥(0) = b/(a — b). We therefore define a new function

n

Fln) =3 = 0(n) + ()

nez

which obviously satisfies

i Nl = i i
Jim F(ng)nj = lim ¢(n;);

whenever n; — 01 and the limit on the right-hand side exists. Introducing the integer

and fractional parts

Ny = i) et = {57}

we make a change of index of summation k = n — N(n) and obtain, using

_ Inn

N(n) = b

a(n),
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after a short calculation, that

k—a(n) pe(m) k
a a
Fipn? =Y~ = 3 -
= 14 bk—alm)  ga) = be(m) 4+ p
The statement of the lemma is now apparent. 0

In general, we have shown in [26, 27] that the exact exponent ~y(wg,h) is de-
termined by the exponential decay of the magnitudes |e,(wp)| of the orthonormal
eigenbasis e, of the integral operator J#,. Specifically, we have proved that if

(3.9) A\p ™~ e—oz(h)n7 len (wo)]| ~ e—ﬁ(wg,h)n,
then 0 < 2B(wo, h) < a(h), and

(3.10) (wo, h) = mc(v‘*(’%h)

The conjectured asymptotics A, ~ p~™ of (squares of) singular values of the
restriction operator Z, exactly coincides with the asymptotics of the restriction op-
erators to smooth domains established in [40]. Unfortunately, the methods in [40] are
not applicable, since the end-points of the interval [—1, 1] can be regarded as corners
of angle 0, violating the desired smoothness requirements. Nonetheless, Figure 4 in-
dicates that the technical assumptions in [40] on the smoothness of domains could
probably be significantly relaxed.

The eigenvalues \,, are also connected to Kolmogorov n-widths [42], since they are
squares of singular values of the restriction operator %y, : H2(H;) — L?*(—1,1) (here
H? is defined in (5.4)). Specifically (cf. [21, Theorem 6.1]), /A1 is the Kolmogorov
n-width of the restriction to L?(—1,1) of closed unit ball in H?(Hj,). The relation
of the Kolmogorov n-widths of restrictions of various classes of analytic functions to
corresponding Riemann invariants have been known in many cases [19, 46, 22].

4. The least squares problem.

4.1. Existence and uniqueness. We begin by examining the existence and
uniqueness questions in the least squares problem (3.1). Let f,, € K, be a minimizing
sequence in (3.1). Then it has to be bounded in the L?(0, 1) norm. We will show that
this implies existence of a subsequence converging uniformly on compact subsets of
Hj, to an analytic function. In general, this limit does not need to be in K, since it
is not closed in H(Hy). We will, therefore, need to characterize the closure KCj, of Ky,.

We recall that a family of functions in H(G) is called normal if every sequence has
a convergent in the H(G) subsequence. In other words, normal families of functions
are exactly the precompact subsets in H(G).

In fact, any family of Herglotz functions (i.e., analytic in the upper half-plane
with nonnegative imaginary part) that is uniformly bounded at a single point is nor-
mal (cf. [17, Chap. II]). For our purposes, we consider a family of functions that is
uniformly bounded in the L?(0,1) norm.

THEOREM 4.1.

(i) The closure of Ky, in H(Hy) is 5 = {f(w) = F((w +ih)?) : F € &}.

(ii) For any M > 0, the family of functions /M = {f € Zh : |fll12(01) < M}
is normal.
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Proof. The proof is based on the representation (2.3), where we interpret the
measure o as an element of the Banach space £* dual to

B = {(;5 € C(]0, +0)) : AILII;O Ap(N) = 0},

with the norm

9]l = mmax(A + 1)|(A)]-

If we define the action of the measure o on ¢ € # by

=AW¢QMdM
then

(1) ol = [~ 57

when the measure ¢ is nonnegative.
The conclusion of the theorem then follows easily from the fundamental estimate
in the lemma below.

LEMMA 4.2. There exist ¢, > 0 and Cp > 0 depending only on h, such that for
every f €

cnll fllzzo,0) < p+llolle < Cullfllzz(0,1)

where
p= lim f(w).
w—>r00

Proof. Let us start by proving the second inequality. Applying the Holder in-
equality to the representation

(42) ﬂwp+AmAjZﬁbm

we obtain

1
Ifllz2g0,1) > (/ |Re(f)] dw)
0

/ Re(f dw‘
Applying Fubini’s theorem we then compute

/é}%e dw—p—i—// %e( )>da()\)dw:p+/ooogo(\[\)iafr)\1)7

where ) A
x4+ 1 T
= 1 ]_ — .
() 4z . ( + (x—1)2+ h2>

Note that ¢(x) > 0 for > 0, and because In(1 + z) ~ z as x — 0 we get

. 1 :
i‘1_>rno p(x) = 572 > 0, wl;rgo plx)=1>0.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 01/03/22 to 155.247.166.234 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

FEASIBILITY OF EXTRAPOLATION PROCEDURE 7005

Thus inf(y o) ¢() = pp > 0, which implies the desired estimate with C = 1/py,.
Let us now turn to the first inequality. Again, by Holder’s inequality

) L/ da(N) ?
§Hf||%2(o,1) p </0 </ (w—|—zh)|> e
A+1
*/0 )\+1 // A = (w +ih)2[? P (ot i TV

ﬂwwllwwww
where

! A1 Ce(VA) A+
v _/ A - (w+ih)2|2dw TR AR )

Note that (A + 1)3(\) is bounded in [0, c0), because ¢ is a bounded function and
the difference of arctangents can be bounded by )\ 7 for A > 1 by the mean value
theorem. But then the desired inequality follows from the estimate

‘FH — arctan

(arctan ‘F 1 )

> > do(A)
Ndo(\) < C =C - 1]
| ey <cn [ S5 = culel
Obviously K, C ., and Theorem 4.1 follows from the next lemma.
LEMMA 4.3.
(i) S is closed in H(Hy).
(il) Sh C Kh.

Proof. (i) Let {f,} C #, be a sequence such that f, — f in H(H). Then
according to Lemma 4.2 the sequences {p,} C R and {0,} C #* are bounded. By
the Banach—Alaoglu theorem the closed unit ball in %* is compact in the weak-*
topology. It is also sequentially compact because the Banach space % is separable.
Thus, there exist subsequences (which we do not relabel) p, — p and o,, — o weakly-*
in #*. Let us write

Ful) = ot ol + [ Gl o (),
0
where
1 I 1+ (w+ih)?
A—(w+ih)?2 A+1 (A= (w+ih)2) (A+1)

It is now evident that G(w,-) € £ for each fixed w € Hj,. Upon extracting the
convergent subsequence of the bounded sequence {||o,||+}, with limit denoted by a,
we obtain that

) o o do(X)
flw)= lim fu(w)=p+a +/0 G(w,N)do(A) = p+a—|o]. +/O A= (@tih)?
By lower semicontinuity of the norm a > ||o||., hence we conclude that f € .%.

(ii) 1. Let us start by showing that for any constant p > 0, there exists {g,} C Kp,
such that g, — p uniformly on [0, 1] as n — oco. Indeed, define

(w)_ /n-‘rl A\
Il =P | N (Wi

G(w,\) =
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Clearly, g, € Ky, and

PR g

which approaches zero, as n — oo, uniformly on compact subsets of Hy,.
2. Now let f € %, and let p and o be as in its definition. Consider the functions

ot de(N)
h”(“’)’/o A= (w+ih)2

Note that h,, € Ky, since its corresponding measure is do, = x(o,n)do and

/Ooo don(N) = /Ondo()\) < (n+1)/0n ‘i“fl) < 0.

Now
f(w) = hp(w) PJF/OO)%

and by dominated convergence the above difference tends to p uniformly on compact
subsets of Hj,. It remains to use the sequence {g,} from part 1 to get that g, + h,, is
the desired sequence in K, converging to f in H(Hj). O

To prove part (ii) of Theorem 4.1 we observe that for any compact subset K C Hy,
there exists a constant C'x so that
A+1

Cg =sup sup ——————— < +00.
K Sbaer A — (w+ ih)?]

Thus, for any w € K and f € %}, we have from representation (4.2)

[fW) < p+ Crkllo]s
Now, Lemma 4.2 implies that the family of functions fffw is locally equibounded. We
conclude, by Montel’s theorem, that fffw is a normal family of analytic functions. O

A corollary of Theorem 4.1 is stability of analytic continuation.

COROLLARY 4.4. Let {f,}, f C S, be such that f, — f in L*(0,1); then f, — f
asn — oo in H(Hy).

Proof. Indeed, if f, — f in L?(0,1), then ||fy||z2(0,1) is bounded. Then any
converging subsequence f,, — g in H(H}) must also converge to g in L?(0,1). But
then f =g on (0,1). Since both f and g are analytic in Hj, then f = g everywhere.
Since the set of limits of converging subsequences of f, consists of a single element
{f}, we conclude that f,, — f in H(H}). d

Let us now return to the least squares problem (3.1).

THEOREM 4.5. For a given fex, € L?(0,1), the least squares problem
4.3 E=¢ ex = i — Jex
( ) (f p) fnel'lyri ”f f p||L2(O,1)
has a unique solution. Moreover,

fienlgh ||f - fexPHLZ(O,l) = 6(fexp)'
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Proof. To prove existence, let {f,}°2, € .}, be a minimizing sequence; then it is
bounded in L?(0,1). Let us extract a weakly convergent subsequence, not relabeled,
fn— foin L%(0,1), as n — oco. The limiting function fy is in .#,. By the convexity
of the L? norm we have

€ = lim [|fn — fexpllz2(0,1) > [ fo = fexpllL2(0,1)-
n—oo

Hence, fy is a minimizer. To prove that the infimum in (4.3) stays the same if we
replace %, by Kj, we note that if fy € .7}, is a minimizer, then there exists a sequence
{gn} C K}, converging to fy strongly in L?(0,1).

To prove uniqueness, let f; and f; be two different solutions. Then [|f; —
JexpllL20,1) = € for j = 1,2. Observe that the function f; = tf1 + (1 —t)f is
also admissible, and therefore

€ < |Ifi = fexpllr2(0,0) <t f1 = fexpllzzo,1) + (1 = D)l f2 = fexpllzz0,1) = &

thus || f; — fexpllz2(0,1) = € for all ¢ € [0, 1]. However,

1o = FexplZaom) = B2 = Fell3ao,ny + 2R(f1 — fou fo = fexp) + 12 = fexpll3a0.1)

which cannot be constant, since the coefficient at t? is nonzero by our assumption
f1 # f2. The obtained contradiction concludes the theorem. ]

4.2. Properties of the minimizer. In this section we will prove that if the
minimum in (4.3) is nonzero, then the minimizer must be a rational function in C
with poles (and zeros) on the line Jm(w) = h. We use the method of Caprini [7, 9] to
prove the statement. The method for finding the necessary and sufficient conditions
for a minimizer in (4.3) is based on our ability to compute the effect of the change
of p and spectral measure o in representation (2.3) on the value of the functional we
want to minimize. Suppose that

B < do.(N)
ﬂ“**”*l N (@t ih)?

is the minimizer and

o do(N)
4.4 = =
(1.4) @ =o+ | =0
is a competitor. The variation ¢ = f — f, can then be written as

0 dv(X)
o) =20t [ oo Ae=ea

We then compute
45) 1 = folts = I = foxplls = A9 Jim 1€ + [ ClOYIE) + o1

where

! f*(w) B fexp(w)d

(4.6) C(t) = 2%Re Ny prs

w, t>0,

is the Caprini function of f.(w).
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THEOREM 4.6. Suppose the infimum in (3.1) is nonzero; then the minimizer f, €
I in (4.3) is given by

95

N
(4.7) fe(w) = ps +Zm

Jj=1

for some N >0, 0; >0,0 <1t <ty <--- <tn, and p, > 0. Moreover, f., given
by (4.7), is the minimizer if and only if its Caprini function C(t) is nonnegative and
vanishes att =t;, j =1,..., N, and “at infinity,” in the sense that

(4.8) 2§Re/0 (fexp(w) — fe(w))dw = lim tC(t) =0,

t—o0

provided p, > 0.

Proof. If p, > 0, then we can consider the competitor (4.4) with o = o,. Formula
(4.5) then implies that
Ap lim tC(t) + (Ap)? >0,
—00

where Ap can be either positive or negative and can be chosen as small in absolute
value as we want. This implies (4.8).

Next, suppose tg € [0,+00) is in the support of o,.. For every ¢ > 0 we define
I.(to) = {t > 0: |t — to] < €}. Saying that ¢y is in the support of o, is equivalent to
o«(I(tp)) > 0 for all € > 0. Then there are two possibilities. Either

(1) limeo0x(Ic(to)) =0, or

(11) lim_,o O'*(Ie(to)) =09 > 0.

Let us first consider case (i). Then we construct a competitor measure

7e(A) = 0u(N) = 01 00) + 004 (I (t0))0, (A), 0> 0,

where instead of the distributed mass of I (tg) we place a single point mass at tg. We
then define

do(N)

(4.9) fe(w) = ps + /0°° N (wtin)?

Formula (4.5) then implies

lim ”fexp - fe||%2(0,1) - ”fexp - f*||2L2(o71) B
=0 ox(Ic(to)) ;

(0 — 1)C(to).

If f. is a minimizer, then we must have (6 — 1)C(¢p) > 0 for all § > 0, which implies
that C(to) = 0.
In case (ii) we have o.({to}) = 0o > 0. Then for every |e| < oy we construct a
competitor measure
0c(N) = 0.(A) + €ty (N), €] < o0,

as well as the corresponding f, given by (4.9). We then compute

||feXP B f6|‘%2(0,1) B erXD B f*”%?(o@) _

(4.10) lim

e—0 €

Clto).

Since in this case € can be both positive and negative we conclude that C(ty) = 0.
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Hence, we have shown that C(tg) = 0 whenever ¢y € [0, +00) is in the support of
the spectral measure o of the minimizer f,. It remains to observe that for any t € R

) [ Tt =) [ Tl ~ )

o t—(w—1ih)? o t—(w+ih)? de.

Thus, C(t) is a restriction to the real line of a complex analytic function on the
neighborhood of the real line in the complex ¢-plane. By assumption, fexp # f+, and
therefore C(¢) is not identically zero. In particular, the zeros of C(t) cannot have an
accumulation point on the real line. We can also see that the sequence of zeros of
C'(t) cannot go to infinity by considering

_ 1 _ ! fexp(w) — fe(w) ! fexp(w) _m
B(S)—C<s> S ; md(ﬂ‘f's o mdwa

which is analytic in a neighborhood of 0, and hence cannot have a sequence of zeros
spn — 0, as n — oco. We conclude that the support of the spectral measure of the
minimizer f, must be finite,

N
o.(\) = Z 581, (N,

and the minimizer must be a rational function.
Now let us consider the competitor (4.4) defined by p = p. and o(X) = o.+€dt, (),

where € > 0 and to & {t1,...,tn}. Formula (4.5) then implies that
Clto) + dull3s 20, do(w) = ————
=7 to — (w + ’Lh)2

for all sufficiently small € > 0, which implies that C'(¢t) > 0 for all ¢ > 0. The necessity
of the stated properties of the Caprini function C(t) is now established.
Sufficiency is a direct consequence of formula (4.5), since we can write

N
v\ =o(\) — 0. () = Z A, (A) +D(N),

where 7(\) is a positive Radon measure without any point masses at A = t;, j =
1,...,N. We then compute, via formula (4.5), taking into account that C(t) > 0 for
all t > 0 and C(t;) = 0, that

1. +6 = fespllie = 1. = Foplls = Ao Jim €0+ [~ COOE) + 10 >0,

since the first term on the right-hand side is either nonnegative, if p, = 0, or zero, if
px > 0. 0

We observe that
if ¢; > 0, then we must also have C’(t;) = 0, since t = ¢; is a point of local
minimum of C(¢). If we write formula (4.7) in the form
o N o
- 0 Jj
felw) = e = o +th —(w +h)2’

px >0, 09 >0, tj>0, (7j>0, j=1...,N,

Jj=1
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then we have exactly 2(N + 1) equations for 2(N + 1) unknowns p., o9, tj, oj,
j=1,...,N:

p. lim tC(t) =0, 00C(0) =0, C(t;) =0, C'(t;)=0, j=1,....N.

Obviously, these equations do not imply that critical points ¢; are local minima of
C(t), nor do they enforce the nonnegativity of C(t). Taken together with their highly
nonlinear dependence on t; and an unknown value of IV, their practical utility for
finding f. is dubious. Instead, Theorem 4.6 could be used to verify that a particular
f«(w) is the minimizer of (3.1).

5. Worst case error analysis.

Notation. We write A < B if there exists a constant ¢ such that A < ¢B, and
likewise the notation A 2 B will be used. If both A < B and A 2 B are satisfied, we

will write A ~ B. Throughout the paper all the implicit constants will be independent
of e. Let also

(5.1) Sfw) = f(-w).

In this section we analyze the quantity A, r(€), given by (3.2), and answer the
two questions posed in section 3 about A, 5(€) by showing that we can restate the
questions entirely in terms of the difference f — g.

5.1. Reformulation of the problem. To analyze A, r(€) we examine the
difference ¢ = f — g. First observe that ¢ also has an integral representation (2.4)
with a signed measure 0 = oy — 0,. Now let ¢ = o7 — 6~ be the unique Hahn
decomposition of o as a difference of two mutually orthogonal positive measures o*.

Then we may write ¢ = ¢t — ¢, where ¢ € K, are given by

[e'e] O':t
(5.2) gbi(w) = /0 )\—d(o.)—(:\Zh)z

Thus, we expect that asymptotically A, »(¢) and

(53) Sup{ |¢(w0)| : ¢ c ]Ch _ ICh, and H(bHLz(O,l) < 6},

max || o= ||, max ||o¥E |, ~

must be equivalent. Here we have abbreviated max ||o® ||, := max(||c™ |, |0 [+)-

The next idea comes from the realization that the asymptotics of the worst possible
error is not very sensitive to specific norms and spaces. The reason, as we have
seen in [27] for a similar problem, is that the analytic function delivering the largest
error at wp is analytic in a larger half-space Hy;, and is therefore bounded in a wide
variety of norms. Our idea is therefore to prove asymptotic equivalence of Ay, 1 (€)
to a quadratic optimization problem in a Hilbert space, permitting us to express the
asymptotics of Ay, n(€) in terms of the solution of the integral equation (3.3).
Let us recall the definition of the Hardy class H?(H},):

(5.4) H?(H,) = {f is analytic in Hj, : suph 112 (Rtiy) < oo} .
y>—

It is well known [30] that functions in H? have L? boundary data and that || f|| g2, ) =
| f|lz2®—in) defines a norm in H 2. We describe the relation between the Hardy space
H?(H},) and K, — K, more precisely in the following lemma.
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LEMMA 5.1. Let f € H*(Hy) with Sf = f and [;° z[Imf(z — ih)| < oo; then
e, — Ky with

1

(5.5) do(N) = =Jmf (VA —ih)dA.
T
Moreover, f* € Kj, and
1
(5.6) max [|o x|« < ﬁllfHH%Hh)'

Proof. We observe that it is enough to prove the lemma for h = 0 and then apply
it to functions f(w —ih) € H?(H, ), where f € H?(H},) and w € H,..
For Hardy functions the following representation formula holds (cf. [30, p. 128]):
1 J
(5.7) Flw) = f/ IS (@) 4 w e H,.
R

™ r—w

Passing to limits in the symmetry relation Sf(w) = f(w) as Jmw | 0, and taking
imaginary parts, we see that —Jmf(z) = Jmf(—x). The formula (5.7) now gives

[ dmf(z) *Jmf(—x) ,  [®220mf(z)dr [ Imf(VA)dA
R B A e M e e B e
which implies (5.5).

Next, consider the functions

) = [ iy = L ampyt (R,

o —w?’ T

where (Jmf)® denote the positive and negative parts of the real valued function Jmf.
Then f = f* — f~ and since fooo z|Jmf(x)|dz < oo, the measures oF are finite and
so f* e Kp.

Finally, we prove inequality (5.6). We compute

2 [* z(Jmf)*
HJiH*:*/ l‘( mf) (m)d.%'
T 1+ 22
Applying the Cauchy—Schwarz inequality, we obtain

1 1
o], < 7”(jmf)i”L2(0,+oo) < —

1
Jm o) = —F—= : ,
v TEIIm liz0.ame) = 5=l
where we have used the symmetry and the fact that the real part of a Hardy function
is the Hilbert transform of its imaginary part [30], and therefore

1 2,y = 211Tmf 2@y = 41TmF (17200, 100 0

In order to complete the transition from Cj to Hardy spaces we need to replace
the norm ||o||« in (5.3) with an equivalent Hilbert space norm. This is accomplished
in our next lemma.

LEMMA 5.2. Let h' € (0, h); then for any f € Ky,

Ll
W+ ih |l g2, )

~
~ [lo|l,

(53) 111 =|

where the implicit constants depend only on h — h'.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 01/03/22 to 155.247.166.234 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

7012 YURY GRABOVSKY AND NAREK HOVSEPYAN

Proof. Since Hy, C Hy, it is clear that the function f(w)/(w + ¢h) is analytic in
Hj:. Next, letting § = h— 1/, using the integral representation (2.4) for f and Fubini’s
theorem, we compute

. [ 1 [ do(\)do(1) .
”f”h’_/Rx2+52/O /0 D@0 — (@)

R et do(\) do(t)
:/O /0 Iy T 0

where

TA+D(E+1) (A=) +126%(\ + 1) +965*
SN+ 462)(t+462) (A —1)2 +852(A+1t) + 1604

I\ t) =

This concludes the proof, since it is clear that the function I(A,t) is bounded above
and below by two positive constants depending only on 6. 0

Now we are ready to give the desired Hilbert space reformulation of our problem.
For any h > 0 we define
(5.9)
Di(e) = sup {|f(wo)| : f € H*(Hp), Sf = f. |flluzqm,) < 1, and [|fllz21,1) < €}

Notice that for convenience we suppressed the dependence on wy and also replaced
the interval from [0,1] by a symmetric interval [—1,1], resulting in an equivalent
formulation due to the symmetry Sf = f of the functions in Kp.

THEOREM 5.3 (equivalence of A and D). For any h' € (0, h)
(5.10) Dp(€) S An(e) S Di(e)

as € — 0, where the implicit constants depend only on h and h'.

Proof. We first observe that
Ap(e) = sup{|f(wo)—g(wo)| : {f, 9} C Kp, max{lloy|ls, [loglls} =1, [[f=gllz2(-1,1) < €}
To prove the first inequality in (5.10), let {f, g} C K}, be such that

max{[loslls, logl«} =1, If —glle2(-1) < e
Let

w+ih
Then S¢ = ¢. Moreover, by Lemma 5.2, for any i/ € (0, h) we estimate

1ol 2,y = I1f = gl < 1 Fllnr + gl S lloglls + lloglle < 2.

We conclude that there exists a constant ¢ > 0, depending only on h and k', such
that c¢ is admissible for Dy (€). Therefore,

Dy (e) = clp(wo)| = W.

Taking the supremum over all such pairs (f, g), we conclude that

Ah(e) S CDh/ (6)
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for some constant C' > 0, which depends on h and A/, but not on e.

To prove the other inequality, let ¢ € H?(Hj) be admissible for Dy (¢). The idea
is to construct a pair of functions {f, g} C K that are admissible for Ay (e). Since ¢
might not decay sufficiently fast at infinity to be in K, — KCj, we modify it and define

¢(w)

Y(w) = m

This modification preserves the symmetry (S = 1) and ensures the required decay,
so that Lemma 5.1 is applicable. So that ¢* € Kj, and |joy+|. < 1. Now let
1o(w) € Ky, be such that |[oy, ||« = 1. We define

Fw)=9¢"(w) +dow),  Gw)=v¢~(w)+to(w).
We observe that there exists a constant C' > 0, such that
L= loglls < llorll <C, 1= [loglls < [logll« < C.
Thus, the pair (f,g) given by
F

w)

flw) = M g(w) = %

. M =max{|jop]s |logll} > 1

is admissible for Ay(€). Thus,

|¢(wo)] |¢(wo)|
A > — = > .
W 6) 2 1 (w0) —glen)] = " 2 G
Taking the supremum over all admissible ¢ we obtain the remaining inequality in
(5.10). d

5.2. The effect of the symmetry constraint.

Notation. Let H? := H?(H},), and let (-,-) and | - || denote the inner product
and its induced norm in H?.

The goal of this section is to analyze the asymptotics of the quantity Dy, (e), as
e = 0. Modulo symmetry Sf = f, this has already been done in [26]. Investigating
the effect that symmetry may have on the asymptotics of Dy, (€) means relating it to

(5.11) Dij(e) = sup {|f(wo)| : f € H?, [If <1, and || fllz2(-1,1) < €} -

The key feature of (5.11) is its invariance under multiplying f by a constant phase
factor, which allowed us to replace the target functional |f(wo)| by a linear one,
Re f(wo). Since multiplication by nonreal factors breaks the symmetry Sf = f, this
reduction does not work for Dj(€). Nevertheless, convexity of the target functional
permits us to relate it to linear functionals if we observe that

| f(wo)| = max Re(Af(wo))-

A=1

Interchanging the order of maxima with respect to A and f permits us to use our
solution of (5.11) from [27] if we can eliminate the symmetry constraint. This is indeed
possible. Following the ideas from the theory of reproducing kernel Hilbert spaces [41],
we write the Cauchy integral formula as an inner product in H%: f(wo) = (f, Puo),
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where p,, is given by (3.4). It is easy to check that for f € H?, satisfying the
symmetry constraint we have

Re(3f (0)) = Re(f Apey) = Re( . 2) Qoo = o H0Pu0)

We can now discard the symmetry constraint. We claim that the maximizer function
of the problem

(5.12) DS u(e) = sup {Re(f,quwo,n) : f € H?, |IfIl <1, and || fllzz-1,1) < €}

automatically has the required symmetry. Indeed, if f € H? solves (5.12), we can
decompose it into its symmetric and antisymmetric parts f = fs + fq, which are
mutually real-orthogonal both in H? and L?(—1,1). In other words, they satisfy

Re(fs, fa) = 3:Ee(fsvfa)Lz(fl,l) = 0.

Thus,

AP = 1P fall® 2 1l W21y = Il Ze il allZooan) = sllZz 1),

which implies that
K= maX{IIfSII, ”fS||L2(—11)} <1.
€

Also, by the symmetry of g, » we find that

§Re(fa Qwo,k) = §):Ee(fsa Qwo,k)~

But then the function fs/x satisfies the constraints of (5.12) and strictly increases
the value of the target functional unless k = 1, or, equivalently, f, = 0. Thus, if f is
the maximizer, then it has to be symmetric.

According to Theorem 5.4 from the next section, the maximizer function f(w)
for (5.11) has the property that f(wo) = DY (€) > 0. Since removing the symmetry
constraint increases the set of admissible functions, we have an obvious inequality:

(5.13) Di(e) < fZ(wo) = Dj(e).

Our foregoing discussion suggests that the function vy . = AfS must be a good can-
didate for the maximizer in D?\,h(f)~ Using it as a test function we get the inequality

DR 0) 2 RO, o) = 2904 (0277 ).

We conclude that

Di(€) = max DY p(e) = ==

Hence, we have shown that

(5.14) S D)) < Dale) < DR(e).
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5.3. Optimal bound for D} (€). Let us define

0 DS, (0
(5.15) Y(wo, h) = y(h) = ilm ———>——.
e—0 Ine

Combining Theorem 5.3 and inequality (5.14) we see that DY (e) < Ap(e) < DY, (¢) for
any h’ € (0, h) with implicit constants depending only on A and h’. This in particular
implies

In A
(5.16) (o, ) < lim Be0n(©)
e—0 Ine

< v(wo, h) Vh' € (0, h).

It is clear that continuity of v(wp, h) in h will imply that Ay, »(€) also has power law
exponent y(wg, h). Let us show that the same conclusion will follow under continuity
of y(wo, h) in wp as well. Indeed, it is enough to show that

h
(.17) o, ) 27 (o,

*

and combine this with (5.16). To prove inequality (5.17), let £ ;. (w) be the maxi-
mizer function for Dgo’ w (€) (cf. Theorem 5.4 below) and consider the function

9(2) = %%ﬂ)

Note that ||g||H2(JHIh,) = ”f*HH?(H,L/) =1 and HgHLz(—l,l) < ||f*HL2(—1,1) = ¢. There-

fore, g is an admissible function for DY, y (¢), and hence

XA

h/ h/
Dy (0> 0(5) =\ o) = /8, )
which implies inequality (5.17). In particular, inequalities (5.16) and (5.17) imply
that v(wo, h) is a nonincreasing function of wy. Numerical computations of v(wg, h)
shown in Figure 3 indicate that ~(wp, ) is indeed a continuous function of wy. In
Appendix A.2 we prove that v(wg, k) is also a nondecreasing function of h, satisfying
~(wo, k) € (0,1) for any h > 0, and that lim, o+ y(wo, h) = 0.

To find v we derive an optimal bound for DY. Consider the restriction operator
# . H*(Hp) — L*(—1,1) [40, 28]; then ¥ = Z*Z is a positive, compact, and
self-adjoint integral operator defined by (3.4) (where we suppressed the h dependence
from the notation). In particular, Hf||2L2(_171) = (U f, f). Multiplying f by a constant
phase factor we can rewrite (5.11) as

(5.18) sup {Re(f,puy) : (f, f) <1and (K f, f) < 62}.

THEOREM 5.4. Let & and p,, be given by (3.4), and let n = n(e, h,wy) > 0 be
the unique solution of |[(A 4+ 1) puyllL2(=1,1) = €| + 1) 'pu, ||; then
(5.19) DY(e) = L w0)

fJux]|
where u* = uy , - solves the integral equation (4 nu* = pu,- In particular, the

mazimizer function is f* = u*/||u*].
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We can actually express DY (€) only in terms of 7.
LEMMA 5.5. Let n = n(e) > 0 be as in Theorem 5.4; then

(5.20) D) (e) C’exp{/:ﬁid;(t)},

where C' is a constant independent of €, namely, C = DY (1).

Proof. The definition of u* implies u*(wg) = (u*,pu,) = (u*, Fu* + nu*) =
(u*, A u*) + n(u*,u), ie.,
(5.21) u*(wo) = Jlull72—1,0) +nllw|* = (€ +n)[lw”]%,
where the last step follows from the definition of n. In particular we find that D (e) =
(€2 + n)|lu*||, and therefore it is enough to derive a formula for ||u*|| in terms of 7.
Let us write u} instead of u* to show its dependence on €. The key observation is the
relation between d.u’(wg) and ||uf||, which we are going to use in (5.21) to deduce
the desired formula. Let {e,}2%; be the orthonormal basis of H? consisting of the

eigenfunctions of % with corresponding eigenvalues {\,}52 ;. The integral equation
for uf diagonalizes in this basis, and we find (e, u*) = e, (wo)/(An +1(€)). Therefore,

e (wo)l %2 _ - |€n(WO)‘2
-3 Jetel g = Y Acnlenl
+n(e n=1 (An +n(e€))
These formulas readily imply

(5.22) Deug (wo) = —11'(e)]|ug]|*.
Differentiating (5.21) with respect to € and using the relation (5.22) we find

(2¢ +1'(e)) lug]® + 2llug || (2 +m(e)) Dellug]l = = (e)[|ug 1%,
which then gives
86 * ! 2 /

52 ol _ Q) | 2et0@, e

[l e +1(e) e +nle) € +nle)
Integrating (5.23) we find

C U tdt

5.24 w||= ———e — —_— 7,
(524 ecl e +1(e) Xp{ / t2+n(t)}
which concludes the proof. 0

Combining (5.19) with (5.21) on one hand and using (5.20) on the other hand
(where we change the variables in the integral), we obtain two different representations
for the power law exponent:

In ((€ + 2)[ju*|| L2 1 d
(5.25) ~(h) = lim net Dlvllezcan) g */ gt
e—0 Ine to5too t Jo 14+ e22n(e™®)

Thus, understanding the asymptotic behavior of 7(e) as € — 0 is crucial to unraveling
the above formulas. Expanding the two norms in the eigenbasis of JZ°, we see that 7
solves

ZOO An‘en(WO)P

=l w2
(5.26) ®(n) = sl
n=1 (x,+n)?
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This equation has a unique solution n = n(e) > 0, because ®(n) is monotone increasing
(since its derivative can be shown to be positive), ®(+00) = (H# Py Py )/ ||Pws ||, and
®(0") = 0 (see [27] for technical details). Finding the asymptotics of n(e) lies beyond
the capabilities of classical asymptotic methods. Nevertheless, under the purported
exponential decay (3.9) of eigenvalues and eigenfunctions (at the point wy) of .2~ we
proved in [27] that ®(n) ~ n with implicit constants independent of 7, leading to
n(e) ~ € with implicit constants independent of e. Moreover, we also showed that
lu|l2(=1,1) =~ ¥ =1, which then implies that the ratio inside the first lim in (5.25)
converges as € — 0 and gives the formula v(h) = 25/«

On the other hand, substituting Ay, |e,(wp)| in (5.26) with their corresponding
exponentials from (3.9), and applying (a version) of Lemma 3.1, we can approximate

- (at28)k
1 ) k Zm
S
s ew=ar(n(1)), L(r) =
kEZ

Note that L(7) is an elliptic function with periods « and 27i; furthermore, it has
symmetries L(7) = L(T) and L(28 — 7) = L(7). Figure 6 shows the plot of L.
Therefore, we expect €~ 21(e) to be oscillatory and periodic as € — 0; more precisely,

_ 1
e 2n(e) ~ L2’

So the integral averages of the function r(z) = (1+e**n(e~?))~! in the second formula
of (5.25) converge to the integral (over one period) of its periodic approximation,
namely,

28 _ L(2z)

T+ L2a) ™

1 t 1 1
v(h) = lim f/ r(x)dx = lim r(tx)da::/
0 0 0

t——+o0

750

651/ \ / \

F1G. 6. The graph of L(t) for a« =4 and 8 = 1.75.

This insight into the asymptotic behavior of n(e) allowed us to prove a bound
that is optimal up to the constant 3/2, but which is accessible numerically. Namely,
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with © = we p o, denoting the solution of the integral equation (£ + €?)u = p,,, in
[27] we showed that

0 3 . 1 €
0 < e min { o o b
We expect the two quantities under the above minimum to be comparable (this is
just a restatement of 7(e) ~ €2, which holds under (3.9), in fact it also holds under
weaker conditions, as we observed in [27]), in which case the formula for v(h) given
in (3.5) follows (compare with the first part of (5.25)).

The proof of Theorem 5.4 follows from [27] without much change. The only
difference is that in the above formulation we presented the exact maximizer for DY,
versus the 3/2-maximizer presented in [27]. For the sake of completeness we give a
short recap of the argument.

Proof of Theorem 5.4. For every f satisfying the two constraints of (5.18) and
for every nonnegative numbers p and v (u? 4+ v # 0) we have the inequality

(5.28) (n+v)f, ) < p+ve.

Applying convex duality to the quadratic functional on the left-hand side of (5.28) we
get

(529)  RUfpay) — 5 (1 0H) o) < 5 (4w 1) < 5 (4 we)
so that
(5.30) RO o) < 5 (0 0) o) + 5 (4 0€%),

which is valid for every f satisfying the constraints of (5.18) and all i > 0, v > 0. In
order for the bound to be optimal we must have equality in (5.29), which holds if and
only if py, = (u+ v#)f, giving the formula for optimal vector f:

(5.31) f=(n+vA) Py

The goal is to choose the Lagrange multipliers @ and v so that the constraints in

(5.18) are satisfied by f, given by (5.31). If v = 0, then f = Hizzl\ does not depend on

the small parameter €, which leads to a contradiction, because the second constraint
(A f, f) < € is violated when € is small enough. If 4 = 0, then # f = Lp, . But
this equation has no solution in H? since p,,, has a singularity at @y — 2ih, while # f
has an analytic extension to C\[—1,1] — 2ih.

Thus we are looking for x> 0, v > 0, so that equalities in (5.18) hold (these are
the complementary slackness relations in Karush-Kuhn-Tucker conditions), i.e.,

(5.32) {((u+u%)—1pwo,(u+u%)—1pwo) —1,

(H (4 v ) Py, (14 V) puy) = €2

Let 7 = £; solving the first equation in (5.32) for v we find v = ||(JZ 4+ )" 'py, |-
The second equation then reads

. (‘%/(‘%/_Fn)ilpwo?(‘%/_"n)ilpwo) _62
) = 107+ 1) o =<
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which has a unique solution = n(e) > 0, because ®(n) is monotone increasing
(since its derivative can be shown to be positive), ®(+00) = (H# Py Do)/ ||Puws ||, and
®(0") = 0 (see [27] for technical details). Setting u* = (# + 1) pu,, (5.30) reads

(u"spwo) el 2 u*(wo)
R(Sf,pwe) < i + (" +n) = :
T 2w 2 [l
where in the last step we used (5.21). d

Appendix A.
A.1. Extension of positivity.

PROPOSITION A.1. Let f be analytic in Hy, with Sf = f, where Sf(w) := f(—w),
and f(w) ~ —Aw™?2 as w — oo for some A > 0. In addition, assume f'(0) # 0. Then
the following are equivalent:

(i) Jm f(z) >0 for all x > 0;

(if) IA € (0,h) such that Im f(x —ih') > 0 for all x > 0.

Proof. The second item immediately implies the first one. Indeed, the symme-
try Sf = f implies that Jmf = 0 on the imaginary axis. Let Q = {w : Tmw >
—h', Rew > 0}. Note that Jmf > 0 on 9€Q; by the strong maximum principle
ming Jmf cannot be attained in €2, and hence we conclude that Jmf > 0 in Q. (Note
that the assumption f’(0) # 0 was not used here.)

Let us now turn to the converse implication. Let hg € (0, h); then f is analytic
in the closure Hy, and in particular is bounded inside the semidisc D = {w € Hy, :
|w + iho| < M}, where M > 0 is a large number that can be chosen such that
|f(w)| < 2A/|w|? for all w ¢ D. With these two inequalities, it is straightforward to
show that [p |f(z + iy)[*dz is bounded uniformly for y > —hg. Thus, f € H?(Hy,),
and following the calculations in the proof of Lemma 5.1 leading from (5.5) to (5.7),
we obtain the representation

R de(N)
f(CU)—/O m, wEHho7

where do()\) = %3mf(\f)\ —ihg)dA. Using this, it is easy to find that f must have

the more precise asymptotics, as w — 0o in Hp,:

ﬂ@wA(—1+%%), AzAwa)

But then for any t € (0, ho),

(A1) Jm f(z —it) ~ % > 0, x — +oo.

Assume, for the sake of contradiction, that for each t € (0, hg) there exists x; > 0,
such that Jmf(x; —it) < 0. Clearly, (A.1) implies that a; remains bounded as
t — 07. Let us now extract the convergent subsequence (without relabeling it)
@ — x9 > 0 as t — 07, but then IJm f(z¢) < 0. Assumption (i) implies that zo = 0.
Let us show that in this case f/(0) = 0, which is assumed to not be the case. Since
Jm f(x¢) > 0 and Jmf(x; — it) <0, by continuity we conclude that 36, € (0,1] such
that Jmf(x; — i6it) = 0. The symmetry Sf = f implies that Jmf(—if;t) = 0, and
therefore by the mean value theorem Jmf’(Z; —i6;t) = 0 for some Z; € (0, ;). Taking
limits as ¢ — 0T we obtain Jmf’(0) = 0, but by symmetry f'(0) € iR, and hence
f'(0) =0. d
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A.2. Power law bounds. Let D (¢) and (k) be defined by (5.11) and (5.15),
respectively. Note that Do(e) is nonincreasing in h. Indeed, Hp, C Hp, for hy < ho
and so admissible functions for D} () are also admissible for D} (e), showing that
D (€) < D} (e). Now dividing by lne < 0 and taking lim in € we conclude that (k)
is nondecreasmg.

Let us turn to deriving power law upper and lower bounds on DJ(e). We are
going to use the following two results from [27] and [26]. The first one is an analytic
continuation from a boundary interval: for any s € Hy,,

(A2) sup{|f(s)| : f € H*(EL,), || fllmzas) < 1, and [[f]lz2(-1.) < 6} < C()5°),

where C(s )_2 = % (arctan ==t — arctan ==1) with s = s, + is;, and a(s) =
s+1

Larg st € (0,1) is the angular size of [—1,1] as seen from s, measured in the
unlts of T radians. Moreover, the bound is optimal in § and the maximizer function
attaining the bound (up to a constant independent of ¢) in (A.2) is given by

o i
(A.3) G(Q) = goger M CeH,
-3
where In denotes the principal branch of logarithm.
The second one is an analytic continuation from a circle. Namely, let I' C H; be
a circle and s € Hy a point lying outside of I'; then

(A4)  sup{|f(s)] 1 f € HAEL), | fllmeqe,) < 1 omd || fllzae) < f = 0,

with implicit constants independent of € and 5(s) = 111\17:7(5)\7 where m is the Mobius

map transforming the upper half-plane into the unit disc and the circle I' into a
concentric circle of radius p < 1.

LEMMA A.2. There exist 9,71 € (0,1) (depending on wg, h) such that
(A.5) < DY(e) S e,
where the implicit constants depend only on h and wy. Moreover, y1(h) — 0 as
h—07T.

Proof. The lower bound is obtained by introducing an ansatz function admissible
for DY (). Consider the function G in (A.3) with s = ih, then the ansatz function is
going to be f(w) = G(w + ih). Note that we can rewrite

§2(0) 105 (<) 1
= #, 95(() 71 d1ln +C
¢ +ih 1-¢C|°
It is now clear that
1 2
< g0, = i ih) = = z
IGllL2((~1,1)4in) S 0 o xer[n_nll,l] alx + ih) - arctan 5 € (0,1),

and |G (wo + ih)| 2 d%, where oo = a(wg + ih) < g (see Figure 7). Thus,

(A.6) [z ST fllezin S 6%, |f(wo)l 2 6%

Letting € = §°° we see that cf is an admissible function for DY (¢) for some constant
¢ > 0 independent of §, and hence

DY (€) > c|fwo)| = 0% = ™,
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Fic. 7. Comparison of angles.

where v; = y1(h) = a/ag € (0,1). Tt remains to notice that vy;(h) — 0 as h — 0.

Let us now turn to the upper bound. Let f be an admissible function for DY (e); it
is clear that f is also admissible for (A.2) with § = e. However, applying the estimate
in (A.2) at the point wy > 1 doesn’t give a useful bound, since a(wp) = 0. Instead let
us apply (A.2) at the points s lying on the circle C = {s € H} : [s —i| = 3}, Tt is
clear that the angle «(s) is the smallest at the top point of the circle, i.e., at sg = %z
Moreover, obviously the constant C(s) in (A.2) is uniformly bounded for all s € C.
Thus,

1 12
|f(s)] < e Vs e C, where [y=a(sg)=— arctang
7r

and the implicit constant is independent of s and e. In particular, |[f|[z2c) S ePo.
Now we can apply (A.4) to the function f(- —ih) at the point s = wp + ¢h and obtain

In |m(wo + ih)]
Inp

where m(z) = 22 with z) = 1VA4h? +8h+3 and p = 2h + 2 — V4h? + 8h + 3.

Taking the supremum over f in (A.7) we conclude the proof of the upper bound. 0O

(A7) |f(wo)| S €™, Yo = Bo - B(wo +ih) = Bo

7

As an immediate corollary from Lemma A.2 we see that for any h > 0

v(h) € ho(h), 1 (h)] € (0,1)
and also y(h) — 0 as h — 0.
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