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ON THE FEASIBILITY OF EXTRAPOLATION OF THE COMPLEX
ELECTROMAGNETIC PERMITTIVITY FUNCTION USING

KRAMERS--KRONIG RELATIONS\ast 

YURY GRABOVSKY\dagger AND NAREK HOVSEPYAN\ddagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . We study the degree of reliability of extrapolation of complex electromagnetic per-
mittivity functions based on their analyticity properties. Given two analytic functions, representing
extrapolants of the same experimental data, we examine how much they can differ at an extrapolation
point outside of the experimentally accessible frequency band. We give a sharp upper bound on the
worst-case extrapolation error in terms of a solution of an integral equation of Fredholm type. We
conjecture and give numerical evidence that this bound exhibits a power law precision deterioration
as one moves further away from the frequency band containing measurement data.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . extrapolation, quantification, optimal error estimate, complex electromagnetic
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1. Introduction. Properties of linear, time-invariant, causal systems are char-
acterized by functions analytic in a complex half-plane. Examples include transfer
functions of digital filters [25], complex impedance and admittance functions of electri-
cal circuits [5], and complex magnetic permeability and complex dielectric permittivity
functions [33, 20]. Arising from the world of real-valued fields, these functions also
possess specific symmetries. The underlying mathematical structure is the Fourier (or
Laplace) transforms of real-valued functions that vanish on negative semiaxis. More
generally, the analyticity arises from the analyticity of resolvents of linear operators,
while their symmetries reflect that these operators are very often real and self-adjoint.

In a typical situation we can measure the values of such analytic functions on
a compact subset of the boundary of their half-plane of analyticity. The real and
imaginary parts of such a function are not independent but are Hilbert transforms of
one another. In the context of the complex dielectric permittivity this fact is expressed
by the Kramers--Kronig relations [15, 31, 44, 29]. It is therefore tempting to use these
relations in order to reconstruct the analytic functions from their measured values.
Unfortunately, such a reconstruction problem is ill-posed (e.g., [37]), and one needs
to place additional constraints on the set of admissible analytic functions for the
extrapolation problem to be mathematically well-posed.

In this paper we propose a physically natural regularization that implies that
the underlying analytic functions can be analytically continued into a larger complex
half-plane. In that case, the idea is to exploit the fact that complex analytic functions
possess a large degree of rigidity, being uniquely determined by values at any infinite
set of points in any finite interval. This rigidity also implies that even very small
measurement errors will produce data mathematically inconsistent with values of an
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6994 YURY GRABOVSKY AND NAREK HOVSEPYAN

analytic function. In such cases the least squares approach [14, 13, 7, 8] that treats
all data points equally is the most natural one. In the first part of the paper we prove
that the least squares problem has a unique solution that yields a mathematically
stable extrapolant. We show that the minimizer must be a rational function and
derive the necessary and sufficient conditions for its optimality.

Recent work [45, 16, 27, 26] shows that, surprisingly, the space of analytic func-
tions is also ``flexible"" in the sense that the data can often be matched up to a given
precision by two physically admissible functions that are very different away from the
interval, where the data is available. The second part of the paper quantifies this
phenomenon by giving an optimal upper bound on the possible discrepancy between
any two approximate extrapolants. This is done by first reformulating the problem
as a question about analytic functions, which we have already studied in [27, 26], but
without the symmetry constraints. Incorporating symmetry into the methods of [27]
is nontrivial, and we address this question next. Our conclusion is that the symmetry
has a virtually negligible regularizing effect, as far as the optimal upper bound on the
extrapolation uncertainty is concerned.

2. Preliminaries. When an electromagnetic wave passes through material, the
incident electric field \bfitE (\bfitx , t) interacts with charge carriers inside the matter. We
assume that the induced polarization field \bfitP (\bfitx , t) depends on the incident electric
field linearly and locally. This is expressed by the constitutive relation

(2.1) \bfitP (\bfitx , t) =

\int +\infty 

0

\bfitE (\bfitx , t - s)a(s)ds,

indicating that the polarization field depends only on the past values of \bfitE (\bfitx , t). The
function a(t) is called the impulse response or a memory kernel, which is assumed
to decay exponentially. Its decay rate, a(t) \sim e - t/\tau 0 , t \rightarrow \infty , indicates how fast the
system ``forgets"" the past values of the incident field. The parameter \tau 0 > 0 is called
the relaxation time, which can be measured for many materials.

Let

a0(t) =

\Biggl\{ 
a(t), t \geq 0,

0, t < 0.

Then we can extend the integral in (2.1) to the entire real line and apply the Fourier
transform to convert the convolution into a product:

\widehat \bfitP (\bfitx , \omega ) = \widehat a0(\omega ) \widehat \bfitE (\bfitx , \omega ),

where

\widehat f(\omega ) =
\int 

\BbbR 

f(x)ei\omega xdx

is the Fourier transform. In physics, the function \varepsilon (\omega ) = \varepsilon 0 + \widehat a0(\omega ) is called the
complex dielectric permittivity of the material, where \varepsilon 0 is the dielectric permittivity
of the vacuum. Mathematically, it is more convenient to study \widehat a0(\omega ) rather than
\varepsilon (\omega ). From now on, we will denote

f(\omega ) = \widehat a0(\omega )

and refer to it as the complex electromagnetic permittivity, in a convenient abuse of
terminology. Let us recall the well-known analytic properties of isotropic complex
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FEASIBILITY OF EXTRAPOLATION PROCEDURE 6995

electromagnetic permittivity as a function of frequency \omega of the incident electromag-
netic wave [33, 20]:

(a) f(\omega ) = f( - \omega );
(b) f(\omega ) is analytic in the complex upper half-plane \BbbH + = \{ \omega \in \BbbC : \frakI \frakm \omega > 0\} ;
(c) \frakI \frakm f(\omega ) > 0 for \omega in the first quadrant \Re \frake (\omega ) > 0, \frakI \frakm (\omega ) > 0;
(d) f(\omega ) =  - A\omega  - 2 +O(\omega  - 3), A > 0 as \omega \rightarrow \infty .

Property (a) expresses the fact that physical fields are real. Property (b) is the conse-
quence of the causality principle, i.e., independence of \bfitP (\bfitx , t) of the future values of
E(\bfitx , \tau ), \tau > t. Property (c) comes from the fact that the electromagnetic energy gets
absorbed by the material as the electromagnetic wave passes through. Property (d)
is called the plasma limit, where at very high frequencies the electrons in the medium
may be regarded as free. Complex analytic functions with properties (a)--(d), and
their variants, are ubiquitous in physics. The complex impedance of electrical circuits
as a function of frequency has similar properties [23, 5, 10]. Yet another example is
the dependence of effective moduli of composites on the moduli of its constituents
[4, 38, 39]. These functions appear in areas as diverse as optimal design problems
[34] and nuclear physics [36, 35, 6]. Typically1 only the values of such a function
on a real line can be measured. In the case of complex electromagnetic permittivity
the measurements are usually made either on a finite interval or at a discrete set of
frequencies. However, the requirements (a)--(d) do not place any analyticity require-
ments on f(\omega ), when \omega is real (see [2, 24] for the boundary behavior of such functions).
For example, the function

f(\omega ) =
1

\omega 2
0  - \omega 2

, \omega 0 > 0,

satisfies properties (a)--(d), but blows up at the frequency \omega 0 > 0. We exclude such
examples by assuming that the memory kernel a(t) decays exponentially with relax-
ation time \tau 0 > 0. In this case f(\omega ) will have an analytic extension into the larger
half-plane

(2.2) \BbbH h = \{ \omega \in \BbbC : \frakI \frakm \omega >  - h\} ,

where h = 1/\tau 0 > 0 (cf. [43]). In general, the analytic continuation of f(\omega ) need
not have positive imaginary part when \frakI \frakm (\omega ) >  - h and \Re \frake (\omega ) > 0. For example,
f(\omega ) =  - \omega +i

(\omega +3i)3 satisfies conditions (a)--(d) and is analytic in \BbbH 3, but \frakI \frakm f(x  - i\epsilon )

takes negative values for any \epsilon \in (0, 3) for some x > 0. We therefore make an
additional regularizing assumption that positivity property (c) continues to hold in
the larger half-plane \BbbH h. In fact, under the additional assumption that the Elmore
delay [18] is positive, i.e.,  - if \prime (0) > 0, the positivity condition can be guaranteed in
some possibly smaller half-plane \BbbH h\prime , 0 < h\prime \leq h (see the appendix). Thus, the class
of all physically admissible complex dielectric permittivity functions is narrowed in a
natural way to the class \scrK h, defined as follows.

Definition 2.1. A complex analytic function f : \BbbH h \rightarrow \BbbC belongs to the class \scrK h

if it has the following list of physically justified properties:
(S) symmetry: f(\omega ) = f( - \omega );
(P) passivity: \frakI \frakm (f(\omega )) > 0, when \frakI \frakm (\omega ) >  - h, \Re \frake (\omega ) > 0;
(L) plasma limit: f(\omega ) =  - A\omega  - 2 +O(\omega  - 3), A > 0 as \omega \rightarrow \infty .

1In the context of viscoelastic composites, measurements corresponding to values of f(\omega ) in the
upper half-plane are also possible.
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6996 YURY GRABOVSKY AND NAREK HOVSEPYAN

Functions in the set \scrK h are closely related to an important class of functions
called Stieltjes functions.

Definition 2.2. A nonconstant function analytic in the complex upper half-plane
is said to be of Stieltjes class \frakS if its imaginary part is positive, and it is analytic
on the negative real axis, where it takes real and nonnegative values. Such functions,
together with all nonnegative constant functions, form the Stieltjes class \frakS .

It is well known that a Stieltjes function F (z) is uniquely determined by a constant
\rho \geq 0 and a Borel-regular positive measure \sigma by the representation

(2.3) F (z) = \rho +

\int \infty 

0

d\sigma (\lambda )

\lambda  - z
,

\int \infty 

0

d\sigma (\lambda )

\lambda + 1
< +\infty .

The measure \sigma is often referred to as the spectral measure [12, 39]. Let us show that
function f \in \scrK h can be represented by

(2.4) f(\omega ) = F ((\omega + ih)2), F \in \frakS , \rho = 0,

\int \infty 

0

d\sigma (\lambda ) = A < +\infty ,

where \sigma is the spectral measure for F (z).
For any f \in \scrK h consider the function g(\zeta ) = f(\zeta  - ih) which is analytic in \BbbH +,

g(\zeta ) = g( - \zeta ), \frakI \frakm g > 0 in the first quadrant, and g(\zeta ) \sim  - A\zeta  - 2 as \zeta \rightarrow \infty for some
A > 0.

Unfolding the first quadrant in the \zeta -plane into the upper half-plane in the z-
plane via z = \zeta 2 we obtain a function F (z) = g(

\surd 
z), which is analytic in \BbbH + and

has a positive imaginary part there. The symmetry of g implies that it is real on
i\BbbR >0, but then F is real on \BbbR <0. Clearly, analyticity of g on i\BbbR >0 implies that
of F on \BbbR <0. The plasma limit assumption implies that F ( - x) \geq 0 for x large
enough, which is enough to conclude that F is a Stieltjes function (see the proof of
[32, Theorem A.4]). Thus, F admits the representation (2.3). But then the asymptotic
relation F (z) \sim  - Az - 1 as z \rightarrow \infty implies that \rho = 0 and

\int \infty 
0
d\sigma (\lambda ) = A <\infty . Thus,

f(\omega ) = g(\omega + ih) = F ((\omega + ih)2). Conversely, if f is given by (2.4), then it is
straightforward to check that it satisfies all the required properties of class \scrK h.

3. Main results. Let us assume that the experimentally measured data fexp(\omega )
is known on a band of frequencies \Gamma = [0, B]. The unavoidable random noise makes
the measured values mathematically inconsistent with the analyticity of the complex
dielectric permittivity function. The standard way of dealing with the noise is to use
the ``least squares"" approach by looking for a function f \in \scrK h that is closest to the
experimental data fexp(\omega ) in the L2 norm on \Gamma . Thus, after rescaling the frequency
interval \Gamma to the interval [0, 1] we arrive at the following least squares problem:

(3.1) inf
f\in \scrK h

\| f  - fexp\| L2(0,1).

One approach [11, 12] is to ignore the positivity requirement, while retaining the spec-
tral representation (2.4). The resulting problem constrains f to a vector space, but
becomes ill-posed. It is then solved by Tikhonov regularization techniques. Unfortu-
nately, such an approach cannot guarantee that the solution possesses the required
positivity.

We will see in section 4 that the positivity property of functions in \scrK h plays a
regularizing role, making the least squares problem (3.1) well-posed. So the solution to
(3.1) exists, is unique, and lies in the closure \scrS h = \scrK h with respect to the standard
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FEASIBILITY OF EXTRAPOLATION PROCEDURE 6997

Fig. 1. Apparent ill-posedness of the extrapolation process.

topology2 of the space H(\BbbH h) of analytic functions on \BbbH h. We then characterize
the set \scrS h and obtain stability of analytic continuation in the following sense: if
\{ fn\} , f \subset \scrS h are such that fn \rightarrow f in L2(0, 1), then fn \rightarrow f as n\rightarrow \infty in H(\BbbH h). In
section 4.2 we study the properties of the minimizer of (3.1).

Even though we have established well-posedness and stability of the extrapolation
problem, the above-mentioned results are not quantitative, since they do not give rates
of convergence of the extrapolation errors. Figure 1 (corresponding to a small value of
the natural regularization parameter) shows two perfectly admissible functions in \scrK h

that are virtually indistinguishable on [0, 1], but separate almost immediately beyond
the data window.

It suggests that the quantification of mathematical well-posedness is a matter
of practical importance. While there is no shortage of proposed algorithms for ex-
trapolation of experimental data in the vast literature on the subject, there is no
mathematically rigorous quantitative analysis of uncertainty inherent in such extrap-
olation procedures. We therefore consider two different functions f and g in \scrK h that
differ by less than a small fraction \epsilon of their size on the frequency band [0, 1]. Our
goal is to estimate how much f and g can differ at a given point \omega 0 > 1. We begin
by giving a precise formulation of this question. For any \epsilon > 0 we consider the set of
pairs

Uh(\epsilon ) =

\biggl\{ 
(f, g) \in \scrK h :

\| f  - g\| L2(0,1)

max(\| \sigma f\| , \| \sigma g\| )
\leq \epsilon 

\biggr\} 
,

where \sigma f and \sigma g are the spectral measures in the representation (2.4) of f and g,
respectively, and

\| \sigma f\| :=

\int \infty 

0

d\sigma f (\lambda )

\lambda + 1
< +\infty 

is finite interpreted as a ``total norm"" of f (it is the total variation of the measure
d\sigma f/\lambda +1). Our goal is to find an upper bound on the relative extrapolation error at
the point \omega 0,

(3.2) \Delta \omega 0,h(\epsilon ) = sup

\biggl\{ | f(\omega 0) - g(\omega 0)| 
max(\| \sigma f\| , \| \sigma g\| )

: (f, g) \in Uh(\epsilon )

\biggr\} 
.

2This is a metrizable topology of uniform convergence on compact subsets of \BbbH h.
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(a) (b)

Fig. 2. Numerical support for the power law transition principle.

Two fundamental questions determine the reliability of the extrapolation proce-
dures:

1. Is it true that \Delta \omega 0,h(\epsilon ) \rightarrow 0 as \epsilon \rightarrow 0+?
2. What is the exact convergence rate of \Delta \omega 0,h(\epsilon ) to 0?

The first insight is the realization that, in fact, these questions are about the differ-
ence \phi = f  - g rather than the pair (f, g). The difference \phi has the same spectral
representation (2.3), (2.4) as f and g, except the spectral measure is no longer pos-
itive. Our next observation is that the asymptotic behavior of \Delta \omega 0,h(\epsilon ), as \epsilon \rightarrow 0,
is insensitive to certain restrictions on the spectral measures \sigma , as long as the set of
admissible measures is dense (in the weak-* topology) in the space of measures (2.3).
For example, we may work only with absolutely continuous measures with densities
in L2(0,+\infty ), permitting us to use the theory of Hardy functions and Hilbert space
methods to obtain the exact asymptotic behavior of \Delta \omega 0,h(\epsilon ). The passage from pairs
(f, g) to a single function \phi = f  - g is described in section 5.1. The analysis of the
Hilbert space problem for the difference \phi = f  - g is in section 5.2, where it is shown
that \Delta \omega 0,h(\epsilon ) \lesssim \epsilon \gamma for some \gamma \in (0, 1), giving a positive answer to our first question.
The answer to the second question is more nuanced, if we distinguish what we can
prove rigorously and what we can conjecture based on the numerical and analytical
evidence. The theory in section 5.2 permits numerical computation of the asymptotics
of \Delta \omega 0,h(\epsilon ) by relating it to a similar problem without the symmetry constraint (prop-
erty (a) from section 2). Figure 2(a) shows that asymptotically \Delta \omega 0,h(\epsilon ) \sim \epsilon \gamma (\omega 0,h),
while we also see from Figure 2(b) that the symmetry requirement does not change
the value of the exponent \gamma (\omega 0, h).

These results demonstrate the power law principle we have formulated in [26, 27],
generalizing the Nevanlinna principle [13, 45]. It says that the largest value a bounded
analytic function which is of order \epsilon on a curve \Gamma inside its domain of analyticity can
take at a point \omega 0 \not \in \Gamma decays as \epsilon \gamma , where the exponent 0 < \gamma < 1 depends on the
geometry of the domain, the curve \Gamma , and the point \omega 0. Figure 3 shows how rapidly
\gamma (\omega 0, h) decays to 0, as \omega 0 moves further away from \Gamma for several values of h. The
larger the regularization parameter h is, the better behaved the extrapolation problem
is.

In [27, 26] we have gained some insight into the mathematical structure of the
maximizer function and the underlying mechanisms that cause the power law preci-
sion deterioration in problems without the symmetry constraint. Specifically, in the
absence of symmetry the Hardy function \phi (z) of unit norm maximizing | \phi (\omega 0)| is a

D
o
w

n
lo

ad
ed

 0
1
/0

3
/2

2
 t

o
 1

5
5
.2

4
7
.1

6
6
.2

3
4
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FEASIBILITY OF EXTRAPOLATION PROCEDURE 6999

Fig. 3. Power law exponent \gamma as a function of \omega for several values of h.

rescaled solution of a linear integral equation of Fredholm type,

(3.3) \scrK hu+ \epsilon 2u = p\omega 0 ,

where

(3.4) (\scrK hu)(\omega ) =

\int 1

 - 1

px(\omega )u(x)dx, p\omega 0(\omega ) =
i

2\pi (\omega  - \omega 0 + 2ih)
.

The exponent \gamma (\omega 0, h) can be computed from the unique solution u\epsilon = u\epsilon ,\omega 0,h of the
integral equation:

(3.5) \gamma (\omega 0, h) = 1 - lim
\epsilon \rightarrow 0+

ln \| u\epsilon \| L2( - 1,1)

ln(1/\epsilon )
.

The equality of the exponents for problems with and without symmetry shown in
Figure 2(b) can be explained by the ``quantitative asymmetry"" of the solution u\epsilon :

(3.6) lim
\epsilon \rightarrow 0

| u\epsilon (\omega 0)| 
| u\epsilon ( - \omega 0)| 

< 1.

Indeed, the symmetrized solution v\epsilon (\omega ) = u\epsilon (\omega ) + u\epsilon ( - \omega ) has the same order of
magnitude at \omega = \omega 0 as u\epsilon (\omega 0), as \epsilon \rightarrow 0. While numerically (3.6) is seen to hold, we
do not have a mathematical proof of this inequality. Nonetheless, the equality of the
exponents for problems with and without symmetry is established in section 5.2.

Once the symmetry constraint is discarded, the problem reduces to the one that
we have already studied in [27]. The insights from that study permit us to construct
a ``near-optimal"" test function \phi = f  - g and give an analytic formula for an upper
bound on \gamma (\omega 0, h), which is tight for h \geq 0.6. To explain the construction of the near-
optimal test function, consider the orthonormal eigenbasis \{ en : n \geq 1\} \subset L2( - 1, 1)
of \scrK h. We observe that by taking u = en in (3.4) we obtain

(p\omega 0
, en)L2 = (\scrK hen)(\omega 0) = \lambda nen(\omega 0),
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Fig. 4. Comparison of the eigenvalues \lambda n of \scrK h and \rho (h) - n.

where \lambda n > 0 are the corresponding eigenvalues. Then the solution of (3.4) can be
written as

u\epsilon (\omega ) =

\infty \sum 

n=1

\lambda nen(\omega 0)en(\omega )

\lambda n + \epsilon 2
.

The next idea comes from the upper bound on the decay of the eigenvalues \lambda n from
[3] and an identical asymptotics from [40]. Figure 4 shows that \lambda n \sim \rho  - n, where \rho 
is the Riemann invariant of Gh = \BbbC \infty \setminus ([ - 1, 1] \pm ih). The Riemann invariant of a
doubly connected region is the unique value of \rho > 1 such that Gh is conformally
equivalent to the annulus

A\rho = \{ z \in \BbbC : \rho  - 1/2 < | z| < \rho 1/2\} .

If \Psi : Gh \rightarrow A\rho is the conformal isomorphism, then it maps \Gamma h = [ - 1, 1]+ ih onto the
circle | z| = \rho  - 1/2 and the real line3 is mapped to the unit circle. In the annulus A\rho 
the same question we are studying in the upper half-plane can be analyzed completely
(see [26] for details). In A\rho the eigenfunctions of the corresponding integral operator
are just functions zn. Even though it is not true that the eigenfunctions of \scrK h are
\Psi (\omega )n, we can treat them as such, replacing en(\omega ) with \widetilde en(\omega ) = (

\surd 
\rho \Psi (\omega ))n (so that

| \widetilde en(\omega )| = 1 on \Gamma h). This gives us the replacement

(3.7) \widetilde u\epsilon (\omega ) =
\infty \sum 

n=1

\Psi (\omega 0)
n
\Psi (\omega )n

\rho  - n + \epsilon 2

for the solution u\epsilon (\omega ) of (3.4). Lemma 3.1 below shows that

\widetilde u\epsilon (\omega 0) =
\infty \sum 

n=1

| \Psi (\omega 0)| 2n
\rho  - n + \epsilon 2

\sim \epsilon  - 2\theta 0P

\biggl( 
2 ln(1/\epsilon )

ln \rho 

\biggr) 
,

3In order to explain the structure of the maximizer function it is convenient to work in a shifted
plane \BbbH h + ih, so that the interval [ - 1, 1] where frequencies are measured corresponds to \Gamma h and the
boundary of analyticity \frakI \frakm \omega =  - h shifts to the real line.
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where

P (t) =

\biggl( 
\rho 

| \Psi (\omega 0)| 2
\biggr) t\sum 

k\in \BbbZ 

| \Psi (\omega 0)| 2k
\rho t + \rho k

is a smooth 1-periodic function of t, and

\theta 0 = 1 +
2 ln | \Psi (\omega 0)| 

ln \rho 
.

The same lemma shows that when \omega \in \Gamma h, then | \Psi (\omega )| = \rho  - 1/2, and

| \widetilde u(\omega )| \sim \epsilon  - 2\theta h , \theta h =
1

2
+

ln | \Psi (\omega 0)| 
ln \rho 

,

while, when \omega \in \BbbR , | \Psi (\omega )| = 1, and we have

| \widetilde u(\omega )| \sim \epsilon  - 2\theta \BbbR , \theta \BbbR = 1 +
ln | \Psi (\omega 0)| 

ln \rho 
.

Then M(\omega ) = \epsilon 2\theta \BbbR \widetilde u(\omega ) is O(1) on \BbbR , O(\epsilon ) on \Gamma h, and O(\epsilon \gamma 1) at \omega 0, where

\gamma 1(\omega 0) = 2(\theta \BbbR  - \theta 0) =  - 2 ln | \Psi (\omega 0)| 
ln \rho 

.

The explicit formula for the conformal isomorphism \Psi : Gh \rightarrow A\rho has been derived
in [1, p. 138] in terms of elliptic functions and integrals, permitting us to compute an
upper bound \gamma 1(\omega 0) on the true exponent \gamma (\omega 0). Figure 5 shows that \gamma 1(\omega 0) is a very
good approximation for \gamma when h \geq 0.6.

Lemma 3.1. Let a \in \BbbC and b > 0 be such that 0 < b < | a| < 1. Let

(3.8) \phi (\eta ) =

\infty \sum 

n=0

an

\eta + bn
.

Then the asymptotics of \phi (\eta ), as \eta \rightarrow 0+, is surprisingly irregular, depending on the
limit

t = lim
j\rightarrow \infty 

\biggl\{ 
ln \eta j
ln b

\biggr\} 

along a sequence \eta j \rightarrow 0, as j \rightarrow \infty , where \{ x\} denotes the fractional part of x.
Specifically,

\phi (\eta j) \sim \phi 0(t)\eta 
 - \gamma 
j ,

where

\phi 0(t) =
bt

at

\sum 

k\in \BbbZ 

ak

bt + bk

is a smooth 1-periodic function, and

\gamma = 1 - ln a

ln b
.

In the formulas above, at = et ln a and ln can denote any analytic branch (independent
of \eta ) that agrees with the usual logarithm for positive real numbers.
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(a) (b)

(c)

Fig. 5. Comparison of \gamma and \gamma 1.

Proof. We first notice that, unlike \phi (\eta ), the function

\psi (\eta ) =

\infty \sum 

n=1

a - n

\eta + b - n

is regular at \eta = 0. In fact, \psi (0) = b/(a - b). We therefore define a new function

F (\eta ) =
\sum 

n\in \BbbZ 

an

\eta + bn
= \phi (\eta ) + \psi (\eta ),

which obviously satisfies

lim
j\rightarrow \infty 

F (\eta j)\eta 
\gamma 
j = lim

j\rightarrow \infty 
\phi (\eta j)\eta 

\gamma 
j

whenever \eta j \rightarrow 0+ and the limit on the right-hand side exists. Introducing the integer
and fractional parts

N(\eta ) =

\biggl[ 
ln \eta 

ln b

\biggr] 
, \alpha (\eta ) =

\biggl\{ 
ln \eta 

ln b

\biggr\} 
,

we make a change of index of summation k = n - N(\eta ) and obtain, using

N(\eta ) =
ln \eta 

ln b
 - \alpha (\eta ),
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after a short calculation, that

F (\eta )\eta \gamma =
\sum 

k\in \BbbZ 

ak - \alpha (\eta )

1 + bk - \alpha (\eta )
=
b\alpha (\eta )

a\alpha (\eta )

\sum 

k\in \BbbZ 

ak

b\alpha (\eta ) + bk
.

The statement of the lemma is now apparent.

In general, we have shown in [26, 27] that the exact exponent \gamma (\omega 0, h) is de-
termined by the exponential decay of the magnitudes | en(\omega 0)| of the orthonormal
eigenbasis en of the integral operator \scrK h. Specifically, we have proved that if

(3.9) \lambda n \simeq e - \alpha (h)n, | en(\omega 0)| \simeq e - \beta (\omega 0,h)n,

then 0 < 2\beta (\omega 0, h) < \alpha (h), and

(3.10) \gamma (\omega 0, h) =
2\beta (\omega 0, h)

\alpha (h)
.

The conjectured asymptotics \lambda n \sim \rho  - n of (squares of) singular values of the
restriction operator \scrR h exactly coincides with the asymptotics of the restriction op-
erators to smooth domains established in [40]. Unfortunately, the methods in [40] are
not applicable, since the end-points of the interval [ - 1, 1] can be regarded as corners
of angle 0, violating the desired smoothness requirements. Nonetheless, Figure 4 in-
dicates that the technical assumptions in [40] on the smoothness of domains could
probably be significantly relaxed.

The eigenvalues \lambda n are also connected to Kolmogorov n-widths [42], since they are
squares of singular values of the restriction operator \scrR h : H2(\BbbH h) \rightarrow L2( - 1, 1) (here
H2 is defined in (5.4)). Specifically (cf. [21, Theorem 6.1]),

\sqrt{} 
\lambda n+1 is the Kolmogorov

n-width of the restriction to L2( - 1, 1) of closed unit ball in H2(\BbbH h). The relation
of the Kolmogorov n-widths of restrictions of various classes of analytic functions to
corresponding Riemann invariants have been known in many cases [19, 46, 22].

4. The least squares problem.

4.1. Existence and uniqueness. We begin by examining the existence and
uniqueness questions in the least squares problem (3.1). Let fn \in \scrK h be a minimizing
sequence in (3.1). Then it has to be bounded in the L2(0, 1) norm. We will show that
this implies existence of a subsequence converging uniformly on compact subsets of
\BbbH h to an analytic function. In general, this limit does not need to be in \scrK h, since it
is not closed in H(\BbbH h). We will, therefore, need to characterize the closure \scrK h of \scrK h.

We recall that a family of functions in H(G) is called normal if every sequence has
a convergent in the H(G) subsequence. In other words, normal families of functions
are exactly the precompact subsets in H(G).

In fact, any family of Herglotz functions (i.e., analytic in the upper half-plane
with nonnegative imaginary part) that is uniformly bounded at a single point is nor-
mal (cf. [17, Chap. II]). For our purposes, we consider a family of functions that is
uniformly bounded in the L2(0, 1) norm.

Theorem 4.1.
(i) The closure of \scrK h in H(\BbbH h) is \scrS h = \{ f(\omega ) = F ((\omega + ih)2) : F \in \frakS \} .
(ii) For any M > 0, the family of functions \scrS M

h = \{ f \in \scrS h : \| f\| L2(0,1) \leq M\} 
is normal.
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Proof. The proof is based on the representation (2.3), where we interpret the
measure \sigma as an element of the Banach space \scrB \ast dual to

\scrB =

\biggl\{ 
\phi \in C([0,+\infty )) : lim

\lambda \rightarrow \infty 
\lambda \phi (\lambda ) = 0

\biggr\} 
,

with the norm
\| \phi \| \scrB = max

\lambda \geq 0
(\lambda + 1)| \phi (\lambda )| .

If we define the action of the measure \sigma on \phi \in \scrB by

\langle \phi , \sigma \rangle =
\int \infty 

0

\phi (\lambda )d\sigma (\lambda ),

then

(4.1) \| \sigma \| \ast =

\int \infty 

0

d\sigma (\lambda )

\lambda + 1

when the measure \sigma is nonnegative.
The conclusion of the theorem then follows easily from the fundamental estimate

in the lemma below.

Lemma 4.2. There exist ch > 0 and Ch > 0 depending only on h, such that for
every f \in \scrS h

ch\| f\| L2(0,1) \leq \rho + \| \sigma \| \ast \leq Ch\| f\| L2(0,1),

where
\rho = lim

\omega \rightarrow \infty 
f(\omega ).

Proof. Let us start by proving the second inequality. Applying the H\"older in-
equality to the representation

(4.2) f(\omega ) = \rho +

\int \infty 

0

d\sigma (\lambda )

\lambda  - (\omega + ih)2

we obtain

\| f\| L2(0,1) \geq 
\biggl( \int 1

0

| \Re \frake (f)| 2d\omega 
\biggr) 1

2

\geq 
\bigm| \bigm| \bigm| \bigm| 
\int 1

0

\Re \frake (f)d\omega 
\bigm| \bigm| \bigm| \bigm| .

Applying Fubini's theorem we then compute

\int 1

0

\Re \frake (f)d\omega = \rho +

\int 1

0

\int \infty 

0

\Re \frake 
\biggl( 

1

\lambda  - (\omega + ih)2

\biggr) 
d\sigma (\lambda )d\omega = \rho +

\int \infty 

0

\varphi (
\surd 
\lambda )
d\sigma (\lambda )

\lambda + 1
,

where

\varphi (x) =
x2 + 1

4x
ln

\biggl( 
1 +

4x

(x - 1)2 + h2

\biggr) 
.

Note that \varphi (x) > 0 for x > 0, and because ln(1 + x) \sim x as x\rightarrow 0 we get

lim
x\rightarrow 0

\varphi (x) =
1

1 + h2
> 0, lim

x\rightarrow \infty 
\varphi (x) = 1 > 0.

D
o
w

n
lo

ad
ed

 0
1
/0

3
/2

2
 t

o
 1

5
5
.2

4
7
.1

6
6
.2

3
4
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FEASIBILITY OF EXTRAPOLATION PROCEDURE 7005

Thus inf [0,\infty ) \varphi (x) = \mu h > 0, which implies the desired estimate with Ch = 1/\mu h.
Let us now turn to the first inequality. Again, by H\"older's inequality

1

2
\| f\| 2L2(0,1)  - \rho 2 \leq 

\int 1

0

\biggl( \int \infty 

0

d\sigma (\lambda )

| \lambda  - (\omega + ih)2| 

\biggr) 2

d\omega 

\leq 
\int \infty 

0

d\sigma (\lambda )

\lambda + 1
\cdot 
\int 1

0

\int \infty 

0

\lambda + 1

| \lambda  - (\omega + ih)2| 2
d\sigma (\lambda )d\omega 

= \| \sigma \| \ast \cdot 
\int \infty 

0

\psi (\lambda )d\sigma (\lambda ),

where

\psi (\lambda ) =

\int 1

0

\lambda + 1

| \lambda  - (\omega + ih)2| 2
d\omega =

\varphi (
\surd 
\lambda )

\lambda + h2
+

\lambda + 1

4h(\lambda + h2)

\Bigl( 
arctan

\surd 
\lambda +1
h  - arctan

\surd 
\lambda  - 1
h

\Bigr) 
.

Note that (\lambda + 1)\psi (\lambda ) is bounded in [0,\infty ), because \varphi is a bounded function and
the difference of arctangents can be bounded by 2h

\lambda  - 1 for \lambda > 1 by the mean value
theorem. But then the desired inequality follows from the estimate

\int \infty 

0

\psi (\lambda )d\sigma (\lambda ) \leq Ch

\int \infty 

0

d\sigma (\lambda )

\lambda + 1
= Ch\| \sigma \| \ast .

Obviously \scrK h \subset \scrS h and Theorem 4.1 follows from the next lemma.

Lemma 4.3.
(i) \scrS h is closed in H(\BbbH h).
(ii) \scrS h \subset \scrK h.

Proof. (i) Let \{ fn\} \subset \scrS h be a sequence such that fn \rightarrow f in H(\BbbH h). Then
according to Lemma 4.2 the sequences \{ \rho n\} \subset \BbbR and \{ \sigma n\} \subset \scrB \ast are bounded. By
the Banach--Alaoglu theorem the closed unit ball in \scrB \ast is compact in the weak-*
topology. It is also sequentially compact because the Banach space \scrB is separable.
Thus, there exist subsequences (which we do not relabel) \rho n \rightarrow \rho and \sigma n

\ast 
\rightharpoonup \sigma weakly-*

in \scrB \ast . Let us write

fn(\omega ) = \rho n + \| \sigma n\| \ast +
\int \infty 

0

G(\omega , \lambda )d\sigma n(\lambda ),

where

G(\omega , \lambda ) =
1

\lambda  - (\omega + ih)2
 - 1

\lambda + 1
=

1 + (\omega + ih)2

(\lambda  - (\omega + ih)2) (\lambda + 1)
.

It is now evident that G(\omega , \cdot ) \in \scrB for each fixed \omega \in \BbbH h. Upon extracting the
convergent subsequence of the bounded sequence \{ \| \sigma n\| \ast \} , with limit denoted by a,
we obtain that

f(\omega ) = lim
n\rightarrow \infty 

fn(\omega ) = \rho + a+

\int \infty 

0

G(\omega , \lambda )d\sigma (\lambda ) = \rho + a - \| \sigma \| \ast +
\int \infty 

0

d\sigma (\lambda )

\lambda  - (\omega + ih)2
.

By lower semicontinuity of the norm a \geq \| \sigma \| \ast , hence we conclude that f \in \scrS h.
(ii) 1. Let us start by showing that for any constant \rho \geq 0, there exists \{ gn\} \subset \scrK h

such that gn \rightarrow \rho uniformly on [0, 1] as n\rightarrow \infty . Indeed, define

gn(\omega ) = \rho 

\int n+1

n

\lambda d\lambda 

\lambda  - (\omega + ih)2
.
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Clearly, gn \in \scrK h and

gn(\omega ) - \rho = \rho (\omega + ih)2
\int n+1

n

d\lambda 

\lambda  - (\omega + ih)2
,

which approaches zero, as n\rightarrow \infty , uniformly on compact subsets of \BbbH h.
2. Now let f \in \scrS h and let \rho and \sigma be as in its definition. Consider the functions

hn(\omega ) =

\int n

0

d\sigma (\lambda )

\lambda  - (\omega + ih)2
.

Note that hn \in \scrK h, since its corresponding measure is d\sigma n = \chi (0,n)d\sigma and

\int \infty 

0

d\sigma n(\lambda ) =

\int n

0

d\sigma (\lambda ) \leq (n+ 1)

\int n

0

d\sigma (\lambda )

\lambda + 1
<\infty .

Now

f(\omega ) - hn(\omega ) = \rho +

\int \infty 

n

d\sigma (\lambda )

\lambda  - (\omega + ih)2

and by dominated convergence the above difference tends to \rho uniformly on compact
subsets of \BbbH h. It remains to use the sequence \{ gn\} from part 1 to get that gn + hn is
the desired sequence in \scrK h converging to f in H(\BbbH h).

To prove part (ii) of Theorem 4.1 we observe that for any compact subset K \subset \BbbH h

there exists a constant CK so that

CK = sup
\lambda \geq 0

sup
\omega \in K

\lambda + 1

| \lambda  - (\omega + ih)2| < +\infty .

Thus, for any \omega \in K and f \in \scrL h we have from representation (4.2)

| f(\omega )| \leq \rho + CK\| \sigma \| \ast .

Now, Lemma 4.2 implies that the family of functions \scrL M
h is locally equibounded. We

conclude, by Montel's theorem, that \scrL M
h is a normal family of analytic functions.

A corollary of Theorem 4.1 is stability of analytic continuation.

Corollary 4.4. Let \{ fn\} , f \subset \scrS h, be such that fn \rightarrow f in L2(0, 1); then fn \rightarrow f
as n\rightarrow \infty in H(\BbbH h).

Proof. Indeed, if fn \rightarrow f in L2(0, 1), then \| fn\| L2(0,1) is bounded. Then any
converging subsequence fnk

\rightarrow g in H(\BbbH h) must also converge to g in L2(0, 1). But
then f = g on (0, 1). Since both f and g are analytic in \BbbH h, then f = g everywhere.
Since the set of limits of converging subsequences of fn consists of a single element
\{ f\} , we conclude that fn \rightarrow f in H(\BbbH h).

Let us now return to the least squares problem (3.1).

Theorem 4.5. For a given fexp \in L2(0, 1), the least squares problem

(4.3) \frakE = \frakE (fexp) = min
f\in \scrS h

\| f  - fexp\| L2(0,1)

has a unique solution. Moreover,

inf
f\in \scrK h

\| f  - fexp\| L2(0,1) = \frakE (fexp).
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Proof. To prove existence, let \{ fn\} \infty n=1 \in \scrS h be a minimizing sequence; then it is
bounded in L2(0, 1). Let us extract a weakly convergent subsequence, not relabeled,
fn \rightharpoonup f0 in L2(0, 1), as n\rightarrow \infty . The limiting function f0 is in \scrS h. By the convexity
of the L2 norm we have

\frakE = lim
n\rightarrow \infty 

\| fn  - fexp\| L2(0,1) \geq \| f0  - fexp\| L2(0,1).

Hence, f0 is a minimizer. To prove that the infimum in (4.3) stays the same if we
replace \scrS h by \scrK h we note that if f0 \in \scrS h is a minimizer, then there exists a sequence
\{ gn\} \subset \scrK h converging to f0 strongly in L2(0, 1).

To prove uniqueness, let f1 and f2 be two different solutions. Then \| fj  - 
fexp\| L2(0,1) = \frakE for j = 1, 2. Observe that the function ft = tf1 + (1  - t)f2 is
also admissible, and therefore

\frakE \leq \| ft  - fexp\| L2(0,1) \leq t\| f1  - fexp\| L2(0,1) + (1 - t)\| f2  - fexp\| L2(0,1) = \frakE ;

thus \| ft  - fexp\| L2(0,1) = \frakE for all t \in [0, 1]. However,

\| ft  - fexp\| 2L2(0,1) = t2\| f1  - f2\| 2L2(0,1) + 2t\Re (f1  - f2, f2  - fexp) + \| f2  - fexp\| 2L2(0,1),

which cannot be constant, since the coefficient at t2 is nonzero by our assumption
f1 \not = f2. The obtained contradiction concludes the theorem.

4.2. Properties of the minimizer. In this section we will prove that if the
minimum in (4.3) is nonzero, then the minimizer must be a rational function in \BbbC 

with poles (and zeros) on the line \frakI \frakm (\omega ) = h. We use the method of Caprini [7, 9] to
prove the statement. The method for finding the necessary and sufficient conditions
for a minimizer in (4.3) is based on our ability to compute the effect of the change
of \rho and spectral measure \sigma in representation (2.3) on the value of the functional we
want to minimize. Suppose that

f\ast (\omega ) = \rho \ast +

\int \infty 

0

d\sigma \ast (\lambda )

\lambda  - (\omega + ih)2

is the minimizer and

(4.4) f(\omega ) = \rho +

\int \infty 

0

d\sigma (\lambda )

\lambda  - (\omega + ih)2

is a competitor. The variation \phi = f  - f\ast can then be written as

\phi (\omega ) = \Delta \rho +

\int \infty 

0

d\nu (\lambda )

\lambda  - (\omega + ih)2
, \nu = \sigma  - \sigma \ast , \Delta \rho = \rho  - \rho \ast .

We then compute

(4.5) \| f  - fexp\| 2L2  - \| f\ast  - fexp\| 2L2 = \Delta \rho lim
t\rightarrow \infty 

tC(t) +

\int \infty 

0

C(t)d\nu (t) + \| \phi \| 2L2 ,

where

(4.6) C(t) = 2\Re \frake 
\int 1

0

f\ast (\omega ) - fexp(\omega )

t - (\omega  - ih)2
d\omega , t \geq 0,

is the Caprini function of f\ast (\omega ).
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Theorem 4.6. Suppose the infimum in (3.1) is nonzero; then the minimizer f\ast \in 
\scrS h in (4.3) is given by

(4.7) f\ast (\omega ) = \rho \ast +
N\sum 

j=1

\sigma j
tj  - (\omega + ih)2

for some N \geq 0, \sigma j > 0, 0 \leq t1 < t2 < \cdot \cdot \cdot < tN , and \rho \ast \geq 0. Moreover, f\ast , given
by (4.7), is the minimizer if and only if its Caprini function C(t) is nonnegative and
vanishes at t = tj, j = 1, . . . , N , and ``at infinity,"" in the sense that

(4.8) 2\Re \frake 
\int 1

0

(fexp(\omega ) - f\ast (\omega ))d\omega = lim
t\rightarrow \infty 

tC(t) = 0,

provided \rho \ast > 0.

Proof. If \rho \ast > 0, then we can consider the competitor (4.4) with \sigma = \sigma \ast . Formula
(4.5) then implies that

\Delta \rho lim
t\rightarrow \infty 

tC(t) + (\Delta \rho )2 \geq 0,

where \Delta \rho can be either positive or negative and can be chosen as small in absolute
value as we want. This implies (4.8).

Next, suppose t0 \in [0,+\infty ) is in the support of \sigma \ast . For every \epsilon > 0 we define
I\epsilon (t0) = \{ t \geq 0 : | t  - t0| < \epsilon \} . Saying that t0 is in the support of \sigma \ast is equivalent to
\sigma \ast (I\epsilon (t0)) > 0 for all \epsilon > 0. Then there are two possibilities. Either

(i) lim\epsilon \rightarrow 0 \sigma \ast (I\epsilon (t0)) = 0, or
(ii) lim\epsilon \rightarrow 0 \sigma \ast (I\epsilon (t0)) = \sigma 0 > 0.

Let us first consider case (i). Then we construct a competitor measure

\sigma \epsilon (\lambda ) = \sigma \ast (\lambda ) - \sigma \ast | I\epsilon (t0) + \theta \sigma \ast (I\epsilon (t0))\delta t0(\lambda ), \theta > 0,

where instead of the distributed mass of I\epsilon (t0) we place a single point mass at t0. We
then define

(4.9) f\epsilon (\omega ) = \rho \ast +

\int \infty 

0

d\sigma \epsilon (\lambda )

\lambda  - (\omega + ih)2
.

Formula (4.5) then implies

lim
\epsilon \rightarrow 0

\| fexp  - f\epsilon \| 2L2(0,1)  - \| fexp  - f\ast \| 2L2(0,1)

\sigma \ast (I\epsilon (t0))
= (\theta  - 1)C(t0).

If f\ast is a minimizer, then we must have (\theta  - 1)C(t0) \geq 0 for all \theta > 0, which implies
that C(t0) = 0.

In case (ii) we have \sigma \ast (\{ t0\} ) = \sigma 0 > 0. Then for every | \epsilon | < \sigma 0 we construct a
competitor measure

\sigma \epsilon (\lambda ) = \sigma \ast (\lambda ) + \epsilon \delta t0(\lambda ), | \epsilon | < \sigma 0,

as well as the corresponding f\epsilon , given by (4.9). We then compute

(4.10) lim
\epsilon \rightarrow 0

\| fexp  - f\epsilon \| 2L2(0,1)  - \| fexp  - f\ast \| 2L2(0,1)

\epsilon 
= C(t0).

Since in this case \epsilon can be both positive and negative we conclude that C(t0) = 0.
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Hence, we have shown that C(t0) = 0 whenever t0 \in [0,+\infty ) is in the support of
the spectral measure \sigma of the minimizer f\ast . It remains to observe that for any t \in \BbbR 

C(t) =

\int 1

0

fexp(\omega ) - f\ast (\omega )

t - (\omega  - ih)2
d\omega +

\int 1

0

fexp(\omega ) - f\ast (\omega )

t - (\omega + ih)2
d\omega .

Thus, C(t) is a restriction to the real line of a complex analytic function on the
neighborhood of the real line in the complex t-plane. By assumption, fexp \not = f\ast , and
therefore C(t) is not identically zero. In particular, the zeros of C(t) cannot have an
accumulation point on the real line. We can also see that the sequence of zeros of
C(t) cannot go to infinity by considering

B(s) = C

\biggl( 
1

s

\biggr) 
= s

\int 1

0

fexp(\omega ) - f\ast (\omega )

1 - s(\omega + ih)2
d\omega + s

\int 1

0

fexp(\omega ) - f\ast (\omega )

1 - s(\omega  - ih)2
d\omega ,

which is analytic in a neighborhood of 0, and hence cannot have a sequence of zeros
sn \rightarrow 0, as n \rightarrow \infty . We conclude that the support of the spectral measure of the
minimizer f\ast must be finite,

\sigma \ast (\lambda ) =
N\sum 

j=1

\sigma j\delta tj (\lambda ),

and the minimizer must be a rational function.
Now let us consider the competitor (4.4) defined by \rho = \rho \ast and \sigma (\lambda ) = \sigma \ast +\epsilon \delta t0(\lambda ),

where \epsilon > 0 and t0 \not \in \{ t1, . . . , tN\} . Formula (4.5) then implies that

\epsilon C(t0) + \epsilon 2\| \phi 0\| 2L2 \geq 0, \phi 0(\omega ) =
1

t0  - (\omega + ih)2

for all sufficiently small \epsilon > 0, which implies that C(t) \geq 0 for all t \geq 0. The necessity
of the stated properties of the Caprini function C(t) is now established.

Sufficiency is a direct consequence of formula (4.5), since we can write

\nu (\lambda ) = \sigma (\lambda ) - \sigma \ast (\lambda ) =
N\sum 

j=1

\Delta \sigma j\delta tj (\lambda ) + \widetilde \nu (\lambda ),

where \widetilde \nu (\lambda ) is a positive Radon measure without any point masses at \lambda = tj , j =
1, . . . , N . We then compute, via formula (4.5), taking into account that C(t) \geq 0 for
all t \geq 0 and C(tj) = 0, that

\| f\ast + \phi  - fexp\| 2L2  - \| f\ast  - fexp\| 2L2 = \Delta \rho lim
t\rightarrow \infty 

tC(t) +

\int \infty 

0

C(t)d\widetilde \nu (t) + \| \phi \| 2L2 \geq 0,

since the first term on the right-hand side is either nonnegative, if \rho \ast = 0, or zero, if
\rho \ast > 0.

We observe that
if tj > 0, then we must also have C \prime (tj) = 0, since t = tj is a point of local

minimum of C(t). If we write formula (4.7) in the form

f\ast (\omega ) = \rho \ast  - 
\sigma 0

(\omega + ih)2
+

N\sum 

j=1

\sigma j
tj  - (\omega + ih)2

,

\rho \ast \geq 0, \sigma 0 \geq 0, tj > 0, \sigma j > 0, j = 1, . . . , N,
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then we have exactly 2(N + 1) equations for 2(N + 1) unknowns \rho \ast , \sigma 0, tj , \sigma j ,
j = 1, . . . , N :

\rho \ast lim
t\rightarrow \infty 

tC(t) = 0, \sigma 0C(0) = 0, C(tj) = 0, C \prime (tj) = 0, j = 1, . . . , N.

Obviously, these equations do not imply that critical points tj are local minima of
C(t), nor do they enforce the nonnegativity of C(t). Taken together with their highly
nonlinear dependence on tj and an unknown value of N , their practical utility for
finding f\ast is dubious. Instead, Theorem 4.6 could be used to verify that a particular
f\ast (\omega ) is the minimizer of (3.1).

5. Worst case error analysis.

Notation. We write A \lesssim B if there exists a constant c such that A \leq cB, and
likewise the notation A \gtrsim B will be used. If both A \lesssim B and A \gtrsim B are satisfied, we
will write A \simeq B. Throughout the paper all the implicit constants will be independent
of \epsilon . Let also

(5.1) Sf(\omega ) := f( - \omega ).

In this section we analyze the quantity \Delta \omega 0,h(\epsilon ), given by (3.2), and answer the
two questions posed in section 3 about \Delta \omega 0,h(\epsilon ) by showing that we can restate the
questions entirely in terms of the difference f  - g.

5.1. Reformulation of the problem. To analyze \Delta \omega 0,h(\epsilon ) we examine the
difference \phi = f  - g. First observe that \phi also has an integral representation (2.4)
with a signed measure \sigma = \sigma f  - \sigma g. Now let \sigma = \sigma +  - \sigma  - be the unique Hahn
decomposition of \sigma as a difference of two mutually orthogonal positive measures \sigma \pm .
Then we may write \phi = \phi +  - \phi  - , where \phi \pm \in \scrK h are given by

(5.2) \phi \pm (\omega ) :=

\int \infty 

0

d\sigma \pm (\lambda )

\lambda  - (\omega + ih)2
.

Thus, we expect that asymptotically \Delta \omega 0,h(\epsilon ) and

(5.3) sup

\biggl\{ | \phi (\omega 0)| 
max \| \sigma \pm \| \ast 

: \phi \in \scrK h  - \scrK h and
\| \phi \| L2(0,1)

max \| \sigma \pm \| \ast 
\leq \epsilon 

\biggr\} 
,

must be equivalent. Here we have abbreviated max \| \sigma \pm \| \ast := max(\| \sigma +\| \ast , \| \sigma  - \| \ast ).
The next idea comes from the realization that the asymptotics of the worst possible
error is not very sensitive to specific norms and spaces. The reason, as we have
seen in [27] for a similar problem, is that the analytic function delivering the largest
error at \omega 0 is analytic in a larger half-space \BbbH 2h and is therefore bounded in a wide
variety of norms. Our idea is therefore to prove asymptotic equivalence of \Delta \omega 0,h(\epsilon )
to a quadratic optimization problem in a Hilbert space, permitting us to express the
asymptotics of \Delta \omega 0,h(\epsilon ) in terms of the solution of the integral equation (3.3).

Let us recall the definition of the Hardy class H2(\BbbH h):

(5.4) H2(\BbbH h) =

\Biggl\{ 
f is analytic in \BbbH h : sup

y> - h
\| f\| L2(\BbbR +iy) <\infty 

\Biggr\} 
.

It is well known [30] that functions inH2 have L2 boundary data and that \| f\| H2(\BbbH h) =
\| f\| L2(\BbbR  - ih) defines a norm in H2. We describe the relation between the Hardy space
H2(\BbbH h) and \scrK h  - \scrK h more precisely in the following lemma.
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Lemma 5.1. Let f \in H2(\BbbH h) with Sf = f and
\int \infty 
0
x| \frakI \frakm f(x  - ih)| < \infty ; then

f \in \scrK h  - \scrK h with

(5.5) d\sigma (\lambda ) =
1

\pi 
\frakI \frakm f(

\surd 
\lambda  - ih)d\lambda .

Moreover, f\pm \in \scrK h and

(5.6) max \| \sigma f\pm \| \ast \leq 1

2
\surd 
\pi 
\| f\| H2(\BbbH h).

Proof. We observe that it is enough to prove the lemma for h = 0 and then apply
it to functions f(\omega  - ih) \in H2(\BbbH +), where f \in H2(\BbbH h) and \omega \in \BbbH +.

For Hardy functions the following representation formula holds (cf. [30, p. 128]):

(5.7) f(\omega ) =
1

\pi 

\int 

\BbbR 

\frakI \frakm f(x)

x - \omega 
dx, \omega \in \BbbH +.

Passing to limits in the symmetry relation Sf(\omega ) = f(\omega ) as \frakI \frakm \omega \downarrow 0, and taking
imaginary parts, we see that  - \frakI \frakm f(x) = \frakI \frakm f( - x). The formula (5.7) now gives

\pi f(\omega ) =

\int \infty 

0

\frakI \frakm f(x)

x - \omega 
dx+

\int \infty 

0

\frakI \frakm f( - x)
 - x - \omega 

dx =

\int \infty 

0

2x\frakI \frakm f(x)dx

x2  - \omega 2
=

\int \infty 

0

\frakI \frakm f(
\surd 
\lambda )d\lambda 

\lambda  - \omega 2
,

which implies (5.5).
Next, consider the functions

f\pm (\omega ) =

\int \infty 

0

d\sigma \pm (\lambda )

\lambda  - \omega 2
, d\sigma \pm (\lambda ) =

1

\pi 
(\frakI \frakm f)

\pm 
(
\surd 
\lambda )d\lambda ,

where (\frakI \frakm f)\pm denote the positive and negative parts of the real valued function \frakI \frakm f .
Then f = f+  - f - and since

\int \infty 
0
x| \frakI \frakm f(x)| dx < \infty , the measures \sigma \pm are finite and

so f\pm \in \scrK 0.
Finally, we prove inequality (5.6). We compute

\| \sigma \pm \| \ast =
2

\pi 

\int \infty 

0

x(\frakI \frakm f)\pm (x)

1 + x2
dx.

Applying the Cauchy--Schwarz inequality, we obtain

\| \sigma \pm \| \ast \leq 1\surd 
\pi 
\| (\frakI \frakm f)\pm \| L2(0,+\infty ) \leq 

1\surd 
\pi 
\| \frakI \frakm f\| L2(0,+\infty ) =

1

2
\surd 
\pi 
\| f\| H2(\BbbH +),

where we have used the symmetry and the fact that the real part of a Hardy function
is the Hilbert transform of its imaginary part [30], and therefore

\| f\| 2H2(\BbbH +) = 2\| \frakI \frakm f\| 2L2(\BbbR ) = 4\| \frakI \frakm f\| 2L2(0,+\infty ).

In order to complete the transition from \scrK h to Hardy spaces we need to replace
the norm \| \sigma \| \ast in (5.3) with an equivalent Hilbert space norm. This is accomplished
in our next lemma.

Lemma 5.2. Let h\prime \in (0, h); then for any f \in \scrK h,

(5.8) \| f\| h\prime :=

\bigm\| \bigm\| \bigm\| \bigm\| 
f

\omega + ih

\bigm\| \bigm\| \bigm\| \bigm\| 
H2(\BbbH h\prime )

\simeq \| \sigma \| \ast ,

where the implicit constants depend only on h - h\prime .
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Proof. Since \BbbH h\prime \subset \BbbH h, it is clear that the function f(\omega )/(\omega + ih) is analytic in
\BbbH h\prime . Next, letting \delta = h - h\prime , using the integral representation (2.4) for f and Fubini's
theorem, we compute

\| f\| 2h\prime =

\int 

\BbbR 

1

x2 + \delta 2

\int \infty 

0

\int \infty 

0

d\sigma (\lambda )d\sigma (t)

[\lambda  - (x+ i\delta )2][t - (x - i\delta )2]
dx

=

\int \infty 

0

\int \infty 

0

I(\lambda , t)
d\sigma (\lambda )

\lambda + 1

d\sigma (t)

t+ 1
,

where

I(\lambda , t) =
\pi (\lambda + 1)(t+ 1)

\delta (\lambda + 4\delta 2)(t+ 4\delta 2)
\cdot (\lambda  - t)2 + 12\delta 2(\lambda + t) + 96\delta 4

(\lambda  - t)2 + 8\delta 2(\lambda + t) + 16\delta 4
.

This concludes the proof, since it is clear that the function I(\lambda , t) is bounded above
and below by two positive constants depending only on \delta .

Now we are ready to give the desired Hilbert space reformulation of our problem.
For any h > 0 we define
(5.9)
Dh(\epsilon ) = sup

\bigl\{ 
| f(\omega 0)| : f \in H2(\BbbH h), Sf = f, \| f\| H2(\BbbH h) \leq 1, and \| f\| L2( - 1,1) \leq \epsilon 

\bigr\} 
.

Notice that for convenience we suppressed the dependence on \omega 0 and also replaced
the interval from [0, 1] by a symmetric interval [ - 1, 1], resulting in an equivalent
formulation due to the symmetry Sf = f of the functions in \scrK h.

Theorem 5.3 (equivalence of \Delta and D). For any h\prime \in (0, h)

(5.10) Dh(\epsilon ) \lesssim \Delta h(\epsilon ) \lesssim Dh\prime (\epsilon )

as \epsilon \rightarrow 0, where the implicit constants depend only on h and h\prime .

Proof. We first observe that

\Delta h(\epsilon ) = sup\{ | f(\omega 0) - g(\omega 0)| : \{ f, g\} \subset \scrK h, max\{ \| \sigma f\| \ast , \| \sigma g\| \ast \} = 1, \| f - g\| L2( - 1,1) \leq \epsilon \} .

To prove the first inequality in (5.10), let \{ f, g\} \subset \scrK h be such that

max\{ \| \sigma f\| \ast , \| \sigma g\| \ast \} = 1, \| f  - g\| L2( - 1,1) \leq \epsilon .

Let

\phi (\omega ) =
i(f(\omega ) - g(\omega ))

\omega + ih
.

Then S\phi = \phi . Moreover, by Lemma 5.2, for any h\prime \in (0, h) we estimate

\| \phi \| H2(\BbbH h\prime ) = \| f  - g\| h\prime \leq \| f\| h\prime + \| g\| h\prime \lesssim \| \sigma f\| \ast + \| \sigma g\| \ast \leq 2.

We conclude that there exists a constant c > 0, depending only on h and h\prime , such
that c\phi is admissible for Dh\prime (\epsilon ). Therefore,

Dh\prime (\epsilon ) \geq c| \phi (\omega 0)| =
c| f(\omega 0) - g(\omega 0)| 

| \omega 0 + ih| .

Taking the supremum over all such pairs (f, g), we conclude that

\Delta h(\epsilon ) \leq CDh\prime (\epsilon )
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for some constant C > 0, which depends on h and h\prime , but not on \epsilon .
To prove the other inequality, let \phi \in H2(\BbbH h) be admissible for Dh(\epsilon ). The idea

is to construct a pair of functions \{ f, g\} \subset \scrK h that are admissible for \Delta h(\epsilon ). Since \phi 
might not decay sufficiently fast at infinity to be in \scrK h  - \scrK h we modify it and define

\psi (\omega ) =
\phi (\omega )

(\omega + ih)2
.

This modification preserves the symmetry (S\psi = \psi ) and ensures the required decay,
so that Lemma 5.1 is applicable. So that \psi \pm \in \scrK h and \| \sigma \psi \pm \| \ast \lesssim 1. Now let
\psi 0(\omega ) \in \scrK h be such that \| \sigma \psi 0\| \ast = 1. We define

F (\omega ) = \psi +(\omega ) + \psi 0(\omega ), G(\omega ) = \psi  - (\omega ) + \psi 0(\omega ).

We observe that there exists a constant C > 0, such that

1 = \| \sigma \psi 0\| \ast \leq \| \sigma F \| \ast \leq C, 1 = \| \sigma \psi 0\| \ast \leq \| \sigma G\| \ast \leq C.

Thus, the pair (f, g) given by

f(\omega ) =
F (\omega )

M
, g(\omega ) =

G(\omega )

M
, M = max\{ \| \sigma F \| \ast , \| \sigma G\| \ast \} \geq 1

is admissible for \Delta h(\epsilon ). Thus,

\Delta h(\epsilon ) \geq | f(\omega 0) - g(\omega 0)| =
| \phi (\omega 0)| 

(\omega 2
0 + h2)M

\geq | \phi (\omega 0)| 
C

.

Taking the supremum over all admissible \phi we obtain the remaining inequality in
(5.10).

5.2. The effect of the symmetry constraint.

Notation. Let H2 := H2(\BbbH h), and let (\cdot , \cdot ) and \| \cdot \| denote the inner product
and its induced norm in H2.

The goal of this section is to analyze the asymptotics of the quantity Dh(\epsilon ), as
\epsilon \rightarrow 0. Modulo symmetry Sf = f , this has already been done in [26]. Investigating
the effect that symmetry may have on the asymptotics of Dh(\epsilon ) means relating it to

(5.11) D0
h(\epsilon ) = sup

\bigl\{ 
| f(\omega 0)| : f \in H2, \| f\| \leq 1, and \| f\| L2( - 1,1) \leq \epsilon 

\bigr\} 
.

The key feature of (5.11) is its invariance under multiplying f by a constant phase
factor, which allowed us to replace the target functional | f(\omega 0)| by a linear one,
\Re \frake f(\omega 0). Since multiplication by nonreal factors breaks the symmetry Sf = f , this
reduction does not work for Dh(\epsilon ). Nevertheless, convexity of the target functional
permits us to relate it to linear functionals if we observe that

| f(\omega 0)| = max
| \lambda | =1

\Re \frake (\lambda f(\omega 0)).

Interchanging the order of maxima with respect to \lambda and f permits us to use our
solution of (5.11) from [27] if we can eliminate the symmetry constraint. This is indeed
possible. Following the ideas from the theory of reproducing kernel Hilbert spaces [41],
we write the Cauchy integral formula as an inner product in H2: f(\omega 0) = (f, p\omega 0

),
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where p\omega 0
is given by (3.4). It is easy to check that for f \in H2, satisfying the

symmetry constraint we have

\Re \frake (\lambda f(\omega 0)) = \Re \frake (f, \lambda p\omega 0
) = \Re \frake (f, q\omega 0.\lambda ), q\omega 0,\lambda =

\lambda p\omega 0 + S(\lambda p\omega 0)

2
.

We can now discard the symmetry constraint. We claim that the maximizer function
of the problem

(5.12) D0
\lambda ,h(\epsilon ) = sup

\bigl\{ 
\Re \frake (f, q\omega 0,\lambda ) : f \in H2, \| f\| \leq 1, and \| f\| L2( - 1,1) \leq \epsilon 

\bigr\} 

automatically has the required symmetry. Indeed, if f \in H2 solves (5.12), we can
decompose it into its symmetric and antisymmetric parts f = fs + fa, which are
mutually real-orthogonal both in H2 and L2( - 1, 1). In other words, they satisfy

\Re \frake (fs, fa) = \Re \frake (fs, fa)L2( - 1,1) = 0.

Thus,

\| f\| 2 = \| fs\| 2+\| fa\| 2 \geq \| fs\| 2, \| f\| 2L2( - 1,1) = \| fs\| 2L2( - 1,1)+\| fa\| 2L2( - 1,1) \geq \| fs\| 2L2( - 1,1),

which implies that

\kappa = max

\biggl\{ 
\| fs\| ,

\| fs\| L2( - 1,1)

\epsilon 

\biggr\} 
\leq 1.

Also, by the symmetry of q\omega 0,\lambda we find that

\Re \frake (f, q\omega 0,\lambda ) = \Re \frake (fs, q\omega 0,\lambda ).

But then the function fs/\kappa satisfies the constraints of (5.12) and strictly increases
the value of the target functional unless \kappa = 1, or, equivalently, fa = 0. Thus, if f is
the maximizer, then it has to be symmetric.

According to Theorem 5.4 from the next section, the maximizer function f\ast \epsilon (\omega )
for (5.11) has the property that f\ast \epsilon (\omega 0) = D0

h(\epsilon ) > 0. Since removing the symmetry
constraint increases the set of admissible functions, we have an obvious inequality:

(5.13) Dh(\epsilon ) \leq f\ast \epsilon (\omega 0) = D0
h(\epsilon ).

Our foregoing discussion suggests that the function v\lambda ,\epsilon = \lambda f\ast \epsilon must be a good can-
didate for the maximizer in D0

\lambda ,h(\epsilon ). Using it as a test function we get the inequality

D0
\lambda ,h(\epsilon ) \geq \Re \frake (\lambda f\ast \epsilon , q\omega 0,\lambda ) =

f\ast \epsilon (\omega 0)

2
+

1

2
\Re \frake (\lambda 2(f\ast \epsilon , Sp\omega 0

)).

We conclude that

Dh(\epsilon ) = max
| \lambda | =1

D0
\lambda ,h(\epsilon ) \geq 

f\ast \epsilon (\omega 0)

2
+

1

2
| (f\ast \epsilon , Sp\omega 0

)| \geq f\ast \epsilon (\omega 0)

2
=

1

2
D0
h(\epsilon ).

Hence, we have shown that

(5.14)
1

2
D0
h(\epsilon ) \leq Dh(\epsilon ) \leq D0

h(\epsilon ).
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5.3. Optimal bound for \bfitD 
\bfzero 

\bfith 
(\bfitepsilon ). Let us define

(5.15) \gamma (\omega 0, h) = \gamma (h) = lim
\epsilon \rightarrow 0

lnD0
\omega 0,h

(\epsilon )

ln \epsilon 
.

Combining Theorem 5.3 and inequality (5.14) we see that D0
h(\epsilon ) \lesssim \Delta h(\epsilon ) \lesssim D0

h\prime (\epsilon ) for
any h\prime \in (0, h) with implicit constants depending only on h and h\prime . This in particular
implies

(5.16) \gamma (\omega 0, h
\prime ) \leq lim

\epsilon \rightarrow 0

ln\Delta \omega 0,h(\epsilon )

ln \epsilon 
\leq \gamma (\omega 0, h) \forall h\prime \in (0, h).

It is clear that continuity of \gamma (\omega 0, h) in h will imply that \Delta \omega 0,h(\epsilon ) also has power law
exponent \gamma (\omega 0, h). Let us show that the same conclusion will follow under continuity
of \gamma (\omega 0, h) in \omega 0 as well. Indeed, it is enough to show that

(5.17) \gamma (\omega 0, h
\prime ) \geq \gamma 

\biggl( 
h

h\prime 
\omega 0, h

\biggr) 

and combine this with (5.16). To prove inequality (5.17), let f\ast \epsilon ,\omega 0,h\prime (\omega ) be the maxi-

mizer function for D0
\omega 0,h\prime (\epsilon ) (cf. Theorem 5.4 below) and consider the function

g(z) =

\sqrt{} 
h\prime 

h
f\ast 

\biggl( 
h\prime 

h
z

\biggr) 
.

Note that \| g\| H2(\BbbH h) = \| f\ast \| H2(\BbbH h\prime ) = 1 and \| g\| L2( - 1,1) \leq \| f\ast \| L2( - 1,1) = \epsilon . There-
fore, g is an admissible function for D0

h\omega 0
h\prime ,h

\prime 
(\epsilon ), and hence

D0
h\omega 0
h\prime ,h

\prime 
(\epsilon ) \geq g(h\omega 0

h\prime ) =

\sqrt{} 
h\prime 

h
f\ast (\omega 0) =

\sqrt{} 
h\prime 

h
D0
\omega 0,h\prime (\epsilon ),

which implies inequality (5.17). In particular, inequalities (5.16) and (5.17) imply
that \gamma (\omega 0, h) is a nonincreasing function of \omega 0. Numerical computations of \gamma (\omega 0, h)
shown in Figure 3 indicate that \gamma (\omega 0, h) is indeed a continuous function of \omega 0. In
Appendix A.2 we prove that \gamma (\omega 0, h) is also a nondecreasing function of h, satisfying
\gamma (\omega 0, h) \in (0, 1) for any h > 0, and that limh\rightarrow 0+ \gamma (\omega 0, h) = 0.

To find \gamma we derive an optimal bound for D0
h. Consider the restriction operator

\scrR : H2(\BbbH h) \rightarrow L2( - 1, 1) [40, 28]; then \scrK = \scrR \ast \scrR is a positive, compact, and
self-adjoint integral operator defined by (3.4) (where we suppressed the h dependence
from the notation). In particular, \| f\| 2L2( - 1,1) = (\scrK f, f). Multiplying f by a constant

phase factor we can rewrite (5.11) as

(5.18) sup
\bigl\{ 
\Re \frake (f, p\omega 0) : (f, f) \leq 1 and (\scrK f, f) \leq \epsilon 2

\bigr\} 
.

Theorem 5.4. Let \scrK and p\omega 0
be given by (3.4), and let \eta = \eta (\epsilon , h, \omega 0) > 0 be

the unique solution of \| (\scrK + \eta ) - 1p\omega 0
\| L2( - 1,1) = \epsilon \| (\scrK + \eta ) - 1p\omega 0

\| ; then

(5.19) D0
h(\epsilon ) =

u\ast (\omega 0)

\| u\ast \| ,

where u\ast = u\ast \epsilon ,h,\omega 0
solves the integral equation (\scrK + \eta )u\ast = p\omega 0

. In particular, the
maximizer function is f\ast = u\ast /\| u\ast \| .
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We can actually express D0
h(\epsilon ) only in terms of \eta .

Lemma 5.5. Let \eta = \eta (\epsilon ) > 0 be as in Theorem 5.4; then

(5.20) D0
h(\epsilon ) = C exp

\biggl\{ 
 - 
\int 1

\epsilon 

tdt

t2 + \eta (t)

\biggr\} 
,

where C is a constant independent of \epsilon , namely, C = D0
h(1).

Proof. The definition of u\ast implies u\ast (\omega 0) = (u\ast , p\omega 0
) = (u\ast ,\scrK u\ast + \eta u\ast ) =

(u\ast ,\scrK u\ast ) + \eta (u\ast , u\ast ), i.e.,

(5.21) u\ast (\omega 0) = \| u\ast \| 2L2( - 1,1) + \eta \| u\ast \| 2 = (\epsilon 2 + \eta )\| u\ast \| 2,

where the last step follows from the definition of \eta . In particular we find that D0
h(\epsilon ) =

(\epsilon 2 + \eta )\| u\ast \| , and therefore it is enough to derive a formula for \| u\ast \| in terms of \eta .
Let us write u\ast \epsilon instead of u\ast to show its dependence on \epsilon . The key observation is the
relation between \partial \epsilon u

\ast 
\epsilon (\omega 0) and \| u\ast \epsilon \| , which we are going to use in (5.21) to deduce

the desired formula. Let \{ en\} \infty n=1 be the orthonormal basis of H2 consisting of the
eigenfunctions of \scrK with corresponding eigenvalues \{ \lambda n\} \infty n=1. The integral equation
for u\ast \epsilon diagonalizes in this basis, and we find (en, u

\ast 
\epsilon ) = en(\omega 0)/(\lambda n+\eta (\epsilon )). Therefore,

u\ast \epsilon (\omega 0) =

\infty \sum 

n=1

| en(\omega 0)| 2
\lambda n + \eta (\epsilon )

, \| u\ast \epsilon \| 2 =

\infty \sum 

n=1

| en(\omega 0)| 2

(\lambda n + \eta (\epsilon ))
2 .

These formulas readily imply

(5.22) \partial \epsilon u
\ast 
\epsilon (\omega 0) =  - \eta \prime (\epsilon )\| u\ast \epsilon \| 2.

Differentiating (5.21) with respect to \epsilon and using the relation (5.22) we find

(2\epsilon + \eta \prime (\epsilon )) \| u\ast \epsilon \| 2 + 2\| u\ast \epsilon \| 
\bigl( 
\epsilon 2 + \eta (\epsilon )

\bigr) 
\partial \epsilon \| u\ast \epsilon \| =  - \eta \prime (\epsilon )\| u\ast \epsilon \| 2,

which then gives

(5.23)
\partial \epsilon \| u\ast \epsilon \| 
\| u\ast \epsilon \| 

=  - \epsilon + \eta \prime (\epsilon )

\epsilon 2 + \eta (\epsilon )
=  - 2\epsilon + \eta \prime (\epsilon )

\epsilon 2 + \eta (\epsilon )
+

\epsilon 

\epsilon 2 + \eta (\epsilon )
.

Integrating (5.23) we find

(5.24) \| u\ast \epsilon \| =
C

\epsilon 2 + \eta (\epsilon )
exp

\biggl\{ 
 - 
\int 1

\epsilon 

tdt

t2 + \eta (t)

\biggr\} 
,

which concludes the proof.

Combining (5.19) with (5.21) on one hand and using (5.20) on the other hand
(where we change the variables in the integral), we obtain two different representations
for the power law exponent:

(5.25) \gamma (h) = lim
\epsilon \rightarrow 0

ln
\bigl( 
(\epsilon + \eta 

\epsilon )\| u\ast \| L2( - 1,1)

\bigr) 

ln \epsilon 
= lim
t\rightarrow +\infty 

1

t

\int t

0

dx

1 + e2x\eta (e - x)
.

Thus, understanding the asymptotic behavior of \eta (\epsilon ) as \epsilon \rightarrow 0 is crucial to unraveling
the above formulas. Expanding the two norms in the eigenbasis of \scrK , we see that \eta 
solves

(5.26) \Phi (\eta ) :=

\sum \infty 
n=1

\lambda n| en(\omega 0)| 2
(\lambda n+\eta )

2

\sum \infty 
n=1

| en(\omega 0)| 2
(\lambda n+\eta )

2

= \epsilon 2.
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This equation has a unique solution \eta = \eta (\epsilon ) > 0, because \Phi (\eta ) is monotone increasing
(since its derivative can be shown to be positive), \Phi (+\infty ) = (\scrK p\omega 0

, p\omega 0
)/\| p\omega 0

\| 2, and
\Phi (0+) = 0 (see [27] for technical details). Finding the asymptotics of \eta (\epsilon ) lies beyond
the capabilities of classical asymptotic methods. Nevertheless, under the purported
exponential decay (3.9) of eigenvalues and eigenfunctions (at the point \omega 0) of \scrK we
proved in [27] that \Phi (\eta ) \simeq \eta with implicit constants independent of \eta , leading to
\eta (\epsilon ) \simeq \epsilon 2 with implicit constants independent of \epsilon . Moreover, we also showed that

\| u\ast \| L2( - 1,1) \simeq \epsilon 
2\beta 
\alpha 

 - 1, which then implies that the ratio inside the first lim in (5.25)
converges as \epsilon \rightarrow 0 and gives the formula \gamma (h) = 2\beta /\alpha .

On the other hand, substituting \lambda n, | en(\omega 0)| in (5.26) with their corresponding
exponentials from (3.9), and applying (a version) of Lemma 3.1, we can approximate

(5.27) \Phi (\eta ) \approx \eta L

\biggl( 
ln

\biggl( 
1

\eta 

\biggr) \biggr) 
, L(\tau ) =

e\tau 
\sum 

k\in \BbbZ 

e(\alpha +2\beta )k

(e\alpha k+e - \tau )2

\sum 

k\in \BbbZ 

e2\beta k

(e\alpha k+e - \tau )2

.

Note that L(\tau ) is an elliptic function with periods \alpha and 2\pi i; furthermore, it has
symmetries L(\tau ) = L(\tau ) and L(2\beta  - \tau ) = L(\tau ). Figure 6 shows the plot of L.
Therefore, we expect \epsilon  - 2\eta (\epsilon ) to be oscillatory and periodic as \epsilon \rightarrow 0; more precisely,

\epsilon  - 2\eta (\epsilon ) \sim 1

L( - 2 ln \epsilon )
.

So the integral averages of the function r(x) = (1+e2x\eta (e - x)) - 1 in the second formula
of (5.25) converge to the integral (over one period) of its periodic approximation,
namely,

2\beta 

\alpha 
= \gamma (h) = lim

t\rightarrow +\infty 
1

t

\int t

0

r(x)dx = lim
t\rightarrow +\infty 

\int 1

0

r(tx)dx =

\int 1

0

L(2x)

1 + L(2x)
dx.

Fig. 6. The graph of L(t) for \alpha = 4 and \beta = 1.75.

This insight into the asymptotic behavior of \eta (\epsilon ) allowed us to prove a bound
that is optimal up to the constant 3/2, but which is accessible numerically. Namely,
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with u = u\epsilon ,h,\omega 0
denoting the solution of the integral equation (\scrK + \epsilon 2)u = p\omega 0

, in
[27] we showed that

D0
h(\epsilon ) \leq 

3

2
u(\omega 0)min

\biggl\{ 
1

\| u\| ,
\epsilon 

\| u\| L2( - 1,1)

\biggr\} 
.

We expect the two quantities under the above minimum to be comparable (this is
just a restatement of \eta (\epsilon ) \simeq \epsilon 2, which holds under (3.9), in fact it also holds under
weaker conditions, as we observed in [27]), in which case the formula for \gamma (h) given
in (3.5) follows (compare with the first part of (5.25)).

The proof of Theorem 5.4 follows from [27] without much change. The only
difference is that in the above formulation we presented the exact maximizer for D0

h,
versus the 3/2-maximizer presented in [27]. For the sake of completeness we give a
short recap of the argument.

Proof of Theorem 5.4. For every f satisfying the two constraints of (5.18) and
for every nonnegative numbers \mu and \nu (\mu 2 + \nu 2 \not = 0) we have the inequality

(5.28) ((\mu + \nu \scrK )f, f) \leq \mu + \nu \epsilon 2.

Applying convex duality to the quadratic functional on the left-hand side of (5.28) we
get

(5.29) \Re (f, p\omega 0) - 
1

2

\bigl( 
(\mu + \nu \scrK ) - 1p\omega 0 , p\omega 0

\bigr) 
\leq 1

2
((\mu + \nu \scrK )f, f) \leq 1

2

\bigl( 
\mu + \nu \epsilon 2

\bigr) 
,

so that

(5.30) \Re (f, p\omega 0) \leq 
1

2

\bigl( 
(\mu + \nu \scrK ) - 1p\omega 0 , p\omega 0

\bigr) 
+

1

2

\bigl( 
\mu + \nu \epsilon 2

\bigr) 
,

which is valid for every f satisfying the constraints of (5.18) and all \mu > 0, \nu \geq 0. In
order for the bound to be optimal we must have equality in (5.29), which holds if and
only if p\omega 0 = (\mu + \nu \scrK )f , giving the formula for optimal vector f :

(5.31) f = (\mu + \nu \scrK ) - 1p\omega 0
.

The goal is to choose the Lagrange multipliers \mu and \nu so that the constraints in
(5.18) are satisfied by f , given by (5.31). If \nu = 0, then f =

p\omega 0

\| p\omega 0\| 
does not depend on

the small parameter \epsilon , which leads to a contradiction, because the second constraint
(\scrK f, f) \leq \epsilon 2 is violated when \epsilon is small enough. If \mu = 0, then \scrK f = 1

\nu p\omega 0
. But

this equation has no solution in H2 since p\omega 0
has a singularity at \omega 0 - 2ih, while \scrK f

has an analytic extension to \BbbC \setminus [ - 1, 1] - 2ih.
Thus we are looking for \mu > 0, \nu > 0, so that equalities in (5.18) hold (these are

the complementary slackness relations in Karush--Kuhn--Tucker conditions), i.e.,

(5.32)

\Biggl\{ \bigl( 
(\mu + \nu \scrK ) - 1p\omega 0

, (\mu + \nu \scrK ) - 1p\omega 0

\bigr) 
= 1,\bigl( 

\scrK (\mu + \nu \scrK ) - 1p\omega 0 , (\mu + \nu \scrK ) - 1p\omega 0

\bigr) 
= \epsilon 2.

Let \eta = \mu 
\nu ; solving the first equation in (5.32) for \nu we find \nu = \| (\scrK + \eta ) - 1p\omega 0\| .

The second equation then reads

\Phi (\eta ) :=

\bigl( 
\scrK (\scrK + \eta ) - 1p\omega 0 , (\scrK + \eta ) - 1p\omega 0

\bigr) 

\| (\scrK + \eta ) - 1p\omega 0
\| 2 = \epsilon 2,
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which has a unique solution \eta = \eta (\epsilon ) > 0, because \Phi (\eta ) is monotone increasing
(since its derivative can be shown to be positive), \Phi (+\infty ) = (\scrK p\omega 0

, p\omega 0
)/\| p\omega 0

\| 2, and
\Phi (0+) = 0 (see [27] for technical details). Setting u\ast = (\scrK + \eta ) - 1p\omega 0

, (5.30) reads

\Re (f, p\omega 0) \leq 
(u\ast , p\omega 0)

2\| u\ast \| +
\| u\ast \| 
2

(\epsilon 2 + \eta ) =
u\ast (\omega 0)

\| u\ast \| ,

where in the last step we used (5.21).

Appendix A.

A.1. Extension of positivity.

Proposition A.1. Let f be analytic in \BbbH h with Sf = f , where Sf(\omega ) := f( - \omega ),
and f(\omega ) \sim  - A\omega  - 2 as \omega \rightarrow \infty for some A > 0. In addition, assume f \prime (0) \not = 0. Then
the following are equivalent:

(i) \frakI \frakm f(x) > 0 for all x > 0;
(ii) \exists h\prime \in (0, h) such that \frakI \frakm f(x - ih\prime ) > 0 for all x > 0.

Proof. The second item immediately implies the first one. Indeed, the symme-
try Sf = f implies that \frakI \frakm f = 0 on the imaginary axis. Let \Omega = \{ \omega : \frakI \frakm \omega >
 - h\prime , \Re \frake \omega > 0\} . Note that \frakI \frakm f \geq 0 on \partial \Omega ; by the strong maximum principle
min\=\Omega \frakI \frakm f cannot be attained in \Omega , and hence we conclude that \frakI \frakm f > 0 in \Omega . (Note
that the assumption f \prime (0) \not = 0 was not used here.)

Let us now turn to the converse implication. Let h0 \in (0, h); then f is analytic
in the closure \BbbH h0 and in particular is bounded inside the semidisc D = \{ \omega \in \BbbH h0 :
| \omega + ih0| \leq M\} , where M > 0 is a large number that can be chosen such that
| f(\omega )| \leq 2A/| \omega | 2 for all \omega /\in D. With these two inequalities, it is straightforward to
show that

\int 
\BbbR 
| f(x + iy)| 2dx is bounded uniformly for y >  - h0. Thus, f \in H2(\BbbH h0

),
and following the calculations in the proof of Lemma 5.1 leading from (5.5) to (5.7),
we obtain the representation

f(\omega ) =

\int \infty 

0

d\sigma (\lambda )

\lambda  - (\omega + ih0)2
, \omega \in \BbbH h0

,

where d\sigma (\lambda ) = 1
\pi \frakI \frakm f(

\surd 
\lambda  - ih0)d\lambda . Using this, it is easy to find that f must have

the more precise asymptotics, as \omega \rightarrow \infty in \BbbH h0 :

f(\omega ) \sim A

\biggl( 
 - 1

\omega 2
+

2ih0
\omega 3

\biggr) 
, A =

\int \infty 

0

d\sigma (\lambda ).

But then for any t \in (0, h0),

(A.1) \frakI \frakm f(x - it) \sim 2A(h0  - t)

x3
> 0, x\rightarrow +\infty .

Assume, for the sake of contradiction, that for each t \in (0, h0) there exists xt > 0,
such that \frakI \frakm f(xt  - it) \leq 0. Clearly, (A.1) implies that xt remains bounded as
t \rightarrow 0+. Let us now extract the convergent subsequence (without relabeling it)
xt \rightarrow x0 \geq 0 as t \rightarrow 0+, but then \frakI \frakm f(x0) \leq 0. Assumption (i) implies that x0 = 0.
Let us show that in this case f \prime (0) = 0, which is assumed to not be the case. Since
\frakI \frakm f(xt) > 0 and \frakI \frakm f(xt  - it) \leq 0, by continuity we conclude that \exists \theta t \in (0, 1] such
that \frakI \frakm f(xt  - i\theta tt) = 0. The symmetry Sf = f implies that \frakI \frakm f( - i\theta tt) = 0, and
therefore by the mean value theorem \frakI \frakm f \prime (\~xt - i\theta tt) = 0 for some \~xt \in (0, xt). Taking
limits as t \rightarrow 0+ we obtain \frakI \frakm f \prime (0) = 0, but by symmetry f \prime (0) \in i\BbbR , and hence
f \prime (0) = 0.
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A.2. Power law bounds. Let D0
h(\epsilon ) and \gamma (h) be defined by (5.11) and (5.15),

respectively. Note that D0
h(\epsilon ) is nonincreasing in h. Indeed, \BbbH h1

\subset \BbbH h2
for h1 \leq h2

and so admissible functions for D0
h2
(\epsilon ) are also admissible for D0

h1
(\epsilon ), showing that

D0
h2
(\epsilon ) \leq D0

h1
(\epsilon ). Now dividing by ln \epsilon < 0 and taking lim in \epsilon we conclude that \gamma (h)

is nondecreasing.
Let us turn to deriving power law upper and lower bounds on D0

h(\epsilon ). We are
going to use the following two results from [27] and [26]. The first one is an analytic
continuation from a boundary interval: for any s \in \BbbH +,

(A.2) sup\{ | f(s)| : f \in H2(\BbbH +), \| f\| H2(\BbbH +) \leq 1, and \| f\| L2( - 1,1) \leq \delta \} \leq C(s)\delta \alpha (s),

where C(s) - 2 = si
9

\bigl( 
arctan sr+1

si
 - arctan sr - 1

si

\bigr) 
with s = sr + isi, and \alpha (s) =

 - 1
\pi arg s+1

s - 1 \in (0, 1) is the angular size of [ - 1, 1] as seen from s, measured in the
units of \pi radians. Moreover, the bound is optimal in \delta and the maximizer function
attaining the bound (up to a constant independent of \delta ) in (A.2) is given by

(A.3) G(\zeta ) =
\delta 

\zeta  - s
e

i
\pi 
ln \delta ln 1+\zeta 

1 - \zeta , \zeta \in \BbbH +

where ln denotes the principal branch of logarithm.
The second one is an analytic continuation from a circle. Namely, let \Gamma \subset \BbbH + be

a circle and s \in \BbbH + a point lying outside of \Gamma ; then

(A.4) sup\{ | f(s)| : f \in H2(\BbbH +), \| f\| H2(\BbbH +) \leq 1, and \| f\| L2(\Gamma ) \leq \epsilon \} \simeq \epsilon \beta (s),

with implicit constants independent of \epsilon and \beta (s) = ln | m(s)| 
ln \rho , where m is the M\"obius

map transforming the upper half-plane into the unit disc and the circle \Gamma into a
concentric circle of radius \rho < 1.

Lemma A.2. There exist \gamma 0, \gamma 1 \in (0, 1) (depending on \omega 0, h) such that

(A.5) \epsilon \gamma 1 \lesssim D0
h(\epsilon ) \lesssim \epsilon \gamma 0 ,

where the implicit constants depend only on h and \omega 0. Moreover, \gamma 1(h) \rightarrow 0 as
h\rightarrow 0+.

Proof. The lower bound is obtained by introducing an ansatz function admissible
for D0

h(\epsilon ). Consider the function G in (A.3) with s = ih, then the ansatz function is
going to be f(\omega ) = G(\omega + ih). Note that we can rewrite

G(\zeta ) =
\delta \alpha (\zeta )ei\theta \delta (\zeta )

\zeta + ih
, \theta \delta (\zeta ) =

1

\pi 
ln \delta ln

\bigm| \bigm| \bigm| \bigm| 
1 + \zeta 

1 - \zeta 

\bigm| \bigm| \bigm| \bigm| .

It is now clear that

\| G\| L2(( - 1,1)+ih) \lesssim \delta \alpha 0 , \alpha 0 = min
x\in [ - 1,1]

\alpha (x+ ih) =
1

\pi 
arctan

2

h
\in (0, 1),

and | G(\omega 0 + ih)| \gtrsim \delta \alpha , where \alpha = \alpha (\omega 0 + ih) < \alpha 0 (see Figure 7). Thus,

(A.6) \| f\| H2(\BbbH h) \lesssim 1, \| f\| L2( - 1,1) \lesssim \delta \alpha 0 , | f(\omega 0)| \gtrsim \delta \alpha .

Letting \epsilon = \delta \alpha 0 we see that cf is an admissible function for D0
h(\epsilon ) for some constant

c > 0 independent of \delta , and hence

D0
h(\epsilon ) \geq c| f(\omega 0)| \gtrsim \delta \alpha = \epsilon \gamma 1 ,
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Fig. 7. Comparison of angles.

where \gamma 1 = \gamma 1(h) = \alpha /\alpha 0 \in (0, 1). It remains to notice that \gamma 1(h) \rightarrow 0 as h\rightarrow 0+.
Let us now turn to the upper bound. Let f be an admissible function for D0

h(\epsilon ); it
is clear that f is also admissible for (A.2) with \delta = \epsilon . However, applying the estimate
in (A.2) at the point \omega 0 > 1 doesn't give a useful bound, since \alpha (\omega 0) = 0. Instead let
us apply (A.2) at the points s lying on the circle \scrC = \{ s \in \BbbH + : | s  - i| = 1

2\} . It is
clear that the angle \alpha (s) is the smallest at the top point of the circle, i.e., at s0 = 3

2 i.
Moreover, obviously the constant C(s) in (A.2) is uniformly bounded for all s \in \scrC .
Thus,

| f(s)| \lesssim \epsilon \beta 0 \forall s \in \scrC , where \beta 0 = \alpha (s0) =
1

\pi 
arctan

12

5

and the implicit constant is independent of s and \epsilon . In particular, \| f\| L2(\scrC ) \lesssim \epsilon \beta 0 .
Now we can apply (A.4) to the function f(\cdot  - ih) at the point s = \omega 0 + ih and obtain

(A.7) | f(\omega 0)| \lesssim \epsilon \gamma 0 , \gamma 0 = \beta 0 \cdot \beta (\omega 0 + ih) = \beta 0
ln | m(\omega 0 + ih)| 

ln \rho 
,

where m(z) = z - z0
z+z0

with z0 = i
2

\surd 
4h2 + 8h+ 3 and \rho = 2h + 2  - 

\surd 
4h2 + 8h+ 3.

Taking the supremum over f in (A.7) we conclude the proof of the upper bound.

As an immediate corollary from Lemma A.2 we see that for any h > 0

\gamma (h) \in [\gamma 0(h), \gamma 1(h)] \subset (0, 1)

and also \gamma (h) \rightarrow 0 as h\rightarrow 0+.
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