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Abstract. Nondominated sorting is a discrete process that sorts points in Euclidean
space according to the coordinatewise partial order, and is used to rank feasible solutions
to multiobjective optimization problems. It was previously shown that nondominated sort-
ing of random points has a Hamilton-Jacobi equation continuum limit. We prove quanti-
tative error estimates for the convergence of nondominated sorting to its continuum limit
Hamilton-Jacobi equation. Our proof uses the maximum principle and viscosity solution
machinery, along with new semiconvexity estimates for domains with corner singularities.

1. Introduction

The sorting of multivariate data is an important problem in many fields of applied science
[10]. Nondominated sorting is a discrete process that is widely applied in multiobjective
optimization and can be interpreted as arranging a finite set of points in Euclidean space
into layers according to the coordinatewise partial order. Let ≤ denote the coordinatewise
partial order on Rd given by

x ≤ y ⇐⇒ xi ≤ yi for all i = 1, . . . , d.

Given a set of distinct points X = {X1 . . . , Xn} ⊂ Rd, let F1 denote the subset of points that
are coordinatewise minimal. The set F1 is called the first Pareto front, and the elements of
F1 are called Pareto-optimal or nondominated. In general, the k-th Pareto front is defined
by

Fk = Minimal elements of X \
⋃︂
j<k

Fj ,

and nondominated sorting is the process of sorting a given set of points by Pareto-optimality.
A multiobjective optimization problem involves identifying from a given set of feasible solu-
tions those that minimize a collection of objective functions. In the context of multiobjective
optimization, the d coordinates of a point to be sorted are the values of the d objective func-
tions on a given feasible solution, and nondominated sorting provides an effective ranking
of all feasible solutions. Nondominated sorting and multiobjective optimization are widely
used in science and engineering disciplines [15, 17], particularly to control theory and path
planning [27,29], gene selection [18,21], clustering [20], anomaly detection [23,24], and image
processing [13,22,30].

Set Rd
+ =

{︁
x ∈ Rd : xi > 0 for i = 1, . . . , d

}︁
and define the Pareto-depth function Un =∑︁n

j=1 1Pj where Pj =
{︁
x ∈ Rd

+ : x ≥ y for some y ∈ Fj

}︁
. It was shown in [10] that if the
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Xi are i.i.d. random variables on Rd
+ with density ρ, then n−1/dUn → cd

d u almost surely in
L∞(Rd) as n→ ∞ where u is the unique nondecreasing viscosity solution of the problem

(1.1)

{︄
ux1ux2 . . . uxd

= ρ in Rd
+

u = 0 on ∂Rd
+.

and cd is a constant. This result shows that nondominated sorting of large datasets can be
approximated by solving a partial differential equation numerically. This idea was developed
further by Calder et al. in [11] which proposed a fast approximate algorithm for nondom-
inated sorting called PDE-based ranking based on estimating ρ from the data and solving
the PDE numerically. It was shown in [11] that PDE-based ranking is considerably faster
than nondominated sorting in low dimensions while maintaining high sorting accuracy.

In this paper, we establish rates of convergence for the continuum limit of nondominated
sorting. This is an important result in applications of PDE-based ranking [1,24] where it is
important to consider how the error scales with the size n of the dataset. The problem has
several features that complicate the proof. The Hamiltonian H(p) = p1 . . . pd is not coercive,
which is the standard property required to prove Lipschitz regularity of viscosity solutions [3].
If one takes a dth root of the PDE to replace the Hamiltonian with H(p) = (p1 . . . pd)

1/d, we
obtain a concave H at the cost of losing local Lipschitz regularity. In particular, solutions
of (1.1) are neither semiconcave nor semiconvex in general. Furthermore, u is not Lipschitz
due to the lack of boundary smoothness and coercivity. Our proof approximates the solution
to (1.1) by the solution to the auxiliary problem

(1.2)
{︃
ux1ux2 . . . uxd

= ρ in ΩR

u = 0 on ∂RΩ,

where ΩR =
{︁
x ∈ [0, 1]d : (x1 . . . xd)

1/d > R
}︁

and ∂RΩ =
{︁
x ∈ [0, 1]d : (x1 . . . xd)

1/d = R
}︁
,

effectively rounding off the corner singularity. We prove a one-sided convergence rate for the
auxiliary problem restricted to the box [0, 1]d by using an inf-convolution to approximate u
by semiconcave functions that solve (1.2) approximately. We apply the convergence rates
for the longest chain problem proved in [4] to obtain rates that hold with high probability
on a collection of simplices, which are essentially cell-problems from homogenization theory.
The remainder of the argument builds off of the proof in [8] but keeping track quantitatively
of all sources of error.

We also prove new semiconvexity results on the corner domain Rd
+, which bound the

blowup rate of the semiconvexity constant of u at the boundary. The semiconvex regularity
of u on the auxiliary domain enables us to avoid use of a sup-convolution approximation
for this direction, bolstering the convergence rate. The proof uses a closed-form asymptotic
expansion to obtain a smooth approximate solution to (1.2) near the boundary, and computes
semiconvexity estimates for the approximation analytically. We believe this argument is new,
as the typical arguments found in the literature for proving semiconvexity near the boundary
proceed by means of vanishing viscosity [3]. We also extend the semiconvexity estimates to
the full domain with a doubling variables argument which is new and simpler compared to
the standard tripling variables approach [3].

Our convergence rate proof is at a high level similar to the proofs of convergence rates for
stochastic homogenization of Hamilton-Jacobi equations in [2], which uses Azuma’s inequal-
ity to control fluctuations and a doubling variables argument to prove convergence rates.
Apart from the viscosity solution theory, the main machinery we use is the convergence rate
for the longest chain problem proved by Bollobás and Brightwell in [4], whose proof is also
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based on Azuma’s inequality. As our PDE is first-order, our approach uses the inf convo-
lution instead of a doubling variables argument which leads to an equivalent but somewhat
simplified argument.

As described in [8], this continuum limit result can be viewed in the context of stochastic
homogenization of Hamilton-Jacobi equations. One may interpret Un as the discontinuous
viscosity solution of

(1.3)

⎧⎪⎪⎨⎪⎪⎩
Un,x1Un,x2 . . . Un,xd

=
n∑︂

j=1

δXj in Rd
+

Un = 0 on ∂Rd
+.

The sense in which Un solves the PDE (1.3) is not obvious. By mollifying Un, one obtains a
sequence U ε

n of approximate solutions to (1.3). It can be shown that U ε
n converges pointwise

to CUn as ε→ 0 where the constant C depends on the choice of mollification kernel.
Our proof techniques may also be applicable to several other related problems in the lit-

erature. The convex peeling problem studied in [12] bears many similarities to our problem,
and similar ideas may give convergence rates for the convex peeling problem, provided the
solutions of the continuum PDE are sufficiently smooth. The papers [9, 31] introduce nu-
merical methods for the PDE (1.1) and prove convergence rates. Our semiconvex regularity
results could be used to improve the convergence rates of the above papers to O(h) in one
direction. We also suspect the methods used in our paper could be adapted to the directed
last passage percolation problem studied in [7].

We also briefly note that nondominated sorting is equivalent to the problem of finding
the length of a longest chain (i.e. a totally ordered subset) in a partially ordered set, which
is a well-studied problem in the combinatorics and probability literature [5, 16, 19, 32]. In
particular, Un(x) is equal to the length of a longest chain in X consisting of points less than
x in the partial order.

2. Main results

We begin by introducing definitions and notation that will be used throughout the paper.
In our results and proofs, we let C denote a constant that does not depend on any other
quantity, and Ck denotes a constant dependent on the variable k. Be advised that the precise
value of constants may change from line to line. To simplify the proofs, we model the data
using a Poisson point process. Given a nonnegative function ρ ∈ L1(Rd), we let Xρ denote a
Poisson point process with intensity function ρ. Hence, Xρ is a random, at most countable
subset of Rd with the property that for every Borel measurable set A ⊂ Rd, the cardinality
N(A) of A ∩ Xρ is a Poisson random variable with mean

∫︁
A ρ dx. Given two measurable

disjoint sets A,B ⊂ Rd, the random variables N(A) and N(B) are independent. Further
properties of Poisson processes can be found in [25]. In this paper we consider a Poisson
point process Xnρ where n ∈ N and ρ ∈ C(Rd) satisfies

0 < ρmin ≤ ρ ≤ ρmax.(2.1)

We denote by Cρ a constant depending on ρmin and ρmax, and possibly also on [ρ]C0,1(Rd)

and
⃦⃦
D2ρ

⃦⃦
L∞(Rd)

in those results that assume ρ ∈ C0,1(Rd) and ρ ∈ C2(Rd) respectively.
Given R ≥ 0, we define

ΩR =
{︂
x ∈ [0, 1]d : (x1 . . . xd)

1/d > R
}︂
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and
∂RΩ =

{︂
x ∈ [0, 1]d : (x1 . . . xd)

1/d = R
}︂
.

Let u denote the viscosity solution of (1.2). Given a finite set A ⊂ Rd, let ℓ(A) denote the
length of the longest chain in the set A. Given a domain Ω ⊂ Rd, the Pareto-depth function
Un in Ω is defined by

Un(x) = ℓ([0, x] ∩Xnρ ∩ Ω)

where [0, x] := [0, x1]× . . .× [0, xd]. The scaled Pareto-depth function is defined by

un(x) =
d

cd
n−1/dUn(x)(2.2)

where cd is the constant defined by

cd = lim
n→∞

n−1/dℓ([0, 1]d ∩Xn) a.s.(2.3)

For a subset S ⊂ Rd , we write un(S) to denote d
cd
n−1/dℓ(S ∩Xnρ). This particular scaling

is chosen to eliminate the constant on the right-hand side of (2.6).

Remark 2.1. There are several results regarding the constant cd that have been established in
the literature. Hammersley showed that limn→∞ n−1/2ℓ(Xn∩[0, 1]2) = c a.s. and conjectured
that c = 2 in [19]. In subsequent works, Logan and Shepp [28] and Vershik and Kerov [33]
showed that c ≥ 2 and c ≤ 2. The exact values of cd for d > 2 remain unknown, although
Bollobás and Winkler showed in [5] that

d2

d!
1
dΓ
(︁
1
d

)︁ ≤ cd < e for all d ≥ 1.

Now we state our main convergence rate results. Let un denote the Pareto-depth function
in ΩR and let u denote the viscosity solution of (1.2).

Theorem 2.1. Given k ≥ 1 and ρ ∈ C0,1(Rd) satisfying (2.1), the following statements
hold.

(a) Given R ∈ (0, 1], and n1/d ≥ Cd,k,ρR
−(2d2−d−1) we have

P

(︄
sup
ΩR

(un − u) > Cd,ρ,kR
−2d2+d+1

4 n−1/4d

(︃
log2 n

log log n

)︃1/2
)︄

≤ Cd,ρ,kR
−Cdn−k.

(b) Assume ρ ∈ C2(Rd
+). Then there exists Cd > 0 such that for all R ∈ (0, Cd) and

n1/d ≥ Cd,k,ρR
−2d2+4d−4 log(n)C we have

P

(︄
sup
ΩR

(u− un) > Cd,ρ,kR
−2d2+d

3 n−1/3d

(︃
log2 n

log logn

)︃2/3
)︄

≤ Cd,ρ,kR
−Cdn−k.

Theorem 2.1 depends on the parameters R and k. Although R is a constant in this result,
we have stated the explicit dependence on R as it is required to extend the rates from ΩR to
Ω0. Observe that the convergence rates become trivial as R → 0+, as the proof makes use
of estimates for the Lipschitz constant and semiconvexity constant of u on ΩR that blowup
as R tends to 0. Also observe that the convergence rate in (b) is sharper than in (a), thanks
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to our use of the semiconvexity estimates established in Theorem 2.3. Let v denote the
solution of

(2.4)
{︃
vx1vx2 . . . vxd

= ρ in Ω0

v = 0 on ∂0Ω

In the next result we state our convergence rates on Ω0 = [0, 1]d which are proved by using
u as an approximation to v and setting R equal to the optimal value that balances the
approximation error term with the convergence rate. Let

vn(x) =
d

cd
n−1/dℓ(Xnρ ∩ [0, x])(2.5)

denote the scaled Pareto-depth function in [0, 1]d.

Theorem 2.2. Given k ≥ 1 and ρ ∈ C0,1(Rd) satisfying (2.1), the following statements
hold.

(a) For all n > Cd,k,ρ we have

P
(︃
sup
Ω0

(vn − v) > n−1/(2d3+d2+5d+1)

)︃
≤ Cd,k,ρn

−k.

(b) Assume ρ ∈ C2(Rd). Then for all n > Cd,k,ρ we have

P
(︃
sup
Ω0

(v − vn) > n−1/(2d3−d2+3d+1)

)︃
≤ Cd,k,ρn

−k.

Observe that the rate in (b) is sharper thanks to the sharper one-sided rate in Theorem
2.2. We do not know for certain whether the rates in Theorem 2.1 and 2.2 are optimal,
although it seems likely that they are not.

These results also extend to the situation when Xnρ = {Y1, . . . , Yn} where Y1, . . . , Yn are
i.i.d. random variables with continuous density ρ. The analogues of Theorems 2.1 and 2.2
in this context follow from Lemma 6.2.

Corollary 2.1. Let Y1, . . . , Yn be i.i.d. random variables with density ρ. Then Theorems
2.1 and 2.2 hold when Xnρ = {Y1, . . . , Yn}.

A key step in our proof of the sharper one-sided rate is a quantitative estimate on the
semiconvexity constant of u. As the Hamiltonian H(p) = (p1 . . . pd)

1/d is concave, the
results on semiconvex viscosity solutions in [3] would lead us to suspect that u is semiconvex.
However, from an examination of the function w(x) = d(x1 . . . xd)

1/d that solves (1.1) with
ρ = 1, it is evident that solutions of (1.1) on Rd

+ need not be semiconvex nor semiconcave due
to the gradient singularity on the coordinate axes. This motivates us to determine the rate at
which the semiconvexity constant of u on ΩR blows up as R→ 0+. For proving these results
it is convenient to raise the PDE to the 1/d power and pose the Dirichlet problem on the
more general domains ΩR,M =

{︁
x ∈ [0,M ]d : (x1 . . . xd)

1/d > R
}︁

with boundary conditions
on ∂R,MΩ =

{︁
x ∈ [0,M ]d : (x1 . . . xd)

1/d = R
}︁
. Let R > 0, M ≥ 1, and let u denote the

solution of

(2.6)

{︄
(ux1ux2 . . . uxd

)1/d = ρ1/d in ΩR,M

u = 0 on ∂R,MΩ.
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(a) An ⊂ A (b) B ⊂ Bn

Figure 1. Illustration of the sets An, Bn and A,B used in the proof outline,
and the viscosity touching property that An ⊂ A and B ⊂ Bn.

Our result on semiconvexity bounds the rate at which the semiconvexity constant of u on
ΩR,M blows up as R tends to 0. This result enables us to establish the sharpened one-sided
convergence rates in case (b) of Theorem 2.1 and Theorem 2.2.

Theorem 2.3. Let u denote the solution to (2.6). Then there exists a constant Cρ > 0 such
that for all R ≤ Cρ, x ∈ ΩR,M , and h ∈ Rd such that x± h ∈ ΩR,M we have

u(x+ h)− 2u(x) + u(x− h) ≥ −Cd,M,ρR
−2d+1 |h|2

where

Cd,M,ρ = Cd(1 +Mρ1/dmax)
(︂
ρ
−(d−1)/d
min ∥Dρ∥L∞(∂R,MΩ)M

2d−1 + ρ1/dmaxM
2d−2

)︂
.

2.1. Definition of Viscosity Solution. Here we briefly state for reference the definition
of viscosity solution for the first-order equation

(2.7) H(Du, u, x) = 0 in O,

where H is continuous and O ⊂ Rd.

Definition 2.1 (Viscosity solution). We say that u ∈ USC(O) is a viscosity subsolution of
(2.7) if for every x ∈ O and every φ ∈ C∞(Rd) such that u − φ has a local maximum at x
with respect to O we have

H(Dφ(x), φ(x), x) ≤ 0.

We will often say that u ∈ USC(O) is a viscosity solution of H ≤ 0 in O when u is a viscosity
subsolution of (2.7). Similarly, we say that u ∈ LSC(O) is a viscosity supersolution of (2.7)
if for every x ∈ O and every φ ∈ C∞(Rd) such that u − φ has a local minimum at x with
respect to O we have

H(Dφ(x), φ(x), x) ≥ 0.

We also say that u ∈ LSC(O) is a viscosity solution of H ≥ 0 in O when u is a viscosity
supersolution of (2.7). Finally, we say that u is a viscosity solution of (2.7) if u is both a
viscosity subsolution and a viscosity supersolution.



RATES OF CONVERGENCE FOR THE CONTINUUM LIMIT OF NONDOMINATED SORTING 7

2.2. Outline of Proof of Theorem 2.1. Here, we present a high-level outline of the proof
of Theorem 2.1. The proof follows a stochastic homogenization argument, similar to [2], but
with different ingredients. We first study the asymptotics of the longest chain in orthogonal
simplices of the form

(2.8) Sy,p :=
{︂
x ∈ (−∞, y]d : 1 + (x− y) · p−1 ≥ 0

}︂
and

(2.9) Sp :=
{︂
x ∈ (−∞, 0]d : 1 + x · p−1 ≥ 0

}︂
where p ∈ (0,∞)d and p−1 = (p−1

1 , . . . , p−1
d ). The set Sp is an orthogonal simplex with side

length pi in the ith coordinate direction. The measure of Sp is given by

(2.10) |Sp| =
p1 · · · pd
dd

.

The sets A and B in Figure 1 show examples of orthogonal simplices. The longest chain in
an orthogonal simplex, un(Sp), can be thought of as a cell problem from homogenization,
in the sense that it is a simpler local problem, whose solution allows us to prove our main
results. The value of p will turn out to be proportional to the gradient Du of the continuum
limit u, as in homogenization, and the cell problem exactly describes the local behaviour of
un for large n.

For simplicity, we will take the intensity ρ to be constant on Rd throughout the rest of
this section, and we denote the constant value by ρ > 0. The extension to nonconstant
intensities follows by approximating ρ from above and below by constant intensities on the
simplices Sp, which are vanishingly small as n→ ∞. It was shown in [8] that

(2.11) lim
n→∞

un(Sp) = dρ1/d|Sp|1/d,

with probability one. This is proved by reducing to the unit cell problem un(S1) using
dilation invariance of un and the sets Sp. In particular, if Φ : Rn → Rn is any dilation (i.e.,
Φx = (a1x1, . . . , adxd) for ai > 0), then we have ΦSp = SΦ−1p and so

ℓ(Xnρ ∩ Sp) = ℓ(ΦXnρ ∩ ΦSp) ∼ ℓ(Xn|Φ|−1ρ ∩ ΦSp).

We then choose Φ so that ΦSp = S1, that is ai = pi, to obtain

un(Sp) ∼ (p1 · · · pd)−1/dun|Φ|−1(S1)

This shows that the scaling limit (2.11) for a general simplex Sp follows directly follow from
one for the unit simplex S1.

The first ingredient in our proof is a convergence rate, with high probability, for the cell
problem (2.11). In particular, in Theorem 4.4 we improve (2.11) by showing that

(2.12) un(Sp) = dρ1/d|Sp|1/d +O
(︂
n−1/2d|Sp|1/2d

)︂
with high probability, up to logarithmic factors. The proof is based on the concentration
of measure results in [4] for the length of a longest chain in boxes, which uses Azuma’s
inequality. We adapt these results to the simplices Sp.

To illustrate how the cell problem (2.12) is used to prove our main results, let x0 ∈ ΩR

and define
An = {x ∈ [0, x0] ∩ ΩR : un(x0)− un(x) ≤ ε} .
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Basically by definition we have un(An) ≈ ε (see Lemma 5.2 for a precise statement of this).
Now, if un is well approximated by a smooth function u, then we can Taylor expand u to
show that An ≈ x0 + Sp where p−1 = ε−1Du(x0). In this case we use (2.10) to obtain

|Sp| =
p1 · · · pd
dd

=
εd

ddux1(x0) · · ·uxd
(x0)

,

and hence

(2.13) ε ≈ un(An) ≈ un(Sp) ≈ dρ1/d|Sp|1/d =
ερ1/d

(ux1(x0) · · ·uxd
(x0))1/d

.

Rearranging we obtain the Hamilton-Jacobi equation (1.1).
The proof of our main result involves keeping track of the error estimate from the cell

problem convergence rate (2.12) in the argument above, as well as using the viscosity solution
framework to push the Taylor expansion arguments above onto smooth test functions. For
this, we use the fact that the set An satisfies a viscosity property. That is, if un − φ attains
its maximum at x0, then

un(x)− φ(x) ≤ un(x0)− φ(x0),

and so
φ(x0)− φ(x) ≤ un(x0)− un(x).

It follows that An ⊂ A, where A is the corresponding set defined for the test function φ,
given by

A = {x ∈ [0, x0] ∩ ΩR : φ(x0)− φ(x) ≤ ε} .
The inclusion An ⊂ A is depicted in Figure 1 (A). Then (2.13) is modified by inserting the
inequality un(An) ≤ un(A), and then approximating A by a simplex, which is possible when
the test function φ is sufficiently smooth. This gives a rate in only one direction, since we
get a subsolution condition, and so we also need to consider touching from below; that is,
examining the minimum value of u−φ. In this case the inequalities are reversed and we have
A ⊂ An. This inclusion is depicted in Figure 1 (B), where we write B and Bn in place of A
and An (different names are used in the proofs of our main results for technical reasons).

The convergence rates in our main results are then proved using a maximum principle
argument, which examines the maximum of un − u (and subsequently u− un) and uses the
viscosity properties and cell problem convergence rates described above. In the case where
u is a non-smooth viscosity solution, one typically replaces u by smoother approximate sub-
and super-solutions obtained by inf- and sup-convolutions, to allow for Taylor expansions
(equivalently we may use a doubling variables argument). Another main contribution of
our paper is a new semiconvexity estimate for the solution u of (1.2) on the rounded off
domain ΩR (see Theorem 2.3). We sharply characterize the blow-up of the gradient and
semiconvexity constant of u as R → 0. This allows us to avoid the sup-convolution and
use φ = u directly in the maximum principle argument when bounding u− un. This leads
to the better O(n−1/3d) convergence rate in Theorem 2.1 (b). In the other direction, when
bounding un − u, we would need semiconcavity of u, which is not true in general, so we use
the inf-convolution to produce a semiconcave approximation, leading to the worse O(n−1/4d)
rate in Theorem 2.1 (a). As R→ 0 and we approach the corner singularity problem (1.1), we
lose control of the semiconvexity estimates, and the solution of (1.1) is neither semiconvex
nor semiconcave in general. We thus obtain the rates in Theorem 2.2 by approximation to
the rounded off case (1.2), leading to substantially worse rates of convergence in the presence
of the corner singularity in (1.1).
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While our proof techniques are at a high level similar to [2], the details are substantially
different and cannot be compared directly. We can, however, compare the final convergence
rates we obtain. In [2] the authors consider stochastic homogenization of Hamilton-Jacobi
equations of the form

uεt +H
(︂
Duε,

x

ε
, ω
)︂
= 0 in Rd × (0,∞),

and obtain quantitative homogenization rates of

(2.14) −O
(︂
ε1/8−δ

)︂
≤ uε − u ≤ O

(︂
ε1/5−δ

)︂
,

for any δ > 0, in the setting where H is level-set convex and coercive in the gradient.
Our Hamiltonian H(p) = p1 · · · pd is level-set concave (and in fact we can write it as
H(p) = (p1 · · · pd)1/d to obtain a concave Hamiltonian), but it is not coercive. Recalling
that nondominated sorting can be viewed as a stochastic Hamilton-Jacobi equation (1.3)
with rapidly oscillating terms on the order of ε = n−1/d we see that our rates in Theorem
2.1 yield

−C1ε
1/3 ≤ un − u ≤ C2ε

1/4,

up to logarthmic factors, which are substantially sharper than (2.14).

2.3. Outline of Paper. Here we outline the remainder of the paper. In Section 3 we
establish a maximum principle and Lipschitz estimates for (1.2) that are used throughout
the paper. In Section 4 we extend the work of Bollobás and Winkler in [4] and establish
rates of convergence for the longest chain problem in simplices. In Section 5 we establish our
principle lemma for proving Theorem 2.1, which shows for a strict supersolution φ of (1.2)
that the maximum of un − φ occurs near the boundary with high probability. In Section
6 we present the proofs of Theorems 2.1 and 2.2, and in Section 7 we present the proof of
Theorem 2.3.

3. Maximum Principle and Lipschitz estimates

In this section we establish fundamental results regarding the PDE (1.1) that are used
throughout the paper. First we show that if u satisfies ux1 . . . uxd

= ρ on a domain Ω,
then a closely related PDE is also automatically satisfied at certain boundary points. Given
M > 0, let Ω ⊂ [0,M ]d and define

∂∗Ω =
{︂
y ∈ Ω : yi =M for some i and ∃ε > 0 such that B(y, ε) ∩ [0,M)d ⊂ Ω

}︂
.(3.1)

Lemma 3.1. Given Ω ⊂ [0,M ]d, let ∂∗Ω be given by (3.1) and let ρ ∈ C(Ω) satisfy (2.1).
Then the following statements hold.

(a) Suppose that u satisfies ux1ux2 . . . uxd
≤ ρ in Ω. Then u satisfies

d∏︂
i=1

(uxi)+ ≤ ρ in Ω ∪ ∂∗Ω.

(b) Suppose that u satisfies ux1ux2 . . . uxd
≥ ρ in Ω and u is nondecreasing in each

coordinate. Then u satisfies
d∏︂

i=1

(uxi)+ ≥ ρ in Ω ∪ ∂∗Ω.
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Proof. To prove (b), let ψ ∈ C∞(Rd) such that u− ψ has a local minimum at x0 ∈ Ω, and
show that ψxi(x0) ≥ 0. For y in a neighborhood of x0 we have

u(x0)− u(y) ≤ ψ(x0)− ψ(y).

Since u is nondecreasing in each coordinate, when h > 0 is sufficiently small we have

0 ≤ u(x0)− u(x0 − hei)

h
≤ ψ(x0)− ψ(x0 − hei)

h
.

Hence, ψxi(x0) ≥ 0. Now let x0 ∈ Ω ∪ ∂∗Ω and let φ ∈ C∞(Rd) such that u− φ has a local
minimum at x0. Without loss of generality, we may assume that u−φ attains a strict global
minimum at x0. If x0 ∈ Ω, then φxi(x0) ≥ 0, and we have

d∏︂
i=1

(φxi(x0))+ =
d∏︂

i=1

φxi(x0) ≥ ρ(x0).

If x0 ∈ ∂∗Ω, let φε(x) = φ(x)− ε
∑︁d

i=1
1

M−xi
, and we claim that u−φε attains its minimum

over Ω in Ω∩[0,M)d. To prove this, let yk ∈ [0,M)d be a minimizing sequence. Replacing yk
with a convergent subsequence, we may assume that yk → y ∈ [0,M ]d. It is clear from the
definition of φε that we must have y ∈ [0,M)d. There exist sequences εk → 0 and xk → x0
such that εk > 0 and u − φεk has a local minimum at xk ∈ [0,M)d. Since x0 ∈ ∂∗Ω, there
exists N > 0 such that xk ∈ Ω for k > N . Hence, for all k > N we have

d∏︂
j=1

(︃
φxj (xk)−

εk
(M − xk,j)2

)︃
≥ ρ(xk).

Since u−φεk has a local minimum at x0 and u is nondecreasing in each coordinate, we have
(φεk)xj = φxj (xk)−

εk
(M−xk,j)2

≥ 0 for j = 1, . . . , d. Hence for k > N we have

d∏︂
j=1

(︁
φxj (xk)

)︁
+
=

d∏︂
j=1

(︁
φxj (xk)

)︁
≥ ρ(xk).

Letting k → ∞, we have
∏︁d

j=1

(︁
φxj (x0)

)︁
+
≥ ρ(x0). To prove (a), let x0 ∈ Ω ∪ ∂∗Ω, and let

φ ∈ C∞(Rd) such that u−φ has a local maximum at x0. If φxi(x0) ≤ 0 for some 1 ≤ i ≤ d,
then we have

0 =
d∏︂

j=1

(︁
φxj (x0)

)︁
+
≤ ρ(x0).

Assume that φxi(x0) > 0 for each i. If x0 ∈ Ω, then we have

d∏︂
j=1

φxj (x0) =
d∏︂

j=1

(︁
φxj (x0)

)︁
+
≤ ρ(x0).

If x0 ∈ ∂∗Ω. Without loss of generality, we may assume that u − φ attains a strict global
maximum at x0. Let φε(x) = φ(x) + ε

∑︁d
i=1

1
M−xi

. As in (a), u− φε attains its maximum
over Ω in Ω ∩ [0,M)d. Hence, there exist sequences εk → 0 and xk → x0, xk ∈ [0,M ]d such
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that u− φεk has a local maximum at xk ∈ [0,M)d. Then when k is large we have xk ∈ Ω,
hence

d∏︂
j=1

φxj (xk)+ ≤
d∏︂

j=1

(︃
φxj (xk) +

εk
(M − xk,j)2

)︃
≤ ρ(xk).

Since φ is smooth, we have φxj (xk) > 0 for k sufficiently large. Letting k → ∞, we have
d∏︂

j=1

(︁
φxj (x0)+

)︁
≤ ρ(x0).

□

Next we establish that subsolutions and supersolutions of (1.1) may be perturbed to
strict subsolutions and supersolutions. Let L and H be given by L(p) = (p1 . . . pd)

1/d,
H(p) = p1 . . . pd.

Proposition 3.1. Given V ⊆ Rd, let ρ ∈ C(V ) satisfy (2.1). Then the following statements
hold.

(a1) Let u satisfy L(Du) ≥ ρ on V . Then for all λ > 0 we have

L(D((1 + λ)u)) ≥ ρ+ ρminλ on V.

(b1) Let u satisfy L(Du) ≤ ρ on V . Then for all λ ∈ (0, 1] we have

L(D((1− λ)u)) ≤ ρ− ρminλ on V.

(a2) Let u satisfy H(Du) ≥ ρ on V . Then for all λ > 0 we have

H(D((1 + λ)u)) ≥ ρ+ dρminλ on V.

(b2) Let u satisfy H(Du) ≤ ρ on V . Then for all λ ∈ (0, 1] we have

H(D((1− λ)u)) ≤ ρ− ρminλ on V.

Proof. To prove (a1), let x ∈ V . Then there exists φ ∈ C∞(Rd) such that u− φ has a local
minimum at x. Consequently, (1 + λ)u− (1 + λ)φ has a local minimum at x, so

L((1 + λ)Dφ(x)) = (1 + λ)f(x) ≥ f(x) + λ(inf
V
f)

and the statement follows. The proofs of the other statements are very similar and omitted
here, making use of the inequalities (1 + λ)d ≥ (1 + dλ) in (a2) and (1 − λ)d ≤ (1 − λ) in
(b2). □

Now we establish a comparison principle for the PDE (1.1).

Theorem 3.1. Given Ω ⊂ [0,M ]d, let Γ ⊂ Ω be a closed set such that Ω ⊆ Γ ∪ Ω ∪ ∂∗Ω,
where ∂∗Ω is given by (3.1). Suppose that ρ ∈ C(Ω) satisfies (2.1), and u ∈ C(Ω) and
v ∈ C(Ω) satisfy

(3.2)
{︃
ux1ux2 . . . uxd

≤ ρ in Ω

u = g1 on Γ,

and

(3.3)
{︃
vx1vx2 . . . vxd

≥ ρ in Ω

v = g2 on Γ,
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respectively. Assume that v is nondecreasing in each coordinate and g1 ≤ g2 on Γ. Then
u ≤ v on Ω.

Proof. Given λ ∈ (0, 1), set vλ = (1+λ)v, and suppose for contradiction that supΩ(u−vλ) >
0. Let

Φ(x, y) = u(x)− vλ(y)−
α

2
|x− y|2 .

Then Φ ∈ C(Ω × Ω) and Ω is bounded. Hence Φ attains its maximum at some (xα, yα) ∈
Ω× Ω. Then we have

Φ(xα, yα) ≥ sup
Ω

(u− vλ) > 0.

As u and −vλ are bounded above on Ω we have

(3.4) |xα − yα|2 ≤
C

α
.

As (xα, yα) ∈ Ω × Ω, there exists a sequence αn → ∞ such that {xαn} and {yαn} are
convergent sequences. Letting xn = xαn and yn = yαn , we have (xn, yn) → (x0, y0). By
(3.4) we have x0 = y0. By continuity of Φ we have

lim
n→∞

Φ(xn, yn) = u(x0)− vλ(x0).

We cannot have x0 ∈ Γ, since u(x0) − vλ(x0) > 0 and u ≤ vλ on Γ. Hence, x0 ∈ Ω ∪ ∂∗Ω.
As u − vλ ≤ 0 on Γ and (u − vλ)(x0) > 0, by continuity of u − vλ there exists N > 0

such that (xn, yn) ∈ (Ω ∪ ∂∗Ω) × (Ω ∪ ∂∗Ω) for n > N . Let φ(x) = αn
2 |x− yn|2 and

ψ(x) = −αn
2 |xn − y|2. Then u − φ has a local maximum at xn and vλ − ψ has a local

minimum at yn. Setting H(p) = p1 . . . pd, Proposition 3.1 gives that H(Dvλ) ≥ ρ+ δ on Ω,
where δ = λρmin > 0. By Lemma 3.1 we have H̃(Dvλ) ≥ ρ+ δ and H̃(Du) ≤ ρ on Ω∪ ∂∗Ω.
Thus, we have

H̃(Dφ(xn)) = H̃(αn(xn − yn)) ≤ ρ(xn)

and

H̃(Dψ(yn)) = H̃(αn(xn − yn)) ≥ ρ(yn) + δ.

Hence, ρ(xn)− ρ(yn) ≥ δ > 0, and this gives a contradiction as n → ∞. We conclude that
u ≤ vλ = (1 + λ)v on Ω. Letting λ→ 0+ completes the proof. □

Now we establish estimates on [u]C0,1(ΩR,M ) with respect to R and M . To this end, we
state the following theorem, proven in [10, Theorem 2]. Let g : Rd → [0,∞) be bounded
and Borel measurable, and let

(3.5) U(x) = sup
γ∈A

γ(1)≤x

J(γ),

where

J(γ) =

∫︂ 1

0
g(γ(t))1/d

[︁
γ′1(t) . . . γ

′
d(t)

]︁1/d
dt,

and

A =
{︂
γ ∈ C1([0, 1];Rd) : γ′j(t) ≥ 0 for j = 1, . . . d

}︂
.
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Then the value function U satisfies

(3.6)

⎧⎨⎩Ux1Ux2 . . . Uxd
=

1

dd
g in Rd

+

U = 0 on ∂Rd
+.

When g = ρ1ΩR,M
and u is given by (2.6), Theorem 3.1 implies that 1

dU = u in ΩR,M .

Theorem 3.2. Given ρ ∈ C0,1(Rd) satisfying (2.1), let u denote the solution to (2.6). Then
we have

[u]C0,1(ΩR,M ) ≤ CdM
d−1R−(d−1)

⃦⃦⃦
ρ1/d

⃦⃦⃦
C0,1(ΩR,M )

.

Proof. Let U be given by (3.5) where g = ρ1ΩR,M
. In light of the preceding discussion, it is

enough to show that

[U ]C0,1(ΩR,M ) ≤ CdM
d−1R−(d−1)

⃦⃦⃦
ρ1/d

⃦⃦⃦
C0,1(ΩR,M )

.

Let x ∈ ΩR,M and set f = ρ1/d. It suffices to show that

U(x+ hei)− U(x) ≤ CdhM
d−1R−(d−1) ∥f∥C0,1(ΩR,M )(3.7)

when 1 ≤ i ≤ d and h > 0 is sufficiently small. Given ε > 0, let γ ∈ A such that
γ(1) ≤ x + hei and U(x + hei) ≤ J(γ) + ε. Without loss of generality, we may assume
that γ(0) ∈ ∂R,MΩ, γ(1) = x + hei, and γ′i(t) > 0 for t ∈ [0, 1] and 1 ≤ i ≤ d. Let
Φ(z) =

(︂
z1, . . .

xi
xi+hzi, . . . zd

)︂
and set γ = Φ(γ). By construction, γ satisfies γ(1) = x,

γi(t) =
xi

xi+hγi(t), and γj(t) = γj(t) for j ̸= i. As J(γ) ≤ u(x), we have

U(x+ hei)− U(x) ≤ J(γ)− J(γ) + ε.

A simple calculation shows that |z − Φ(z)| ≤
⃓⃓⃓

hzi
h+xi

⃓⃓⃓
≤ Ch for z ∈ [0, 2x]d. Hence, we have

(3.8) |γ(t)− γ(t)| ≤
⃓⃓⃓⃓
hγi(t)

h+ xi

⃓⃓⃓⃓
≤ hxi
h+ xi

.

The above gives us

(3.9) |f(γ(t))− f(γ(t))| ≤ [f ]C0,1(ΩR,M )

⃓⃓⃓⃓
hγi(t)

h+ xi

⃓⃓⃓⃓
≤ hxi[f ]C0,1(ΩR,M )

1

xi
≤ h[f ]C0,1(ΩR,M ).

We have

J(γ)− J(γ) =

∫︂ 1

0

(︂
f(γ(t))

[︁
γ′1(t) · · · γ′d(t)

]︁1/d − f(γ(t))
[︁
γ′1(t) · · · γ′d(t)

]︁1/d)︂
dt

=

∫︂ 1

0

(︄
f(γ(t))− f(γ(t))

[︃
γ′1(t) . . . γ

′
d(t)

γ′1(t) · · · γ′d(t)

]︃1/d)︄[︁
γ′1(t) . . . γ

′
d(t)

]︁1/d
dt

=

∫︂ 1

0

(︄
f(γ(t))−

(︃
xi

xi + h

)︃1/d

f(γ(t))

)︄[︁
γ′1(t) · · · γ′d(t)

]︁1/d
dt.
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Furthermore,(︄
f(γ(t))−

(︃
xi

xi + h

)︃1/d

f(γ(t))

)︄
= (f(γ(t))− f(γ(t))) +

(︄
1−

(︃
xi

xi + h

)︃1/d
)︄
f(γ(t))

≤ (f(γ(t))− f(γ(t))) +

(︃
1− xi

xi + h

)︃
f(γ(t))

≤ (f(γ(t))− f(γ(t))) +
h

xi
f(γ(t))

≤ h ∥f∥C0,1(ΩR,M ) + ∥f∥C0,1(ΩR,M )

h

xi

= h(1 + x−1
i ) ∥f∥C0,1(ΩR,M )

We conclude that

J(γ)− J(γ) ≤ h(1 + x−1
i ) ∥f∥C0,1(ΩR,M )

∫︂ 1

0

[︁
γ′1(t) . . . γ

′
d(t)

]︁1/d
≤ h(1 + x−1

i ) ∥f∥C0,1(ΩR,M )

d∏︂
j=1

(γj(1)− γj(0))
1/d

≤ 2h ∥f∥C0,1(ΩR,M ) max
x∈ΩR,M

(x1 . . . xd)
1/d

xi
.

Observe that the maximum value of (x1...xd)
1/d

xi
over ΩR,M is attained when xj =M for j ̸= i

and xi = RdM−(d−1), we have

max
x∈ΩR,M

(x1 . . . xd)
1/d

xi
= R−(d−1)Md−1.

We conclude that for every ε > 0 and 1 ≤ i ≤ d we have

U(x+ hei)− U(x) ≤ ε+ ChMd−1R−(d−1) ∥f∥C0,1(ΩR,M ) .

and consequently that

[U ]C0,1(ΩR,M ) ≤ CMd−1R−(d−1) ∥f∥C0,1(ΩR,M ) . □

4. Rates of convergence for the longest chain problem

As discussed in Section 1, nondominated sorting is equivalent to the problem of finding
the length of a longest chain in a Poisson point process with respect to the coordinatewise
partial order. Given n ∈ N and ρ ∈ C(R) satisfying (2.1), let Xnρ denote a Poisson point
process on Rd with intensity nρ. Given a finite set A ⊂ Rd, let ℓ(A) denote the length
of the longest chain in the set A. Then the Pareto-depth function Un in Rd is given by
Un(x) = ℓ([0, x]∩Xnρ) where [0, x] = [0, x1]× . . .× [0, xd]. The scaled Pareto-depth function
is defined by un(x) = d

cd
n−1/dUn(x) where cd is given by (2.3). When S ⊂ Rd is bounded and

Borel measurable, we write un(S) to denote d
cd
n−1/dℓ(S∩Xnρ) and |S| to denote its Lebesgue

measure. When ρ is constant and S is a simplex of the form
{︁
x ∈ (−∞, 0]d : 1 + x · q ≥ 0

}︁
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with q ∈ Rd
+, one can show that

lim
n→∞

un(S) = dρ1/d |S|1/d a.s.

In this section, we establish explicit rates of convergence for the length of the longest chain
in rectangles and simplices. We begin by stating a simple property of Poisson processes,
whose proof is found in [25].

Lemma 4.1. Let Xρ be a Poisson process on Rd with intensity function ρ, where ρ ∈
L1
loc(Rd) is nonnegative. Then given g1, g2 ∈ L1

loc(Rd) with 0 ≤ g1 ≤ ρ ≤ g2, there exist
Poisson point processes Xg1 and Xg2 such that Xg1 ⊆ Xρ ⊆ Xg2.

The following result is proved in [4] by Bollobás and Brightwell.

Theorem 4.1. Let Xn be a Poisson point process on [0, 1]d with intensity n. Then there
exists a constant Cd such that for all n > Cd we have

P
(︃⃓⃓⃓
Un([0, 1]

d)− EUn([0, 1]
d)
⃓⃓⃓
> Cdtn

1/2d log n

log log n

)︃
≤ 4t2 exp(−t2)

for all t satisfying 2 < t < n1/2d

log logn . Furthermore,

cdn
1/d ≥ EUn([0, 1]

d) ≥ cdn
1/d − Cdn

1/2d log
3/2 n

log log n

where cd is given by

cd = lim
n→∞

n−1/dℓ(Xn ∩ [0, 1]d) a.s.

Next, we extend Theorem 4.1 to a Poisson process with intensity nρ where ρ > 0 is a
constant.

Theorem 4.2. Let Xnρ be a Poisson point process on [0, 1]d where ρ > 0 is a constant.
Then for all n > Cdρ

−1 and all t satisfying 2 < t < (ρn)1/2d

log log ρn we have

P
(︃⃓⃓⃓
un([0, 1]

d)− Eun([0, 1]d)
⃓⃓⃓
> Cdn

−1/2dρ1/2dt
log ρn

log log ρn

)︃
≤ 4t2 exp(−t2).

Furthermore,

dρ1/d ≥ Eun([0, 1]d) ≥ dρ1/d − Cdρ
1/2dn−1/2d log

3/2 ρn

log log ρn
.

Proof. Replace n by ρn in Theorem 4.1. Also note that

lim
n→∞

n−1/dℓ(Xρn ∩ [0, 1]d) = cdρ
1/d a.s. □

Next we establish rates of convergence for the longest chain problem in a rectangular box.

Theorem 4.3. Let Xnρ denote a Poisson point process on Rd with intensity nρ where
ρ ∈ C(Rd) satisfies (2.1). Given x, y ∈ Rd with xi < yi for i = 1, . . . , d, let R = [x, y] :={︁
w ∈ Rd : xi ≤ wi ≤ yi for i = 1, . . . , d

}︁
.

(a) For all n > Cd(supR ρ)
−1 |R|−1 and t satisfying

Cd < t < Cdn
1/2d(sup

R
ρ)1/2d |R|1/2d 1

log log n(supR ρ) |R|
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we have

P

(︄
un(R)− d(sup

R
ρ)1/d |R|1/d > Cdtn

−1/2d(sup
R
ρ)1/2d |R|1/2d log3/2(n |R| (supR ρ))

log log(n |R| (supR ρ))

)︄
≤ 4t2 exp(−t2).

(b) For all n > Cd(infR ρ)
−1 |R|−1 and t satisfying

log1/2(n(inf
R
ρ) |R|) < t < (inf

R
ρ)1/2dn1/2d |R|1/2d 1

log log n(infR ρ) |R|
we have

P
(︃
un(R)− d(inf

R
ρ)1/d |R|1/d < −Cdtn

−1/2d(inf
R
ρ)1/2d |R|1/2d log(n |R| (infR ρ))

log log(n |R| (infR ρ))

)︃
≤ 4t2 exp(−t2).

Proof. We shall prove only (a), as the proof of (b) is similar. Without loss of generality we
may take R to be the rectangle [0, y] with y ∈ Rd

+. By Lemma 4.1 there exists a Poisson
process Xn ⊃ Xnρ on Rd with intensity function nρ where ρ = (supR ρ)1R+ρ1Rd\R. Given

A ⊂ Rd, let un(A) = n−1/dℓ(A ∩Xn) and set Φ(x) =
(︂
x1
y1
, . . . xd

yd

)︂
. Then Yn := Φ(Xn) is a

Poisson process with intensity n |R| ρ and un(R) = n−1/dℓ([0, 1]d ∩ Yn). Let E be the event
that

|un(R)− Eun(R)| ≤ Cd(sup
R
ρ)1/2dt |R|1/2d n−1/2d log n(supR ρ) |R|

log logn(supR ρ) |R|
and

0 ≥ Eun(R)− d(sup
R
ρ)1/d |R|1/d ≥ −Cd(sup

R
ρ)1/2dt |R|1/d n−1/2d log

3/2(n(supR ρ) |R|)
log log(n(supR ρ) |R|)

.

where 2 < t < |R|1/2d(supR ρ)1/2dn1/2d

log log(supR ρ)|R|n , n > (supR ρ)
−1 |R|−1, and the constant Cd is as in

Theorem 4.2. By Theorem 4.2 we have P (E) ≥ 1− 4t2 exp(−t2). Assume that E holds for
fixed choices of t and n. As un(R) ≤ un(R), we have

un(R)− d(sup
R
ρ)1/d |R|1/d ≤ un(R)− Cd(sup

R
ρ)1/d |R|1/d

≤ |un(R)− Eun(R)|+ (Eun(R)− Cd(sup
R
ρ)1/d |R|1/d)

≤ Cdt(sup
R
ρ)1/2dn−1/2d |R|1/2d log3/2 n(supR ρ) |R|

log log n(supR ρ) |R|
. □

Now we extend the preceding result to establish rates of convergence for the longest chain
in an orthogonal simplex of the form Sy,q as in (2.8). The lower one-sided rate is easily
attained taking the rectangle R ⊂ S with largest volume and applying Theorem 4.3. To
prove the upper one-sided rate, we embed S into a finite union of rectangles and apply the
union bound. The following result verifies the existence of a suitable collection of rectangles.

Lemma 4.2. Given y ∈ Rd and q ∈ Rd
+, let Sy,q be as in (2.8). Given ε > 0, there exists a

finite collection R of rectangles covering Sy,q satisfying

Cdε |Sy,q| ≤ |R|1/d ≤ |Sy,q|1/d + Cdε |Sy,q| for all R ∈ R,(4.1)
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and

dist(z, Sy,q) ≤ Cdε |Sy,q| for all R ∈ R and z ∈ R,(4.2)

and

|R| ≤ Cdε
−(d−1).(4.3)

Proof. Without loss of generality, we may take y = 0 and prove the statements for the
simplex Sq := S0,q. Letting 1 denote the ones vector, we first prove the statements
for the simplex S :=

{︁
x ∈ [0,∞)d : x · 1 ≤ 1

}︁
, and then obtain the general result via

reflection and scaling. Let P =
{︁
x ∈ [0,∞)d : x · 1 = 1

}︁
. Fix x0 ∈ P , and let R ={︁

[0, x+ ε1] : x ∈ P ∩ (x0 + εZd)
}︁
. It is clear from the definition of R that (4.2) and (4.3)

hold. By the Arithmetic-Geometric Mean Inequality, for all x ∈ P we have

ε ≤
d∏︂

i=1

(xi + ε)1/d ≤ 1

d
+ ε

and it follows that (4.1) holds. To show that S ⊂
⋃︁

R∈RR, let y ∈ P . Then there exists
y∗ ∈ (x0 + εZd) such that |yi − y∗i | ≤ ε for 1 ≤ i ≤ d. Hence, y ∈ [0, y∗], and it follows that
S ⊂

⋃︁
R∈RR. This concludes the proof for S, and we now leverage this result to prove the

statement for the simplex Sq =
{︁
x ∈ (−∞, 0]d : 1 + x · q ≥ 0

}︁
. Let Φ(x) = (−x1

q1
, . . . −xd

qd
),

so Φ(S) = Sq. Applying the proven result for S, there exists a collection of rectangles R1

covering S and satisfying |R1| ≤ Cdε
−(d−1), |R|1/d ≤ 1

d + ε for all R ∈ R1, and dist(z, S1) ≤
Cdε for z ∈ R and R ∈ R. Let R = {Φ(R) : R ∈ R1}, and we verify that R satisfies the
required properties. We have |R| = |R1|, so (4.3) holds. To see that (4.1) holds, observe
that

|Φ(R)|1/d = d |R|1/d |Sq|1/d

and

dε |Sq|1/d ≤ d |R|1/d |Sq|1/d ≤ |Sq|1/d + dε |Sq|1/d

To show (4.2), let z ∈ R ∈ R1. Then there exists y ∈ S such that |z − y| ≤ Cdε. Hence, we
have |Φ(z)− Φ(y)| ≤ Cd |Sq|1/d ε, and (4.2) follows. □

Now we prove our main result of this section.

Theorem 4.4. Let ρ ∈ C0,1(Rd) satisfy (2.1), and given y ∈ Rd and q ∈ Rd
+ let Sy,q be given

by (2.8). Assume that d |Sy,q|1/d ≤ 1. Then for all k ≥ 1 and n > Cd,ρ,k |Sy,q|−1 log(n)2d we
have

P

(︄
un(Sy,q)− d(sup

Sy,q

ρ)1/d |Sy,q|1/d > Cd,k,ρn
−1/2d |Sy,q|1/2d

log2 n

log log n

)︄
≤ Cd,kn

−k

and

P
(︃
un(Sy,q)− d( inf

Sy,q

ρ)1/d |Sy,q|1/d < −Cd,k,ρn
−1/2d |Sy,q|1/2d

log2 n

log log n

)︃
≤ Cd,kn

−k.

Proof. We present the proof of the first statement only, as the proof of the second is similar
and simpler. Without loss of generality, we may take y = 0 and prove the result for the sim-
plex Sq = S0,q. We first prove the result for the simplex S :=

{︁
x ∈ (−∞, 0]d : 1 + x · 1 ≥ 0

}︁
,

and then obtain the general result via a scaling argument. Given ε > 0, we may apply
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Lemma 4.2 to conclude there exists a collection R of rectangular boxes covering S such that
|R| ≤ Cdε

−(d−1), Cdε ≤ |R|1/d ≤ 1
d +Cdε for each R ∈ R, and dist(y, S) ≤ ε for y ∈ R ∈ R.

Set R =
⋃︁

R∈RR. As ρ ∈ C0,1(Rd), we have supR ρ ≤ supS ρ + [ρ]C0,1(Rd)ε for y ∈ R.

Let K =
(︂
supS ρ+ [ρ]C0,1(Rd)ε

)︂
. By Lemma 4.1 there exists a Poisson process Xn ⊃ Xnρ

on Rd with intensity function nρ where ρ = K1R + ρ1Rd\R. Given A ⊂ Rd, let un(A) =
d
cd
n−1/dℓ(A ∩ Xn). As Xn ⊃ Xnρ and S ⊂ R, we have un(S) ≤ un(S) ≤ maxR∈R un(R).

Let ER be the event that

un(R)− dK1/d |R|1/d ≤ CdνK
1/2d(4.4)

where ν = tn−1/2d log3/2(nK)
log log(nK) . For any ε < Cd, n > Cd |R|−1K−1, and 2 < t < (nK)1/2d

log lognK ,
we have P(ER) ≥ 1 − 4t2 exp(−t2) by Theorem 4.3. Letting E be the event that (4.4)
holds for all R ∈ R, we have P(E) ≥ 1 − Cdε

−d+1t2 exp(−t2) by the union bound. Given
k ≥ 1, set t =

√︁
Ck log(n) for a constant C chosen large enough so n1/2n−Ck ≤ n−k, and

let ε = tn−1/2d. Observe that the hypotheses of Theorem 4.3 are satisfied when nK >
Cd,k log(n)

2d, so we have P(E) ≥ 1 − Cd,kn
1/2n−Ck ≥ 1 − Cd,kn

−k. If E holds, then using
S ⊂ R, |R|1/d ≤ 1

d + Cdε, and (4.4), we have

un(S) ≤ un(S) ≤ max
R∈R

un(R)(4.5)

≤ K1/d + Cdν(K
1/2d +K1/d).(4.6)

Now we obtain the stated result for the simplex Sq =
{︁
x ∈ (−∞, 0]d : 1 + q · x ≥ 0

}︁
. Let

Φ(x) = (q1x1, . . . qdxd), and observe that Φ(Sq) = S. Then Yn := Φ(Xnρ) is a Pois-
son point process of intensity nρ̃ where ρ̃ = |detΦ|−1 nρ = ddnρ |Sq|. As Φ preserves
the length of chains, we have ℓ(Xnρ ∩ Sq) = ℓ(Yn ∩ S). Let ε = n−1/2d

√
Ck log n, K̃ =(︂

supS ρ̃+ [ρ̃]C0,1(Rd)ε
)︂
, K =

(︂
supSq

ρ+ [ρ]C0,1(Rd)ε
)︂
, and ν = ε log3/2 nK̃

log lognK̃
. Let E be the

event that

un(Sq) ≤ K̃
1/d

+ Cdν(K̃
1/2d

+ K̃
1/d

).(4.7)

If E holds, then using K̃ = dd |Sq|K and d |Sq|1/d ≤ 1, we have

un(Sq) ≤ K̃
1/d

+ Cdν(K̃
1/2d

+ K̃
1/d

)

= d |Sq|1/dK1/d + Cdν |Sq|1/2d (1 +K1/2d)

≤ d |Sq|1/d (sup
S
ρ)1/d + Cd,ρν |Sq|1/2d

≤ d |Sq|1/d (sup
S
ρ)1/d + Cd,k,ρn

−1/2d |Sq|1/2d
log2 n

log logn
.

Using our result for S and ℓ(Xnρ ∩ Sq) = ℓ(Yn ∩ S), we have P(E) ≥ 1 − Cd,kn
−k for

n > Cd,kK̃
−1

log(n)2d.
□

5. Lemmas For Proving Convergence Rates

In this section we establish our primary lemma for proving Theorems 2.1 and 2.2. In
particular, we prove a maximum principle type result that shows that if φ is a semiconcave
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(see Definition 7.1), strictly increasing supersolution of (1.2), then the maximum of un − φ
occurs in a neighborhood of ∂RΩ with high probability. An analogous result holds for φ−un
when φ is a semiconvex, strictly increasing subsolution of (1.2). In proving Lemma 5.1 we
shall employ Lemmas 5.2 and 5.3, whose proofs are presented after Lemma 5.1.

Lemma 5.1. Let ρ ∈ C0,1(Rd) satisfy (2.1). Given R ∈ (0, 1), let φ ∈ C(ΩR) be a non-
negative function such that 0 < γ ≤ φxi ≤ γ holds in the viscosity sense on ΩR for some
constants γ ≥ 1 and γ ≤ 1. Given α ≥ 1, k ≥ 1, δ ∈ (0, 1), and ε ∈ (0, 1), let Rn =

γ1/2n−1/2dε−1/2 log2(n)
log log(n) . Then there exist constants Cd ≤ 1 and Cd,k,ρ ≥ 1 such that when

ε ≤ Cdmin
{︁
α−1γ2γ−1 log(n)−2, Rd−1δ

}︁
and 1 ≥ λ ≥ Cd,k,ρ(Rn + γ−2αε) the following

statements hold.
(a) Suppose φ is semiconcave on ΩR with semiconcavity constant α ≥ 1 and satisfies

H(Dφ) ≥ ρ on ΩR+δ. Assume further that

sup
ΩR

(un − (1 + λ)φ) ≥ 2ε.

Then there exists a constant Cd,ρ,k ≥ 1 such that for all n > 1 with n1/d >
Cd,ρ,kε

−1γ log(n)2 we have

P

(︄
sup
ΩR

(un − (1 + λ)φ) = sup
ΩR+δ

(un − (1 + λ)φ)

)︄
≤ Cd,kε

−6dn−k.

(b) Suppose φ is semiconvex on ΩR with semiconvexity constant α ≥ 1 and satisfies
H(Dφ) ≤ ρ on ΩR+δ. Then there exists a constant Cd,ρ,k ≥ 1 such that for all n > 1

with n1/d > Cd,ρ,kα
−1γ2ε−2 we have

P

(︄
sup
ΩR

((1− λ)φ− un) = sup
ΩR+δ

((1− λ)φ− un)

)︄
≤ Cd,kε

−6dn−k.

Proof. First we introduce the notation used throughout the proof. Let Ωε
R = ΩR∩d−1/2ε3Zd

and we define a collection of simplices S =
{︁
Sx,s : x ∈ Ωε

R+δ, s ∈ Γε

}︁
where Sx,s is given by

(2.8) and

Γε =
{︂
s ∈ ε3Zd : (4γ)−1ε ≤ si ≤ 4γ−1ε

}︂
.

Lemma 5.3 implies that S ⊆ ΩR for all S ∈ S when ε ≤ CdδR
d−1. Let ES be the event that

un(S)− d(sup
S
ρ1/d) |S|1/d ≤

Cd,k,ρ |S|1/2d log2 n
n1/2d log log n

(5.1)

and let E be the event that ES holds for all S ∈ S. For any n > Cd,k,ρ |S|−1 log(n)2d, we have
P(ES) ≥ 1−Cd,kn

−k by Theorem 4.4. By choice of Γε, we have (4γ)−1ε ≤ d |S|1/d ≤ 4γ−1ε

for S ∈ S. As we assume that n1/d > Cd,ρ,kε
−1γ log(n)2, we have n > Cd,k,ρ |S|−1 log(n)2d

for all S ∈ S. As |Γε| ≤ Cdε
−3d and |Ωε

R| ≤ Cdε
−3d, we have |S| ≤ Cdε

−6d. By the union
bound, we have P (E) ≥ 1 − Cd,kε

−6dn−k. For the remainder of the proof we assume that
E holds. Then for each S ∈ S we have

un(S) ≤ d |S|1/d (sup
S
ρ1/d) +

Cd,k,ρ |S|1/2d log2(n)
n1/2d log log(n)

≤ d |S|1/d (sup
S
ρ1/d)(1 + Cd,k,ρRn)
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where Rn = γ1/2ε−1/2n−1/2d log2(n)
log log(n) . Let w = (1 + λ)φ, and we show that

sup
ΩR

(un − w) ̸= sup
ΩR+δ

(un − w) .

Assume for contradiction that

sup
ΩR

(un − w) = sup
ΩR+δ

(un − w) .

Since φ is semiconcave with semiconcavity constant α, at almost every x ∈ ΩR we have
that φ is twice differentiable at x with D2φ(x) ≤ αI. Hence, there is xn ∈ ΩR+δ such that
D2φ(xn) ≤ αI and un(xn)− w(xn) + ε3 ≥ supΩR

(un − w). Therefore, we have

un(y)− un(xn) ≤ w(y)− w(xn) + ε3 for all y ∈ ΩR.(5.2)

As we assume φ ≥ 0 and supΩR
(un − w) ≥ 2ε, we have un(xn) ≥ ε. We define the sets

An = {x ∈ [0, xn] ∩ ΩR : un(xn)− un(x) ≤ ε}
A =

{︁
x ∈ [0, xn] ∩ ΩR : w(xn)− w(x) ≤ ε+ ε3

}︁
.

By Lemma 5.2 we have un(An) ≥ ε. By (5.4) we have An ⊂ A. As wxi = (1 + λ)φxi ≥ φxi ,
we have A ⊂ B(xn, 2γ

−1ε). By Taylor expansion, we have

w(x) ≤ w(xn) +Dw(xn) · (x− xn) + (1 + λ)α |x− xn|2

≤ w(xn) +Dw(xn) · (x− xn) + 2α |x− xn|2 .
Hence, when x ∈ A we have

−ε− ε3 ≤ w(x)− w(xn) ≤ Dw(xn) · (x− xn) + 2α |x− xn|2

≤ Dw(xn) · (x− xn) + Cαγ−2ε2.

Letting pi =
Cαε2γ−2+ε

vxi (xn)
, we have A ⊆ Sxn,p. We show there exist y ∈ Ωε

R and q ∈ Γε such
that Sxn,p ⊆ Sy,q. Let y ∈ Ωε

R such that xn ≤ y and |y − xn| ≤ ε3. Letting 1 denote the all
ones vector, we have Sxn,p ⊆ Sy,p+ε31. We may choose q so p+2ε31 ≥ q ≥ p+ ε31 provided
that γ−1ε ≤ pi ≤ 4γ−1ε − 2ε3 for each i, which holds when ε ≤ Cα−1γ2 and α ≥ 1. Then
Sy,p+ε31 ⊂ Sy,q. Using that (q1 . . . qd)

1/d = d |Sy,q|1/d, we have

ε ≤ un(An)

≤ un(Sy,q)

≤ (1 + Cd,k,ρRn)(sup
Sy,q

ρ)1/d(q1 . . . qd)
1/d

≤ (1 + Cd,k,ρRn)(sup
Sy,q

ρ)1/d

(︄
d∏︂

i=1

{︄
Cαε2γ−2 + ε

wxi(xn)
+ 2ε3

}︄)︄1/d

≤ (1 + Cd,k,ρRn)(sup
Sy,q

ρ)1/d

(︄
d∏︂

i=1

{︄
Cαε2γ−2 + ε+ 2γε3

wxi(xn)

}︄)︄1/d

.

As our assumptions on ε imply ε ≤ Cγ−1, we have γε3 ≤ Cαε2γ−2. Hence we have

(wx1(xn) · . . . wxd
(xn))

1/d ≤ (1 + Cd,k,ρRn)(sup
Sy,q

ρ)1/d
(︁
1 + Cγ−2αε

)︁
.
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As we assume ρ ∈ C0,1(Rd) and ρ ≥ ρmin > 0, we have ρ1/d ∈ C0,1(ΩR), hence supSy,q
ρ1/d ≤

ρ(xn)
1/d + Cd,ρεγ

−1. By our assumption n1/d > Cd,k,ρε
−1γ log(n)2, we have Rn ≤ Cd,k,ρ.

As ε ≤ Cα−1γ2γ−1, we have γ−2αε ≤ C. Hence we have

(wx1(xn) · . . . wxd
(xn))

1/d ≤ ρ(xn)
1/d + Cd,k,ρ(Rn + γ−2αε).

Applying Proposition 3.1 with λ ≥ Cd,k,ρ(Rn + γ−2αε), we obtain a contradiction. We
conclude that we must have

sup
ΩR

(un − w) ̸= sup
ΩR+δ

(un − w) .

We now prove (b). Let Ωε
R, Γε, and S be as in (a), and let ES be the event that

un(S)− d(inf
S
ρ1/d) |S|1/d ≥ −

Cd,k,ρ |S|1/2d log2 n
n1/2d log logn

(5.3)

and let E be the event that ES holds for all S ∈ S. For any n > Cd,k,ρ |S|−1 log(n)2d, we have
P(ES) ≥ 1 − Cd,kn

−k by Theorem 4.4. By choice of Γε, we have γ−1ε ≤ d |S|1/d ≤ 4γ−1ε

for S ∈ S. As we assume that n1/d > Cd,ρ,kε
−2α−1γ2 and ε ≤ γ2γ−1 log(n)−2, for all S ∈ S

we have

n1/d > Cd,ρ,kε
−2α−1γ2 ≥ ε−1γ log(n)2 ≥ Cd,k,ρ |S|−1/d log(n)2.

By the union bound, we have P (E) ≥ 1− Cd,kε
−6dn−k. For the remainder of the proof we

assume that E holds. Then for each S ∈ S we have

un(S) ≥ d |S|1/d (inf
S
ρ1/d)−

Cd,k,ρ |S|1/2d log2(n)
n1/2d log log(n)

≥ d |S|1/d (inf
S
ρ1/d)(1− Cd,k,ρRn)

where Rn = γ1/2ε−1/2n−1/2d log2(n)
log log(n) . Let w = (1− λ)φ, and we show that

sup
ΩR

(w − un) ̸= sup
ΩR+δ

(w − un) .

Assume for contradiction that

sup
ΩR

(w − un) = sup
ΩR+δ

(w − un) .

Since φ is semiconvex with semiconvexity constant α, at almost every x ∈ ΩR we have that
φ is twice differentiable at x with D2φ(x) ≥ −αI. Hence, there is xn ∈ ΩR+δ such that
D2φ(xn) ≥ −αI and w(xn)− un(xn) +

d
cd
n−1/d ≥ supΩR

(w − un). Therefore, we have

un(xn)− un(x) ≤ w(xn)− w(x) +
d

cd
n−1/d for all y ∈ ΩR.(5.4)

We define the sets

Bn =

{︃
x ∈ [0, xn] ∩ ΩR : un(xn)− un(x) ≤ ε− d

cd
n−1/d

}︃
B =

{︃
x ∈ [0, xn] ∩ ΩR : w(xn)− w(x) ≤ ε− 2d

cd
n−1/d

}︃
.
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By (5.4) we have B ⊂ Bn. By Lemma 5.2 we have un(Bn) ≤ ε. Letting pi =
ε−Kαε2γ−2

vxi (xn)
, we

have Sxn,p ⊂ B(xn, γ
−1ε). For x ∈ Sxn,p we have 1 + (x− xn) · p−1 ≥ 0, hence

Dw(xn) · (xn − x) ≤ ε−Kαε2γ−2.(5.5)

Using (5.5), |x− xn| ≤ γ−1ε, and n−1/d ≤ αγ−2ε2, we have

w(xn)− w(x) ≤ Dw(xn) · (xn − x) + α |x− xn|2

≤ ε−Kαγ−2ε2 + αγ−2ε2

≤ ε− (K − 1)n−1/d.

Choosing K so (K − 1) = 2d
cd

, we have x ∈ B. Hence, Sxn,p ⊂ B. We now show there
exist y ∈ Ωε

R and q ∈ Γε such that Sy,q ⊆ Sxn,p. Let y ∈ Ωε
R such that xn ≥ y and

|y − xn| ≤ ε3. Letting 1 denote the ones vector, we have Sy,p−ε31 ⊆ Sxn,p. We may choose
q so p− ε31 ≥ q ≥ p− 2ε31 provided that γ−1ε+ 2ε3 ≤ pi ≤ 4γ−1ε for each i, which holds
when ε ≤ 1

8α
−1γ2γ−1. Then Sy,q ⊂ Sxn,p. Using that (q1 . . . qd)

1/d = d |Sy,q|1/d, we have

ε ≥ un(Bn)

≥ un(Sy,q)

≥ (1− Cd,k,ρRn)( inf
Sy,q

ρ)1/d(q1 . . . qd)
1/d

≥ (1− Cd,k,ρRn)( inf
Sy,q

ρ)1/d

(︄
d∏︂

i=1

{︄
ε− Cdαε

2γ−2

wxi(xn)
− 2ε3

}︄)︄1/d

≥ (1− CdRn)( inf
Sy,q

ρ)1/d

(︄
d∏︂

i=1

{︄
ε− Cdαε

2γ−2 − 2γε3

wxi(xn)

}︄)︄1/d

.

As our assumptions on ε imply ε ≤ γ−1, we have γε3 ≤ αε2γ−2. Hence we have

(wx1(xn) · . . . wxd
(xn))

1/d ≥ (1− Cd,k,ρRn)( inf
Sy,q

ρ)1/d
(︁
1− Cdγ

−2αε
)︁
.

As we assume ρ ∈ C0,1(Rd) and ρ ≥ ρmin > 0, we have (infSy,q ρ
1/d) ≥ ρ(xn)

1/d −Cd,ρεγ
−1.

Hence we have

(wx1(xn) · . . . wxd
(xn))

1/d ≥ ρ(xn)
1/d(1− Cd,k,ρRn)(1− Cd,ρεγ

−1)
(︁
1− Cdγ

−2αε
)︁

≥ ρ(xn)
1/d − Cd,k,ρ(Rn + γ−2αε).

Applying Proposition 3.1 with λ = Cd,k,ρ(Rn + γ−2αε) we obtain a contradiction. We
conclude that we must have

sup
ΩR

(w − un) ̸= sup
ΩR+δ

(w − un) . □

Lemma 5.2. Given x0 ∈ ΩR and ε > 0, let

An = {x ∈ [0, x0] ∩ ΩR : un(x0)− un(x) ≤ ε} .

Then un(An) ≤ ε+ d
cd
n−1/d. If un(xn) ≥ ε, then additionally we have un(An) ≥ ε.
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Proof. First we show that un(An) ≤ ε + d
cd
n−1/d. Let C1 be a longest chain in An ∩ Xnρ,

and let x be the coordinatewise minimal element of C1. Let C2 be a longest chain in [0, x] ∩
ΩR ∩Xnρ. Concatenating these chains, we have

un(x0) ≥ un(C1) + un(C2)− un(C1 ∩ C2)

= un(An) + un(x)−
d

cd
n−1/d.

Hence,

un(An) ≤ un(x0)− un(x) +
d

cd
n−1/d ≤ ε+

d

cd
n−1/d.

To prove that un(An) ≥ ε, we must first establish a useful property of longest chains. Given
S ⊂ Rd and a longest chain {yi}ki=1 in S, we claim that

ℓ([0, yj ] ∩ S ∩Xnρ) = j.(5.6)

It is clear that ℓ([0, yj ]∩S∩Xnρ) ≥ j, as {yi}ji=1 is a chain of length j in [0, yj ]∩S∩Xnρ. If
ℓ([0, yj ]∩S∩Xnρ) ≥ j+1, then there exists a chain {zi}j+1

i=1 in [0, yj ]∩S∩Xnρ. Concatenating
this chain with {yi}ki=j+1 yields a chain of length k+1, contradicting maximality of {yi}ki=1.
Now we prove the main result. Let {xi}ki=1 be a longest chain in [0, x0]∩ΩR ∩Xnρ, and let
j = min {i ∈ {1, . . . , k} : xi ∈ An}. Letting C1 = {xi}ji=1 and C2 = {xi}ki=j , we have

un(x0) = un(C1) + un(C2)− un(C1 ∩ C2)(5.7)

≤ un(xj) + un(An)−
d

cd
n−1/d.(5.8)

By (5.6) we have un(xi) = d
cd
n−1/di for 1 ≤ i ≤ k. If j > 1, then using un(x0)−un(xj−1) > ε

and un(x0) ≥ ε we have

un(x0)− un(xj) ≥ ε− d

cd
n−1/d.(5.9)

If j = 1, then (5.9) is an immediate consequence of un(x0) ≥ ε. Combining (5.9) with (5.7),
we see that

un(An) ≥ un(x0)− un(x) +
d

cd
n−1/d ≥ ε.

□

Lemma 5.3. Let 0 < δ ≤ R. Then given y ∈ ΩR+δ, there is a constant Cd > 0 such that

dist(y, ∂RΩ) ≥ CdδR
d−1.

Proof. Let x ∈ ∂RΩ such that |x− y| = dist(y, ∂RΩ). Then

{(1− t)x+ ty : t ∈ (0, 1)} ⊂ ΩR \ ΩR+δ.

Letting f(x) = (x1 . . . xd)
1/d, we have

fxi(x) =
(x1 . . . xd)

1/d

dxi
.
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Using that xi ≥ Rd for x ∈ ΩR and that f(x) ≤ R+ δ for x ∈ ΩR \ ΩR+δ, we have

∥Df∥L∞(ΩR\ΩR+δ)
≤ 1

d
R−d(R+ δ) ≤ 2

d
R−d+1.

Hence, we have

δ ≤ f(y)− f(x) ≤ 2

d
R−d+1 |y − x| .

□

Next, we establish estimates on un, vn, u, and v that hold with high probability in a thin
tube around ∂RΩ and ∂0Ω. To do so, we cover the neighborhood with rectangular boxes
and apply Theorem 4.3. In the following Lemma we establish the existence of a suitable
collection of rectangles.

Lemma 5.4. The following statements hold.
(a) Given ε > 0, there exists a collection R of rectangles covering Ω0 \ Ωε such that

|E|1/d = Cε for each E ∈ R and |R| ≤ Cdε
−d2.

(b) Given R ∈ (0, 12 ] and 0 < ε ≤ 1
2R, there exists a collection R of rectangles such that

for each x, y ∈ ΩR \ ΩR+ε with x < y and [x, y] ⊂ ΩR \ ΩR+ε, there exists E ∈ R
such that [x, y] ⊆ E. Furthermore, we have CdR

d−1ε ≤ |E|1/d ≤ CdR
−1ε for each

E ∈ R and |R| ≤ CdR
−2d(d−1)ε−2d.

Proof. We give the proof of (b) only, as the proof of (a) is similar but simpler. Given
h ∈ (0, 1), let

B =
{︂
x ∈ [0, 2]d : R− ε ≤ (x1 . . . xd)

1/d ≤ R+ 2ε
}︂

and set Bh = B ∩ hZd. We define

R = {[x1, x2] : (x1, x2) ∈ Bh ×Bh and x1 < x2 and [x1, x2] ⊆ B}
and we show that R has the desired properties when h is appropriately chosen. Let z, y ∈
ΩR \ ΩR+ε with z < y and [z, y] ⊆ ΩR \ ΩR+ε. Let w(x) = (x1 . . . xd)

1/d. Then wxi =
(x1...xd)

1/d

dxi
and if x ∈ B and ε ≤ 1

2R we have

CdR ≤ (x1 . . . xd)
1/d

xi
≤ CdR

−(d−1).(5.10)

Hence we have |z − y| ≤ CdR
−1ε. Letting 1 denote the all ones vector, by (5.10) we have

w(y+h1) ≤ (R+ ε)+CdR
−(d−1)h and w(z−h1) ≥ R− ε−CdR

−(d−1)h. Then there exists
a constant Cd such that [z − 2h1, y + 2h1] ⊂ B when h = CdR

d−1ε. Letting h = CdR
d−1ε,

there exist y+ ∈ Bh and y− ∈ Bh such that y+2h1 ≥ y+i ≥ y+h1 and z−2h1 ≤ y−i ≤ z−h1.
Letting A = |[y−, y+]|1/d, we have A ≥ CdR

d−1ε and

A ≤ 1

d

d∑︂
i=1

(y+i − y−i ) ≤ Cd(|z − y|+ h) ≤ CdR
−1ε.

Furthermore, we have

|R| ≤ Cdh
−2d ≤ CdR

−2d(d−1)ε−2d.

□
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Lemma 5.5. Let ρ ∈ C(Rd) satisfy (2.1), and let un and vn be given by (2.2). and (2.5).
Given k ≥ 1, ε ∈ (0, 1), and n > 0, let Rn = n−1/2dε−1/2 log2(n)

log log(n) . Then the following
statements hold.

(a) For all n > Cd,kρ
−1
maxR

−d2ε−d log(n)4d we have

P

(︄
sup

Ω0\Ωε

vn > Cd,k,ρε

)︄
≤ Cd,kε

−d2n−k.

(b) Given R ∈ (0, 1], ε ∈ (0, R], and n > Cd,kρ
−1
maxR

−2dε−d log(n)4d we have

P

(︄
sup

ΩR\ΩR+ε

un > Cd,k,ρε

)︄
≤ Cd,kε

−3d2n−k.

Proof. We will prove (b) only, as the proof of (a) is similar. Applying Lemma 5.4 (b) with
α = εR, there exists a collection R of rectangles such that supΩR\ΩR+ε

un ≤ maxR∈R un(R),
CdR

dε ≤ |E|1/d ≤ Cdε for E ∈ R, and |R| ≤ CdR
−2d(d−1)α−2d ≤ Cdε

−3d2 . Given R ∈ R,
let ER be the event that

un(R) ≤ Cd(sup
R
ρ)1/dε+ Cdk

1/2n−1/2dε1/2
log2 n

log logn
.

If ER holds, then our assumption n > Cd,kρ
−1
maxR

−d2ε−d log(n)4d implies that un(R) ≤
Cd,k,ρε. Furthermore, we have n > Cd(supE ρ)

−1 |E|−1 for each E ∈ R and
√︁
k log(n) ≤

(n|E|)1/2d
log logn|E| . Applying Theorem 4.3 with t =

√︁
2k log(n), we have P(ER) ≥ 1−Cdkn

−k for n >

Cd. Letting E be the event that ER holds for all R ∈ R, we have P(E) ≥ 1−Cd,kε
−3d2n−k

by the union bound. As supΩR\ΩR+ε
un ≤ maxR∈R un(R), the result follows. □

Lemma 5.6. Given R > 0 and ρ ∈ C(Rd
+) satisfying (2.1), let u and v denote the solutions

of (1.2) and (2.4) respectively. Then the following statements hold.
(a) For all α > 0 we have

sup
ΩR\ΩR+α

u ≤ dρ1/dmaxα.

(b) We have

sup
Ω0

(v − 1ΩR
u) ≤ dρ1/dmaxR.

Proof. (a) Let w(x) = dρ
1/d
max(x1 . . . xd)

1/d − dρ
1/d
maxR. Then w = 0 on ∂RΩ and

(wx1 . . . wxd
)1/d = ρ1/dmax ≥ (ux1 . . . uxd

)1/d on ΩR.

Observe that ΩR = ∂RΩ ∪ ΩR ∪ ∂∗ΩR, so Ω = ΩR and Γ = ∂RΩ satisfy the hypotheses of
Theorem 3.1. As u satisfies (1.2), u = 0 on ∂RΩ. By Theorem 3.1, we have u ≤ w on ΩR.
Furthermore, when x ∈ ΩR \ ΩR+α, we have u(x) ≤ w(x) ≤ dρ

1/d
maxα.

(b) Let w(x) = dρ
1/d
max(x1 . . . xd)

1/d. Then w = 0 on ∂0Ω and (wx1 . . . wxd
)1/d = ρ

1/d
max. By

Theorem 3.1 we have v ≤ w in Ω0, hence v ≤ dρ
1/d
maxR in Ω0 \ ΩR. Since u = 0 on ∂RΩ,

we have v ≤ u+ dρ
1/d
maxR on ∂RΩ. Furthermore, we have (ux1 . . . uxd

)1/d = (vx1 . . . vxd
)1/d in

ΩR. Hence, we may apply Theorem 3.1 to conclude that v ≤ u + dρ
1/d
maxR within ΩR, and

the result follows. □
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6. Proofs of Convergence Rates

6.1. Proof of Theorem 2.1. In this section we supply the proof of Theorem 2.1. Roughly
speaking, the proof approximates u with a semiconcave function φ, uses Theorem 5.1 to
show that the maximum of un − φ and φ − un is likely to be attained in a neighborhood
of the boundary, and then applies the boundary estimates established in Lemma 5.5. To
produce a suitable approximation φ, we use inf and sup convolutions, whose properties are
summarized in the following lemma. While the proofs of similar results can be found in
standard references on viscosity solutions such as [3, 14, 26], the estimates are not stated in
the sharp form required here. The proofs of the following statements can instead be found
in [6].

Lemma 6.1. Given an open and bound set Ω ⊂ Rd, u ∈ C0,1(Ω), and α > 0, consider the
inf-convolution defined by

uα(x) = inf
y∈Ω

{︃
u(y) +

1

2α
|x− y|2

}︃
.

Then the following properties hold:
(a) uα is semiconcave with semiconcavity constant α−1.
(b) There exists a constant C > 0 such that

∥u− uα∥L∞(Ω) ≤ Cα[u]2
C0,1(Ω)

.

(c) There exists a constant C > 0 such that

[uα]C0,1(Ω) ≤ C[u]C0,1(Ω).

(d) Assume f ∈ C0,1(Ω) and H ∈ C0,1
loc (R

d). If

H(Du) ≥ f in Ω

then

H(Duα) ≥ f − Cα[u]C0,1(Ω)[f ]C0,1(Ω) in Mα(u)

where

Mα(u) =

{︃
x ∈ Ω : argminy∈Ω

{︃
u(y) +

1

2α
|x− y|2

}︃
∩ Ω ̸= ∅

}︃
.

(e) Let yα ∈ argminy∈Ω

{︂
u(y) + 1

2α |x− y|2
}︂
. Then there exists a constant C > 0 such

that

|x− yα| ≤ Cα[u]C0,1(Ω).

We are now in a position to tackle the proof of Theorem 2.1. We prove the sharper rate
in (b) by leveraging the semiconvexity estimates established in Section 7.

Proof of Theorem 2.1. (a) Given α > 0, let uα(x) = infy∈ΩR
{u(y) + 1

2α |x− y|2}. By Theo-
rem 3.2 we have

[u]C0,1(ΩR) ≤ Cd,ρR
−d+1.(6.1)

By Lemma 6.1, uα is semiconcave on ΩR with semiconcavity constant α−1 and we have

∥u− uα∥L∞(ΩR) ≤ α[u]2
C0,1(ΩR)

≤ CαR−2(d−1)(6.2)
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and

d∏︂
i=1

(uα)xi ≥ ρ− Cd,ρα[u]C0,1(ΩR) ≥ ρ− Cd,ρR
−d+1α in Mα(u).(6.3)

Let x ∈ ΩR such that dist(x, ∂RΩ) > Cα[u]C0,1(ΩR) where C is the constant given in Lemma

6.1 (e), and we show that x ∈ Mα(u). Given yα ∈ argminy∈ΩR

{︂
u(y) + 1

2α |x− y|2
}︂

, we
have

u(yα) +
1

2α
|x− yα|2 ≤ u(x),

hence yα ≤ x. By Lemma 6.1 (e) we have |x− yα| ≤ Cα[u]C0,1(ΩR) < dist(x, ∂RΩ), hence
x ∈ Mα(u). By Lemma 5.3, there exist constants Cd > 0 and Cd,ρ > 0 such that ΩR+δ ⊂
Mα(u) when δ = Cd,ραR

−2d+2. By Lemma 6.1 and Theorem 3.2 we have

[uα]C0,1(ΩR) ≤ [u]C0,1(ΩR) ≤ Cd,ρR
−d+1.

By (6.3), we have

Cd,ρR
(d−1)2 ≤ (uα)xi ≤ Cd,ρR

−(d−1)

in the viscosity sense. Given λ > 0, let A1 denote the event that

sup
ΩR

(un − (1 + λ)uα) ̸= sup
ΩR+δ

(un − (1 + λ)uα) .(6.4)

Let γ = Cd,ρR
(d−1)2 , γ = Cd,ρR

−(d−1), δ = Cd,ραR
−2d+2, and ε ∈ (0, 1). Set ν = log2 n

log logn ,
Rn = n−1/2dγ1/2ε−1/2ν, and λ = Cd,k,ρ(Rn + γ−2α−1ε + R−d+1α). Assume for now that
supΩR

(un − (1 + λ)uα) ≥ 2ε. Then for all n > 1 with n1/d > Cd,ρ,kR
−d+1ε−1 log(n)2 and ε

satisfying

ε ≤ Cdmin(αγ2γ−1 log(n)−2, Rd−1δ)(6.5)

we have P(A1) ≥ 1−Cd,kε
−6dn−k by Lemma 5.1. Let A2 be the event that supΩR\ΩR+δ

un ≤
Cd,k,ρδ. By Lemma 5.5 we have P(A2) ≥ 1−Cd,kδ

−3d2n−k for some constant Cd. As ε ≤ δ,
we have P(A1∩A2) ≥ 1−Cd,kε

−Cdn−k. If A1∩A2 holds, then using (6.4) and (6.2) we have

sup
ΩR

(un − u) ≤ sup
ΩR\ΩR+δ

(un − (1 + λ)uα) + ∥u∥L∞(ΩR) λ+ ∥u− uα∥L∞(ΩR)

≤ sup
ΩR\ΩR+δ

un + Cd,ρλ+ CdαR
−2d+2

≤ Cd,k,ρδ + Cd,ρλ+ Cd,ρR
−2d+2α

Using γ−2 = Cd,ρR
−2d2+4d−2, we have

sup
ΩR

(un − u) ≤ Cd,k,ρ

(︂
Rn +R−2d+2α+R−2d2+4d−2α−1ε

)︂
.(6.6)
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In the case where supΩR
(un − (1 + λ)uα) < 2ε, we cannot apply Lemma 5.1, but obtain

(6.6) by observing that

sup
ΩR

(un − u) ≤ sup
ΩR

(un − (1 + λ)uα) + ∥u∥L∞(ΩR) λ+ ∥u− uα∥L∞(ΩR)

≤ 2ε+ Cd,ρλ+ Cd,ρ(R
−2(d−1)α)

≤ Cd,k,ρ

(︂
Rn +R−2(d−1)α+R−2d2+4d−2α−1ε

)︂
.

Let E denote the right-hand side of (6.6), and we select the parameters α and ε to minimize

E subject to the constraints from Lemmas 5.5 and 5.1. Let ε = νn−1/2dR
2d2−3d+1

2 and

α = R
(−2d2+6d−4)

2
√
ε = R

−2d2+9d−7
4 n−1/4dν1/2. Then we have

E ≤ Cd,k,ρR
(−2d2+d+1)

4 ν1/2n−1/4d.

This is subject to the constraints

α ≤ R (from Lemma 5.5)(6.7)

Cd,ρ,k log(n)
2R−2δ−1 ≤ n1/d (from Lemma 5.1)(6.8)

Cd,ρ,k log(n)
2R−d+1ε−1 ≤ n1/d (from Lemma 5.1)(6.9)

ε ≤ CdR
2d2−3d+1α log(n)−2 (from Lemma 5.1)(6.10)

ε ≤ CdR
d−1δ (from Lemma 5.1) .(6.11)

As εn1/d = n1/2dR
2d2−3d+1

2 ν, (6.9) is satisfied when n1/d ≥ Cd,ρ,kR
−(2d2−d−1) log(n)C . We

also have (6.8), since ε < δ. AsR2d2−3d+1α = R
6d2−3d−3

4 n−1/4dν1/2 and ε = R
2d2−3d+1

2 n−1/2dν,
(6.10) is satisfied when n1/d ≥ Cd,k,ρR

−2d2+9d+1 log(n)C . It also follows that (6.11) holds,

as Rd−1δ = R−d+1α ≥ R2d2−3d+1α. Since α = R
−2d2+9d−7

4 ν1/2n−1/4d, (6.7) is satisfied when
n1/d ≥ Cd,k,ρR

−(2d2−9d+11) log(n)C . It is straightforward to check that the most restrictive
of these conditions is n1/d ≥ Cd,k,ρR

−(2d2−d−1) log(n)C , hence all constraints are satisfied
when this holds. We conclude that

P

(︄
sup
ΩR

(un − u) > Cd,ρ,kR
− (2d2+d+1)

4 n−1/4d

(︃
log2 n

log logn

)︃1/2
)︄

≤ Cd,ρ,kR
Cdn−k.

(b) By Theorem 2.3, there exist constants Cρ and Cd,ρ such that u is semiconvex on ΩR

with semiconvexity constant Cd,ρR
−2d+1 when R < Cρ. Given ε > 0 and λ > 0, let E be

the event that

sup
ΩR

((1− λ)u− un) ̸= sup
ΩR+δ

((1− λ)u− un) .

Let γ = Cd,ρR
(d−1)2 , γ = Cd,ρR

−(d−1), α = Cd,ρR
−2d+1 and ε ∈ (0, 1). Set ν = log2 n

log logn , Rn =

n−1/2dγ1/2ε−1/2ν, and λ = Cd,k,ρ(Rn+γ
−2R−2d+1ε). Then for all n1/d > Cd,ρ,kR

2d2−2d+2ε−2

and ε satisfying (6.5), we have P(E) ≥ 1− Cd,kε
−6dn−k by Lemma 5.1. We assume for the

remainder of the proof that E holds. By Lemma 5.6 we have

sup
ΩR

((1− λ)u− un) = sup
ΩR\ΩR+δ

((1− λ)u− un) ≤ Cd,ρ,kδ.
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Letting δ = λ and using γ−2R−2d+1 = Cd,ρR
−2d2+2d−1, we have

sup
ΩR

(u− un) = sup
ΩR

((1− λ)u− un + λu)

≤ sup
ΩR\ΩR+δ

((1− λ)u− un) + Cd,ρλ

≤ Cd,ρ,k(Rn +R−2d2+2d−1ε).

Letting E = (Rn + R−2d2+2d−1ε), we select ε to minimize E. Let ε = R
4d2−5d+3

3
ν2/3

n1/3d , so
Rn = R−2d2+2d−1ε. Then

E = R−2d2+2d−1ε = R
−2d2+d

3 n−1/3dν2/3.

From Lemma 5.1 we have the following constraints

Cd,ρ,kR
2d2−2d+1 ≤ ε2n1/d = n1/3dR

8d2−10d+6
3 ν4/3(6.12)

ε ≤ CdαR
2d2−3d+1 log(n)−2 = R2d2−5d+1 log(n)−2(6.13)

ε ≤ CdR
d−1δ.(6.14)

As δ = λ ≥ R−2d2+2d−1ε, it is clear that (6.14) is satisfied. Observe that (6.12) is sat-
isfied when n1/d ≥ R−2d2+4d−4 log(n)C . Furthermore, (6.13) is satisfied when n1/d ≥
Cd,k,ρR

−2d2+10d+2
3 log(n)C for some constant C. As the most restrictive of these conditions

is n1/d ≥ R−2d2+4d−4 log(n)C , when this is satisfied we can conclude that

P

(︄
sup
ΩR

(u− un) > Cd,ρ,kR
−2d2+d

3 n1/3d
(︃

log2 n

log logn

)︃2/3
)︄

≤ Cd,ρ,kR
Cdn−k. □

6.2. Proof of Theorem 2.2. We now establish our convergence rate result on Ω0 = (0, 1]d

by using the auxiliary problem (1.2) as an approximation to (2.4). The proof is conceptually
straightforward, using un as an approximation to vn and u as an approximation of v. As
with Theorem 2.1 we obtain a sharper result in (b) thanks to Theorem 2.3.

Proof of Theorem 2.2. (a) Given R > 0, let E1 be the event that

sup
ΩR

(un − u) ≤ Cd,ρ,kR
− (2d2+d+1)

4 n−1/4d

(︃
log2 n

log logn

)︃1/2

.(6.15)

By Theorem 2.1 (a) we have P(E1) ≥ 1−Cd,k,ρR
Cdn−k for all n1/d ≥ Cd,k,ρR

−(2d2−d−1) log(n)C .
Given any x ∈ Ω0 and longest chain C in [0, x] ∩ Xnρ, let C1 = {y ∈ C : y ∈ ΩR} and
C2 = {y ∈ C : y /∈ ΩR}. Then

vn(x)− un(x) ≤ vn(C)− un(C1) = vn(C2) ≤ sup
Ω0\ΩR

vn.(6.16)

Let E2 denote the event that supΩ0\ΩR
vn ≤ Cd,ρR holds. By Lemma 5.5 we have P(E2) ≥

1 − Cd,k,ρR
−Cdn−k, for all n with n1/d ≥ Cd,k,ρR

−d−1 log(n)4. Then P(E1 ∩ E2) ≥ 1 −
Cd,k,ρR

Cdn−k, and for the remainder of the proof, we assume that E1 ∩ E2 holds. Let
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ν =
(︂

log2 n
log logn

)︂1/2
. Using (6.16) ,(6.15), and u ≤ v on ΩR, we have for all x ∈ ΩR that

vn(x)− v(x) ≤ (vn(x)− un(x)) + (un(x)− u(x)) + (u(x)− v(x))

≤ Cd,k,ρ(R+R− (2d2+d+1)
4 n−1/4dν).

Hence we have

sup
Ω0

(vn − v) ≤ Cd,k,ρ(R+R− (2d2+d+1)
4 n−1/4dν).

Letting R = Kn−β , we select the maximum value of β such that R ≥ R− (2d2+d+1)
4 n−1/4dν

and n1/d ≥ Cd,k,ρR
−(2d2−d−1) log(n)C hold when n > Cd,k,ρ. These are satisfied when

dβ(2d2+d+5) < 1 and dβ(2d2−d−1) < 1, respectively. Letting β = 1
2d3+d2+5d+1

, we have

sup
Ω0

(vn − v) ≤ Cd,k,ρKR.

Choosing K so Cd,k,ρK = 1, we conclude that for all n > Cd,ρ,k we have

P
(︃
sup
Ω0

(vn − v) > n−1/(2d3+d2+5d+1)

)︃
≤ Cd,ρ,kn

−k+Cd .

As this holds for all k ≥ 1, the result follows.
(b) Given R > 0, let E be the event that

sup
ΩR

(u− un) ≤ Cd,ρ,kR
−2d2+d

3 n−1/3d

(︃
log2 n

log logn

)︃2/3

.(6.17)

By Theorem 2.1 (a) we have P(E) ≥ 1− Cd,k,ρR
Cdn−k for all n with

n1/d ≥ Cd,k,ρR
−2d2+4d−4 log(n)C .(6.18)

For the remainder of the proof, we assume thatE holds. By Lemma 5.6, we have supΩ0\ΩR
(v−

1ΩR
u) ≤ Cd,ρR. Let ν =

(︂
log2 n

log logn

)︂2/3
. Using (6.17) and un ≤ vn, we have for x ∈ ΩR that

v(x)− vn(x) ≤ (v(x)− u(x)) + (u(x)− un(x)) + (un(x)− vn(x))

≤ Cd,k,ρ(R+R
−2d2+d

3 n−1/3dν).

If x ∈ Ω0 \ ΩR, then we have v(x)− vn(x) ≤ supΩ0\ΩR
v ≤ Cd,ρR. Hence, we have

sup
Ω0

(v − vn) ≤ Cd,k,ρ(R+R
−2d2+d

3 n−1/3dν).

Letting R = Kn−β , we select β to satisfy R ≥ R
−2d2+d−1

3 n−1/3dν and (6.18) when n ≥ Cd,ρ,k.
These are satisfied when dβ(2d2−d+3) < 1 and dβ(2d2−4d+4) < 1, respectively. Letting
β = 1

2d3−d2+3d+1
, we have

sup
ΩR

(vn − v) ≤ Cd,k,ρKn
−β.

Choosing K so Cd,k,ρK = 1, we conclude that

sup
Ω0

(vn − v) ≤ n−1/(2d3−d2+3d+1) □
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Remark 6.1. Observe that 2d3 + d2 + 5d + 1 ≥ 2d3 − d2 + 3d + 1 for d ≥ 2. This shows
that making use of the semiconvexity estimates in Theorem 2.3 has genuinely improved the
convergence rates.

The following lemma allows us to extend our results to data modeled by a sequence of
i.i.d. random variables instead of a Poisson point process.

Lemma 6.2. Let {Yk}∞k=1 be i.i.d. random variables on Rd with continuous density ρ and
set Y n = {Y1, . . . , Yn}. Let Xnρ be a Poisson point process with intensity nρ. Let F : F → R
where F =

{︁
S ⊂ Rd : S is finite

}︁
and suppose that P (F (Xnρ) > c) ≤ K. Then

P
(︁
F (Y n) > c

)︁
≤ Ke

√
n.

Proof. Let N ∼ Poisson(n). Then Y N is a Poisson process with intensity nρ, as proven
in [25]. Hence we have

P
(︁
F (Y N ) > c

)︁
=

∞∑︂
k=0

P
(︁
F (Y k) > c

)︁ kke−k

k!
≤ K.

By Stirling’s Formula, n!
nne−n ≤ e

√
n. We conclude that P

(︁
F (Y n) > c

)︁
≤ Ke

√
n. □

7. Proof of Theorem 2.3

First we define the notion of semiconvexity.

Definition 7.1. A function u is said to be semiconvex with semiconvexity constant C on a
domain Ω if for all x ∈ Ω and h ∈ Rd such that x± h ∈ Ω we have

u(x+ h)− 2u(x) + u(x− h) ≥ −C |h|2 .
A function u is said to be semiconcave with semiconcavity constant C if −u is semiconvex
with semiconvexity constant C.

We begin by showing that estimates on the semiconvexity constant of u near the boundary
automatically extend to the whole domain provided ρ1/d is semiconvex. The key ingredient
in the proof is the concavity of the Hamiltonian L(p) = (p1 . . . pd)

1/d.

Theorem 7.1. Let Ω ⊂ [0,M ]d be an open set, and assume that ∂Ω = Γ ∪ ∂∗Ω where
Γ ⊂ ∂Ω is closed and ∂∗Ω is as in (3.1). Given ε > 0, let Ωε =

{︁
x ∈ Rd : dist(x,Ω) < ε

}︁
and suppose that u ∈ C(Ωε) satisfies (ux1 . . . uxd

)1/d = ρ1/d in the viscosity sense on Ωε,
where ρ ∈ C(Ωε) satisfies (2.1) and ρ1/d is semiconvex on Ω with semiconvexity constant
Kρ. Suppose there exists h ∈ Rd such that |h| < ε and

u(x+ h)− 2u(x) + u(x− h) ≥ −Ku |h|2 for x ∈ Γ.(7.1)

Then we have

u(x+ h)− 2u(x) + u(x− h) ≥ −(1 + ∥u∥L∞(Ωε)
)max(Ku, ρ

−1/d
min Kρ) |h|2 for x ∈ Ω.

Proof. Set L(p) = (p1 . . . pd)
1/d and w(x) = u(x+h)+u(x−h)

2 , and we show that w satisfies
L(Dw) ≥ ρ1/d −Kρ |h|2 on Ω. Given x0 ∈ Ω, let φ ∈ C∞(Rd) such that w − φ has a local
minimum at x0. Without loss of generality we may assume that w(x0) = φ(x0) and w − φ
has a strict global minimum at x0. Let

Φ(x, y) =
1

2
u(x) +

1

2
u(y)− φ

(︃
x+ y

2

)︃
+
α

2
|x− y − 2h|2 .
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Since Φ is continuous, it attains its minimum at some (xα, yα) ∈ Ω × Ω. Furthermore, we
have

Φ(xα, yα) ≤ Φ(x0 + h, x0 − h) = w(x0)− φ(x0) = 0.(7.2)

As u and φ are bounded on Ω, we have
α

2
|xα − yα − 2h|2 ≤ Cd.(7.3)

By compactness of Ω× Ω, there exists a sequence αn → ∞ such that {xαn} and {yαn} are
convergent sequences. Set xn = xαn , yn = yαn , and let (ˆ︁x, ˆ︁y) = limn→∞(xn, yn). By (7.3)
we have ˆ︁x−ˆ︁y = 2h, and now we verify that (ˆ︁x, ˆ︁y) = (x0+h, x0−h). By lower semicontinuity
of Φ, we have

lim inf
n→∞

Φ(xn, yn) ≥ Φ(ˆ︁x, ˆ︁y) = w(ˆ︁y + h)− φ(ˆ︁y + h) ≥ 0.

By (7.2) we have

lim
n→∞

Φ(xn, yn) = 0 = w(ˆ︁y + h)− φ(ˆ︁y + h).

Since w − φ has a strict global minimum at x0, we conclude that x0 = ˆ︁y + h. Sinceˆ︁x = ˆ︁y + 2h, we have (ˆ︁x, ˆ︁y) = (x0 + h, x0 − h). As x0 ± h ∈ Ωε, there exists N > 0 such
that(xn, yn) ∈ Ωε × Ωε when n > N . Let ψ1 and ψ2 be given by

ψ1(x) = −u(yn) + 2φ

(︃
x+ yn

2

)︃
− αn |x− yn − 2h|2

ψ2(y) = −u(xn) + 2φ

(︃
xn + y

2

)︃
− αn |xn − y − 2h|2 .

By construction, u − ψ1 has a local minimum at xn and u − ψ2 has a local minimum at
yn, Dψ1(xn) = pn − 2qn, and Dψ2(yn) = pn + 2qn where pn = Dφ

(︁xn+yn
2

)︁
and qn =

αn(xn − yn − 2h). Since u satisfies L(Du) = ρ1/d on Ωε, we have L(pn + 2qn) ≥ ρ(yn)
1/d

and L(pn − 2qn) ≥ ρ(xn)
1/d for n > N . Using concavity of L, we have

L(pn) = L

(︃
pn + 2qn

2
+
pn − 2qn

2

)︃
≥ 1

2
(L (pn + 2qn) + L (pn − 2qn))

≥ 1

2
(ρ(xn)

1/d + ρ(yn)
1/d).

Using (ˆ︁x, ˆ︁y) = (x0 + h, x0 − h), lower semicontinuity of L, and semiconvexity of ρ1/d, we
have

L(Dφ(x0)) ≥ lim sup
n→∞

L

(︃
Dφ

(︃
xn + yn

2

)︃)︃
≥ 1

2
(ρ(x0 + h)1/d + ρ(x0 − h)1/d)

≥ ρ(x0)
1/d − Kρ

2
|h|2 .

It follows that L(Dw) ≥ ρ1/d − Kρ

2 |h|2 on Ω. Given θ > 0, set θ = 1
2 |h|

2max(Ku, ρ
−1/d
min Kρ)

and let wθ = (1 + θ)w + θ. By Proposition 3.1 we have

L(Dwθ) ≥ ρ1/d − Kρ

2
|h|2 + dρ

1/d
minθ ≥ ρ1/d on Ω.
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Furthermore, by (7.1) we have w ≥ u − Ku
2 |h|2 on Γ. By choice of θ, we have wθ ≥ u on

Γ. As ∂Ω = Γ ∪ ∂∗Ω by assumption, we may apply Theorem 3.1 to conclude wθ ≥ u on Ω.
Hence for all x ∈ Ω we have

w(x) =
u(x+ h) + u(x− h)

2
≥ u(x)− θ(1 + ∥w∥L∞(Ω))

≥ u(x)− 1

2
∥u∥L∞(Ωε)

|h|2max(Ku, ρ
−1/d
min Kρ).

and the result follows. □

Next we establish the existence of an approximate solution to (2.6) for R = 1 in a
neighborhood of the boundary when ρ(x)1/d = a + p · (x − x0). The approximate solution
is constructed as w + v where w is the solution to (2.6) when ρ = 1 and v solves a related
PDE. Given x0 ∈ ∂1,M , p ∈ Rd, and a > 0, let

v(x) =
1

2
a−

d−1
d ((p · x)((x1 . . . xd)1/d − (x1 . . . xd)

−1/d)− 2(p · x0)((x1 . . . xd)1/d − 1))(7.4)

and

w(x) = a1/dd(x1 . . . xd)
1/d − a1/dd(7.5)

and

u = w + v.(7.6)

Theorem 7.2. Given x0 ∈ ∂1,MΩ, p ∈ Rd, and a > 0, let v and w be as in (7.4) and (7.5).
(a) We have

(7.7)

⎧⎪⎪⎨⎪⎪⎩
d∑︂

i=1

⎛⎝∏︂
j ̸=i

wxj

⎞⎠ vxi = p · (x− x0) in Ω1,M

v = 0 on ∂1,MΩ.

(b) Let u = w + v. Then for all ε ≤ Cd(aM
d(1 + |p|))−1 we have

(7.8)

{︄
ux1 . . . uxd

= a+ p · (x− x0) + E(x) in B(x0, ε)

u = 0 on B(x0, ε) ∩ ∂1,MΩ

where |E| ≤ Cda
−1 |p|2M2ε2. Furthermore, u is nondecreasing in each coordinate

within B(x0, ε) ∩ Ω1,M .

Proof. We first prove (a). Using (7.4), it is clear that v = 0 on ∂1,MΩ. Furthermore, we
have

2a
d−1
d xivxi =

(︃
xipi +

p · (x− 2x0)

d

)︃
(x1 . . . xd)

1/d +
(︂
−xipi +

p · x
d

)︂
(x1 . . . xd)

−1/d

and

2a
d−1
d

d∑︂
i=1

xivxi = 2p · (x− x0)(x1 . . . xd)
1/d.
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and it follows that (7.7) is satisfied. To see that (7.8) holds, observe that

d∏︂
i=1

(wxi + vxi) = wx1 . . . wxd
+

d∑︂
i=1

vxi

⎛⎝∏︂
j ̸=i

wxj

⎞⎠+ E = a+ p · (x− x0) + E

where

E =
d∑︂

ℓ=2

∑︂
K⊂{1,...,d}

|K|=ℓ

∏︂
i∈K

vxi

∏︂
j /∈K

wxj .

To bound |E| withinB(x0, ε), we establish some estimates on vxi . Using that maxx∈Ω1,M
1
xi

=

Md−1, it is straightforward to verify that Dv(x0) = 0 and⃓⃓
vxixj (x0)

⃓⃓
≤ Cda

− d−1
d Md |p|
x0,i

(7.9)

for 1 ≤ j ≤ d. Hence, we have

|vxi | ≤
Cda

− d−1
d Md |p| ε
x0,i

in B(x0, ε).

Since wxi = a1/d(x1 . . . xd)
1/dx−1

i , for x ∈ B(x0, ε) and ε ≤M−(d−1) we have

|wxi | ≤
a1/d

x0,i
+
Ca1/dε

x20,i
≤ Ca1/d

x0,i
.

Then for any K ⊂ {1, . . . , d} with |K| = ℓ we have∏︂
i∈K

|vxi |
∏︂
j /∈K

⃓⃓
wxj

⃓⃓
≤ Cd(a

− d−1
d Md |p| ε)ℓ

∏︂
i∈K

x−1
0,i

∏︂
j /∈K

Ca1/d

x0,j

≤ Cda
1−ℓ
(︂
Md |p| ε

)︂ℓ
.

It follows that |E| ≤ Cda
−1 |p|2M2dε2 for ε ≤ 1

Md(1+|p|) . To verify that u is nondecreasing
in each coordinate within B(x0, ε) ∩ Ω1,M , observe that in B(x0, ε) we have⃓⃓

wxixj (x0)
⃓⃓
≤ Cda

1/dMd

x0,i
.

Using (7.9), we have ⃓⃓
uxixj (x0)

⃓⃓
≤ Cda

− d−1
d Md |p|
x0,i

.

Using uxi(x0) = a1/dx−1
0,i , when ε ≤ CdaM

−d(1 + |p|) and x ∈ B(x0, ε) we have

uxi(x) ≥ a1/dx−1
0,i − Cdεa

− d−1
d |p|x−1

0,i ≥ 0.

□

We can now apply the comparison principle to show that u approximates u near the
boundary.
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Proposition 7.1. Let u denote the solution to (2.6), where ρ ∈ C2(Ω1,M ) satisfies (2.1).
Given x0 ∈ ∂1,MΩ, let u = v + w where v and w are as in (7.4) and (7.5) with a = ρ(x0)
and p = Dρ(x0). Then there exists a constant Cd,ρ,M > 0 such that when ε ≤ Cd,ρ,M we
have

sup
B(x0,ε)∩Ω1,M

|u− u| ≤ Cdε
3M3d−1[ρ1/d]C0,1(Rd)

(︂
ρ−2
min ∥Dρ∥

2
L∞(∂1,MΩ) + ρ−1

min

⃦⃦
D2ρ

⃦⃦
L∞(∂1,MΩ)

)︂
.

Proof. Letting H(p) = p1 . . . pd, by Theorem 7.2 we have

H(Du) = ρ(x0) +Dρ(x0) · (x− x0) + E(x) in Ω1,M

where |E| ≤ Cdρ
−1
min ∥Dρ(x0)∥

2M2dε2 in B(x0, ε). As ρ ∈ C2(Ω1,M ), for x ∈ B(x0, ε)∩Ω1,M

we have

ρ(x) ≥ ρ(x0) +Dρ(x0) · (x− x0)−
⃦⃦
D2ρ(x0)

⃦⃦
L∞ ε2.(7.10)

Given λ > 0, by Proposition 3.1 and (7.10) we have in B(x0, ε) ∩ Ω1,M that

H((1 + λ)Du) ≥ (1 + λ)ρ

≥ ρ+ dρminλ

≥ ρ(x0) +Dρ(x0) · (x− x0)−
⃦⃦
D2ρ(x0)

⃦⃦
L∞ ε2 + dρminλ.

Letting λ = Cdρ
−2
min ∥Dρ∥

2
L∞(∂1,MΩ)M

2dε2 + ρ−1
min

⃦⃦
D2ρ

⃦⃦
L∞(∂1,MΩ)

ε2, we have

H((1 + λ)Du) ≥ H(Du) in B(x0, ε) ∩ Ω1,M .

Observe that (1 + λ)u = u = 0 on ∂1,MΩ and u is nondecreasing in each coordinate. We
may apply Theorem 3.1 with Ω = B(x0, ε) ∩ Ω1,M and Γ = B(x0, ε) ∩ ∂1,MΩ to conclude
that (1 + λ)u ≥ u on B(x0, ε) ∩ Ω1,M . By Lemma 3.2 we have ∥u∥L∞(B(x0,ε)∩Ω1,M ) ≤
CdM

d−1
⃦⃦
ρ1/d

⃦⃦
C0,1(Rd)

ε. Hence, we have

u ≥ u− ∥u∥L∞(B(x0,ε)∩Ω1,M ) λ ≥ u− CdM
d−1

⃦⃦⃦
ρ1/d

⃦⃦⃦
C0,1(Rd)

λ.

From Theorem 7.2, u is nondecreasing in each coordinate within B(x0, ε). An analogous
application of Theorem 3.1 shows that (1 − λ)u ≤ u on B(x0, ε) ∩ Ω1,M , and we conclude
that supB(x0,ε)∩Ω1,M

|u− u| ≤ CdM
d−1

⃦⃦
ρ1/d

⃦⃦
C0,1(Rd)

λ. □

Now we establish semiconvexity estimates on u in a neighborhood of ∂1,M .

Lemma 7.1. Given x0 ∈ ∂1,MΩ, a > 0, and p ∈ Rd, let u be as in (7.6). Then the following
statements hold.

(a) For all η ∈ Rd we have

η⊤(D2u(x0))η ≥ −Cd |η|2 (a−
d−1
d M2d−1 |p|+ a1/dM2d−2).

(b) There exist values of a > 0, p ∈ Rd, x0 ∈ ∂1,MΩ and η ∈ Rd such that

η⊤(D2u(x0))η ≤ −Cd |η|2 (a−
d−1
d M2d−1 |p|+ a1/dM2d−2).
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Proof. (a) We have

uxixj =
1

2
a−

d−1
d

(︃
dxjpj + dxipi + p · (x− 2x0) + da

d2xixj
− δij

da+ p · (x− 2x0)

dx2i

)︃
(x1 . . . xd)

1/d

+
1

2
a−

d−1
d

(︃
dxjpj + dxipi − p · x

d2xixj
− δij

p · x
dx2i

)︃
(x1 . . . xd)

−1/d.

In the following calculation we shall employ the shorthand notation η · x−1 :=
∑︁d

i=1 ηix
−1
i

and
⃓⃓
x−1

⃓⃓2
:=
∑︁d

i=1 x
−2
i . Let η ∈ Rd with |η| = 1. Then we have

2a
d−1
d η⊤(D2u(x0))η =

d∑︂
i,j=1

ηiηj

(︄
2dx0,ipi + 2dx0,jpj − 2p · x0 + da

d2x0,ix0,j
− δij

a

x20,i

)︄

=
2

d

d∑︂
i,j=1

ηiηj

(︃
pi
x0,j

+
pj
x0,i

− p · x0
dx0,ix0,j

)︃
+
a

d

d∑︂
i,j=1

ηiηj
xixj

− a

d∑︂
i=1

η2i
x20,i

=
2

d
(η · x−1

0 )

(︃
2(η · p)− 1

d
(p · x0)(η · x−1

0 )

)︃
+
a

d
(η · x−1

0 )2 − a
⃦⃦
η · x−1

0

⃦⃦2
≥ −Cd

(︂
|p|
⃓⃓
x−1
0

⃓⃓
+ |p| |x0|

⃓⃓
x−1
0

⃓⃓2
+ a

⃓⃓
x−1
0

⃓⃓2)︂
Using that minx∈Ω1,M

xi =M−d+1, we have

2a
d−1
d η⊤(D2u(x0))η ≥ −Cd

(︂
M2d−1 |p|+ aM2d−2

)︂
.

(b) Let a = 1, η = e1, and define x0 ∈ ∂1,MΩ by x0,1 = 1
Md−1 , x0,j =M for j = 2, . . . , d and

p = − v
∥v∥ where v = 2e1 − x0

dx0,1
. Then

(︁
M2d−1 |p|+ aM2d−2

)︁
≤ 2M2d−1. We have

η⊤(D2u(x0))η =
2

dx0,1
p ·
(︃
2ei −

x0
dx0,1

)︃
− 1− (1/d)

x20,1

≤ −2

d
Md−1 ∥v∥

= −2

d
Md−1

√︂
(2− d−1)2 + (d− 1)d−1M2d

≤ −CdM
2d−1. □

Remark 7.1. Result (a) establishes an upper bound on the semiconvexity constant of u,
while result (b) shows that this is the best bound (up to a constant Cd) that can hold without
additional restrictions on ρ. In (a) if we assume also that p·x0 ≤ 0 the result can be improved
to

η⊤(D2u(x0))η ≥ −Cd(a
− d−1

d |p|Md−1 + a1/dM2d−2).

Proof of Theorem 2.3. We will prove the result in two steps, first considering the R = 1 case,
and then proving the general case using a scaling argument. Given M ≥ 1, let u denote the
solution of

(7.11)

{︄
(ux1ux2 . . . uxd

)1/d = ρ1/d in Ω1,2M

u = 0 on ∂1,2MΩ.
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Letting w(x) = dρ
1/d
max(x1 . . . xd)

1/d − dρ
1/d
max, we have w = 0 on ∂1,2M and (wx1 . . . wxd

)1/d =

ρ
1/d
max ≥ u on Ω1,2M . By Theorem 3.1 we have u ≤ w on Ω1,2M , hence ∥u∥Ω1,2M

≤ CdMρ
1/d
max.

Given ε > 0, let h ∈ Rd with |h| = ε and set Γε = {x ∈ Ω1,M : dist(x, ∂1,MΩ) < ε} and
Uε = Γ3ε \ Γε. Given x ∈ Uε, there exists x0 ∈ ∂1,MΩ such that x ∈ B(x0, 3ε). Let u be
as in Proposition 7.1, with a = ρ(x0) and p = Dρ(x0). By Proposition 7.1, there exists a
constant Cd,ρ,M > 0 such that when ε ≤ Cd,ρ,M we have

sup
B(x0,3ε)∩Ω1,M

|u− u| ≤ Cd,ρ,Mε
3.

By Lemma 7.1 (a) we have

η⊤D2u(x0)η ≥ −CdKu

where

Ku = ρ
−(d−1)/d
min ∥Dρ∥L∞(∂1,MΩ)M

2d−1 + ρ1/dmaxM
2d−2.

As u is smooth, there exists a constant Cd,ρ,M > 0 such that

inf
y∈B(x0,3ε)

η⊤D2u(y)η ≥ −CdKu − Cd,ρ,Mε.

and it follows that

u(x+ h)− 2u(x) + u(x− h) ≥ − |h|2 (CdKu + Cd,ρ,Mε).

Hence, we have

u(x+ h)− 2u(x) + u(x− h)

|h|2
≥ u(x+ h)− 2u(x) + u(x− h)

|h|2
− 4ε−2 sup

B(x0,3ε)∩Ω1,M

|u− u|

≥ −(CdKu + Cd,ρ,Mε)

This holds for all x ∈ Uε, hence also for all x ∈ Uε. Letting Ω = Ω1,M \ Γε and Γ =

{x ∈ Ω1,M : dist(x, ∂1,MΩ) = ε}, we have ∂Ω = Γ ∪ ∂∗Ω and
{︁
y ∈ Rd : dist(y,Ω) < ε

}︁
⊂

Ω1,2M for ε ≤M . As ρ1/d is semiconvex on Ω1,M with semiconvexity constant
⃦⃦
D2(ρ1/d)

⃦⃦
L∞(Ω1,M )

,

we may apply Theorem 7.1 to conclude that for all x ∈ Ω1,M \ Γε we have

u(x+ h)− 2u(x) + u(x− h)

|h|2
≥ −Cd(1 + ∥u∥L∞(Ω1,2M ))(Ku + Cd,ρ,Mε)

≥ −Cd(1 +Mρ1/dmax)(Ku + Cd,ρ,Mε)

where

Ku = max

(︃
Ku, ρ

−1/d
min

⃦⃦⃦
D2(ρ1/d)

⃦⃦⃦
L∞(Ω1,M )

)︃
.

As this holds for all ε < Cd,ρ,M and h ∈ Rd with |h| = ε, we conclude that for all x ∈ Ω1,M

and h ∈ Rd with x± h ∈ Ω1,M we have

u(x+ h)− 2u(x) + u(x− h)

|h|2
≥ −Cd(1 +Mρ1/dmax)Ku.
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Now we prove Theorem 2.3 in full generality. Let u denote the solution of (2.6) and let
q(x) = u(Rx). Then q satisfies{︃

qx1qx2 . . . qxd
= g in Ω1,R−1M

q = 0 on ∂1,R−1MΩ

where g = Rdρ(Rx). By our R = 1 result, q satisfies

q(x+ h)− 2q(x) + q(x− h)

|h|2
≥ −Cd(1 +Mρ1/dmax)max

(︃
K,R2ρ

−1/d
min

⃦⃦⃦
D2(ρ1/d)

⃦⃦⃦
L∞(ΩR,M )

)︃
whereK = R−2d+3(E1+E2) withE1 = ρ

−(d−1)/d
min ∥Dρ∥L∞(∂R,MΩ)M

2d−1 andE2 = ρ
1/d
maxM2d−2.

Then there exists a constant Cρ > 0 such that when R ≤ Cρ we have

q(x+ h)− 2q(x) + q(x− h)

|h|2
≥ −Cd(1 +Mρ1/dmax)R

−2d+3 (E1 + E2) .

Hence for all y ∈ Ω1,R−1M and h′ ∈ Rd with h′ ̸= 0, we have

u(Ry +Rh′)− 2u(Ry +Rh′) + u(Ry −Rh′)

|Rh′|2
≥ −Cd(1 +Mρ1/dmax)R

−2d+1 (E1 + E2)

Replacing Rh′ with h and Ry with x, we conclude that for all x ∈ ΩR,M and h ̸= 0 we
have

u(x+ h)− 2u(x) + u(x− h)

|h|2
≥ −Cd(1 +Mρ1/dmax)R

−2d+1 (E1 + E2) . □
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