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ABSTRACT

We show that the sparsified block elimination algorithm for solv-
ing undirected Laplacian linear systems from [Kyng-Lee-Peng-
Sachdeva-Spielman STOC’16] directly works for directed Lapla-
cians. Given access to a sparsification algorithm that, on graphs
with n vertices and m edges, takes time 75(m) to output a sparsifier
with Ns(n) edges, our algorithm solves a directed Eulerian system
on n vertices and m edges to € relative accuracy in time

O(75(m) + Ns(n) log nlog(n/e)) + O(75(Ns(n)) log n),

where the O(-) notation hides loglog(n) factors. By previous re-
sults, this implies improved runtimes for linear systems in strongly
connected directed graphs, PageRank matrices, and asymmetric
M-matrices. When combined with slower constructions of smaller
Eulerian sparsifiers based on short cycle decompositions, it also
gives a solver algorithm that, after pre-processing the matrix in
o(n® logo(l) n) time, takes O(nlog® nlog(n/e)) time per solve. At
the core of our analyses are constructions of augmented matrices
whose Schur complements encode error matrices.

CCS CONCEPTS

« Theory of computation — Data structures design and anal-
ysis; Graph algorithms analysis; Preconditioning; Random walks
and Markov chains.
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1 INTRODUCTION

The design of efficient solvers for systems of linear equations in
graph Laplacian matrices and their extensions has been a highly
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fruitful topic in algorithms. Laplacian matrices directly correspond

to undirected graphs: off-diagonal entries are negations of edge

weights, while the diagonal entries contain weighted degrees. Solvers
for Laplacian matrices led to breakthroughs in fundamental prob-
lems in combinatorial optimization. Tools developed during such

studies have in turn influenced data structures, randomized numer-
ical linear algebra, scientific computing, and network science [17,

18].

An important direction in this Laplacian paradigm of designing
graph algorithms is extending tools developed for undirected Lapla-
cian matrices to directed graphs. Here a perspective from random
walks and Markov chains leads to directed Laplacian matrices [8].
Such matrices have directed edge weights in off-diagonal entries,
and weighted out-degrees on diagonals. In contrast to solving lin-
ear systems in undirected Laplacians, solving linear systems in
directed Laplacians is significantly less well-understood. Almost-
linear time [7] and nearly-linear time solvers [6] were developed
very recently, and involve many more moving pieces.

In particular, the nearly-linear time algorithm from [6] combined
block Gaussian elimination with single variables/vertex elimina-
tion, analyzed using matrix Martingales. In contrast, for undirected
Laplacians, both block elimination [10] or matrix Martingales [11]
can give different nearly-linear time solver algorithms, and there
also exists more combinatorial approaches [9]. In this paper, we
simplify this picture for directed Laplacian solvers by providing an
analog of the sparsified Cholesky/multi-grid solver from [10]. This
algorithm’s running time is close to the limit of sparsification based
algorithms: the running time of invoking a sparsification routine
on its own output. Formally, we show:

THEOREM 1.1. Given a strongly connected Eulerian Laplacian
L € R™" and an error parameter ¢ € (0,1), we can process it
in time O (75 (m,n, 1)) + O (75 (Ns (n, 1), 1, 1) log n) so that, with
high probability, given any vectorb € R™ withb L 1, we can compute
a vector x € R" in time O (N5 (n, 1) log nlog (n/€)) such that

<

Hx - LTbHU[LJ =

€ ”LTbHU[LJ ’

whereU [L] = (L+LT) /2.

This result improves the at least Q(log® n) factor overhead upon
sparsification of the previous nearly-linear time directed Laplacian
solver [6], and is analogous to the current best overheads for spar-
sification based solvers for undirected Laplacians [10]. From the
existence of sparsifiers of size O(n log* ne™2) [5], we also obtain the
existence of O(nlog® nlog(n/€)) time solver routines that require
quadratic time preprocessing to compute. As with other improved
solvers for directed Laplacians our improvements directly applies to
applications of such solvers, including random walk related quanti-
ties [8], as well as PageRank / Perron-Frobenius vectors [1].
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Our result complements recent developments of better sparsi-
fiers of Eulerian Laplacians [5, 12, 13]. By analyzing a pseudocode
that’s entirely analogous to the undirected block-elimination al-
gorithm from [10], we narrow the gap between Laplacian solvers
for directed and undirected graphs. Our result also emphasizes the
need for better directed sparsification routines. While there is a rich
literature on undirected sparsification [3], the current best directed
sparsification algorithms rely on expander decompositions, so have
rather large logarithmic factor overheads. We discuss such bounds
in detail in the full version.

Finally, our analysis of this more direct algorithm require better
understanding the accumulation errors in Eulerian Laplacians and
their partially eliminated states, known as Schur Complements.
It was observed in [6] that these objects are significantly less ro-
bust than their undirected analogs. Our analysis of these objects
rely on augmentations of matrices: constructing larger matrices
whose Schur complements correspond to the final objects we wish
to approximate, and bounding errors on these larger matrices in-
stead. This approach has roots in symbolic computation, and can be
viewed as a generalization of low-rank perturbation formulas such
as Sherman-Morrison-Woodbury [19]. We believe both this alge-
braic technique, and the additional robustness properties of directed
Schur Complements we show, may be of independent interest.

1.1 Related Works

Directed Laplacian matrices arise in problems related to directed
random walks / non-reversible Markov chains, such as computa-
tions of stationary distributions, hitting times and escape probabil-
ities. A formal treatment of applying an Eulerian solver to these
problems can be found in [8] and [1]. Adaptations of Eulerian Lapla-
cian solvers have also led to improved bounded-space algorithms
for estimating random walk probabilities [2].

Our algorithm is most closely related to the previous nearly-
linear time directed Laplacian solver [6]. That algorithm is moti-
vated by single variable elimination and a matrix Martingale based
analysis. However, it invokes both components of block elimina-
tion algorithms: finding strongly diagonally dominant subsets, and
invoking sparsification as black-boxes. The runtime overhead of
this routine over sparsification is at least log® n: in [6], Lemma 5.1
gives that each phase (for a constant factor reduction) invokes spar-
sification O(log? n) times, and each call is ran with error at most
m (divided by log? n in Line 2 of Algorithm 2, and also by
log n in Line 5 of Algorithm 3).

While our algorithms are directed analogs of the undirected
block elimination routines from in [10], our analyses rely on many
structures developed in [6]. Specifically, our cumulative error dur-
ing elimination steps is bounded via the matrix that’s the sum of
undiretifications of the intermediate directed matrices. On the other
hand, we believe our algorithm is more natural: our sampling no
longer needs to be locally unbiased, the per-step errors do not need
to be decreased by polylog factors, and the algorithm is no longer
divided into inner/outer phases. This more streamlined algorithm
leads to our runtime improvements.

Our Schur Complement sparisifcation algorithm is based on
the partial block elimination routine from [10], which is in turn
based on a two-term decomposition formula for (pseudo-)inverses
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from [16]. We remark that there is a good sparsification routine
in the low space setting [2]. There is a subsequent algorithm that
replaces this decomposition with directly powering via random
walks [4] that’s also applicable for sparsifying undirected Schur
Complements. However, that algorithm relies on sparsifying 3-step
random walk polynomials, which to our knowledge, is a subroutine
that has not been studied in directed settings. As a result, we are
unable to utilize this later development directly.

The existence of O(nlog4 n) sized sparsifiers in [5] relies on
decomposing unit weighted graphs into short cycles and O(n)
extra edges. While this decomposition has a simple O(m?) time
algorithm (peel off all vertices with degree < 3, then return the
lowest cross-edge in the BFS tree), the current fastest construction
of it takes m!*°()) time [5, 12, 13]. As a result, we need to instead
invoke the more expensive, graph decomposition based, algorithms
from [7] for sparsification. Also, we can only use the naive O(m?)
construction of O(log n)-lengthed cycle decompositions (after an
initial sparsification call to make m = O(n logo(l) n)) because the
almost-linear time algorithm in [12] produces O(log? n)-lengthed
cycles.

2 PRELIMINARY

2.1 Notations

The notation O (-) suppresses the polyloglog(n) factors in this pa-
per. We let [n] = {1,2,--- ,n}.

Matrix: For matrix A, nnz (A) denotes its number of nonzero
entries. For subsets T1, Tz C [n], Af,1, € RITIXIT2 s the submatrix
containing the entries with row indexes and column indexes in
(T1, T2); and A_, _7; is the submatrix of A by removing the rows
indexed by Ty and columns indexed by T;. For vector v € R” and
subset C C [n], v¢ is the subvector of v containing the entries
indexed by C.

We use I, 0py. to denote the identity matrix of size a and the b-
by-c zero matrix, and we sometimes omit the subscripts when their
sizes can be determined from the context. For any matrix X € Raxb
and set T1, Tz C [n] with |T1| = a, |T2| = b, P (X, T1, Tp, n) denotes
an n-by-n matrix whose submatrix indexed by (71, T2) equals X
and all the other entries equal 0. In other words, P (X, T1, T2, n) can
be regarded as replacing the submatrix indexed by (T3, To) with X
in the zero matrix 0y,xp,.

For symmetric matrix A € R™", we use A; (A) to denotes its
i-th smallest eigenvalue. For symmetric matrices A, B € R™", we
use A > B (A > B) to indicate that for any x € R”, x" Ax > x" Bx
(xTAx > x"Bx). We define <, < analogously. A square matrix
A € R™" js positive semidefinite (PSD) iff A is symmetric and
A > 0; A € R™™ js positive definite (PD) iff A is symmetric and
A>0.

For PSD matrix A, A2 is its square root; AT denotes its Moore-
Penrose pseudoinverse; AT/2is the square root of its Moore-Penrose
pseudoinverse.

Vector: 14, 0, denote the a-dimensional all-ones vector and b-
dimensional all-zeros vector; when their sizes can be determined
from the context, we sometimes omit the subscripts.

For matrix A € R™", Diag (A) is an n-by-n diagonal matrix
with the same diagonal entries as A. For vector x € R", Diag (x)
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denotes an n-by-n diagonal matrix with its i-th diagonal entry
equalling x;.

For any positive semidefinite matrix A, we define the vector
norm ||x|| 4 = VxT Ax. And ””p denotes the £, norm.

Matrix norm: ”'HP denotes the £, norm. For instance, for A €

R || Ally = A[An (AT A); | Al = maXie[n] L=y |Aij|- For ma-

trix B € R™" and PSD matrix A € R™", we denote ||B||4_,4 =
1 Bx|l

SUP||x || 4#0 x4
Schur complement: For A € R™" and F, C a partition of [n] such
that Apf is nonsingular, the Schur complement of F in A is defined
as Sc (A, F) = Acc — AcrAzpAFcC.
When we need to emphasize the support set of the entries that
remain, we also denote Sc (A, —C) = Sc (A, F).

2.2 (Directed) Laplacians, Symmetrizations

A matrix L € R™" is called a directed Laplacian iff 1T L = 0 and all
off-diagonal entries of L are non-positive, i.e., Lij = = X j. j»; Lji for
alli € [n] and L;; < 0forall i # j. A (directed) Laplacian L can be
associated with a (directed) graph G[L] whose adjacency matrix is
A = Diag (L) — L. The in-degrees/out-degrees of L are defined as
the in-degrees/out-degrees of G[L]. For directed Laplacians, its out-
degrees equal its diagonal entries. If G[L] is strongly connected,
we say the (directed) Laplacian L is strongly connected.

In addition, if L1 = 07, we call L an Eulerian Laplacian. These
Laplacians have the property that in-degrees of vertices equal to out-
degrees. The undirected Laplacian is a special case where L = LT.
We often refer to these as symmetric Laplacians, or just Laplacians.

Symmetrization: For square matrix A € R™", we define its

£
matrix symmetrization as U [A] = A+ZA . For a directed Laplacian

L € R™" we define its undirectification as

UC L] = % (L+L" - Diag ((L+L7)1)).

UG [L] is called the undirectification because it is a symmetric
Laplacian whose adjacency matrix is U [A] where A = Diag (L) —
LT is the adjacency matrix of G[L]. For an Eulerian Laplacian L,
its matrix symmetrization coincides with its undirectification, i.e.,
U [L] = US [L]. Eulerian Laplacians are critically important in
solvers for directed Laplacians because they are the only setting in
which the undirectification is positive semidefinite.

Row Column Diagonal Dominant (RCDD): A square matrix A €
R is a-RCDDHff X je )\ (1) |Aij] < 1z Aii and X e 1) |4l
< —L A;; for any i € [n]. We also say A is RCDD if A is 0-RCDD.

I+a

2.3 Sparsification

All almost-linear time or faster solvers for directed Laplacians to
date are built around sparsification: the approximation of graphs by
ones with fewer edges. As it’s difficult to even approximate reacha-
bility of directed graphs, [7] introduced the key idea of measuring
approximations w.r.t. a symmetric PSD matrix. Such approxima-
tions are at the core of all subsequent algorithms, including ours.

Definition 2.1. (Asymmetrically bounded) Given a matrix A €
R™™ and a PSD matrix U € R™", A is asymmetrically bounded
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by U iff ker (U) C ker (A7) Nnker (A) and HUT/ZAUT/ZH2 <1.We

asym
denoteitby A < U.

sym

a asym
By our definition, A < U is equivalent to —A < U. The

following lemma is changed slightly from Lemma B.2 of [7].

Fact 2.2. For any matrix A € R™" and PSD matrix U € R"™ ",

the following statements are equivalent:
asym

e A < U.
e 2x"Ay < x"Ux+y' Uy, Vx,y € R™.

Definition 2.3. (Approximation of directed Laplacians via undi-
rectification) Given matrix A € R™" and directed Laplacian B €
R™™ A is an e-asymmetric approximation of B iff A — B is asym-
metrically bounded by € - US [B].

In particular, for strongly connected Eulerian Laplacians A and
B, A is an e-asymmetric approximation of B iff

| :

We will utilize sparsifiers for Eulerian Laplacians [5, 7], as well
as implicit sparsifiers for products of directed adjacency matrices as
black boxes throughout our presentations. The formal statements
of these black boxes are below.

U[B]'2(A-B)U [B]T?| <e.

THEOREM 2.4. (Directed Laplacian sparsification oracle) Given a
directed Laplacian L € R™" with nnz(L) = m and error param-
eter § € (0,1), there is an oracle ORASPARSELAPLACIAN which runs
in at most 5 (m, n, ) time, where 75 (m, n, ) = O((mlogo(l) n+
nlog®W n)5-O0W) 1o return with high probability a directed Lapla-
cian L satisfying:

(1) nnz (I) < N5 (n,8) where Ng (n,5) = O(nlogo(l) ns~OW);

(2) Diag (I) = Diag(L);

~ asym
3)L-L = &§-UC[L].

Remark 2.5. Conditions (2), (3) in Theorem 2.4 above are equiva-
lent to L and L having the same in- and out-degrees, and

HruG (L1772 (T - L)us [L]WH2 <5

respectively. By having the same in-degrees and out-degrees, we
mean Diag (f) = Diag (L) and L1 = L1.

LEMMA 2.6. (Lemma 3.18 of [7]) Let x,y € R™ be nonnegative vec-
tors with nnz (x) + nnz (y) = m and let €,p € (0,1). And we denote
G = (1" x) Diag (y) — xy". Then, there is a routine SPARSEPRODUCT
which computes with probability at least 1 — p a nonnegative matrix

AinO (me_2 log %) time such that nnz(A) = O (me_2 log %)
asym
A-xyT < e UC[G].

Given an Eulerian Laplacian L € R™" and a partition F, C of [n],
by invoking ORASPARSELAPLACIAN on subgraphs with edges inside
(F,F), (F,C), (C,F), (C,C) respectively, we can get a Laplacian
sparsification procedure SPARSEEULERIANFC so that the sparsified
Eulerian Laplacians returned by SPARSEEULERIANFC not only sat-
isfy all the properties mentioned in Theorem 2.4, but also keep the
in-degrees and out-degrees of the subgraph supported by (F, F).
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Analogously, a routine SPARSEPRODUCTFC can be constructed by
applying SparsePrRobucT four time.

Explicit definitions of SPARSEEULERIANFC and SPARSEPRODUCTFC
can be found in the full version.

2.4 Sufficiency of Solving Eulerian Systems to
Constant Error

Previous works on solvers for directed Laplacians and their gener-
alizations (to RCDD and M-matrices) established that it’s sufficient
to solve Eulerian systems to constant relative accuracy in their
undirectification.

o The iterative refinement procedure shown in [7] shows that
a constant accuracy solver can be amplified to one with €
relative accuracy in O(log(1/e€)) iterations.

The stationary computation procedure in [8] showed that ar-
bitrary strongly connected Laplacians with mixing time Tp;x
can be solved to 2-norm error € by solving O(log(Tmix/€))
systems in Eulerian Laplacians. This was subsequently sim-

plified and extended to M-matrices and row-column-diagonally-

dominant matrices in [1] (with an extra log n factor in run-
ning time). A purely random walk (instead of matrix per-
turbation) based outer loop is also given in the thesis of
Peebles [14].

3 OVERVIEW

Our algorithm is based on sparse Gaussian elimination. Before we
discuss the block version, it is useful to first describe how the single
variable version works on Eulerian Laplacians.

Recall that Eulerian Laplacians store the (weighted) degrees on
the diagonal, and the negation of the out edge weights from j in
column j.

Suppose we eliminate vertex j. Then we need to add a rescaled
version of row j to each row i where Lj . is non-zero. Accounting
w"f", and the

for Lj; = dj, this weight for row i is given by
corresponding decrease in entry j, k is then

WjsiWk—sj
dj

In other words, when eliminating vertex j, we add an edge k — i
for each triple of vertices k — j — i, with weight given by above.

The effect of this elimination on the vector b can also be described
through this ‘distribution’ of row j onto its out-neighbors. However,
to start with, it’s useful to focus on what happens to the matrix.
The key observation for elimination based Laplacian solvers is that
this new matrix remains a graph. In fact, it can be checked that this
process exactly preserves the in and out degrees of all neighbors of
i, so the graph also remains Eulerian.

However, without additional assumptions on the non-zero struc-
tures such as separators, directly performing the above process
takes O(n?) time: the newly added entries quickly increases the
density of the matrix until each row has ©(n) entries. So the start-
ing point of elimination based Laplacian solvers is to address the
following two problems:

(1) Keeping the results of elimination sparse.
(2) Find vertices that are easy to eliminate.
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3.1 Block Cholesky

One possible solution to the issue above is to directly sample
the edges formed after eliminating each vertex. It leads to spar-
sified/incomplete Cholesky factorization based algorithms [6, 11],
including the first nearly-linear time solver for directed Laplacians.

Our algorithm is based on eliminating blocks of vertices, and is
closest to the algorithm from [10]. It aims to eliminate a block of
Q(n) vertices simultaneously. This subset, which we denote using
F, is chosen to be almost independent. That is, F is picked so that
each vertex in F has at least a constant portion of its out-degree
going to V' \ F, which we denote as C.

This property means that any random walk on F exits it with
constant probability. This intuition, when viewed from iterative
methods perspective, implies that power method allows rapid sim-
ulation of elimination onto C = V' \ F. From a matrix perspective,
it means these matrices are well-approximated by their diagonal.
So subproblem L;}:b can be solved to high accuracy in O (logn)
iterations via power method. We formalize the guarantees of such
procedures, PR (-) in Lemma 6.5 in Section 6.2.

—(i d
Algorithm 1: PRECONDITION ({S(l), Fl-} , X, N)

i=1

Input: (a, B, {5,~}‘l-1:1)—Schur complement chain

<(1) d d |. n.
S " {F,‘}l-:1 ; vector x € R"; error parameter
i=

€€ (0,1)
Output: vector x € R"
1 fori=1,---,d—1do
xf, < PR (Eg,)F, xF;, Diag

g(i)
3 XC; < XC; = 9C,F;XF;

(E(i));iﬂ 1 N) :

end

- T
5 Xp,; < (S(d)) XF, s
fori=d-1,---,1do

(N (i iy —1
7 | xp < xp, —PR (s}’i)ﬂ,sé‘i)cixq, piag(5”) %,N)
s end
9 Letx<—x—1TTx-1;
10 Return x

Compared to single-vertex elimination schemes, block elimina-
tion has the advantage of having less error accumulation. Single
elimination can be viewed as eliminating 1 vertex per step, while
we will show that the block method eliminates Q(n) vertices in
O(loglog n) steps. This smaller number of dependencies in turn
provides us the ability to bound errors more directly.

Formally, given the partition F,C C [n] with the permutation
Ler Lrc , the block Cholesky
Lcr Lec
factorization of L € R™ " is given as

matrix P such that PLPT =

1

0] [LFF 0
-1 *
LCFLFF 1 0

_pT
L=p Sc (L, F)

0 I P.

] : [I LypLrc
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Using the above factorization iteratively (with sparsification)

u ) (Deﬁmtlon 6.1),

the solver algorithm loops through these and solves the subprob-
lems via the projection / prologation maps which are defined via
the random walk on F; respectively. Its pseudocode is given in
Algorithm 1 for completeness.

We remark that the iteration numbers of the preconditioned
Richardson iterations in Algorithm 1 can differ with each other.
Here, we set a uniform N merely for simplicity. If we have unlimited
(or quadratic) precomputation power, the method described above
suffices to give us a fast solver. However, due to the exact Schur
Complements being dense, the major remaining difficulty is to
efficiently compute an approximate Schur complement.

generates a Schur complement chain {S

3.2 Schur Complement Sparsification via
Partial Block Elimination

The main bottleneck toward an efficient algorithm is the fast con-
struction of approximate Schur complements. We will give such
an algorithm whose running time is close to those of sparsification
primitives via a partial block elimination process.

In simple terms, a step of this process squares the (F, F) block.
Repeating this gives quadratic convergence. With a about O(1),
O(loglogn) iterations suffice, so the resulting error is easier to
control than martingales.

LemMA 3.1 ([16]). For any diagonal matrix D € R™" and a
matrix A € R™™ withD — A nonsingular, we have
(D-A)"
1., 1 4 R 4 @
=Dl s (I+D A) (D—AD A) (I+AD )

The main identity (1) gives rise to our definition for partial-block-
eliminated Laplacian of L. Let D = Diag (L) and A= D — L, let P

L L
be the permutation matrix such that PLPT = FE2FC| The
Ler Lec
partial-block-eliminated operator ® (L|DFpp, F) is defined as
L -A
_pT FF FC
® (LiDpr, F) = PT| 7T P A, FD7LAE..

We define the first exact partial-block-elimination of L by LV =
® (L|DFp, F). Then, %L(l) is an Eulerian Laplacian which has the
same Schur complement of F in L, i.e.,

Sc(L,F) = %SC (L(l),F).

The 2-nd to the K-th partially-block-eliminated Laplacians are
defining iteratively by L) = ¢ (L(k) |DFF, F). L") can also
be regarded as a partially powered matrix of L, which uses the
powering to obtain better spectral properties. Specifically, when we

focus on the (F, F) block of LK) it is easy to see that “DFFAI(J;) H

converges at a quadratic rate, where AI(CF) = Dpf — L;F) . Formal
construction of the k-th partially-block-eliminated Laplacians and
their properties can be found in the appendix of the full version.
To encounter the increasing density of Lk, sparsification black-
boxes in Section 2.3 are naturally accompanied with the partial
block elimination to yield a Schur complement sparsification method
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(Algorithm 2). Our algorithm is essentially a directed variant of the
one from [10]. A slight difference is that in the last step, we need to
fix the degree discrepancies caused by approximating the strongly
RCDD matrix by its diagonal.

The running time of Algorithm 2 is shown in Theorem 3.3. The

k-th iterand I(k) of Algorithm 2 is termed the approximate k-th
partially-block-eliminated Laplacian, while its exact version is just
the (exact) k-th partially-block-eliminated Laplacian L% defined
above. To show the running time of Algorithm 2, the most important

thing is to provide relatively tight bounds for the difference L( )

L),

Algorithm 2: SPARSESCHUR (L, F, §)

Input: strongly connected Eulerian Laplacian L € R™";
partition F, C of [n]; error parameter § € (0,1)

Output: Sparse approximate Schur complement S

If nnz (L) > O (Ns (n, §)), call ORASPARSELAPLACIAN to

sparsify L with error parameter O (J) ;

-

2 Find a permutation matrix P such that
Lrr  Lpc
Ler Lee
SetK « O (loglog %) e—0 (%

— D —f(o) ;

PLPT =

, Z(O)

— L

w

D « Dlag( (0))

fork=1,--- ,Kdo

5 fori e Fdo
?(k,l) -

'S

—(k—1\T
SPARSEPRODUCTFC( (k 1), (Al(k l)) V€, F)
7 end

s | Lety™

~(k
— ZieF D,, ( l)
~ A](:k 1)
~(k-1) —~(k-1)
—Acr 2Lcc

— SPARSEEULERIANFC( (k 0

pk0 _pr| Drr po7,

7 (k)

9 L ,e,F) and

a0 pr 7®

DpF
Diag (L(Ckc))

10 end
fori e Fdo
55( i)

11

12

T
«— SpARSEPRODUCT (A(C ,), (Alué)) ,e)

13 end
(D)

Let X « Sicp g-X @ 1 (T

s (Loc - X)
Compute a patching matrix R € R|C|><\C\ with

1 and §
15
Roicla = ~Syjoi, L Rizje =1 S
Ri1=—Ryg o)1= 1" Ry e — 175"
i#landj#1;
set5=5" + R

Return S = ORASPARSELAPLACIAN (§ é/ 8)

)l,and R;j =0 for

16

17
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Remark 3.2. This permutation matrix P defined on line 2 of
Algorithm 2 is only used to simplify the pseudocodes. We use the
same D in each iteration to simplify our analysis. It is possible to

replace Drr by Diag (f(k_l) )FF in iterations k and achieve similar

running time.

THEOREM 3.3. (Schur complement sparsification) For a strongly
connected Eulerian Laplacian L € R™", let F, C be a partition of [n]
such that Lgp is a-RCDD (a = O(1)) and let § € (0, 1) be an error
parameter, the subroutine SPARSESCHUR (Algorithm 2) runs in time

0 (%5 (mn,8)) +0 (75 (Ns (n,8)672,n, 5) log n)

to return with high probability a strongly connected Eulerian Lapla-
cian S satisfying nnz (S) = O (Ns (|C[, 5)) and

asym
S—Sc(L,F) = 8-U[Sc(L,F)].

Compared to the undirected analog from [10], powered directed
matrices exhibit significantly more complicated spectral structures.
To analyze them, we develop new interpretations of directed Schur
complements based on matrix extensions.

3.3 Bounding Error Accumulations in
Partially-Eliminated Laplacians by
Augmented Matrices

When considering the approximate partial block elimination, in one
update step, not only new sparsification errors are added into f(k),
the errors accumulated from previous steps will multiply with each
other and get possibly amplified. In addition, error accumulations
in Schur complements of directed Laplacians are not as straight-
forward as their undirected counterparts. It’s not the case that for
two directed Eulerian Laplacians with the same undirectifiation,
the undirectification of their Schur complements are the same. For
instance, consider the undirected vs. directed cycle,eliminated till
only two originally diametrically opposite vertices remain. The
former has a Schur complement that has weight 2/n, while the
latter has a Schur complement that has weight 1.

By the definition of e-asymmetric approximation, we need to
essentially show the following inequality in order to obtain the
approximations needed for a nearly-linear time algorithm:

1y [L(k>] -1y [cp (L*D1Dpp F)]
2k 2k '

<0(1)-U[L],V1<k<K.

Here significant difficulties arise due to the already complicated
formula of L%). So we instead express the exact and approximate
partial block elimination as Schur complements of large augmented
matrices introduced below.

In the remainder of Section 3 and the entire Section 4 and Sec-
tion 5, unless otherwise specified, we assume C = {1,2,---,|C|}
for simplicity. We define

Fa={beZ:|Cl+(@a-1)|Fl+1<b<]|Cl+alF|}.

Note that in our notation, F = Fy.
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3.3.1
act and approximate k-th partially-block-eliminated matrices L&),
I“‘), we define augmented matrices MK, MOF) of size ok |F| +
|C|. We start with the construction of a desirable M (05) To this end,

A Reformulation for Partial Block Elimination . For the ex-

we define a sequence of augmented matrices {M(i’k) }k , where
i=0
MK = L) and each M %K) is a Schur complement of M (i=1K).
Here we only give an informal explanation of how we construct
MR The formal definitions of these augmented matrices are
given in Section 4. To begin with, for some fixed k € [K], we define
MUk 4F )
Next, we take M (k=1K) and M(*=2K) 45 examples to show how
we define such a sequence of matrices MUE=LE) A (0k)
Define M k=15) a5 follows

2L(Ck£—1) _A(Ck—l) _A(?k—l)
F F
(k—1,k) def (k-1) k-1)
M = _Afk—n D(}l?il) —Agpp
—Apc —App Drr
Then, it follows by direct calculations that
Sc (M(k_l’k),Fz) =L
Next, we define M k=25) a5 follows
M(k—Z,k)

(k-2) (k-2) (k-2) (k-2) (k-2)
4Lc(g_2) -Ack -Acgp _A?kF—z) -Ack
—Apc DrF —App

dEf A(k_z) D A(k_z)
e FF “AFF
_A(k_z) —A(k_z) D

s _un T "

~Apc —App Drr

It follows by direct calculations that
Sc (M(k_z’k), F3 U F4) = M(k_l’k) .

We will show zlkU [L(k>] < O (1) - U [L] later by analyzing the

properties of M (0-K)_

We believe this representation may be of independent interest.
We also remark that these augmented matrices only arise during
analysis, and are not used in the algorithms.

3.3.2  Bounding Error Accumulation in Algorithm 2 . Next, we will
mainly use Lemma 5.2 to bound the errors after taking Schur com-
plements. However, in our analysis, iteratively applying Lemma 5.2
7(k)
L

to bound zlk ( - L(k>) will lead to more log n factors in the run-

ning time. To derive a tighter bound, we introduce another group
of augmented matrices {M (O,k)} which are defined by attaching
sparsification errors to MO AL(OF) can help us disentangle the

sparsification errors generated from different iterations and see how
these errors accumulate as we do partial block eliminations more

clearly. We use another group of augmented matrices {Q(k)} to

bound the difference between M%) and M(O%)_ The augmented
matrix Q¥ is defined as the sum of a group of “reptition matrix"
(Section 4.2). Q(K) adopts many properties similar to MOF) 5o it

is easy to analyze. Then, we can give tighter bound for I(K) -L®
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using the robustness of Schur complements in this case with the
properties of Q(k) (Section 5).

4 PARTIAL BLOCK ELIMINATION VIA
AUGMENTED MATRICES

In this section, we introduce our augmented matrices based view of
partial block elimination. As we will show later, after O (loglogn)
steps of partial elimination, the (F, F) block of the approximate

partially-block-eliminated Laplacian I(k) can be approximated by
its diagonal “safely”. So, what remains is to bound the error accu-

mulations in the difference ZLk (SC (I(k), F) -Sc (L(k), F)) which

we do by bounding differences in zlk (f(k) - L(k)).

4.1 A Reformulation of the Exact Partial Block
Elimination

In this section, we provide a reformulation of the exact version of
partial block elimination which is more friendly to error analysis.
To be specific, our strategy is to construct a large matrix MK ¢
R IFI+HIC) X5 IF+ICI) guch that LK) is a Schur complement of
the large matrix MK) And there is a partition of MK such
that each block is a zero matrix or equals some submatrix of L.
To construct M (%K) we will construct a sequence of augmented
matrices {M(i’k) }f . satisfying Lemma 4.1. Later, by analyzing the
large matrix MK we can derive tighter bounds for quantities
related to LK)

Now, we give a rigorous way to construct such a sequence of

. k
matrices {M(”k)} . (0 <k <K).

i=
. K

We construct a sequence of bijections {1//(’) ()} . which in-
i=

(i)

dicate the “positions" of the blocks equalling A

in the large
augmented matrix M (K=2K)

We start with /(%) (-) and will define these y/(? iteratively. The
mapping lﬁ(o) (+) is defined as a trivial mapping from {1} to {1}
with

@ (1) =1.

Then, assume we have defined l//(i_l) (+). Now, we define 1//(i) as
follows:

0 a+271 ae 27

D(g) = _ A A A

lﬁ ( ) Ip(l*l) (a_ 2171)’ 21—1 +1<a<2t

If =1 () is a bijection from [2/~] to [2!~1], then

Y () ‘{2, e 21) is a bijection from {21 + 1, -+, 2} to [2071].
i-1y1,... 21

And by the definition, () (-) ’[ZH] is a bijection from [271] to

{2771 +1,---,2"}. Then, ¥ is a bijection from [2'] to [27].

It follows by induction that for any k € [K], l,b(k) (+) is a bijection
from [2¥] to [2K]. And by the fact that 2i71 + 1 < l,b(i) (a) < 2! for
ae 2] and yD (a) € [2071] for 2771 +1 < a < 2/, we have the
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following relation
Yy (@) #a, V1<j<K, ac[2]].

With the notations defined above, we define the matrix MUK
as

M) — ok=ip (Lgé C,C 2K |F| + |C|)

ok—i

+ 3 (P (DrrFa Fa 27 1P+ [C)
a=1

+P (—Ag}),, FG5F¢(k_i)(a)’ 2k=i |F|+ |C|)

+P (-AL Fo €27 F 1))
+P (-A(c’}, C, Fa, 2K |F| + |C|) )

where the notation P (X, A, B, n) has been defined in Section 2,
which means putting matrix X in the submatrix indexed by (A, B) in
a zero matrix Opxp; L®) is the exact k-th partially-block-eliminated
Laplacian and formal definitions of L") AK) are in the appendix
of the full version.

We have the following properties of {M(i’k) }

LEMMA 4.1. Forany0 <k <K,0<i< k,M(i’k) is an Eulerian
Laplacian;MS’i]:l)]ﬁ (n]’ Milé)_c are a-RCDD; the Schur complement
satisfies

k—i
2 F,

ik _ i+1,k
SC(M(I )’Ua:2k+1+1 a) = MU+LE)
Further,
sc (M(i’k), —[n]) =1,

In addition, for any x € R", let

x=(xt xpooxp )l
———

2k repetitions of x|
then,
TTMORZ = kT L.
The following lemma answers a question in Section 3.3. That is,
LU [L(k>] <o(MU|[L]
LEMMA 4.2. Forany0 <k <K,

zikU [L(k)] < (3+ E)U [L].

4.2 Bounding Error Accumulation Using
Repetition Matrices

In this section, we define }‘\Z (05) a5 an inexact version of M (%K)

where sparsification errors accumulate. Then, we introduce a spe-

cial type of augmented matrices, which we term reptition matrices,

and bound the difference M%) — M) in norms based on the

matrices {Q(k) } which are defined as linear combinations of some

reptition matrices of {M(O’k) }
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Before we define M(O’k), we introduce our notations for the
errors induced by sparsification:

R -T% _g (I(k_l) |DFF,F) ,

=5 (K) FK) %
Ex = Acp DFFAFC - X.
We also denote in the rest of this paper,

~ K
R=R+ A(CF) (Drr - A}F))
~(K) -1 7 (K)
- Z_ACF Dy Apc -

Some elementary facts of the results of Algorithm 2 is given by
the following lemma.

LEmMMA 4.3. With high probability, the following statements hold:

o 1),

are Eulerian Laplacians;

~un kK
2 {A( )}kfo are nonnegative matrices satisfying
(k)H
D7LA V0 <k <K;
H FFFF (1+a) T

3) S, S are Eulerian Laplacians;
(4) The matrix R satisfies R1=R'1=0and

H H n? | Drpll, (;)ZK

2K lg 1+a
Then, we can provide bounds for the one-step errors in the next
lemma.

LEMMA 4.4. The error matrices satisfies

E0 L ¢ v]2*]. @
Ex as§m U [SC (Z(K), F)] , 3)

where €g = 2 (3+ %) (26 +€?).

In the remainder of this paper, we write €9 = 2 (3 + %) (2e+ 62).

Recall that we define an augmented matrix MK such that
LM is its Schur complement in Section 4.1. Now, we define M (0.k)
which is an inexact version of M (%K) to analyze the properties of

I(k). We first define

R (k, a,E(i)) =P (E}(,iIZ-,Fa,Fw(k—i)(a): ok=i |F| + |C|)

+P (E;g Fa,C, 2K |F| + |C|)
+9 (B C Fyen (g 257 1PI +1C1)
+P (E(C%C C, 21 |F| + |C|).
Then, we define the error matrices
ki
g0 = 3" ® (k, a,E(i))
a=1
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and

k
S(I:k,k) — Zs(i,k)‘

i=1
The matrix M (%K) is defined as follows

MOK) Z A0k, gikk)

LEMMA 4.5. The Schur complement of[zk |[F|+|CI]\[n] in M(0F)
satisfies:

sc (/’\Z (0, —[n]) -1,

To help bound &K we define some special kinds of matrices
termed “repetition matrices". We will construct the matrices {Q(k)}

as linear combinations of “repetition matrices".

Definition 4.6. (“Repetition matrices") We will use the following
3 kinds of “repetition matrices": consider a matrix A € R™*™ and
subset C C [m] and E = [m]\C,

(1) the k- “repetition matrix" of A is defined as follows:

kAcc Ace Ace ACE
Afgc AfE 0 0
Rep (k,C, A) = | Agc 0 AEE N
: . . 0
Arc 0 cee 0 AEE

where the repetition numbers of the blocks Acg, Agc, AEE
are k;

Rep*? (k,C, A, N) is a larger matrix by appending all-zeros
rows and columns to Rep (k, C, A):

—
S
~

Rep*® (k,C, A, N) = [Rep (%C, A) g] e RN,

where N > k |E|+|C| is used to indicate the size of the matrix
Rep*? (k,C, A, N);

if F,Fy is a partition of E, Rep (k,C, F, A) is defined as a
permutation of the k- “repetition matrix" of A, which has the
following form:

Rep (k,C,F, A)

[kAcc  Acr Acr  Acr+ AcF+ ]

Arc  AFF
=| Arc AFF

AF+C AF+F+

LAF+c Ap+p+ ]

which are used to

Now, we define the matrices {Q(k)}
0<k<K

bound M (0K — M(0K) and then LK) — I(k). We define the ma-
trices {Q(k)} « iteratively together with the error quantities
rkbo<k <k



Sparsified Block Elimination for Directed Laplacians

We start from Q(O) = U|[L] and yo = 0. If we have defined
. k K
{Q(l)}ogi o ribosicks then 0k ¢ REFIFHIC)X( IFI+ICI) ang
Yr € Ry are defined as follows:

(k) def k U [ mem
© Z{co Vi [ ]
1 S k—i (i)
+W;leep(2 ,C,F,Q )
3+—
+mlz;Rep( k=i C.F. U[M(Ot)])

def
Yk

s (Q(k) [n])T/z (I(k) _ L(k))SC (Q(k)!_[n])T/z
2

The following lemma shows some elementary properties of Q(k).

Fact 4.7. Q(k) is a Laplacian satisfying:
k-
mu [M(O’k)] < (4+ 24 —Zi:lgl Vi ) o),
(2) Diag (Q<k>) — Diag ( M(o,k));
(k) (k)
® 0% e Q—[n],—[

_ 2
) H Q(") ” Diag (M("’k)) i
2

are a-RCDD;
nj

<2

>

LEMMA 4.8, Sc (Q<’<>, —c) < 2kU [Sc (L, F)].

The following lemma shows that the sparsification errors at-
tached to M(®%) can be bounded by o),

LEMMA 4.9.
k-1
. asym
o
i=0

5 ROBUSTNESS OF SCHUR COMPLEMENTS
AND FULL ERROR ANALYSIS

In this section, we show additional robustness properties of Schur

complements suitable for analyzing errors on the augmented matri-
asym
ces. Specifically, we establish conditions on A, B,U where A—-B <

€ - U, as well as the set to be eliminated, F, so that Sc (A, F) —
Sc(B,F) % &-Sc(U,F).

Using these properties, we bound the norms of errors in Schur
complements of the Q(k) and yg. Such bounds allow us to complete
the proof of Theorem 3.3.

The next lemma is used to prove Lemma 5.2 below.

LEMMA 5.1. Suppose that L € R™" is an Eulerian Laplacian, D =
Diag (L), W is PSD, “WI/ZD_I/2| , < a, and the matrix E € R™"

asym
< bW with a®b < 2. Then the matrix M = L + E

satisfies E
satisfies:

MD'MT < ((4 + 2a2b) U[L] + sz) _
2—a?b
The following lemma shows the robustness of the Schur com-

plements. It’s used in the proof of Lemma 5.3 to bound yy.
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LEMMA 5.2. Let N € R™" be an Eulerian Laplacian, let M be
an n-by-n matrix, letU € R™" be PSD and F, C a partition of [n].
Suppose that UgF is nonsingular, U1 = 0, NpF is p-RCDD (p > 0),

U[Nlgr = I%UFF, U[N] < pU, HUl/zDiag(N)_l/ZHZ < a, and

asym
<

the matrix E = M — N satisfies E
Then, Mpp, NpF are nonsingular and
Sc(M,F) — Sc(N,F)
asym 1 4+ 2a2b) + 2b
2 (1 1) 02 120
Pl (1-pb)*(2-a?b)

b-U withb < min{l l}.

a?’ p

-Sc(U,F).

We can now obtain a relatively tight bound for Sc (E(K), F ) -
Sc (L(K), F ) by bounding y iteratively.

0%

LEMMA 5.3. For any g € (0,1), with a small e = ) in Algo-
rithm 2, the exact and approximate K-th partially-block -eliminated

Laplacians LK), A satisfies

(SC( L F) - sc (L%, 7))

asy )
<70 (8) - U [Sc (L, F)].

Remark 5.4. Since 5(0) (L(CI? - X) (in Algorithm 2), the

2LK factor on the LHS of (4) doesn t matter. The parameter choice

_ o
e=0 (FU
mulates linearly in k rather than exponentially.

) implies that when running Algorithm 2, the error accu-

6 A NEARLY-LINEAR TIME SOLVER

In this section, we complete the Sparsified Schur Complement based
algorithm by invoking the nearly-linear time Schur complement
sparsification procedure derived above in Sections 4 and 5. We first
call this Schur complement sparsification procedure repeatedly to
construct a sparse Schur complement chain in Section 6.1. Then,
in Section 6.2, we show that this Schur complement chain gives
a preconditoner PRECONDITION for the initial Eulerian Laplacian
matrix. The full high accuracy solver then follows from invoking
this preconditioner inside Richardson iteration.

6.1 Schur Complement Chains
We first define Schur complement chains over directed graphs,
which is a variant of the Schur complement chain for undirected
graphs in [10].

Definition 6.1. (Schur complement chain) Given a strongly con-
nected Eulerian Laplacian L € R™™", an (zx, B, {c5,~}l?l:1

plement chain of L is a sequence of strongly connected Eulerian

)—Schur com-

Laplacians and subsets {{ s¢ )}_ {F,} } satisfying
1=

(1) {Fi}ld:l is a partition of [n]; eachg( 9
matrix indexed by (Cj_1, Ci—1), where C; def [n]\ (U;
(i=0,1,-+-,d=1);|Ci| < (1 - )" n; |Fyl

(2) For1<i<d—1,54} is a-RCDD;

is supported on the sub-

:1Fj)
=1Ca-1l=0(1);
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Algorithm 3: Block Cholesky solver for directed Lapla-
cians

Input: strongly connected Eulerian Laplacian L € R™";

Q

. C R" with each b(? 1 1;
q=
error parameters {6‘1}3:1 c(0,1)

query vectors {b(q) }

Q
Output: solutions {x(q)} : C R?
q:
1 Call ScHURCHAIN (L, 0.25,0.1) to compute a

{0 25,0.05 {M}angn)
-4, U.UI, 2

i° |z

}—Schur complement chain

—ind
{{S(’)}izl , {Fi}?zl} (Sections 4, 5, 6.1)

2 Generate the operator Z (x) =

PRECONDITION ({{S< )}‘—1 , {Fi}?zl} ,x,0 (log n))

(Section 6.2) ;

3 Using the preconditioned Richardson iteration with the
preconditioner Z to solve the Laplacian systems: for each
query vector b, compute

x(@ < PR (L,b<q>,z (.1,0 (log (n/eq)))

@) sV 1%L s, .U L] and S -

~(i) asym

SC(S ,F,-) X it
U[SC (E(i),F)], 1<i<d-1;

@ U [E(l)] > U[L] andU [E(””] >U [SC (§(i),F,-)],
1<i<d-1

We also denote Fy = C4 = 0, Cy = [n] for notational simplicity.

Remark 6.2. Compared with the Schur complement chains for
undirected graphs from [10], the only new condition is Condi-
tion (4). It guarantees the positive semi-definiteness of the sym-
metrization of the sparsified approximate Eulerian Laplacian Land
the error-bounding matrix B defined in Section 6.2.

To construct a Schur complement chain, we first use the fol-
lowing lemma to find an a-RCDD subset F;, and then apply the
Schur complement sparsification method SPARSESCHUR to compute
E(l) which is an approximation for Sc (L, F;). Then, we repeat this
process to get a desirable Schur complement chain.

LEMMA 6.3. (Theorem A.1 of [6]) Given an Eulerian Laplacian
L € R™" with nnz (L) = m, the routine

FINDRCDDBLOCK outputs a subset F C [n] such that |F| > m

and Lpf is «-RCDD in time O (m log IlJ) with probability at least
1-p.

By Lemma 6.3, we can choose for instance & = 0.1. So, we assume
a = O(1), when analyzing the complexities below. Our method to
construct a Schur complement chain is illustrated in Algorithm 4.
It running time is shown in Theorem 6.4.

THEOREM 6.4. Given a strongly connected Eulerian Laplacian L €
R™"™ and parameters a = O(1), & € (0, 1], the routine SCHURCHAIN

Algorithm 4: ScHURCHAIN (L, @, §)

Input: strongly connected Eulerian Laplacian L € R™";
parameters a > 0, § € (0, 1]

d
Output: ((x, m, {i%}i=1)_SChur complement chain

[t

1 Set(Sl.’: %fori >1.;
Compute SV < OraSparsELAPLACIAN (L, 8)) ;
Let3" 50+ Loy [s0]
1
Seti« 0,Co = [n];
while |C;| > 100 do
6 i—i+1;
F; « FINDRCDDBLock (g(l), a) ;
8 | Ci—Cii\Fi;

)

w

'S

«

=

0 S+ SpARSESCHUR (E(i),Fi, 5i+1) ;

1 '§(i+l)

sy lelU |s0]
11 end

(i d
12 Return {{S(l)}izl , {Fi};i:l}

runs in time

0 (%5 (m,n,8)) + O (frs (NS (n,8) 5% n, 5) log n)

d
with high probability to return an (0{, m, {%} 1)—Schur com-
i=

plement chain, where d = O (log n). In addition,

Zd: nnz (5“)) -0 (Ns (n,8)).

i=1

6.2 Construction of the Preconditioner and the
Solver

After constructing a desirable Schur complement chain, we use the
Schur complement chain to construct a preconditioner and solve
Lx = b via the preconditioned Richardson iteration.

Consider a linear system Ax = b, where b is in the image space of
A. Given a preconditioner Z, the classical preconditioned Richard-
son iteration updates as follows:

D) xR0 7 (b - Ax(k)) .

We initialize x(©) = 0 for simplicity. This procedure is denoted by
x(N) = PR(A,b, Z, 7, N).

We will use the following fundamental lemma to guarantee the
convergence rate of the preconditioned Richardson iteration in our
methods.

LEMMA 6.5. (Lemma 4.2 of [7]) Let A, Z,U € R™", whereU is
PSD and ker (U) C ker (Z) = ker (Z7) = ker (A) = ker (AT). Let
b € R" be a vector inside the image space of A. Denote the projection
onto the image space of A by P 5. Denote x(N) = PR(AD, Z, n,N).
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Then, x(N) satisfies

e -, < sz e,

In addition, the preconditioned Richardson iteration is a linear opera-
tor with

N-1
* N = n Z (Pa— qZA)k Zb.
k=0
Our construction for the preconditioner is illustrated in Algo-
rithm 1. We analyze Algorithm 1 by representing the routine PR (-)
as a linear operator which is equivalent to multiplying vector x
with the matrix I1Z , where tkle definition of Z € R™™ is in the
1

full version, and IT = I — is the projection matrix onto the

image space of L. To analyze the quality of the predconditioner nz,
we need to provide bounds for IT — ITIZL. Define L as an approx-
imation for L with the errors induced by the Schur complement
sparsification procedure

L=35"+ di P (5 —sc (3. B).ciCin)
Define an auxiliaryl:atrix
B=6U[L]+ dZ_’j S (U [sc (LUiLyFy)|.CiCin).
i=1
We can prove that O (1) - U [L] < U [E] < O(poly (n)) -U [L].

LEMMA 6.6. Given {0{, B, {5,-}?:1 } -Schur complement chain with
d = O (logn) and Z;.i:l 6 < %, by setting N = O (logn) in Algo-

rithm 1, we have Hl’[ - I'IEL”~ - < %
B—B
Then, Theorem 1.1 follows by Lemma 6.4 and Lemma 6.6.
Using the smaller Eulerian Laplacian sparsifiers based on short
cycle decompositions to sparsify the approximate Schur comple-
ments returned by Algorithm 2, we get the following solver which
has quadratic processing time, but faster solve time.

COROLLARY 6.7. Given a strongly connected Eulerian Laplacian
L € R™" we can process it time O(n?1og® ) n). Then, for each
query vectorb € R™ withb L 1, we can compute a vector x € R"
. . 5
with ||x - LTb”U[L] <e ”LTb”U[L] in time O(nlog’ nlog(n/e)).

Remark 6.8. Combining Theorem 1.1 or Corollary 6.7 with Ap-
pendix D of [7] yields full solvers for strongly connected directed
Laplacians.
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