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ABSTRACT
We show that the sparsified block elimination algorithm for solv-

ing undirected Laplacian linear systems from [Kyng-Lee-Peng-

Sachdeva-Spielman STOC’16] directly works for directed Lapla-

cians. Given access to a sparsification algorithm that, on graphs

with 𝑛 vertices and𝑚 edges, takes time TS (𝑚) to output a sparsifier
with NS (𝑛) edges, our algorithm solves a directed Eulerian system

on 𝑛 vertices and𝑚 edges to 𝜖 relative accuracy in time

𝑂 (TS (𝑚) + NS (𝑛) log𝑛 log(𝑛/𝜖)) + 𝑂̃ (TS (NS (𝑛)) log𝑛),
where the 𝑂̃ (·) notation hides log log(𝑛) factors. By previous re-

sults, this implies improved runtimes for linear systems in strongly

connected directed graphs, PageRank matrices, and asymmetric

M-matrices. When combined with slower constructions of smaller

Eulerian sparsifiers based on short cycle decompositions, it also

gives a solver algorithm that, after pre-processing the matrix in

𝑂 (𝑛2 log𝑂 (1) 𝑛) time, takes 𝑂 (𝑛 log5 𝑛 log(𝑛/𝜖)) time per solve. At

the core of our analyses are constructions of augmented matrices

whose Schur complements encode error matrices.

CCS CONCEPTS
• Theory of computation→Data structures design and anal-
ysis;Graph algorithms analysis; Preconditioning; Random walks

and Markov chains.

KEYWORDS
linear systems, matrices, Markov chains

ACM Reference Format:
Richard Peng and Zhuoqing Song. 2022. Sparsified Block Elimination for

Directed Laplacians. In Proceedings of the 54th Annual ACM SIGACT Sympo-

sium on Theory of Computing (STOC ’22), June 20–24, 2022, Rome, Italy.ACM,

New York, NY, USA, 11 pages. https://doi.org/10.1145/3519935.3520053

1 INTRODUCTION
The design of efficient solvers for systems of linear equations in

graph Laplacian matrices and their extensions has been a highly
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fruitful topic in algorithms. Laplacian matrices directly correspond

to undirected graphs: off-diagonal entries are negations of edge

weights, while the diagonal entries containweighted degrees. Solvers

for Laplacian matrices led to breakthroughs in fundamental prob-

lems in combinatorial optimization. Tools developed during such

studies have in turn influenced data structures, randomized numer-

ical linear algebra, scientific computing, and network science [17,

18].

An important direction in this Laplacian paradigm of designing

graph algorithms is extending tools developed for undirected Lapla-

cian matrices to directed graphs. Here a perspective from random

walks and Markov chains leads to directed Laplacian matrices [8].

Such matrices have directed edge weights in off-diagonal entries,

and weighted out-degrees on diagonals. In contrast to solving lin-

ear systems in undirected Laplacians, solving linear systems in

directed Laplacians is significantly less well-understood. Almost-

linear time [7] and nearly-linear time solvers [6] were developed

very recently, and involve many more moving pieces.

In particular, the nearly-linear time algorithm from [6] combined

block Gaussian elimination with single variables/vertex elimina-

tion, analyzed using matrix Martingales. In contrast, for undirected

Laplacians, both block elimination [10] or matrix Martingales [11]

can give different nearly-linear time solver algorithms, and there

also exists more combinatorial approaches [9]. In this paper, we

simplify this picture for directed Laplacian solvers by providing an

analog of the sparsified Cholesky/multi-grid solver from [10]. This

algorithm’s running time is close to the limit of sparsification based

algorithms: the running time of invoking a sparsification routine

on its own output. Formally, we show:

Theorem 1.1. Given a strongly connected Eulerian Laplacian

𝑳 ∈ R𝑛×𝑛 and an error parameter 𝜖 ∈ (0, 1), we can process it

in time 𝑂 (TS (𝑚,𝑛, 1)) + 𝑂̃ (TS (NS (𝑛, 1) , 𝑛, 1) log𝑛) so that, with
high probability, given any vector 𝒃 ∈ R𝑛 with 𝒃 ⊥ 1, we can compute

a vector 𝒙 ∈ R𝑛 in time 𝑂 (NS (𝑛, 1) log𝑛 log (𝑛/𝜖)) such that


𝒙 − 𝑳†𝒃



𝑼 [𝑳]

≤ 𝜖



𝑳†𝒃




𝑼 [𝑳]
,

where 𝑼 [𝑳] =
(
𝑳 + 𝑳⊤

)
/2.

This result improves the at least Ω(log5 𝑛) factor overhead upon
sparsification of the previous nearly-linear time directed Laplacian

solver [6], and is analogous to the current best overheads for spar-

sification based solvers for undirected Laplacians [10]. From the

existence of sparsifiers of size𝑂 (𝑛 log4 𝑛𝜖−2) [5], we also obtain the
existence of 𝑂 (𝑛 log5 𝑛 log(𝑛/𝜖)) time solver routines that require

quadratic time preprocessing to compute. As with other improved

solvers for directed Laplacians our improvements directly applies to

applications of such solvers, including random walk related quanti-

ties [8], as well as PageRank / Perron-Frobenius vectors [1].
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Our result complements recent developments of better sparsi-

fiers of Eulerian Laplacians [5, 12, 13]. By analyzing a pseudocode

that’s entirely analogous to the undirected block-elimination al-

gorithm from [10], we narrow the gap between Laplacian solvers

for directed and undirected graphs. Our result also emphasizes the

need for better directed sparsification routines. While there is a rich

literature on undirected sparsification [3], the current best directed

sparsification algorithms rely on expander decompositions, so have

rather large logarithmic factor overheads. We discuss such bounds

in detail in the full version.

Finally, our analysis of this more direct algorithm require better

understanding the accumulation errors in Eulerian Laplacians and

their partially eliminated states, known as Schur Complements.

It was observed in [6] that these objects are significantly less ro-

bust than their undirected analogs. Our analysis of these objects

rely on augmentations of matrices: constructing larger matrices

whose Schur complements correspond to the final objects we wish

to approximate, and bounding errors on these larger matrices in-

stead. This approach has roots in symbolic computation, and can be

viewed as a generalization of low-rank perturbation formulas such

as Sherman-Morrison-Woodbury [19]. We believe both this alge-

braic technique, and the additional robustness properties of directed

Schur Complements we show, may be of independent interest.

1.1 Related Works
Directed Laplacian matrices arise in problems related to directed

random walks / non-reversible Markov chains, such as computa-

tions of stationary distributions, hitting times and escape probabil-

ities. A formal treatment of applying an Eulerian solver to these

problems can be found in [8] and [1]. Adaptations of Eulerian Lapla-

cian solvers have also led to improved bounded-space algorithms

for estimating random walk probabilities [2].

Our algorithm is most closely related to the previous nearly-

linear time directed Laplacian solver [6]. That algorithm is moti-

vated by single variable elimination and a matrix Martingale based

analysis. However, it invokes both components of block elimina-

tion algorithms: finding strongly diagonally dominant subsets, and

invoking sparsification as black-boxes. The runtime overhead of

this routine over sparsification is at least log
5 𝑛: in [6], Lemma 5.1

gives that each phase (for a constant factor reduction) invokes spar-

sification 𝑂 (log2 𝑛) times, and each call is ran with error at most

1

𝑂 (log3 𝑛) (divided by log
2 𝑛 in Line 2 of Algorithm 2, and also by

log𝑛 in Line 5 of Algorithm 3).

While our algorithms are directed analogs of the undirected

block elimination routines from in [10], our analyses rely on many

structures developed in [6]. Specifically, our cumulative error dur-

ing elimination steps is bounded via the matrix that’s the sum of

undiretifications of the intermediate directed matrices. On the other

hand, we believe our algorithm is more natural: our sampling no

longer needs to be locally unbiased, the per-step errors do not need

to be decreased by polylog factors, and the algorithm is no longer

divided into inner/outer phases. This more streamlined algorithm

leads to our runtime improvements.

Our Schur Complement sparisifcation algorithm is based on

the partial block elimination routine from [10], which is in turn

based on a two-term decomposition formula for (pseudo-)inverses

from [16]. We remark that there is a good sparsification routine

in the low space setting [2]. There is a subsequent algorithm that

replaces this decomposition with directly powering via random

walks [4] that’s also applicable for sparsifying undirected Schur

Complements. However, that algorithm relies on sparsifying 3-step

random walk polynomials, which to our knowledge, is a subroutine

that has not been studied in directed settings. As a result, we are

unable to utilize this later development directly.

The existence of 𝑂 (𝑛 log4 𝑛) sized sparsifiers in [5] relies on

decomposing unit weighted graphs into short cycles and 𝑂 (𝑛)
extra edges. While this decomposition has a simple 𝑂 (𝑚2) time

algorithm (peel off all vertices with degree < 3, then return the

lowest cross-edge in the BFS tree), the current fastest construction

of it takes𝑚1+𝑜 (1)
time [5, 12, 13]. As a result, we need to instead

invoke the more expensive, graph decomposition based, algorithms

from [7] for sparsification. Also, we can only use the naive 𝑂 (𝑚2)
construction of 𝑂 (log𝑛)-lengthed cycle decompositions (after an

initial sparsification call to make𝑚 = 𝑂 (𝑛 log𝑂 (1) 𝑛)) because the
almost-linear time algorithm in [12] produces 𝑂 (log2 𝑛)-lengthed
cycles.

2 PRELIMINARY
2.1 Notations
The notation 𝑂̃ (·) suppresses the 𝑝𝑜𝑙𝑦𝑙𝑜𝑔𝑙𝑜𝑔(𝑛) factors in this pa-

per. We let [𝑛] = {1, 2, · · · , 𝑛}.
Matrix: For matrix 𝑨, nnz (𝑨) denotes its number of nonzero

entries. For subsets𝑇1,𝑇2 ⊆ [𝑛], 𝑨𝑇1𝑇2 ∈ R |𝑇1 |× |𝑇2 | is the submatrix

containing the entries with row indexes and column indexes in

(𝑇1,𝑇2); and 𝑨−𝑇1,−𝑇2 is the submatrix of 𝑨 by removing the rows

indexed by 𝑇1 and columns indexed by 𝑇2. For vector v ∈ R𝑛 and

subset 𝐶 ⊆ [𝑛], v𝐶 is the subvector of v containing the entries

indexed by 𝐶 .

We use 𝑰𝑎 , 0𝑏×𝑐 to denote the identity matrix of size 𝑎 and the 𝑏-

by-𝑐 zero matrix, and we sometimes omit the subscripts when their

sizes can be determined from the context. For any matrix𝑿 ∈ R𝑎×𝑏
and set 𝑇1,𝑇2 ⊆ [𝑛] with |𝑇1 | = 𝑎, |𝑇2 | = 𝑏, P (𝑿 ,𝑇1,𝑇2, 𝑛) denotes
an 𝑛-by-𝑛 matrix whose submatrix indexed by (𝑇1,𝑇2) equals 𝑿
and all the other entries equal 0. In other words, P (𝑿 ,𝑇1,𝑇2, 𝑛) can
be regarded as replacing the submatrix indexed by (𝑇1,𝑇2) with 𝑿
in the zero matrix 0𝑛×𝑛 .

For symmetric matrix 𝑨 ∈ R𝑛×𝑛 , we use 𝜆𝑖 (𝑨) to denotes its

𝑖-th smallest eigenvalue. For symmetric matrices 𝑨,𝑩 ∈ R𝑛×𝑛 , we
use𝑨 ⪰ 𝑩 (𝑨 ≻ 𝑩) to indicate that for any 𝒙 ∈ R𝑛 , 𝒙⊤𝑨𝒙 ≥ 𝒙⊤𝑩𝒙
(𝒙⊤𝑨𝒙 > 𝒙⊤𝑩𝒙). We define ⪯, ≺ analogously. A square matrix

𝑨 ∈ R𝑛×𝑛 is positive semidefinite (PSD) iff 𝑨 is symmetric and

𝑨 ⪰ 0; 𝑨 ∈ R𝑛×𝑛 is positive definite (PD) iff 𝑨 is symmetric and

𝑨 ≻ 0.
For PSD matrix 𝑨, 𝑨1/2

is its square root; 𝑨† denotes its Moore-

Penrose pseudoinverse;𝑨†/2 is the square root of its Moore-Penrose

pseudoinverse.

Vector: 1𝑎 , 0𝑏 denote the 𝑎-dimensional all-ones vector and 𝑏-

dimensional all-zeros vector; when their sizes can be determined

from the context, we sometimes omit the subscripts.

For matrix 𝑨 ∈ R𝑛×𝑛 , Diag (𝑨) is an 𝑛-by-𝑛 diagonal matrix

with the same diagonal entries as 𝑨. For vector 𝒙 ∈ R𝑛 , Diag (𝒙)
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denotes an 𝑛-by-𝑛 diagonal matrix with its 𝑖-th diagonal entry

equalling 𝒙𝑖 .
For any positive semidefinite matrix 𝑨, we define the vector

norm ∥𝒙 ∥𝑨 =
√
𝒙⊤𝑨𝒙 . And ∥·∥𝑝 denotes the ℓ𝑝 norm.

Matrix norm: ∥·∥𝑝 denotes the ℓ𝑝 norm. For instance, for 𝑨 ∈

R𝑛×𝑛 , ∥𝑨∥
2
=

√
𝜆𝑛

(
𝑨⊤𝑨

)
; ∥𝑨∥∞ = max𝑖∈[𝑛]

∑𝑛
𝑗=1

��𝑨𝑖 𝑗 ��. For ma-

trix 𝑩 ∈ R𝑛×𝑛 and PSD matrix 𝑨 ∈ R𝑛×𝑛 , we denote ∥𝑩∥𝑨→𝑨 =

sup∥𝒙 ∥𝑨≠0
∥𝑩𝒙 ∥𝑨
∥𝒙 ∥𝑨

.

Schur complement: For 𝑨 ∈ R𝑛×𝑛 and 𝐹,𝐶 a partition of [𝑛] such
that 𝑨𝐹𝐹 is nonsingular, the Schur complement of 𝐹 in 𝑨 is defined

as Sc (𝑨, 𝐹 ) = 𝑨𝐶𝐶 −𝑨𝐶𝐹𝑨−1𝐹𝐹𝑨𝐹𝐶 .
When we need to emphasize the support set of the entries that

remain, we also denote Sc (𝑨,−𝐶) = Sc (𝑨, 𝐹 ).

2.2 (Directed) Laplacians, Symmetrizations
A matrix 𝑳 ∈ R𝑛×𝑛 is called a directed Laplacian iff 1⊤𝑳 = 0 and all
off-diagonal entries of 𝑳 are non-positive, i.e., 𝑳𝑖𝑖 = −

∑
𝑗 :𝑗≠𝑖 𝑳 𝑗𝑖 for

all 𝑖 ∈ [𝑛] and 𝑳𝑖 𝑗 ≤ 0 for all 𝑖 ≠ 𝑗 . A (directed) Laplacian 𝑳 can be

associated with a (directed) graph G[𝑳] whose adjacency matrix is

ˆ𝑨 = Diag (𝑳) − 𝑳⊤. The in-degrees/out-degrees of 𝑳 are defined as

the in-degrees/out-degrees of G[𝑳]. For directed Laplacians, its out-
degrees equal its diagonal entries. If G[𝑳] is strongly connected,

we say the (directed) Laplacian 𝑳 is strongly connected.

In addition, if 𝑳1 = 0⊤, we call 𝑳 an Eulerian Laplacian. These

Laplacians have the property that in-degrees of vertices equal to out-

degrees. The undirected Laplacian is a special case where 𝑳 = 𝑳⊤.
We often refer to these as symmetric Laplacians, or just Laplacians.

Symmetrization: For square matrix 𝑨 ∈ R𝑛×𝑛 , we define its

matrix symmetrization as 𝑼 [𝑨] = 𝑨+𝑨⊤
2

. For a directed Laplacian

𝑳 ∈ R𝑛×𝑛 , we define its undirectification as

UG [𝑳] = 1

2

(
𝑳 + 𝑳⊤ − Diag

( (
𝑳 + 𝑳⊤

)
1
) )
.

UG [𝑳] is called the undirectification because it is a symmetric

Laplacian whose adjacency matrix is 𝑼
[
ˆ𝑨
]
, where

ˆ𝑨 = Diag (𝑳) −
𝑳⊤ is the adjacency matrix of G[𝑳]. For an Eulerian Laplacian 𝑳,
its matrix symmetrization coincides with its undirectification, i.e.,

𝑼 [𝑳] = UG [𝑳]. Eulerian Laplacians are critically important in

solvers for directed Laplacians because they are the only setting in

which the undirectification is positive semidefinite.

Row Column Diagonal Dominant (RCDD): A square matrix 𝑨 ∈
R𝑛×𝑛 is𝛼-RCDD iff

∑
𝑗 ∈[𝑛]\{𝑖 }

��𝑨𝑖 𝑗 �� ≤ 1

1+𝛼𝑨𝑖𝑖 and
∑
𝑗 ∈[𝑛]\{𝑖 }

��𝑨𝑗𝑖 ��
≤ 1

1+𝛼𝑨𝑖𝑖 for any 𝑖 ∈ [𝑛]. We also say 𝑨 is RCDD if 𝑨 is 0-RCDD.

2.3 Sparsification
All almost-linear time or faster solvers for directed Laplacians to

date are built around sparsification: the approximation of graphs by

ones with fewer edges. As it’s difficult to even approximate reacha-

bility of directed graphs, [7] introduced the key idea of measuring

approximations w.r.t. a symmetric PSD matrix. Such approxima-

tions are at the core of all subsequent algorithms, including ours.

Definition 2.1. (Asymmetrically bounded) Given a matrix 𝑨 ∈
R𝑛×𝑛 and a PSD matrix 𝑼 ∈ R𝑛×𝑛 , 𝑨 is asymmetrically bounded

by 𝑼 iff ker (𝑼 ) ⊆ ker

(
𝑨⊤

)
∩ ker (𝑨) and




𝑼 †/2𝑨𝑼 †/2



2

≤ 1. We

denote it by 𝑨
asym

⪯ 𝑼 .

By our definition, 𝑨
asym

⪯ 𝑼 is equivalent to −𝑨
asym

⪯ 𝑼 . The
following lemma is changed slightly from Lemma B.2 of [7].

Fact 2.2. For any matrix 𝑨 ∈ R𝑛×𝑛 and PSD matrix 𝑼 ∈ R𝑛×𝑛 ,
the following statements are equivalent:

• 𝑨
asym

⪯ 𝑼 .
• 2𝒙⊤𝑨𝒚 ≤ 𝒙⊤𝑼𝒙 +𝒚⊤𝑼𝒚, ∀𝒙,𝒚 ∈ R𝑛 .

Definition 2.3. (Approximation of directed Laplacians via undi-

rectification) Given matrix 𝑨 ∈ R𝑛×𝑛 and directed Laplacian 𝑩 ∈
R𝑛×𝑛 , 𝑨 is an 𝜖-asymmetric approximation of 𝑩 iff 𝑨 − 𝑩 is asym-

metrically bounded by 𝜖 · UG [𝑩].

In particular, for strongly connected Eulerian Laplacians 𝑨 and

𝑩, 𝑨 is an 𝜖-asymmetric approximation of 𝑩 iff


𝑼 [𝑩]†/2 (𝑨 − 𝑩)𝑼 [𝑩]†/2



2

≤ 𝜖.

We will utilize sparsifiers for Eulerian Laplacians [5, 7], as well

as implicit sparsifiers for products of directed adjacency matrices as

black boxes throughout our presentations. The formal statements

of these black boxes are below.

Theorem 2.4. (Directed Laplacian sparsification oracle) Given a

directed Laplacian 𝑳 ∈ R𝑛×𝑛 with nnz (𝑳) = 𝑚 and error param-

eter 𝛿 ∈ (0, 1), there is an oracle OraSparseLaplacian which runs

in at most TS (𝑚,𝑛, 𝛿) time, where TS (𝑚,𝑛, 𝛿) = 𝑂 ((𝑚 log
𝑂 (1) 𝑛 +

𝑛 log𝑂 (1) 𝑛)𝛿−𝑂 (1) ), to return with high probability a directed Lapla-
cian 𝑳̃ satisfying:

(1) nnz
(
𝑳̃
)
≤ NS (𝑛, 𝛿) whereNS (𝑛, 𝛿) = 𝑂 (𝑛 log𝑂 (1) 𝑛𝛿−𝑂 (1) );

(2) Diag
(
𝑳̃
)
= Diag (𝑳);

(3) 𝑳̃ − 𝑳
asym

⪯ 𝛿 · UG [𝑳].

Remark 2.5. Conditions (2), (3) in Theorem 2.4 above are equiva-

lent to 𝑳̃ and 𝑳 having the same in- and out-degrees, and


UG [𝑳]†/2
(
𝑳̃ − 𝑳

)
UG [𝑳]†/2





2

≤ 𝛿

respectively. By having the same in-degrees and out-degrees, we

mean Diag
(
𝑳̃
)
= Diag (𝑳) and 𝑳̃1 = 𝑳1.

Lemma 2.6. (Lemma 3.18 of [7]) Let 𝒙,𝒚 ∈ R𝑛 be nonnegative vec-

tors with nnz (𝒙) + nnz (𝑦) =𝑚 and let 𝜖, 𝑝 ∈ (0, 1). And we denote
𝑮 =

(
1⊤𝒙

)
Diag (𝒚) − 𝒙𝒚⊤. Then, there is a routine SparseProduct

which computes with probability at least 1 − 𝑝 a nonnegative matrix

𝑨 in 𝑂

(
𝑚𝜖−2 log 𝑚𝑝

)
time such that nnz (𝑨) = 𝑂

(
𝑚𝜖−2 log 𝑚𝑝

)
,

𝑨 − 𝒙𝒚⊤
asym

⪯ 𝜖 · UG [𝑮].

Given an Eulerian Laplacian 𝑳 ∈ R𝑛×𝑛 and a partition 𝐹,𝐶 of [𝑛],
by invoking OraSparseLaplacian on subgraphs with edges inside

(𝐹, 𝐹 ), (𝐹,𝐶), (𝐶, 𝐹 ), (𝐶,𝐶) respectively, we can get a Laplacian

sparsification procedure SparseEulerianFC so that the sparsified

Eulerian Laplacians returned by SparseEulerianFC not only sat-

isfy all the properties mentioned in Theorem 2.4, but also keep the

in-degrees and out-degrees of the subgraph supported by (𝐹, 𝐹 ).

559



STOC ’22, June 20–24, 2022, Rome, Italy Richard Peng and Zhuoqing Song

Analogously, a routine SparseProductFC can be constructed by

applying SparseProduct four time.

Explicit definitions of SparseEulerianFC and SparseProductFC

can be found in the full version.

2.4 Sufficiency of Solving Eulerian Systems to
Constant Error

Previous works on solvers for directed Laplacians and their gener-

alizations (to RCDD and M-matrices) established that it’s sufficient

to solve Eulerian systems to constant relative accuracy in their

undirectification.

• The iterative refinement procedure shown in [7] shows that

a constant accuracy solver can be amplified to one with 𝜖

relative accuracy in 𝑂 (log(1/𝜖)) iterations.
• The stationary computation procedure in [8] showed that ar-

bitrary strongly connected Laplacians with mixing time𝑇𝑚𝑖𝑥
can be solved to 2-norm error 𝜖 by solving 𝑂 (log(𝑇𝑚𝑖𝑥/𝜖))
systems in Eulerian Laplacians. This was subsequently sim-

plified and extended toM-matrices and row-column-diagonally-

dominant matrices in [1] (with an extra log𝑛 factor in run-

ning time). A purely random walk (instead of matrix per-

turbation) based outer loop is also given in the thesis of

Peebles [14].

3 OVERVIEW
Our algorithm is based on sparse Gaussian elimination. Before we

discuss the block version, it is useful to first describe how the single

variable version works on Eulerian Laplacians.

Recall that Eulerian Laplacians store the (weighted) degrees on

the diagonal, and the negation of the out edge weights from 𝑗 in

column 𝑗 .

Suppose we eliminate vertex 𝑗 . Then we need to add a rescaled

version of row 𝑗 to each row 𝑖 where 𝑳 𝑗,: is non-zero. Accounting

for 𝑳 𝑗 𝑗 = 𝒅 𝑗 , this weight for row 𝑖 is given by

𝒘 𝑗→𝑖
𝒅 𝑗

, and the

corresponding decrease in entry 𝑗, 𝑘 is then

𝒘 𝑗→𝑖𝒘𝑘→𝑗

𝒅 𝑗
.

In other words, when eliminating vertex 𝑗 , we add an edge 𝑘 → 𝑖

for each triple of vertices 𝑘 → 𝑗 → 𝑖 , with weight given by above.

The effect of this elimination on the vector𝑏 can also be described

through this ‘distribution’ of row 𝑗 onto its out-neighbors. However,

to start with, it’s useful to focus on what happens to the matrix.

The key observation for elimination based Laplacian solvers is that

this new matrix remains a graph. In fact, it can be checked that this

process exactly preserves the in and out degrees of all neighbors of

𝑖 , so the graph also remains Eulerian.

However, without additional assumptions on the non-zero struc-

tures such as separators, directly performing the above process

takes 𝑂 (𝑛3) time: the newly added entries quickly increases the

density of the matrix until each row has Θ(𝑛) entries. So the start-

ing point of elimination based Laplacian solvers is to address the

following two problems:

(1) Keeping the results of elimination sparse.

(2) Find vertices that are easy to eliminate.

3.1 Block Cholesky
One possible solution to the issue above is to directly sample

the edges formed after eliminating each vertex. It leads to spar-

sified/incomplete Cholesky factorization based algorithms [6, 11],

including the first nearly-linear time solver for directed Laplacians.

Our algorithm is based on eliminating blocks of vertices, and is

closest to the algorithm from [10]. It aims to eliminate a block of

Ω(𝑛) vertices simultaneously. This subset, which we denote using

𝐹 , is chosen to be almost independent. That is, 𝐹 is picked so that

each vertex in 𝐹 has at least a constant portion of its out-degree

going to 𝑉 \ 𝐹 , which we denote as 𝐶 .

This property means that any random walk on 𝐹 exits it with

constant probability. This intuition, when viewed from iterative

methods perspective, implies that power method allows rapid sim-

ulation of elimination onto 𝐶 = 𝑉 \ 𝐹 . From a matrix perspective,

it means these matrices are well-approximated by their diagonal.

So subproblem 𝑳−1
𝐹𝐹

𝒃 can be solved to high accuracy in 𝑂 (log𝑛)
iterations via power method. We formalize the guarantees of such

procedures, PR (·) in Lemma 6.5 in Section 6.2.

Algorithm 1: Precondition
({̃
𝑺
(𝑖)
, 𝐹𝑖

}𝑑
𝑖=1

, 𝒙, 𝑁

)
Input:

(
𝛼, 𝛽, {𝛿𝑖 }𝑑𝑖=1

)
-Schur complement chain{{̃

𝑺
(𝑖) }𝑑

𝑖=1
, {𝐹𝑖 }𝑑𝑖=1

}
; vector 𝒙 ∈ R𝑛 ; error parameter

𝜖 ∈ (0, 1)
Output: vector 𝒙 ∈ R𝑛

1 for 𝑖 = 1, · · · , 𝑑 − 1 do

2 𝒙𝐹𝑖 ← PR

(̃
𝑺
(𝑖)
𝐹𝑖𝐹𝑖

, 𝒙𝐹𝑖 ,Diag
(̃
𝑺
(𝑖) )−1

𝐹𝑖𝐹𝑖
, 1
2
, 𝑁

)
;

3 𝒙𝐶𝑖 ← 𝒙𝐶𝑖 − 𝑺̃
(𝑖)
𝐶𝑖𝐹𝑖

𝒙𝐹𝑖
4 end

5 𝒙𝐹𝑑 ←
(̃
𝑺
(𝑑) )†

𝒙𝐹𝑑 ;

6 for 𝑖 = 𝑑 − 1, · · · , 1 do

7 𝒙𝐹𝑖 ← 𝒙𝐹𝑖 − PR
(̃
𝑺
(𝑖)
𝐹𝑖𝐹𝑖

, 𝑺̃
(𝑖)
𝐹𝑖𝐶𝑖

𝒙𝐶𝑖 ,Diag
(̃
𝑺
(𝑖) )−1

𝐹𝑖𝐹𝑖
, 1
2
, 𝑁

)
8 end
9 Let 𝒙 ← 𝒙 − 1⊤𝒙

𝑛 · 1 ;
10 Return 𝒙

Compared to single-vertex elimination schemes, block elimina-

tion has the advantage of having less error accumulation. Single

elimination can be viewed as eliminating 1 vertex per step, while

we will show that the block method eliminates Ω(𝑛) vertices in
𝑂 (log log𝑛) steps. This smaller number of dependencies in turn

provides us the ability to bound errors more directly.

Formally, given the partition 𝐹,𝐶 ⊆ [𝑛] with the permutation

matrix 𝑷 such that 𝑷𝑳𝑷⊤ =

[
𝑳𝐹𝐹 𝑳𝐹𝐶
𝑳𝐶𝐹 𝑳𝐶𝐶

]
, the block Cholesky

factorization of 𝑳 ∈ R𝑛×𝑛 is given as

𝑳 = 𝑷⊤
[

𝑰 0
𝑳𝐶𝐹 𝑳

−1
𝐹𝐹

𝑰

]
·
[
𝑳𝐹𝐹 0
0 Sc (𝑳, 𝐹 )

]
·
[
𝑰 𝑳−1

𝐹𝐹
𝑳𝐹𝐶

0 𝑰

]
𝑷 .
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Using the above factorization iteratively (with sparsification)

generates a Schur complement chain

{̃
𝑺
(𝑖)
, 𝐹𝑖

}𝑑
𝑖=1

(Definition 6.1),

the solver algorithm loops through these and solves the subprob-

lems via the projection / prologation maps which are defined via

the random walk on 𝐹𝑖 respectively. Its pseudocode is given in

Algorithm 1 for completeness.

We remark that the iteration numbers of the preconditioned

Richardson iterations in Algorithm 1 can differ with each other.

Here, we set a uniform𝑁 merely for simplicity. If we have unlimited

(or quadratic) precomputation power, the method described above

suffices to give us a fast solver. However, due to the exact Schur

Complements being dense, the major remaining difficulty is to

efficiently compute an approximate Schur complement.

3.2 Schur Complement Sparsification via
Partial Block Elimination

The main bottleneck toward an efficient algorithm is the fast con-

struction of approximate Schur complements. We will give such

an algorithm whose running time is close to those of sparsification

primitives via a partial block elimination process.

In simple terms, a step of this process squares the (𝐹, 𝐹 ) block.
Repeating this gives quadratic convergence. With 𝛼 about 𝑂 (1),
𝑂 (log log𝑛) iterations suffice, so the resulting error is easier to

control than martingales.

Lemma 3.1 ([16]). For any diagonal matrix 𝑫 ∈ R𝑛×𝑛 and a

matrix 𝑨 ∈ R𝑛×𝑛 with 𝑫 −𝑨 nonsingular, we have

(𝑫 −𝑨)−1

=
1

2

𝑫−1 + 1

2

(
𝑰 + 𝑫−1𝑨

) (
𝑫 −𝑨𝑫−1𝑨

)−1 (
𝑰 +𝑨𝑫−1

)
.

(1)

The main identity (1) gives rise to our definition for partial-block-

eliminated Laplacian of 𝑳. Let 𝑫 = Diag (𝑳) and 𝑨 = 𝑫 − 𝑳, let 𝑷

be the permutation matrix such that 𝑷𝑳𝑷⊤ =

[
𝑳𝐹𝐹 𝑳𝐹𝐶
𝑳𝐶𝐹 𝑳𝐶𝐶

]
. The

partial-block-eliminated operator 𝚽 (𝑳 |𝑫𝐹𝐹 , 𝐹 ) is defined as

𝚽 (𝑳 |𝑫𝐹𝐹 , 𝐹 ) = 𝑷⊤
[
𝑳𝐹𝐹 −𝑨𝐹𝐶
−𝑨𝐶𝐹 2𝑳𝐶𝐶

]
𝑷 −𝑨:,𝐹𝑫

−1
𝐹𝐹𝑨𝐹,: .

We define the first exact partial-block-elimination of 𝑳 by 𝑳 (1) =
𝚽 (𝑳 |𝑫𝐹𝐹 , 𝐹 ). Then, 12𝑳

(1)
is an Eulerian Laplacian which has the

same Schur complement of 𝐹 in 𝑳, i.e.,

Sc (𝑳, 𝐹 ) = 1

2

Sc

(
𝑳 (1) , 𝐹

)
.

The 2-nd to the 𝐾-th partially-block-eliminated Laplacians are

defining iteratively by 𝑳 (𝑘+1) = 𝚽

(
𝑳 (𝑘) |𝑫𝐹𝐹 , 𝐹

)
. 𝑳 (𝑘) can also

be regarded as a partially powered matrix of 𝑳, which uses the

powering to obtain better spectral properties. Specifically, when we

focus on the (𝐹, 𝐹 ) block of 𝑳 (𝑘) , it is easy to see that



𝑫−1

𝐹𝐹
𝑨(𝑘)
𝐹𝐹





∞

converges at a quadratic rate, where 𝑨(𝑘)
𝐹𝐹

= 𝑫𝐹𝐹 − 𝑳 (𝑘)
𝐹𝐹

. Formal

construction of the 𝑘-th partially-block-eliminated Laplacians and

their properties can be found in the appendix of the full version.

To encounter the increasing density of 𝑳 (𝑘) , sparsification black-

boxes in Section 2.3 are naturally accompanied with the partial

block elimination to yield a Schur complement sparsificationmethod

(Algorithm 2). Our algorithm is essentially a directed variant of the

one from [10]. A slight difference is that in the last step, we need to

fix the degree discrepancies caused by approximating the strongly

RCDD matrix by its diagonal.

The running time of Algorithm 2 is shown in Theorem 3.3. The

𝑘-th iterand 𝑳̃
(𝑘)

of Algorithm 2 is termed the approximate 𝑘-th

partially-block-eliminated Laplacian, while its exact version is just

the (exact) 𝑘-th partially-block-eliminated Laplacian 𝑳 (𝑘) defined
above. To show the running time of Algorithm 2, themost important

thing is to provide relatively tight bounds for the difference 𝑳̃
(𝑘) −

𝑳 (𝑘) .

Algorithm 2: SparseSchur (𝑳, 𝐹 , 𝛿)
Input: strongly connected Eulerian Laplacian 𝑳 ∈ R𝑛×𝑛 ;

partition 𝐹,𝐶 of [𝑛]; error parameter 𝛿 ∈ (0, 1)
Output: Sparse approximate Schur complement 𝑺

1 If nnz (𝑳) ≥ 𝑂 (NS (𝑛, 𝛿)), call OraSparseLaplacian to

sparsify 𝑳 with error parameter 𝑂 (𝛿) ;
2 Find a permutation matrix 𝑷 such that

𝑷𝑳𝑷⊤ =

[
𝑳𝐹𝐹 𝑳𝐹𝐶
𝑳𝐶𝐹 𝑳𝐶𝐶

]
;

3 Set 𝐾 ← 𝑂

(
log log

𝑛
𝛿

)
, 𝜖 ← 𝑂

(
𝛿
𝐾

)
, 𝑳̃
(0) ← 𝑳,

𝑫 ← Diag
(
𝑳̃
(0) )

, 𝑨̃
(0) ← 𝑫 − 𝑳̃ (0) ;

4 for 𝑘 = 1, · · · , 𝐾 do
5 for 𝑖 ∈ 𝐹 do
6 𝒀̃

(𝑘,𝑖) ←

SparseProductFC

(
𝑨̃
(𝑘−1)
:,𝑖 ,

(
𝑨̃
(𝑘−1)
𝑖,:

)⊤
, 𝜖, 𝐹

)
7 end

8 Let 𝒀̃
(𝑘) ← ∑

𝑖∈𝐹
1

𝑫𝑖𝑖
𝒀̃
(𝑘,𝑖)

,

𝑳̃
(𝑘,0) ← 𝑷⊤

[
𝑫𝐹𝐹 −𝑨̃(𝑘−1)𝐹𝐶

−𝑨̃(𝑘−1)𝐶𝐹 2𝑳̃
(𝑘−1)
𝐶𝐶

]
𝑷 − 𝒀̃ (𝑘) ;

9 𝑳̃
(𝑘) ← SparseEulerianFC

(
𝑳̃
(𝑘,0)

, 𝜖, 𝐹

)
and

𝑨̃
(𝑘) ← 𝑷⊤

[
𝑫𝐹𝐹

Diag
(
𝑳̃
(𝑘)
𝐶𝐶

)] 𝑷 − 𝑳̃ (𝑘)
10 end
11 for 𝑖 ∈ 𝐹 do

12 𝑿
(𝑖) ← SparseProduct

(
𝑨̃
(𝐾)
𝐶,𝑖 ,

(
𝑨̃
(𝐾)
𝑖,𝐶

)⊤
, 𝜖

)
13 end

14 Let 𝑿 ← ∑
𝑖∈𝐹

1

𝑫𝑖𝑖
𝑿
(𝑖)

and 𝑺̃
(0) ← 1

2
𝐾

(
𝑳̃
(𝐾)
𝐶𝐶 − 𝑿

)
;

15 Compute a patching matrix 𝑹 ∈ R |𝐶 |× |𝐶 | with
𝑹
2: |𝐶 |,1 = −𝑺̃

(0)
2: |𝐶 |,:1, 𝑹1,2: |𝐶 | = −1⊤𝑺̃

(0)
:,2: |𝐶 | ,

𝑹1,1 = −𝑹1,2: |𝐶 |1 − 1⊤𝑹2: |𝐶 |,1 − 1⊤𝑺̃
(0)

1, and 𝑹𝑖 𝑗 = 0 for

𝑖 ≠ 1 and 𝑗 ≠ 1 ;

16 Set 𝑺̂ = 𝑺̃
(0) + 𝑹 ;

17 Return 𝑺 = OraSparseLaplacian

(̂
𝑺, 𝛿/8

)
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Remark 3.2. This permutation matrix 𝑷 defined on line 2 of

Algorithm 2 is only used to simplify the pseudocodes. We use the

same 𝑫𝐹𝐹 in each iteration to simplify our analysis. It is possible to

replace 𝑫𝐹𝐹 byDiag
(
𝑳̃
(𝑘−1) )

𝐹𝐹
in iterations 𝑘 and achieve similar

running time.

Theorem 3.3. (Schur complement sparsification) For a strongly

connected Eulerian Laplacian 𝑳 ∈ R𝑛×𝑛 , let 𝐹,𝐶 be a partition of [𝑛]
such that 𝑳𝐹𝐹 is 𝛼-RCDD (𝛼 = 𝑂 (1)) and let 𝛿 ∈ (0, 1) be an error

parameter, the subroutine SparseSchur (Algorithm 2) runs in time

𝑂 (TS (𝑚,𝑛, 𝛿)) + 𝑂̃
(
TS

(
NS (𝑛, 𝛿) 𝛿−2, 𝑛, 𝛿

)
log𝑛

)
to return with high probability a strongly connected Eulerian Lapla-

cian 𝑺 satisfying nnz (𝑺) = 𝑂 (NS ( |𝐶 | , 𝛿)) and

𝑺 − Sc (𝑳, 𝐹 )
asym

⪯ 𝛿 · 𝑼 [Sc (𝑳, 𝐹 )] .

Compared to the undirected analog from [10], powered directed

matrices exhibit significantly more complicated spectral structures.

To analyze them, we develop new interpretations of directed Schur

complements based on matrix extensions.

3.3 Bounding Error Accumulations in
Partially-Eliminated Laplacians by
Augmented Matrices

When considering the approximate partial block elimination, in one

update step, not only new sparsification errors are added into 𝑳̃
(𝑘)

,

the errors accumulated from previous steps will multiply with each

other and get possibly amplified. In addition, error accumulations

in Schur complements of directed Laplacians are not as straight-

forward as their undirected counterparts. It’s not the case that for

two directed Eulerian Laplacians with the same undirectifiation,

the undirectification of their Schur complements are the same. For

instance, consider the undirected vs. directed cycle,eliminated till

only two originally diametrically opposite vertices remain. The

former has a Schur complement that has weight 2/𝑛, while the

latter has a Schur complement that has weight 1.

By the definition of 𝜖-asymmetric approximation, we need to

essentially show the following inequality in order to obtain the

approximations needed for a nearly-linear time algorithm:

1

2
𝑘
𝑼

[
𝑳 (𝑘)

]
=

1

2
𝑘
𝑼

[
𝚽

(
𝑳 (𝑘−1) |𝑫𝐹𝐹 , 𝐹

)]
⪯𝑂 (1) · 𝑼 [𝑳] , ∀1 ≤ 𝑘 ≤ 𝐾.

Here significant difficulties arise due to the already complicated

formula of 𝑳 (𝑘) . So we instead express the exact and approximate

partial block elimination as Schur complements of large augmented

matrices introduced below.

In the remainder of Section 3 and the entire Section 4 and Sec-

tion 5, unless otherwise specified, we assume 𝐶 = {1, 2, · · · , |𝐶 |}
for simplicity. We define

𝐹𝑎 = {𝑏 ∈ Z : |𝐶 | + (𝑎 − 1) |𝐹 | + 1 ≤ 𝑏 ≤ |𝐶 | + 𝑎 |𝐹 |} .

Note that in our notation, 𝐹 = 𝐹1.

3.3.1 A Reformulation for Partial Block Elimination . For the ex-
act and approximate 𝑘-th partially-block-eliminated matrices 𝑳 (𝑘) ,

𝑳̃
(𝑘)

, we define augmented matricesMMM (0,𝑘) , M̃̃M̃M (0,𝑘) of size 2𝑘 |𝐹 | +
|𝐶 |. We start with the construction of a desirableMMM (0,𝑘) . To this end,
we define a sequence of augmented matrices

{
MMM (𝑖,𝑘)

}𝑘
𝑖=0

, where

MMM (𝑘,𝑘) = 𝑳 (𝑘) and eachMMM (𝑖,𝑘) is a Schur complement ofMMM (𝑖−1,𝑘) .
Here we only give an informal explanation of how we construct

MMM (𝑖,𝑘) . The formal definitions of these augmented matrices are

given in Section 4. To begin with, for some fixed 𝑘 ∈ [𝐾], we define
MMM (𝑘,𝑘) def= 𝑳 (𝑘) .

Next, we takeMMM (𝑘−1,𝑘) andMMM (𝑘−2,𝑘) as examples to show how

we define such a sequence of matricesMMM (𝑘−1,𝑘) , · · · ,MMM (0,𝑘) .
DefineMMM (𝑘−1,𝑘) as follows

MMM (𝑘−1,𝑘) def=

2𝑳 (𝑘−1)
𝐶𝐶

−𝑨(𝑘−1)
𝐶𝐹

−𝑨(𝑘−1)
𝐶𝐹

−𝑨(𝑘−1)
𝐹𝐶

𝑫𝐹𝐹 −𝑨(𝑘−1)
𝐹𝐹

−𝑨(𝑘−1)
𝐹𝐶

−𝑨(𝑘−1)
𝐹𝐹

𝑫𝐹𝐹


Then, it follows by direct calculations that

Sc

(
MMM (𝑘−1,𝑘) , 𝐹2

)
= 𝑳 (𝑘) .

Next, we defineMMM (𝑘−2,𝑘) as follows
MMM (𝑘−2,𝑘)

def

=



4𝑳 (𝑘−2)
𝐶𝐶

−𝑨(𝑘−2)
𝐶𝐹

−𝑨(𝑘−2)
𝐶𝐹

−𝑨(𝑘−2)
𝐶𝐹

−𝑨(𝑘−2)
𝐶𝐹

−𝑨(𝑘−2)
𝐹𝐶

𝑫𝐹𝐹 −𝑨(𝑘−2)
𝐹𝐹

−𝑨(𝑘−2)
𝐹𝐶

𝑫𝐹𝐹 −𝑨(𝑘−2)
𝐹𝐹

−𝑨(𝑘−2)
𝐹𝐶

−𝑨(𝑘−2)
𝐹𝐹

𝑫𝐹𝐹

−𝑨(𝑘−2)
𝐹𝐶

−𝑨(𝑘−2)
𝐹𝐹

𝑫𝐹𝐹


It follows by direct calculations that

Sc

(
MMM (𝑘−2,𝑘) , 𝐹3 ∪ 𝐹4

)
=MMM (𝑘−1,𝑘) .

We will show
1

2
𝑘 𝑼

[
𝑳 (𝑘)

]
⪯ 𝑂 (1) · 𝑼 [𝑳] later by analyzing the

properties ofMMM (0,𝑘) .
We believe this representation may be of independent interest.

We also remark that these augmented matrices only arise during

analysis, and are not used in the algorithms.

3.3.2 Bounding Error Accumulation in Algorithm 2 . Next, we will
mainly use Lemma 5.2 to bound the errors after taking Schur com-

plements. However, in our analysis, iteratively applying Lemma 5.2

to bound
1

2
𝑘

(
𝑳̃
(𝑘) − 𝑳 (𝑘)

)
will lead to more log𝑛 factors in the run-

ning time. To derive a tighter bound, we introduce another group

of augmented matrices

{
M̃̃M̃M (0,𝑘)

}
which are defined by attaching

sparsification errors toMMM (0,𝑘) . M̃̃M̃M (0,𝑘) can help us disentangle the

sparsification errors generated from different iterations and see how

these errors accumulate as we do partial block eliminations more

clearly. We use another group of augmented matrices

{
𝑸 (𝑘)

}
to

bound the difference betweenMMM (0,𝑘) and M̃̃M̃M (0,𝑘) . The augmented

matrix 𝑸 (𝑘) is defined as the sum of a group of “reptition matrix"

(Section 4.2). 𝑸 (𝑘) adopts many properties similar toMMM (0,𝑘) , so it

is easy to analyze. Then, we can give tighter bound for 𝑳̃
(𝐾) − 𝑳 (𝐾)
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using the robustness of Schur complements in this case with the

properties of 𝑸 (𝑘) (Section 5).

4 PARTIAL BLOCK ELIMINATION VIA
AUGMENTED MATRICES

In this section, we introduce our augmented matrices based view of

partial block elimination. As we will show later, after 𝑂 (log log𝑛)
steps of partial elimination, the (𝐹, 𝐹 ) block of the approximate

partially-block-eliminated Laplacian 𝑳̃
(𝑘)

can be approximated by

its diagonal “safely". So, what remains is to bound the error accu-

mulations in the difference
1

2
𝑘

(
Sc

(
𝑳̃
(𝑘)
, 𝐹

)
− Sc

(
𝑳 (𝑘) , 𝐹

))
, which

we do by bounding differences in
1

2
𝑘

(
𝑳̃
(𝑘) − 𝑳 (𝑘)

)
.

4.1 A Reformulation of the Exact Partial Block
Elimination

In this section, we provide a reformulation of the exact version of

partial block elimination which is more friendly to error analysis.

To be specific, our strategy is to construct a large matrixMMM (0,𝑘) ∈
R

(
2
𝑘 |𝐹 |+ |𝐶 |

)
×
(
2
𝑘 |𝐹 |+ |𝐶 |

)
such that 𝑳 (𝑘) is a Schur complement of

the large matrixMMM (0,𝑘) . And there is a partition ofMMM (0,𝑘) such
that each block is a zero matrix or equals some submatrix of 𝑳.
To constructMMM (0,𝑘) , we will construct a sequence of augmented

matrices

{
MMM (𝑖,𝑘)

}𝑘
𝑖=0

satisfying Lemma 4.1. Later, by analyzing the

large matrixMMM (0,𝑘) , we can derive tighter bounds for quantities

related to 𝑳 (𝑘) .
Now, we give a rigorous way to construct such a sequence of

matrices

{
MMM (𝑖,𝑘)

}𝑘
𝑖=0
(0 ≤ 𝑘 ≤ 𝐾).

We construct a sequence of bijections

{
𝜓 (𝑖) (·)

}𝐾
𝑖=0

which in-

dicate the “positions" of the blocks equalling −𝑨(𝑖)
𝐹𝐹

in the large

augmented matrixMMM (𝑘−𝑖,𝑘) .
We start with𝜓 (0) (·) and will define these𝜓 (𝑖) iteratively. The

mapping 𝜓 (0) (·) is defined as a trivial mapping from {1} to {1}
with

𝜓 (0) (1) = 1.

Then, assume we have defined 𝜓 (𝑖−1) (·). Now, we define 𝜓 (𝑖) as
follows:

𝜓 (𝑖) (𝑎) =

𝑎 + 2𝑖−1, 𝑎 ∈ [2𝑖−1]

𝜓 (𝑖−1)
(
𝑎 − 2𝑖−1

)
, 2𝑖−1 + 1 ≤ 𝑎 ≤ 2

𝑖

If𝜓 (𝑖−1) (·) is a bijection from [2𝑖−1] to [2𝑖−1], then
𝜓 (𝑖) (·)

���
{2𝑖−1+1, · · · ,2𝑖 }

is a bijection from

{
2
𝑖−1 + 1, · · · , 2𝑖

}
to [2𝑖−1].

And by the definition, 𝜓 (𝑖) (·)
���
[2𝑖−1 ]

is a bijection from [2𝑖−1] to{
2
𝑖−1 + 1, · · · , 2𝑖

}
. Then,𝜓 (𝑖) is a bijection from [2𝑖 ] to [2𝑖 ].

It follows by induction that for any 𝑘 ∈ [𝐾],𝜓 (𝑘) (·) is a bijection
from [2𝑘 ] to [2𝑘 ]. And by the fact that 2

𝑖−1 + 1 ≤ 𝜓 (𝑖) (𝑎) ≤ 2
𝑖
for

𝑎 ∈ [2𝑖−1] and𝜓 (𝑖) (𝑎) ∈ [2𝑖−1] for 2𝑖−1 + 1 ≤ 𝑎 ≤ 2
𝑖
, we have the

following relation

𝜓 ( 𝑗) (𝑎) ≠ 𝑎, ∀1 ≤ 𝑗 ≤ 𝐾, 𝑎 ∈ [2𝑗 ] .

With the notations defined above, we define the matrixMMM (𝑖,𝑘)
as

MMM (𝑖,𝑘) = 2
𝑘−𝑖P

(
𝑳 (𝑖)
𝐶𝐶
,𝐶,𝐶, 2𝑘−𝑖 |𝐹 | + |𝐶 |

)
+
2
𝑘−𝑖∑
𝑎=1

(
P

(
𝑫𝐹𝐹 , 𝐹𝑎, 𝐹𝑎, 2

𝑘−𝑖 |𝐹 | + |𝐶 |
)

+ P
(
−𝑨(𝑖)

𝐹𝐹
, 𝐹𝑎, 𝐹𝜓 (𝑘−𝑖 ) (𝑎) , 2

𝑘−𝑖 |𝐹 | + |𝐶 |
)

+ P
(
−𝑨(𝑖)

𝐹𝐶
, 𝐹𝑎,𝐶, 2

𝑘−𝑖 |𝐹 | + |𝐶 |
)

+ P
(
−𝑨(𝑖)

𝐶𝐹
,𝐶, 𝐹𝑎, 2

𝑘−𝑖 |𝐹 | + |𝐶 |
) )
.

where the notation P (𝑿 , 𝐴, 𝐵, 𝑛) has been defined in Section 2,

whichmeans puttingmatrix𝑿 in the submatrix indexed by (𝐴, 𝐵) in
a zero matrix 0𝑛×𝑛 ; 𝑳 (𝑘) is the exact 𝑘-th partially-block-eliminated

Laplacian and formal definitions of 𝑳 (𝑘) ,𝑨(𝑘) are in the appendix

of the full version.

We have the following properties of

{
MMM (𝑖,𝑘)

}
.

Lemma 4.1. For any 0 ≤ 𝑘 ≤ 𝐾 , 0 ≤ 𝑖 ≤ 𝑘 ,MMM (𝑖,𝑘) is an Eulerian

Laplacian;MMM (𝑖,𝑘)−[𝑛],−[𝑛] ,MMM
(𝑖,𝑘)
−𝐶,−𝐶 are 𝛼-RCDD; the Schur complement

satisfies

Sc

(
MMM (𝑖,𝑘) ,∪2

𝑘−𝑖

𝑎=2𝑘−𝑖−1+1𝐹𝑎
)
=MMM (𝑖+1,𝑘) .

Further,

Sc

(
MMM (𝑖,𝑘) ,−[𝑛]

)
= 𝑳 (𝑘) .

In addition, for any 𝒙 ∈ R𝑛 , let

𝒙̂ =
(
𝒙⊤𝐶 𝒙⊤𝐹 · · · 𝒙

⊤
𝐹︸       ︷︷       ︸

2
𝑘
repetitions of 𝒙⊤

𝐹

)⊤
,

then,

𝒙̂⊤MMM (0,𝑘) 𝒙̂ = 2
𝑘𝒙⊤𝑳𝒙 .

The following lemma answers a question in Section 3.3. That is,

1

2
𝑘 𝑼

[
𝑳 (𝑘)

]
⪯ 𝑂 (1) 𝑼 [𝑳].

Lemma 4.2. For any 0 ≤ 𝑘 ≤ 𝐾 ,
1

2
𝑘
𝑼

[
𝑳 (𝑘)

]
⪯

(
3 + 2

𝛼

)
𝑼 [𝑳] .

4.2 Bounding Error Accumulation Using
Repetition Matrices

In this section, we define M̃̃M̃M (0,𝑘) as an inexact version ofMMM (0,𝑘)
where sparsification errors accumulate. Then, we introduce a spe-

cial type of augmented matrices, which we term reptition matrices,

and bound the difference M̃̃M̃M (0,𝑘) −MMM (0,𝑘) in norms based on the

matrices

{
𝑸 (𝑘)

}
which are defined as linear combinations of some

reptition matrices of

{
MMM (0,𝑘)

}
.
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Before we define M̃̃M̃M (0,𝑘) , we introduce our notations for the

errors induced by sparsification:

𝑬 (𝑘) = 𝑳̃
(𝑘) − 𝚽

(
𝑳̃
(𝑘−1) |𝑫𝐹𝐹 , 𝐹

)
,

𝑬𝑿 = 𝑨̃
(𝐾)
𝐶𝐹 𝑫−1𝐹𝐹 𝑨̃

(𝐾)
𝐹𝐶 − 𝑿 .

We also denote in the rest of this paper,

𝑹̂ =𝑹 + 1

2
𝐾
𝑨̃
(𝐾)
𝐶𝐹

(
𝑫𝐹𝐹 − 𝑨̃

(𝐾)
𝐹𝐹

)−1
− 1

2
𝐾
𝑨̃
(𝐾)
𝐶𝐹 𝑫−1𝐹𝐹 𝑨̃

(𝐾)
𝐹𝐶 .

Some elementary facts of the results of Algorithm 2 is given by

the following lemma.

Lemma 4.3. With high probability, the following statements hold:

(1)

{
𝑳̃
(𝑘) }𝐾

𝑘=0
are Eulerian Laplacians;

(2)

{
𝑨̃
(𝑘) }𝐾

𝑘=0
are nonnegative matrices satisfying


𝑫−1𝐹𝐹 𝑨̃(𝑘)𝐹𝐹 




∞
≤

(
1

1 + 𝛼

)
2
𝑘

, ∀0 ≤ 𝑘 ≤ 𝐾 ;

(3) 𝑺, 𝑺̂ are Eulerian Laplacians;

(4) The matrix 𝑹̂ satisfies 𝑹̂1 = 𝑹̂
⊤
1 = 0 and


𝑹̂




2

≤ 𝑛
2 ∥𝑫𝐹𝐹 ∥2
2
𝐾−1𝛼

(
1

1 + 𝛼

)
2
𝐾

.

Then, we can provide bounds for the one-step errors in the next

lemma.

Lemma 4.4. The error matrices satisfies

𝑬 (𝑘)
asym

⪯ 𝜖0𝑼
[
𝑳̃
(𝑘−1) ]

, (2)

𝑬𝑿
asym

⪯ 𝜖𝑼
[
Sc

(
𝑳̃
(𝐾)

, 𝐹

)]
, (3)

where 𝜖0 = 2

(
3 + 2

𝛼

) (
2𝜖 + 𝜖2

)
.

In the remainder of this paper, we write 𝜖0 = 2

(
3 + 2

𝛼

) (
2𝜖 + 𝜖2

)
.

Recall that we define an augmented matrixMMM (0,𝑘) such that

𝑳 (𝑘) is its Schur complement in Section 4.1. Now, we define M̃̃M̃M (0,𝑘)
which is an inexact version ofMMM (0,𝑘) to analyze the properties of

𝑳̃
(𝑘)

. We first define

R
(
𝑘, 𝑎, 𝑬 (𝑖)

)
=P

(
𝑬 (𝑖)
𝐹𝐹
, 𝐹𝑎, 𝐹𝜓 (𝑘−𝑖 ) (𝑎) , 2

𝑘−𝑖 |𝐹 | + |𝐶 |
)

+ P
(
𝑬 (𝑖)
𝐹𝐶
, 𝐹𝑎,𝐶, 2

𝑘−𝑖 |𝐹 | + |𝐶 |
)

+ P
(
𝑬 (𝑖)
𝐶𝐹
,𝐶, 𝐹𝜓 (𝑘−𝑖 ) (𝑎) , 2

𝑘−𝑖 |𝐹 | + |𝐶 |
)

+ P
(
𝑬 (𝑖)
𝐶𝐶
,𝐶,𝐶, 2𝑘−𝑖 |𝐹 | + |𝐶 |

)
.

Then, we define the error matrices

EEE (𝑖,𝑘) =
2
𝑘−𝑖∑
𝑎=1

R
(
𝑘, 𝑎, 𝑬 (𝑖)

)

and

EEE (1:𝑘,𝑘) =
𝑘∑
𝑖=1

EEE (𝑖,𝑘) .

The matrix M̃̃M̃M (0,𝑘) is defined as follows

M̃̃M̃M (0,𝑘) =MMM (0,𝑘) + EEE (1:𝑘,𝑘) .

Lemma 4.5. The Schur complement of [2𝑘 |𝐹 | + |𝐶 |]\[𝑛] in M̃̃M̃M (0,𝑘)
satisfies:

Sc

(
M̃̃M̃M (0,𝑘) ,−[𝑛]

)
= 𝑳̃
(𝑘)
.

To help bound EEE (1:𝑘,𝑘) , we define some special kinds of matrices

termed “repetition matrices". We will construct the matrices

{
𝑸 (𝑘)

}
as linear combinations of “repetition matrices".

Definition 4.6. (“Repetition matrices") We will use the following

3 kinds of “repetition matrices": consider a matrix 𝑨 ∈ R𝑚×𝑚 and

subset 𝐶 ⊆ [𝑚] and 𝐸 = [𝑚]\𝐶 ,
(1) the 𝑘-“repetition matrix" of 𝑨 is defined as follows:

Rep (𝑘,𝐶,𝑨) =



𝑘𝑨𝐶𝐶 𝑨𝐶𝐸 𝑨𝐶𝐸 · · · 𝑨𝐶𝐸
𝑨𝐸𝐶 𝑨𝐸𝐸 0 · · · 0

𝑨𝐸𝐶 0 𝑨𝐸𝐸
. . .

.

.

.

.

.

.
.
.
.

. . .
. . . 0

𝑨𝐸𝐶 0 · · · 0 𝑨𝐸𝐸


,

where the repetition numbers of the blocks 𝑨𝐶𝐸 ,𝑨𝐸𝐶 ,𝑨𝐸𝐸
are 𝑘 ;

(2) Rep
+0 (𝑘,𝐶,𝑨, 𝑁 ) is a larger matrix by appending all-zeros

rows and columns to Rep (𝑘,𝐶,𝑨):

Rep
+0 (𝑘,𝐶,𝑨, 𝑁 ) =

[
Rep (𝑘,𝐶,𝑨) 0

0 0

]
∈ R𝑁×𝑁 ,

where𝑁 ≥ 𝑘 |𝐸 |+ |𝐶 | is used to indicate the size of the matrix

Rep
+0 (𝑘,𝐶,𝑨, 𝑁 );

(3) if 𝐹, 𝐹+ is a partition of 𝐸, Rep (𝑘,𝐶, 𝐹,𝑨) is defined as a

permutation of the 𝑘-“repetition matrix" of 𝑨, which has the

following form:

Rep (𝑘,𝐶, 𝐹,𝑨)

=



𝑘𝑨𝐶𝐶 𝑨𝐶𝐹 · · · 𝑨𝐶𝐹 𝑨𝐶𝐹 + · · · 𝑨𝐶𝐹 +
𝑨𝐹𝐶 𝑨𝐹𝐹
.
.
.

. . .

𝑨𝐹𝐶 𝑨𝐹𝐹
𝑨𝐹 +𝐶 𝑨𝐹 +𝐹 +
.
.
.

. . .

𝑨𝐹 +𝐶 𝑨𝐹 +𝐹 +


.

Now, we define the matrices

{
𝑸 (𝑘)

}
0≤𝑘≤𝐾

which are used to

boundMMM (0,𝑘) − M̃̃M̃M (0,𝑘) and then 𝑳 (𝑘) − 𝑳̃
(𝑘)

. We define the ma-

trices

{
𝑸 (𝑘)

}
0≤𝑘≤𝐾

iteratively together with the error quantities

{𝛾𝑘 }0≤𝑘≤𝐾 .
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We start from 𝑸 (0) = 𝑼 [𝑳] and 𝛾0 = 0. If we have defined{
𝑸 (𝑖)

}
0≤𝑖<𝑘

, {𝛾𝑖 }0≤𝑖<𝑘 , then 𝑸 (𝑘) ∈ R
(
2
𝑘 |𝐹 |+ |𝐶 |

)
×
(
2
𝑘 |𝐹 |+ |𝐶 |

)
and

𝛾𝑘 ∈ R+ are defined as follows:

𝑸 (𝑘)
def

=
𝑘

4𝑘 + 2𝑘
𝛼 +

∑𝑘−1
𝑖=0 𝛾𝑖

𝑼
[
MMM (0,𝑘)

]
+ 1

4𝑘 + 2𝑘
𝛼 +

∑𝑘−1
𝑖=0 𝛾𝑖

𝑘−1∑
𝑖=0

𝛾𝑖Rep

(
2
𝑘−𝑖 ,𝐶, 𝐹,𝑸 (𝑖)

)
+

3 + 2

𝛼

4𝑘 + 2𝑘
𝛼 +

∑𝑘−1
𝑖=0 𝛾𝑖

𝑘−1∑
𝑖=0

Rep

(
2
𝑘−𝑖 ,𝐶, 𝐹, 𝑼

[
MMM (0,𝑖)

] )
,

𝛾𝑘
def

=





Sc (
𝑸 (𝑘) ,−[𝑛]

)†/2 (
𝑳̃
(𝑘) − 𝑳 (𝑘)

)
Sc

(
𝑸 (𝑘) ,−[𝑛]

)†/2




2

.

The following lemma shows some elementary properties of 𝑸 (𝑘) .

Fact 4.7. 𝑸 (𝑘) is a Laplacian satisfying:

(1) 𝑼
[
MMM (0,𝑘)

]
⪯

(
4 + 2

𝛼 +
∑𝑘−1
𝑖=0 𝛾𝑖
𝑘

)
𝑸 (𝑘) ;

(2) Diag
(
𝑸 (𝑘)

)
= Diag

(
MMM (0,𝑘)

)
;

(3) 𝑸 (𝑘)−𝐶,−𝐶 , 𝑸
(𝑘)
−[𝑛],−[𝑛] are 𝛼-RCDD;

(4)





(𝑸 (𝑘) )1/2 Diag (
MMM (0,𝑘)

)−1/2



2
2

≤ 2;

Lemma 4.8. Sc

(
𝑸 (𝑘) ,−𝐶

)
⪯ 2

𝑘𝑼 [Sc (𝑳, 𝐹 )].

The following lemma shows that the sparsification errors at-

tached to M̃̃M̃M (0,𝑘) can be bounded by 𝑸 (𝑘) .

Lemma 4.9.

EEE (1:𝑘,𝑘)
asym

⪯ 𝜖0

(
4𝑘 + 2𝑘

𝛼
+
𝑘−1∑
𝑖=0

𝛾𝑖

)
𝑸 (𝑘) .

5 ROBUSTNESS OF SCHUR COMPLEMENTS
AND FULL ERROR ANALYSIS

In this section, we show additional robustness properties of Schur

complements suitable for analyzing errors on the augmented matri-

ces. Specifically, we establish conditions on𝑨,𝑩, 𝑼 where𝑨−𝑩
asym

⪯
𝜖 · 𝑼 , as well as the set to be eliminated, 𝐹 , so that Sc (𝑨, 𝐹 ) −
Sc (𝑩, 𝐹 )

asym

⪯ 𝛿 · Sc (𝑼 , 𝐹 ).
Using these properties, we bound the norms of errors in Schur

complements of the 𝑸 (𝑘) and 𝛾𝑘 . Such bounds allow us to complete

the proof of Theorem 3.3.

The next lemma is used to prove Lemma 5.2 below.

Lemma 5.1. Suppose that 𝑳 ∈ R𝑛×𝑛 is an Eulerian Laplacian, 𝑫 =

Diag (𝑳),𝑾 is PSD,




𝑾1/2𝑫−1/2




2

≤ 𝑎, and the matrix 𝑬 ∈ R𝑛×𝑛

satisfies 𝑬
asym

⪯ 𝑏𝑾 with 𝑎2𝑏 < 2. Then the matrix 𝑴 = 𝑳 + 𝑬
satisfies:

𝑴𝑫−1𝑴⊤ ⪯ 1

2 − 𝑎2𝑏

((
4 + 2𝑎2𝑏

)
𝑼 [𝑳] + 2𝑏𝑾

)
.

The following lemma shows the robustness of the Schur com-

plements. It’s used in the proof of Lemma 5.3 to bound 𝛾𝑘 .

Lemma 5.2. Let 𝑵 ∈ R𝑛×𝑛 be an Eulerian Laplacian, let 𝑴 be

an 𝑛-by-𝑛 matrix, let 𝑼 ∈ R𝑛×𝑛 be PSD and 𝐹,𝐶 a partition of [𝑛].
Suppose that 𝑼 𝐹𝐹 is nonsingular, 𝑼1 = 0, 𝑵 𝐹𝐹 is 𝜌-RCDD (𝜌 > 0),
𝑼 [𝑵 ]𝐹𝐹 ⪰ 1

𝜇 𝑼 𝐹𝐹 , 𝑼 [𝑵 ] ⪯ 𝛽𝑼 ,



𝑼 1/2Diag (𝑵 )−1/2





2

≤ 𝑎, and

the matrix 𝑬 = 𝑴 − 𝑵 satisfies 𝑬
asym

⪯ 𝑏 · 𝑼 with 𝑏 < min

{
2

𝑎2
, 1𝜇

}
.

Then, 𝑴𝐹𝐹 , 𝑵 𝐹𝐹 are nonsingular and

Sc (𝑴, 𝐹 ) − Sc (𝑵 , 𝐹 )
asym

⪯ 𝑏

(
1 + 1

𝜌

)
𝜇
(
𝛽

(
4 + 2𝑎2𝑏

)
+ 2𝑏

)
(1 − 𝜇𝑏)2

(
2 − 𝑎2𝑏

) · Sc (𝑼 , 𝐹 ) .
We can now obtain a relatively tight bound for Sc

(
𝑳̃
(𝐾)

, 𝐹

)
−

Sc

(
𝑳 (𝐾) , 𝐹

)
by bounding 𝛾𝑘 iteratively.

Lemma 5.3. For any 𝛿0 ∈ (0, 1), with a small 𝜖 = 𝑂

(
𝛿0
𝐾

)
in Algo-

rithm 2, the exact and approximate 𝐾-th partially-block-eliminated

Laplacians 𝑳 (𝐾) , 𝑳̃
(𝐾)

satisfies

1

2
𝐾

(
Sc

(
𝑳̃
(𝐾)

, 𝐹

)
− Sc

(
𝑳 (𝐾) , 𝐹

))
asym

⪯ 𝑂 (𝛿0) · 𝑼 [Sc (𝑳, 𝐹 )] .
(4)

Remark 5.4. Since 𝑺̃
(0)

= 1

2
𝐾

(
𝑳̃
(𝐾)
𝐶𝐶 − 𝑿

)
(in Algorithm 2), the

1

2
𝐾 factor on the LHS of (4) doesn’t matter. The parameter choice

𝜖 = 𝑂

(
𝛿0
𝐾

)
implies that when running Algorithm 2, the error accu-

mulates linearly in 𝑘 rather than exponentially.

6 A NEARLY-LINEAR TIME SOLVER
In this section, we complete the Sparsified Schur Complement based

algorithm by invoking the nearly-linear time Schur complement

sparsification procedure derived above in Sections 4 and 5. We first

call this Schur complement sparsification procedure repeatedly to

construct a sparse Schur complement chain in Section 6.1. Then,

in Section 6.2, we show that this Schur complement chain gives

a preconditoner Precondition for the initial Eulerian Laplacian

matrix. The full high accuracy solver then follows from invoking

this preconditioner inside Richardson iteration.

6.1 Schur Complement Chains
We first define Schur complement chains over directed graphs,

which is a variant of the Schur complement chain for undirected

graphs in [10].

Definition 6.1. (Schur complement chain) Given a strongly con-

nected Eulerian Laplacian 𝑳 ∈ R𝑛×𝑛 , an
(
𝛼, 𝛽, {𝛿𝑖 }𝑑𝑖=1

)
-Schur com-

plement chain of 𝑳 is a sequence of strongly connected Eulerian

Laplacians and subsets

{{̃
𝑺
(𝑖) }𝑑

𝑖=1
, {𝐹𝑖 }𝑑𝑖=1

}
satisfying

(1) {𝐹𝑖 }𝑑𝑖=1 is a partition of [𝑛]; each 𝑺̃
(𝑖)

is supported on the sub-

matrix indexed by (𝐶𝑖−1,𝐶𝑖−1), where 𝐶𝑖
def

= [𝑛]\
(
∪𝑖
𝑗=1
𝐹 𝑗

)
(𝑖 = 0, 1, · · · , 𝑑 − 1); |𝐶𝑖 | ≤ (1 − 𝛽)𝑖 𝑛; |𝐹𝑑 | = |𝐶𝑑−1 | = 𝑂 (1);

(2) For 1 ≤ 𝑖 ≤ 𝑑 − 1, 𝑺̃ (𝑖)𝐹𝑖𝐹𝑖 is 𝛼-RCDD;
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Algorithm 3: Block Cholesky solver for directed Lapla-

cians

Input: strongly connected Eulerian Laplacian 𝑳 ∈ R𝑛×𝑛 ;
query vectors

{
𝒃 (𝑞)

}𝑄
𝑞=1
⊆ R𝑛 with each 𝒃 (𝑞) ⊥ 1;

error parameters

{
𝜖𝑞

}𝑄
𝑞=1
⊆ (0, 1)

Output: solutions
{
𝒙 (𝑞)

}𝑄
𝑞=1
⊆ R𝑛

1 Call SchurChain (𝑳, 0.25, 0.1) to compute a{
0.25, 0.05,

{
0.1
𝑖2

}𝑂 (log𝑛)
𝑖=1

}
-Schur complement chain{{̃

𝑺
(𝑖) }𝑑

𝑖=1
, {𝐹𝑖 }𝑑𝑖=1

}
(Sections 4, 5, 6.1)

2 Generate the operator 𝒁 (𝒙) =

Precondition

({{̃
𝑺
(𝑖) }𝑑

𝑖=1
, {𝐹𝑖 }𝑑𝑖=1

}
, 𝒙,𝑂 (log𝑛)

)
(Section 6.2) ;

3 Using the preconditioned Richardson iteration with the

preconditioner 𝒁 to solve the Laplacian systems: for each

query vector 𝒃 (𝑞) , compute

𝒙 (𝑞) ← PR

(
𝑳, 𝒃 (𝑞) ,𝒁 (·) , 1,𝑂

(
log

(
𝑛/𝜖𝑞

) ) )

(3) 𝑺̃
(1) − 𝑳

asym

⪯ 𝛿1 · 𝑼 [𝑳] and 𝑺̃
(𝑖+1) − Sc

(̃
𝑺
(𝑖)
, 𝐹𝑖

)
asym

⪯ 𝛿𝑖+1 ·

𝑼
[
Sc

(̃
𝑺
(𝑖)
, 𝐹

)]
, 1 ≤ 𝑖 ≤ 𝑑 − 1;

(4) 𝑼
[̃
𝑺
(1) ] ⪰ 𝑼 [𝑳] and 𝑼

[̃
𝑺
(𝑖+1) ] ⪰ 𝑼

[
Sc

(̃
𝑺
(𝑖)
, 𝐹𝑖

)]
,

1 ≤ 𝑖 ≤ 𝑑 − 1.

We also denote 𝐹0 = 𝐶𝑑 = ∅, 𝐶0 = [𝑛] for notational simplicity.

Remark 6.2. Compared with the Schur complement chains for

undirected graphs from [10], the only new condition is Condi-

tion (4). It guarantees the positive semi-definiteness of the sym-

metrization of the sparsified approximate Eulerian Laplacian 𝑳̃ and

the error-bounding matrix 𝑩̃ defined in Section 6.2.

To construct a Schur complement chain, we first use the fol-

lowing lemma to find an 𝛼-RCDD subset 𝐹1, and then apply the

Schur complement sparsification method SparseSchur to compute

𝑺̃
(1)

which is an approximation for Sc (𝑳, 𝐹1). Then, we repeat this
process to get a desirable Schur complement chain.

Lemma 6.3. (Theorem A.1 of [6]) Given an Eulerian Laplacian

𝑳 ∈ R𝑛×𝑛 with nnz (𝑳) =𝑚, the routine

FindRCDDBlock outputs a subset 𝐹 ⊆ [𝑛] such that |𝐹 | ≥ 𝑛
16(1+𝛼)

and 𝑳𝐹𝐹 is 𝛼-RCDD in time 𝑂

(
𝑚 log

1

𝑝

)
with probability at least

1 − 𝑝 .

By Lemma 6.3, we can choose for instance 𝛼 = 0.1. So, we assume

𝛼 = 𝑂 (1), when analyzing the complexities below. Our method to

construct a Schur complement chain is illustrated in Algorithm 4.

It running time is shown in Theorem 6.4.

Theorem 6.4. Given a strongly connected Eulerian Laplacian 𝑳 ∈
R𝑛×𝑛 and parameters 𝛼 = 𝑂 (1), 𝛿 ∈ (0, 1], the routine SchurChain

Algorithm 4: SchurChain (𝑳, 𝛼, 𝛿)
Input: strongly connected Eulerian Laplacian 𝑳 ∈ R𝑛×𝑛 ;

parameters 𝛼 > 0, 𝛿 ∈ (0, 1]

Output:
(
𝛼, 1

16(1+𝛼) ,
{
𝛿
𝑖2

}𝑑
𝑖=1

)
-Schur complement chain{{̃

𝑺
(𝑖) }𝑑

𝑖=1
, {𝐹𝑖 }𝑑𝑖=1

}
1 Set 𝛿 ′

𝑖
= 𝛿

3𝑖2
for 𝑖 ≥ 1. ;

2 Compute 𝑺 (1) ← OraSparseLaplacian

(
𝑳, 𝛿 ′

1

)
;

3 Let 𝑺̃
(1) ← 𝑺 (1) + 𝛿′

1

1−𝛿′
1

𝑼
[
𝑺 (1)

]
. ;

4 Set 𝑖 ← 0, 𝐶0 = [𝑛] ;
5 while |𝐶𝑖 | > 100 do
6 𝑖 ← 𝑖 + 1 ;
7 𝐹𝑖 ← FindRCDDBlock

(̃
𝑺
(𝑖)
, 𝛼

)
;

8 𝐶𝑖 ← 𝐶𝑖−1\𝐹𝑖 ;
9 𝑺 (𝑖+1) ← SparseSchur

(̃
𝑺
(𝑖)
, 𝐹𝑖 , 𝛿𝑖+1

)
;

10 𝑺̃
(𝑖+1) ← 𝑺 (𝑖) + 𝛿′𝑖+1

1−𝛿′
𝑖+1

𝑼
[
𝑺 (𝑖)

]
11 end

12 Return

{{̃
𝑺
(𝑖) }𝑑

𝑖=1
, {𝐹𝑖 }𝑑𝑖=1

}

runs in time

𝑂 (TS (𝑚,𝑛, 𝛿)) + 𝑂̃
(
TS

(
NS (𝑛, 𝛿) 𝛿−2, 𝑛, 𝛿

)
log𝑛

)
with high probability to return an

(
𝛼, 1

16(1+𝛼) ,
{
𝛿
𝑖2

}𝑑
𝑖=1

)
-Schur com-

plement chain, where 𝑑 = 𝑂 (log𝑛). In addition,

𝑑∑
𝑖=1

nnz
(̃
𝑺
(𝑖) )

= 𝑂 (NS (𝑛, 𝛿)) .

6.2 Construction of the Preconditioner and the
Solver

After constructing a desirable Schur complement chain, we use the

Schur complement chain to construct a preconditioner and solve

𝑳𝒙 = 𝒃 via the preconditioned Richardson iteration.

Consider a linear system𝑨𝒙 = 𝒃 , where 𝒃 is in the image space of

𝑨. Given a preconditioner 𝒁 , the classical preconditioned Richard-

son iteration updates as follows:

𝒙 (𝑘+1) ← 𝒙 (𝑘) + 𝜂𝒁
(
𝒃 −𝑨𝒙 (𝑘)

)
.

We initialize 𝒙 (0) = 0 for simplicity. This procedure is denoted by

𝒙 (𝑁 ) = PR (𝑨, 𝒃,𝒁 , 𝜂, 𝑁 ).
We will use the following fundamental lemma to guarantee the

convergence rate of the preconditioned Richardson iteration in our

methods.

Lemma 6.5. (Lemma 4.2 of [7]) Let 𝑨,𝒁 , 𝑼 ∈ R𝑛×𝑛 , where 𝑼 is

PSD and ker (𝑼 ) ⊆ ker (𝒁 ) = ker

(
𝒁⊤

)
= ker (𝑨) = ker

(
𝑨⊤

)
. Let

𝒃 ∈ R𝑛 be a vector inside the image space of 𝑨. Denote the projection
onto the image space of 𝑨 by 𝑷𝑨. Denote 𝒙

(𝑁 ) = PR (𝑨, 𝒃,𝒁 , 𝜂, 𝑁 ).
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Then, 𝒙 (𝑁 ) satisfies


𝒙 (𝑁 ) −𝑨†𝒃



𝑼
≤ ∥𝑷𝑨 − 𝜂𝒁𝑨∥𝑁𝑼→𝑼




𝑨†𝒃



𝑼
.

In addition, the preconditioned Richardson iteration is a linear opera-

tor with

𝒙 (𝑁 ) = 𝜂
𝑁−1∑
𝑘=0

(𝑷𝑨 − 𝜂𝒁𝑨)𝑘 𝒁𝒃 .

Our construction for the preconditioner is illustrated in Algo-

rithm 1. We analyze Algorithm 1 by representing the routine PR (·)
as a linear operator which is equivalent to multiplying vector 𝒙

with the matrix 𝚷𝒁 , where the definition of 𝒁 ∈ R𝑛×𝑛 is in the

full version, and 𝚷 = 𝑰 − 11⊤
𝑛 is the projection matrix onto the

image space of 𝑳. To analyze the quality of the predconditioner𝚷𝒁 ,

we need to provide bounds for 𝚷 − 𝚷𝒁𝑳. Define 𝑳̃ as an approx-

imation for 𝑳 with the errors induced by the Schur complement

sparsification procedure

𝑳̃ = 𝑺̃
(1) +

𝑑−1∑
𝑖=1

P
(̃
𝑺
(𝑖+1) − Sc

(̃
𝑺
(𝑖)
, 𝐹𝑖

)
,𝐶𝑖 ,𝐶𝑖 , 𝑛

)
.

Define an auxiliary matrix

𝑩̃ = 𝛿1𝑼
[
𝑳̃
]
+
𝑑−1∑
𝑖=1

𝛿𝑖+1P
(
𝑼

[
Sc

(
𝑳̃,∪𝑖𝑗=1𝐹 𝑗

)]
,𝐶𝑖 ,𝐶𝑖 , 𝑛

)
.

We can prove that 𝑂 (1) · 𝑼 [𝑳] ⪯ 𝑼
[
𝑩̃
]
⪯ 𝑂 (poly (𝑛)) · 𝑼 [𝑳].

Lemma 6.6. Given

{
𝛼, 𝛽, {𝛿𝑖 }𝑑𝑖=1

}
-Schur complement chain with

𝑑 = 𝑂 (log𝑛) and ∑𝑑
𝑖=1 𝛿𝑖 ≤

1

4
, by setting 𝑁 = 𝑂 (log𝑛) in Algo-

rithm 1, we have




𝚷 − 𝚷𝒁𝑳




𝑩̃→𝑩̃

≤ 1

2
.

Then, Theorem 1.1 follows by Lemma 6.4 and Lemma 6.6.

Using the smaller Eulerian Laplacian sparsifiers based on short

cycle decompositions to sparsify the approximate Schur comple-

ments returned by Algorithm 2, we get the following solver which

has quadratic processing time, but faster solve time.

Corollary 6.7. Given a strongly connected Eulerian Laplacian

𝑳 ∈ R𝑛×𝑛 , we can process it time 𝑂 (𝑛2 log𝑂 (1) 𝑛). Then, for each
query vector 𝒃 ∈ R𝑛 with 𝒃 ⊥ 1, we can compute a vector 𝒙 ∈ R𝑛
with



𝒙 − 𝑳†𝒃

𝑼 [𝑳] ≤ 𝜖 

𝑳†𝒃

𝑼 [𝑳] in time 𝑂 (𝑛 log5 𝑛 log(𝑛/𝜖)).

Remark 6.8. Combining Theorem 1.1 or Corollary 6.7 with Ap-

pendix D of [7] yields full solvers for strongly connected directed

Laplacians.
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