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Abstract
The efficacy of cell-free gene expression (CFE) has been
considerably improved in the last decade. As a consequence,
CFE systems have now the capacity to express DNAs
composed of tens of genes encoding for complex self-
assembly processes. A recent example is a demonstration that
infectious bacteriophages can be synthesized in one-pot CFE
reactions from their genomes. This landmark result opens new
perspectives for producing in vitro large biological systems
from natural or synthetic DNA. In this article, we review the
recent progress in the synthesis and self-assembly of viruses
in one-pot CFE reactions, primarily covering bacteriophages.
We discuss the advantages and potential of producing virus-
like particles and phages in CFE systems for biomedical ap-
plications. Because they are the most abundant and diverse
life forms on Earth, dynamically synthesizing whole or parts of
bacteriophages in test tubes could facilitate uncovering novel
biological functions and exploiting their self-assembly proper-
ties for material sciences applications.
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Introduction
Cell-free gene expression (CFE) is forging ahead as a
highly versatile and multipurpose technology [1,2]. CFE
was originally developed as an alternative approach to
living cells, in particular, for the synthesis and labeling of
www.sciencedirect.com
proteins in support of structural biology and proteomics
studies [3,4]. In the last decade, CFE has become a
convenient environment for rapidly prototyping DNA
regulatory elements and executing gene circuits
encoding, for example, complex dynamical processes

[5e8]. CFE systems are also effective platforms for
biomanufacturing biologics and chemicals, such as bio-
fuels [9], vaccines [10], and creating affordable and fast
diagnostic tools [11]. As the protein synthesis strength
of CFE systems increases, challenging their capabilities
will enable an expansion in their scope of applications to
new territories. DNA programs larger than simple circuit
motifs can now be expressed in vitro. Enzymatic path-
ways composed of several genes, for instance, are being
developed in CFE reactions to reconstruct the synthesis
pathway of high-value chemicals such as the anticancer

molecule violacein [10,12] or essential functions of
living cells [13]. The strength of the new CFE systems
is also exploited to recapitulate the self-assembly of
active macromolecular structures. In particular, using
CFE to synthesize parts or whole infectious viruses and
bacteriophages is a research area that explores untapped
properties of CFE systems with a broad extent of po-
tential applications in biotechnology and medicine. By
their abundance and diversity, bacteriophages represent
a formidable reservoir of biological functional properties
waiting to be discovered and exploited in CFE systems.

In this article, we review the recent efforts to leverage
CFE as a means to synthesize entire viruses and phages
or their cognate components (Figure 1). The cell-free
synthesis (CFS) of virus-like particles (VLPs) to be
used as vaccines has become potentially advantageous
compared with their production in vivo [14] by facili-
tating the rapid screening of protein variants that still
self-assemble into VLPs. The CFS of whole infectious
bacteriophages from their genomes has been recently
demonstrated [12,15,16] and has not been fully

exploited yet. Bacteriophages represent a vast area of
living systems with enormous possibilities for medical
applications, such as phage therapy to treat multidrug-
resistant microbial infections [17,18]. Phages also carry
a lot of potential as tailorable bioactive material that
could be used beyond medical applications. In this di-
rection, the recent efforts to control the synthesis of
phage elements reveal that the design of biological
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Figure 1

Overview of cell-free expression and synthesis of components or whole viruses and phages. TXTL: transcription-translation. The major applications are
listed in the following electron microscopy (EM) images. The EM images are from the study by Colant et al. [35] (left, VLPs for influenza vaccines
candidates) [15], (center, scale bar 100 nm, phage T7), and [38] (right, scale bar 40 nm, self-assembly of gp15 and gp18 proteins, from phage T4, into
tubes and doughnuts).

2 Synthetic Biology
machine assembly modes could be exploited for nano-
technology applications [19].

VLPs
VLPs are non-infectious, genome-free capsids that have
received considerable attention for the development of
vaccines [20]. They consist of one or more capsid
proteins from viruses or bacteriophages that self-
assemble into particles of diameters ranging from
several nanometers up to 100 nm. The principal usage of
VLPs is to elicit an immune response when injected into

organisms, such as mice or humans. With a half-life that
can be on the order of several months in serum [21],
VLPs present some advantages as potential vaccines or
drug delivery carriers. VLPs are mostly produced by
in vivo synthesis. There are limitations to this approach,
however, especially the cost of production. The yield of
synthesis is typically on the order of 1e5 mg/l [22,23],
which is smaller than needed for vaccine bio-
manufacturing. In vivo production of VLPs are hard to
scale up [24] and purification is often difficult [25,26].
Prophylactic human papillomavirus vaccines, for instance,

composed of VLPs of the L1 capsid protein cost on the
order of $360 for the full treatment [27]. CFE has been
considered early on as an alternative approach to the
Current Opinion in Systems Biology 2021, 28:100373
production of VLPs [28] (Table 1). As an open environ-
ment, CFE enables better control of the reaction con-
ditions, such as the pH and reduction-oxidation state, for

the formation of disulfide bonds, a critical aspect of VLPs
formation. In CFE reactions, VLPs are purified in a single
step, which significantly decreases the cost of production
compared to in vivo purification. To date, CFE has been
primarily used to produce single-protein single-layer non-
enveloped VLPs.

The first VLPs synthesized in an Escherichia coli CFE
system was based on the MS2 phage coat protein and
the C-terminally truncated human hepatitis B core an-
tigen protein (HBc) [28]. Both VLPs were produced at

yields of 1013e1014 VLP/ml (ten-fold greater than in vivo
methods) from a protein synthesis concentration around
0.5 mg/ml with a solubility greater than 92%. The CFE-
produced VLPs were found to have comparable charac-
teristics, such as the size and the stability, to those
produced in vivo. The scalability of this technology was
tested from 30 ml to 1 ml without loss in production
yields paving the way towards the mass production of
VLPs in vitro. In an effort to also decrease the cost and
time of production in vivo, norovirus VLPs have been
recently synthesized in a standard E. coli CFE system
www.sciencedirect.com
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Table 1

Components of or whole viruses and bacteriophages synthesized in cell-free expression systems.

Particle - Concentration DNA program Main results Ref.

Virus-like particles (VLPs)
� HBc, MS2 and Qb
50 nm, 300 mg/ml

Linear, T7 promoter
2 kbp, 3 genes

First efficient disulfide bond formation in VLPs structures that
increases stability of VLPs

[30]

� MS2 and Qb
10–100 nm, 300 mg/ml

Plasmid, T7 promoter
2 kbp, 2 genes

Surface functionalization of VLPs by direct conjugation using
azide–Alkyne click chemistry

[31]

� HBc, flagellin
25 nm, 300 mg/ml

Plasmid, T7 promoter
1.5 kbp, 2 genes

Covalent attachment between flagellin and VLPs using ncAA,
10-fold increase in bioactivity

[34]

� HBc
35 nm, 35 mg/ml

Plasmid, T7 promoter
0.5 kbp, 1 gene

Engineering of HBc VLPs, decrease of intrinsic immunogenicity,
greater solubility and assembly

[14]

� HuNoV
10 nm, 600 mg/ml

Plasmid, T7 promoter
3 kbp, 2 genes

Synthesis and assembly of HuNoV VLPs
Serious candidate for vaccine development

[29]

� HBc
25 nm, NA

Plasmid, T7 promoter
0.5 kbp, 1 gene

Synthesis of HBc VLPs
Improved vaccine development efficiency

[55]

Whole bacteriophages and viruses
� T7, phage
60 nm, 3.3 1011 PFU/ml

Linear dsDNA
40 kbp, 60 genes

First time a whole infectious phage is synthesized in a CFE system,
plaque assay, genome replication

[15]

� MS2, phage
27 nm, 4.2 1012 PFU/ml

Linear RNA
3569 bp, 4 genes

Complete synthesis of the phage MS2, concentration measured by
the plaque assay

[12]

� Phi X174, phage
32 nm, 1.9 1012 PFU/ml

Linear dsDNA
5386 bp, 11 genes

Complete synthesis of the phage Phi X174, concentration
measured by the plaque assay

[12]

� T4, phage
60 nm, 109 PFU/ml

Linear dsDNA
169 kbp, 289 genes

Complete synthesis of the phage T4, concentration measured by
the plaque assay

[16]

� EMCV, virus
30 nm, 109-1010 PFU/ml

Linear RNA
7.8 kbp, 13 genes

Complete synthesis of the non-enveloped virus EMCV,
concentration measured by plaque assay

[51]

Nanotechnology – controlled self-assembly
� T4 gp15 and gp18
20 * 500 nm, 50 nm, NA

Plasmid, T7 promoter
3 kbp, 2 genes

Formation of tubes, rings, and synthetic donuts by cell-free
synthesis of two T4 structural proteins

[38]

� T4 gp18
20 * (0–500) nm, NA

Linear, T7 promoter
2 kbp, 1 gene

Gradient of captured protein on a biochip, formation of nanotubes
trapped on a biochip

[53]

� T4 gp6, 7, 8, 10, 11
60 nm, NA

Linear, T7 promoter
9 kbp, 5 genes

Formation of the phage T4 wedge on a biochip, controlled self-
assembly in space

[19]

Table 1. The left column includes information about the type of particles or structures synthesized. The column in the middle provides the genetic
information (DNA or RNA, linear or plasmid), the total length of the coding sequences composing the DNA program (promoters, operators, UTRs, genes,
terminators), the number of genes. The column on the right provides a short description of the work.
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[29], shortening the production to 4 h instead of more
than 50 h in vivo. The two norovirus capsid proteins

GII.3 and GII.4 were produced at a concentration of
0.5e0.6 mg/ml.

Although VLPs produced in E. coli CFE systems have
rather good stability in time and complex physiological
media, advantages offered by CFE have been exploited
to further improve the stability of VLPs and the yields of
synthesis. One strategy consisted of adjusting the redox
potential of the CFE reaction to control the formation of
disulfide bonds both during CFE and post-production
[30]. This method resulted in an increase in the VLPs

self-assembly yield.

As proof of concept of VLPs cell-free synthesis is being
established, research is now also geared towards engi-
neering the particles to expand their bioactivity. The
major effort consists of modifying the surface of VLPs to
either increase the immune response of future vaccines
or add new functions at the surface of VLPs. The surface
www.sciencedirect.com
of MS2 and Qb VLPs, for instance, can be functionalized
by click chemistry via a surface exposed methionine

[31]. This approach offers excellent control of the sur-
face abundance of the attached species. Another asset of
CFE over cell-based approaches is the possibility to
synthesize cytotoxic proteins. This advantage was
exploited to co-synthesize the A2 cytotoxic protein from
Qb with the phage coat protein. VLPs containing a
single A2 protein were produced [32], which also
enabled a greater synthesis of the poorly soluble cyto-
toxic protein. Flagellin, one of the most potent vaccine
adjuvants for enhancing immune response [33], was
successfully attached to cell-free synthesized HBc. The

chemical binding was achieved by inserting a non-
canonical amino acid into the flagellin to carry out a
specific biorthogonal coupling reaction. When coupled
to the surface of VLPs, the specific TLR5 stimulation
activity of flagellin was increased by approximately 10-
fold [34]. In the same spirit, CFE was used to synthe-
size a tandem core Hepatitis B VLPs that enabled
displaying two different influenza antigens [35]. The
Current Opinion in Systems Biology 2021, 28:100373
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titer and quality of the VLPs were improved by modi-
fying different part of the genetic constructs, thereby
providing another demonstration that CFE can be
effective screening platforms of VLPs for universal
vaccines candidates. A more advanced work was
performed on the model HBc VLP to increase its sta-
bility and antigen fusion and reduce its intrinsic
immunogenicity [14]. To achieve this, the HBc protein

was engineered to incorporate artificial disulfide bridges
and a new surface spike region from a naturally occurring
viral mutant, whose reduced negative electric surface
charge was revealed to be essential to improve the
conjugation efficiencies of the molecules coupled to the
VLPs. Although the CFE of VLPs is still a serious
alternative to producing particles with high biomedical
potential, substantial work remains to be carried out to
enable biomanufacturing ready-to-use VLP-
based vaccines.

Whole infectious phages
Phages are a virtually limitless resource of bioactive
materials that are exploited in diverse fields, including
biotechnology [36,37], nanotechnology [38], personal-
ized medicine [39], bioremediation [40], biosensing
[41], and vaccine development [42]. Over the last
century, phages have been instrumental in the discovery
of many ground-breaking biotechnologies, including
CRISPR-Cas9 [43]. Incredibly, metagenomics has

revealed that we have barely scratched the surface of
phages’ true genetic diversity, and therefore, many
biological marvels are likely awaiting to be discovered
[44]. As bioactive materials, phages are invaluable owing
to (i) highly specific binding to target bacteria, (ii)
efficient DNA insertion into bacteria, (iii) potent and
diverse enzymes and proteins, (iv) modular genomes
that can be engineered, and (v) organized protein
structures that can serve as scaffold matrixes. Their
natural function is to infect specific host bacteria,
including those harmful to the environment, animals,

plants, and humans.

The coliphage T7 was the first to be fully synthesized
from its linear dsDNA genome in an E. coli CFE system
[15] (Figure 1, Table 1). Composed of about 60 genes
encoded by a genome of 40-kbp, the phage T7 was
produced at a concentration of 1011 PFU/ml (plaque-
forming unit) in test tubes. In a cell viability assay, T7
phages produced via E. coli or in a cell-free reaction were
comparably capable of infecting E. coli cells. As impor-
tantly, T7 DNA replication was functional during CFS

when dNTPs were supplied as evidenced by the pro-
duction of more infectious T7 phages than genomes
initially added to the cell-free reaction. Subsequently,
three other phages were synthesized in E. coli CFE
systems. The CFS of infectious MS2 (1012 PFU/ml) and
Phi X174 (1012 PFU/ml) particles showed that co-
liphages encoded by a small mRNA and a small circular
dsDNA can also be carried out in vitro via CFE [12].
Current Opinion in Systems Biology 2021, 28:100373
More significant was the synthesis of the coliphage T4
from its 169-kbp linear dsDNA genome [16], at a con-
centration of 109 PFU/ml. To date, T4 remains the
largest natural genome expressed in a CFE reaction that
was capable of the synthesis of a functioning biological
entity. Whether all the 289 genes encoded in the T4
genome were expressed was not determined.

Several conclusions can be drawn from these results, all
obtained in batch mode cell-free reactions. Specifically,
the capability of CFE systems to process a genome of
169-kbp, encoding for a total of 289 genes of which 62
are structural genes, was unexpected on diverse aspects.
It revealed that the amount of biochemical energy
contained in a batch mode CFE reaction is sufficient to
achieve the synthesis of rather large protein sets, which
was unanticipated even considering that phage genome
regulation is highly efficient. The importance of mo-
lecular crowding was clearly revealed for each of the four

coliphages MS2, Phi X174, T7 and T4. To reach such
phage synthesis levels, the concentration of PEG8000,
used to emulate molecular crowding in CFE reactions,
was increased from 1.5 to 2% (2e2.5 mM) to 3.5e4%
(4.5e5 mM) for the four synthesized phages [12,16,45].
Increases of PFUs by factors of up to 103-104 were
observed upon such a small change in the concentration
of PEG8000. The synthesis of viable infectious phages
in the absence of a phospholipid membrane and a closed
compartment shows that these elements are not
required. For some of these phages, such as T4, the self-

assembly process of new phage particles inside the host
relies on the lipid membrane in vivo [46]. The addition
of phospholipid membranes to the cell-free reaction did
not improve the titer of T4, suggesting that phages have
alternative assembly modes.

Although experimentally proven and acknowledged as a
potentially pivotal technology [47], the CFS of infec-
tious phages has not been subsequently exploited pri-
marily because of a lack of basic research. In particular,
the development of cloning methods specific to CFE
systems to facilitate the modification of phage genomes

would create a completely in vitro approach to phage
engineering and production. Such tools would eliminate
the requirement of living cells as chassis for phage en-
gineering, and thus accelerate the designebuildetest
cycle, and enable, for instance, cytotoxic constructs.
The potential advantages of synthesizing infectious
phages by CFE compared to current methods are
several, (1) it avoids the use of dangerous pathogens, (2)
it could expand the range of phages that can be pro-
duced, (3) it could accelerate phage characterization
and engineering and (4) it could reduce the cost of

phage production for applications as various as nano-
technologies, food processing aids to control foodborne
diseases and phage therapy to combat the scourge of
antibiotic-resistant infections [48]. Producing phages
without living cells could also be advantageous to limit
www.sciencedirect.com
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Cell-free viruses and phages Garenne et al. 5
the emergence of host resistance that is typically
observed during large-scale amplification and
manufacturing of phages, which requires a specific
reactor setup that can only be run for a few days [49].
Finally, owing to their ubiquitous nature and specificity
for bacteria, several phages have already been recog-
nized by the Food and Drug Administration as generally
regarded as safe for use in the food industry and present

relatively low levels of safety concerns [50].

The synthesis of eukaryotic viruses has also been
demonstrated albeit more challenging because of safety
and security issues. To date, the encephalomyocarditis
RNA virus, capable of infecting humans, is the only virus
that was fully synthesized in a lysate [51] (Table 1). For
this, the virus genome was encoded into dsDNA, cir-
cular or linear, under a T7 promoter. In a lysate prepared
from Hela cells and supplemented with the T7 RNA
polymerase, infectious encephalomyocarditis RNA vi-

ruses were produced after a few hours of incubation at
concentrations ranging from 108 to 1010 PFU/ml.

Phage parts and nanotechnology
Bymeans of their small genomesize andmodularity, phage
parts can also be isolated, characterized, and repurposed
for specific applications. For instance, the tail fibers alone
of some phages have antimicrobial properties and have
been co-opted by certain bacterial species as a class of

bacteriocins called ‘tailocins’ [52]. Taking apart a phage
and dynamically synthesizing some of its components in a
CFE reaction can promote novel interactions and the self-
assembly of non-natural structural motifs. This concept
was demonstrated using only two structural genes from
the phage T4, gp15 and gp18 [38] (Figure 1, Table 1).
When each gene was expressed separately in test tubes,
the expected structures, rigid tubes of 20 nmdiameter for
gp18 and hexameric rings for gp15, were observed. When
both proteins were expressed in the sameCFE reaction, a
new structure in the form of nano-doughnut with an outer

diameter of 50 nm and thickness of 20 nm was observed.
This work showed that out of their natural biological
context, viral building blocks can exhibit novel in-
teractions and assemblies that otherwise would not exist.
CFE enables making any combination of parts and tuning
the rate of synthesis, thus creating a broad range at which
the onset for self-assembly can occur, thereby demulti-
plexing the combinatorial aspect of the approach. In such
conditions, the discovery and creation of new bio-
nanostructures are not limited by the experiment but by
the ability to rapidly analyze and characterize interesting

reaction products. The creation of a biochip specifically
engineered to localize and visualize such cell-free gener-
ated nano-structural motifs could help in rapidly proto-
typing a wealth of new materials [53].

In an effort to add spatial control to this approach, a two-
dimensional chip that enables patterning of the genes
encoding the viral parts was used to demonstrate the
www.sciencedirect.com
programming of protein assembly lines by local synthesis
[19]. The autonomous synthesis and assembly of the
phage T4 wedge, encoded by five genes, was achieved.
With such a platform capable of emulating assembly
lines, potentially hundreds of separate nanostructures,
natural or synthetic, can be reconstructed on a single
chip. This experimental setup could also be used to
decipher the assembly modes and order of unknown

protein sets.

Eukaryotic virus parts have also been synthesized in
E. coli CFE systems, but in general, they require prior
protein engineering and additional steps after cell-free
synthesis to assemble protein complexes having medi-
cal potential. The cell-free synthesis of an engineered
trimeric influenza hemagglutinin stem domain, for
instance, has to be followed by a refolding proced-
ure [54].
Perspectives and concluding remarks
Although ground-breaking works have been recently
achieved using CFE systems to synthesize parts or
whole phages, it remains to be broadly exploited. Phages
represent an almost unlimited source of genetic di-

versity. The direct integration of molecular tools into
CFE reactions to engineer phage genomes would create
a completely new approach to produce synthetic phages
with properties specifically designed to address
emerging societal issues, such as antibiotic-resistant
microbes. Coupled with functional genomics, the CFS
of phages could elucidate phage gene functions, gene
essentiality and permissive loci necessary to guide the
design of new phages. Considering that only a few
phages have been synthesized in one type of CFE
system (E. coli), the possibilities for producing CFE of
phages in vitro have been barely explored. In particular,

determining phage and virus synthesis across CFE sys-
tems prepared from different eukaryotic cells or bacte-
ria, including Gram-positive and Gram-negative ones,
would provide substantial new information on the pos-
sibilities to bio-manufacture new viruses with broad host
ranges. The synthesis of HBc VLPs from a Pichia pastoris
CFE system is the first step in this direction [55]. Be-
sides research, CFE is well-suited for hands-on practices
in molecular biology and bioengineering at many
different levels [56,57]. The CFS of phages could be
integrated into teaching modules as it is a rather safe

practice that offers unique settings for training and
education, providing fast, affordable, flexible and user-
friendly opportunities for student research.
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