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Abstract. In this paper we study Lipschitz regularity of elliptic PDEs on geometric graphs,
constructed from random data points. The data points are sampled from a distribution sup-
ported on a smooth manifold. The family of equations that we study arises in data analysis
in the context of graph-based learning and contains, as important examples, the equations
satisfied by graph Laplacian eigenvectors. In particular, we prove high probability interior
and global Lipschitz estimates for solutions of graph Poisson equations. Our results can be
used to show that graph Laplacian eigenvectors are, with high probability, essentially Lipschitz
regular with constants depending explicitly on their corresponding eigenvalues. Our analysis
relies on a probabilistic coupling argument of suitable random walks at the continuum level,
and an interpolation method for extending functions on random point clouds to the contin-
uum manifold. As a byproduct of our general regularity results, we obtain high probability
L∞ and approximate C0,1 convergence rates for the convergence of graph Laplacian eigenvec-
tors towards eigenfunctions of the corresponding weighted Laplace-Beltrami operators. The
convergence rates we obtain scale like the L2-convergence rates established in [13].
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1. Introduction

With the aim of expanding the theoretical understanding of graph-based methodologies in
data analysis tasks, in this paper we study the Lipschitz regularity of graph Poisson equations.
Of particular interest to us are fine properties of the spectra of graph Laplacians built from
random data sets. Our main results are used to study the regularity of graph Laplacian
eigenvectors and their strong convergence in the large data limit. Several authors have proposed
the use of graphs to endow data sets with geometric structure, and in particular have utilized
graph Laplacians to understand how information propagates on the graph representing the
data. Spectra of graph Laplacians are fundamental geometric descriptors that can be used to
extract meaningful local and global summarized information from data sets. Graph Laplacians
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and their spectra form the basis of popular algorithms for supervised learning [1, 6, 57, 69],
clustering [45, 62], construction of embeddings and dimensionality reduction [4, 18, 49]. They
are used in non-parametric statistics as local regularizers [51, 59, 66], as well as in Bayesian
settings, to define covariance matrices for Gaussian priors [7, 38,69].

While a graph Laplacian can be associated to any arbitrary graph, many authors in the
learning community have given particular attention to the important family of geometric graphs
since the 2000’s. Since then, the following theoretical question has been explored from different
points of view: if a data set Xn = {x1, . . . , xn} is obtained by sampling a distribution supported
on some manifold M, and a graph representing the similarity between data points is built based
on distance proximity, what can we learn about the manifold M from the data set? The term
manifold learning was coined to capture this general question, which was typically associated
to the study of Laplacians. From a statistical perspective, manifold learning can be rephrased
slightly differently: if an algorithm depends on the input of random data sampled from a
distribution supported on a manifold, what can we say about the outcomes of said algorithm?,
are outcomes consistent in the large data limit, and if so, how many data points are needed
to reach a certain level of accuracy for the approximation of a ground truth defined at the
continuum (manifold) level? Ultimately, an attempt to study a manifold learning question is
an attempt to develop mathematical theory with the hope of providing a better understanding
of a given learning algorithm.

In this paper we study regularity properties of a class of graph PDEs on geometric graphs,
a manifold learning question that has not been studied in the already large literature on graph
Laplacians from random samples. By studying said regularity properties we are able to inves-
tigate strong notions of convergence of graph Laplacian eigenvectors towards eigenvectors of
Laplace-Beltrami operators (or weighted versions thereof) and provide high probability rates
characterizing this convergence. Several other ramifications will be explored elsewhere.

The general type of results that we obtain can be described as follows. Suppose that associ-
ated to our dataset Xn, we have weights ωij which represent the similarity between points xi
and xj . In the manifold learning setting, where Xn = {x1, . . . , xn} are thought of as samples
from a m-dimensional manifold M embedded in a possibly high dimensional ambient space
Rd (i.e., the manifold assumption [17]), the weights are typically determined by proximity be-
tween points. Here, we focus our attention on the special class of ε-graphs whose weights (up
to appropriate rescaling) are given by:

ωij = η

(︃
|xi − xj |

ε

)︃
,

and in particular depend on a user-chosen connectivity length-scale ε > 0 as well as on a
decreasing kernel η (typically chosen to be a Gaussian in applications). The edge weights ωij
induce a graph structure on Xn as well as an associated graph Laplacian:

∆ε,Xnf(xi) =
1

nεm+2

n∑︂
j=1

η

(︃
|xi − xj |

ε

)︃(︁
f(xi)− f(xj)

)︁
(1.1)

which acts on functions f : Xn → R.
If we think of the data points in Xn as samples from some ground-truth distribution, the

question of regularity of solutions to graph Poisson equations:

∆ε,Xnf = g,
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becomes a probabilistic question, as the graph Laplacian depends on the random points used
to build it. The main result in our paper essentially says that, provided ε is not too small (i.e.,
it satisfies (1.4) below), then with very high probability solutions to graph Poisson equations
satisfy an approximate Lipschitz estimate:

|f(xi)−f(xj)| ≤ C(∥∆ε,Xnf∥L∞(Xn)+∥f∥L∞(Xn))·(dM(xi, xj) + ε) for all xi, xj ∈ Xn, (1.2)

where dM is the geodesic distance on M. We say approximate Lipschitz estimate because,
while at length-scales larger than ε (where we recall ε determines the connectivity of the
graph), f indeed behaves like a Lipschitz function, it is actually not possible to resolve its level
of regularity within ε-neighborhoods, a fact that should not be surprising as geometric graphs
behave like complete graphs at length-scale ε. We remark that the constant C that appears in
(1.2) is independent of f , ε or n, and only depends on the underlying distribution (in particular
also on the manifold M) data points are drawn from. We also prove a local version of (1.2).

1.1. Estimates for eigenvectors. The regularity estimates that we obtain in this paper are
quite general and can be used to deduce a variety of results. Here we only use them towards
regularity estimates of eigenvectors of ∆ε,Xn , as well as to obtain uniform and approximate C0,1

convergence rates of said eigenvectors to continuum (manifold) counterparts. To see how our
results apply to the eigenvector problem:

∆ε,Xnf = λf, (1.3)

we first directly apply (1.2) to obtain an estimate of the form:

|f(xi)− f(xj)| ≤ C(λ+ 1)∥f∥L∞(Xn) ·
(︁
dM(xi, xj) + ε

)︁
for all xi, xj ∈ Xn.

Although at first sight it would seem as if the above estimate was only meaningful if a priori
estimates on the L∞-norm of f were available, in fact, we show that it follows from the Lipschitz
estimate above that ∥f∥L∞(Xn) ≤ C(λ + 1)m∥f∥L1(Xn) and so if the eigenvector is properly
normalized, namely: ∥f∥L2(Xn) = 1, then we have:

|f(xi)− f(xj)| ≤ C(λ+ 1)m (dM(xi, xj) + ε) for all xi, xj ∈ Xn.

Besides obtaining regularity estimates for eigenvectors of ∆ε,Xn with constants depending ex-
plicitly on λ, we also use our general regularity estimates (1.2) to bootstrap the L2-convergence
rates of graph Laplacian eigenvectors towards their continuum counterparts (as studied in [13])
and upgrade them to L∞ and approximate C0,1 convergence rates. That is, suppose that f is a
(properly normalized) solution to (1.3), and let f̃ be an eigenfunction of the continuum (local)

Laplacian counterpart of ∆ε,Xn for which we have error estimates on ∥f − f̃∥L2(Xn) (see [13]).

Applying (1.2) to the difference f − f̃ (where f̃ is interpreted as the restriction of f̃ to Xn)
we are able to upgrade the high probability L2-convergence rates of eigenvectors to L∞ and
approximate C0,1 convergence rates. It is interesting to notice that the rates that we obtain
using (1.2) are much better than the ones we would have obtained if we had used the fact that

both f and f̃ are Lipschitz, together with an interpolation inequality. Indeed, the standard

interpolation inequality ∥f∥L∞(Xn) ≤ C[f ]
m/(m+2)
1 ∥f∥2/(m+2)

L2(Xn)
, where [f ]1 is the Lipschitz semi-

norm of f , suffers from the curse of dimensionality in its dependence on ∥f∥L2(Xn), while our

results show that the L∞ rates are the same as the L2 rates. We remark that all the above
discussion is meaningful as long as ε is in the regime:(︃

log(n)

n

)︃ 1
m+4

≲ ε ≲ 1. (1.4)
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1.2. Literature perspective. Thus far, our discussion suggests that by studying regularity
properties of graph Laplacians, we are able to deduce a variety of novel results that are of
substantial theoretical importance for the graph-based learning community. To provide some
perspective and to highlight our contributions, it is worth mentioning some of the related exist-
ing literature. Early work on consistency of graph Laplacians focused on pointwise consistency
results for ε-graphs (see, for example [5,33,35,36,54,60]). There, as in here, the data is assumed
to be an i.i.d. sample of size n from a ground truth measure, supported on a submanifold M
embedded in a high dimensional Euclidean space Rd, where pairs of points that are within
distance ε of each other are given high weights. Pointwise consistency results show that as
n → ∞ and the connectivity parameter ε → 0 (at a slow enough rate), the graph Laplacian
applied to a fixed smooth test function converges to the value of a continuum operator, such
as the Laplace-Beltrami. In the past few years, the literature has moved beyond pointwise
consistency and started studying the sequence of solutions to graph-based learning problems
and their continuum limits, using tools like Γ-convergence [15,20,28,56], tools from PDE the-
ory [10,11,15,22,25] including the maximum principle and viscosity solutions, and martingale
methods [14], which are related to the techniques used in this paper.

Regarding spectral convergence of graph Laplacians, the regime n → ∞ and ε ≡ const was
studied in [63], and in [55] which analyzed connection Laplacians. Works that have studied
regimes where ε→ 0 include [27], [52], [9], and [23]. In [13] convergence rates for eigenfunctions
under L2-type distances are deduced, in the same regime for ε given in (1.4). Namely, it has
been proved that the rate of convergence of eigenvectors scales linearly in ε, matching the
convergence rate of eigenvalues as well as the pointwise convergence rates; these results are to
the best of our knowledge state of the art. As shown in Theorem 2.6, in this paper we are able
to upgrade the results from [13] to L∞ and to almost C0,1 convergence.

We point out that our work is one of only three very recent papers that obtain L∞ con-
vergence rates for graph Laplacian eigenvectors (see [21] and [67]); these three works use very
different approaches. Uniform convergence is an important notion for settings in machine learn-
ing such as semi-supervised learning where it is key to formulate algorithms for which pointwise
evaluations are well posed asymptotically. We notice that convergence rates from [21] are looser
than ours. On the other hand, the rates obtained in [67] hold under restrictive assumptions:
M is assumed to be a flat torus, the probability density is constant, the kernel used to build
the graph is Gaussian. Also, no regularity estimates are deduced from the analysis in [67].

1.3. New tools and arguments. The fact that our paper studies a manifold learning question
that has not been studied in the past, suggests that the methods and techniques employed here
are also novel in the analysis of graph-based learning, and thus of interest on their own right.
Our proofs contrast with those traditionally used to analyze graph Laplacians, that mostly rely
on spectral and variational techniques. We now outline some of these new arguments.

First, in order to study the regularity of graph Laplacians, we analyze a closely related
continuum non-local Laplacian of the form:

∆εf(x)
.
=

1

εm+2

ˆ
M
η

(︃
dM(x, y)

ε

)︃(︁
f(x)− f(y)

)︁
ρ(y) dVolM(y) for all x ∈ M, (1.5)

which acts on functions f : M → R, where dM represents the geodesic distance on M, and ρ
is the density of the point cloud Xn. The non-local Laplacian ∆ε can be thought of intuitively
as the n→ ∞, ε > 0 fixed counterpart of the graph Laplacian ∆ε,Xn . Of possibly independent
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interest, we prove a continuum Lipschitz estimate of the form:

|f(x)− f(y)| ≤ C
(︁
∥∆εf∥L∞(M) + ∥f∥L∞(M)

)︁
· (dM(x, y) + ε) (1.6)

for functions f : M → R. Our main Lipschitz estimates in the graph setting are proved by
using a novel interpolation map that extends functions on Xn to functions on M in such a way
that the non-local Laplacian ∆ε is controlled in an appropriate norm by the graph Laplacian
∆ε,Xn , and then applying the Lipschitz estimate (1.6) to the interpolated function.

Second, the Lipschitz estimate (1.6) is proved with a probabilistic argument (not related
to the randomness of the data points!: notice that ∆ε is deterministic) which is based on a
coupling for a suitable random walk. The argument goes as follows. For an arbitrary pair
of points x, y ∈ M we consider discrete time random walks {Xk}k∈N and {Yk}k∈N with state
space M starting at x and y respectively, both of which have as generator an operator closely
related to ∆ε. These walks are coupled to encourage coalescence; we consider a stopping time
τ , essentially defined as the first time at which either the walks have gotten sufficiently close
to each other or have drifted apart a certain order-one distance. For the appropriately coupled
walks, we are able to provide basic quantitative estimates for τ , show that τ is not expected
to be too large, and also that the probability of the walks being close to each other at time τ
is close to one (i.e. the walks do coalesce). We then use martingale techniques to bound the
difference |f(x)−f(y)| in terms of the difference |f(Xτ )−f(Yτ )|, the point being that while x, y
may be of order-one apart, the points Xτ and Yτ will be closer together (with high probability),
thus allowing to estimate |f(x)−f(y)| in terms of |f(x̃)−f(ỹ)| for x̃, ỹ that are closer together
than the original x, y. From there, we follow an iteration argument to eventually obtain the
desired regularity estimates. All details of the idea outlined above will be given in section 8.

The type of argument described above follows a line of work that has developed probabilistic
techniques to study regularity properties of (continuum) PDEs. In particular, the reflection
coupling method dates back to the work by Lindvall and Rogers on coupling of diffusion pro-
cesses [43], where the Brownian parts of were coupled via a time-dependent field of orthogonal
matrices. The Lindvall-Rogers coupling was used by Cranston [19] to prove gradient estimates
for equations involving the Laplace-Beltrami operator on manifolds. The method has been
significantly generalized and applied to parabolic and elliptic equations [39,40,50,64,65]. Cou-
pling methods in the discrete setting have also been used to establish Hölder and Lipschitz
regularity in nonlinear potential theory, and in particular, for the p-Laplacian via the connec-
tion to stochastic two player tug-of-war games [2,3,34,44,47]. There are also recent application
to Hölder regularity for the Robin problem [41,42].

In an independent thread, the viscosity solutions community developed methods for proving
Hölder regularity of degenerate elliptic equations via doubling the variables and utilizing the
comparison principle for semi-continuous functions with an appropriately constructed super-
solution (see, e.g., [37, Section VII]). It was later realized that, at a high level, the analytic
techniques using the comparison principle are roughly equivalent to probabilistic coupling,
with the doubling variables playing the role of coupling of diffusion processes. We refer to the
appendix of [48] for a detailed discussion of the analytic versus probabilistic methods.

When the data density is constant, the coupling used in our paper can be viewed as a discrete
analog of the Lindvall-Rogers coupling [43], adapted to a smooth manifold in [19]. When the
data density is not constant, the corresponding random walk has a small drift component
along the gradient of the density. The drift appears through a lack of symmetry in the random
walk increment, and is not a simple additive drift, as in the Lindvall-Rogers framework. In
order to couple the random walks with drift, we construct the random walks increments by
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probabilistically mixing a symmetric random walk step, to which the reflection coupling is
applied, with a pure drift step, to which a parallel coupling is applied.

2. Setup and main results

Let M be a compact, connected, orientable, smooth, m-dimensional manifold embedded in
Rd. We give to M the Riemannian structure induced by the ambient space Rd. The geodesic
distance between x, y ∈ M is denoted dM(x, y). We write BM(x, r) for the geodesic ball in
M of radius r centered at x, while B(x, r) is used to denote a Euclidean ball in Rm or in Rd,
depending on context. By dVolM we denote the volume form on M. Other tools and notation
from Riemannian geometry will be introduced as needed in the sequel. We have compiled a
list of definitions and auxiliary geometric estimates in the Appendix A.

Let µ be a probability measure supported on M, with density ρ : M → (0,∞) (with respect
to dVolM), which we assume is bounded, bounded away from zero, and at least C2(M). Let
Xn = {x1, . . . , xn} be a set of i.i.d. samples from µ. We denote by L2(Xn) the space of functions
f : Xn → R endowed with the inner product:

⟨f, g⟩L2(Xn)
.
=

1

n

n∑︂
i=1

f(xi)g(xi).

This induces a norm ∥f∥L2(Xn) = ⟨f, f⟩1/2
L2(Xn)

. We also define the L1 and L∞ norms:

∥f∥L1(Xn)
.
=

1

n

n∑︂
i=1

|f(xi)|, ∥f∥L∞(Xn)
.
= max

1≤i≤n
|f(xi)|.

Let η : [0,∞) → [0,∞) be a non-increasing function with support on the interval [0, 1], whose
restriction to [0, 1] is Lipschitz continuous. Note that η may be discontinuous on [0,∞), and
that we allow functions such as η(t) = 1[0,1]. We assume that:

ˆ
Rm

η(|w|) dw = 1,

and we define the constant:

ση
.
=

ˆ
Rm

⟨w, e1⟩2η(|w|) dw. (2.1)

Let ε > 0. A weight between two points x, y ∈ M is defined by:

wxy
.
= η

(︃
|x− y|
ε

)︃
,

where |x − y| is the Euclidean distance from x to y in Rm. The weights wxy endow Xn with
the structure of a graph called the random geometric graph. We define the associated graph
Laplacian ∆ε,Xn : L2(Xn) → L2(Xn) by the expression in (1.1). We also define the nonlocal
Laplacian ∆ε : L

2(M) → L2(M) by (1.5), understood as the n→ ∞ and ε = const continuum
limit of the graph Laplacian ∆ε,Xn . In the continuum limit as n → ∞ and ε → 0, the graph
Laplacian ∆ε,Xn is consistent (see [13,35]) with the weighted Laplace-Beltrami operator:

∆Mf
.
= −ση

2ρ
div(ρ2∇f). (2.2)
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2.1. Main results. Unless otherwise noted, the constants C, c > 0 in the theorems depend
only on M, ρ and η. Also, in the statements of our results, as well as in the remainder of the
paper, whenever we write a ≪ 1, we mean that the positive quantity a is assumed to be less
than or equal to a sufficiently small constant that may depend on M, ρ or η.

Theorem 2.1 (Global Lipschitz regularity). Let ε ≪ 1. Then, with probability at least 1 −
Cε−6m exp

(︁
−cnεm+4

)︁
we have:

|f(xi)− f(xj)| ≤ C
(︁
∥f∥L∞(Xn) + ∥∆ε,Xnf∥L∞(Xn)

)︁
·
(︁
dM(xi, xj) + ε

)︁
,

for all f ∈ L2(Xn) and all xi, xj ∈ Xn.

Theorem 2.1 shows that the Lipschitz regularity of f ∈ L2(Xn) is controlled by the size of
f and ∆ε,Xnf in L∞. In particular, solutions of graph Poisson equations ∆ε,Xnf = g with
bounded f are Lipschitz continuous on the graph Xn, at length scales larger than ε.

We also prove a parallel interior estimate:

Theorem 2.2 (Interior Lipschitz regularity). Let ε ≪ r ≪ 1. Then, with probability at least
1− Cε−6m exp

(︁
−cnεm+4

)︁
we have:

|f(xi)− f(xj)| ≤ C
(︂dM(xi, xj)

r
+
ε| log(ε)|

r

)︂
· ∥f∥L∞(Xn∩BM(x,7r))

+ C
(︂
rdM(xi, xj) +

εr

| log ε|

)︂
· ∥∆ε,Xnf∥L∞(Xn∩BM(x,7r)),

for all f ∈ L2(Xn), x ∈ M, r > 0, and xi, xj ∈ BM(x, r) ∩ Xn.

As a direct application of Theorem 2.1, we observe the following:

Theorem 2.3 (Lipschitz regularity of graph Laplacian eigenvectors). Let Λ > 0, ε ≪ 1, such
that ε ≤ c

Λ+1 . Then, with probability at least 1−Cε−6m exp
(︁
−cnεm+4

)︁
−2n exp (−cn(Λ + 1)−m)

we have:

|f(xi)− f(xj)| ≤ C(Λ + 1)m+1∥f∥L1(Xn)(dM(xi, xj) + ε),

valid for all non-identically zero f ∈ L2(Xn) with λf < Λ and all xi, xj ∈ Xn. Here:

λf
.
=

∥∆ε,Xnf∥L∞(Xn)

∥f∥L∞(Xn)
.

Remark 2.4. In Theorem 2.3, if we take f ∈ L2(Xn) to be a normalized eigenvector of ∆ε,Xn

with eigenvalue λ, satisfying (1.3) and ∥f∥L2(Xn) = 1, then the result implies:

|f(xi)− f(xj)| ≤ C(λ+ 1)m+1(dM(xi, xj) + ε), (2.3)

since ∥f∥L1(Xn) ≤ ∥f∥L2(Xn) = 1, and λf = λ. We also note that in the smallness condition for
ε and in the right hand side of the inequality, we can take Λ as a small constant multiple of a
corresponding eigenvalue λ̃ of the continuum local Laplacian ∆M: if λ is the k-th eigenvalue
of ∆ε,Xn , then we can let λ̃ be the k-th eigenvalue of the weighted Laplace-Beltrami operator
∆M. This is due to the consistency results (with rates) for the eigenvalues of ∆ε,Xn ; see [13].

Theorem 2.3 allows us to estimate the L∞ norm of eigenvectors by their L1 norms:

Corollary 2.5. Under the same conditions as in Theorem 2.3 and in the same event where
inequality (2.3) holds, we have:

∥f∥L∞(Xn) ≤ C(Λ + 1)m+1∥f∥L1(Xn).



LIPSCHITZ REGULARITY OF GRAPH LAPLACIANS ON RANDOM DATA CLOUDS 9

Finally, we use our general regularity estimates from Theorem 2.1 to obtain the following
uniform and approximate C0,1 convergence rates for the eigenvectors of the graph Laplacian
towards eigenfunctions of the weighted Laplace-Beltrami operator ∆M. To make our statement
precise, for δ > 0 we define the δ-approximate Lipschitz seminorm of f ∈ L2(Xn) by:

[f ]δ,Xn

.
= max

x,y∈Xn

|f(x)− f(y)|
dM(x, y) + δ

.

Theorem 2.6 (Convergence rates for eigenvectors of the graph Laplacian). Let ε ≪ 1 and
suppose that f is a normalized eigenvector of ∆ε,Xn with eigenvalue λ, i.e. it satisfies (1.3) and
∥f∥L2(Xn) = 1. Then, with probability at least 1 − C(n + ε−6m) exp

(︁
−cnεm+4

)︁
there exists a

normalised eigenfunction f̃ of ∆M defined in (2.2), i.e. ∆Mf̃ = λ̃f̃ and ∥f̃∥L2(M) = 1, with:

∥f − f̃∥L∞(Xn) + [f − f̃ ]ε,Xn ≤ Cε.

where the constant Cin the right hand side above depends additionally on λ.

Remark 2.7. Compared to the results reported in [21] (e.g. Theorem 2) which state uniform

convergence of eigenvectors with high probability at the rate n−1/(8m+30) when picking the
connectivity parameter as ε ∼ n−1/(4m+15), our results imply uniform convergence with rates

scaling linearly in ε for all ε≫
(︂
log(n)
n

)︂1/(m+4)
. In particular, choosing ε ∼

(︂
log(n)
n

)︂1/(m+4)
we

obtain uniform convergence of eigenvectors at the rate
(︂
log(n)
n

)︂1/(m+4)
. We highlight that our

results hold for a stronger almost C0,1 notion of convergence.

Finally, let us recall that the asymptotic almost sure spectral convergence of graph Laplacians
towards Laplace-Beltrami operators (with eigenvector convergence understood in an L2-sense)
can be guaranteed in the regime: (︃

log(n)

n

)︃1/m

≲ ε ≲ 1

(see e.g. [13]), and it is not unreasonable to expect that similar L∞ consistency results can be
obtained in the same regime as well. However, we believe that new ideas are actually needed
in order to enlarge the regimes for ε and provide corresponding quantitative high probability
error estimates. Our work, in particular our regularity estimates in terms of suitable non-local
operators, may be used directly in a future analysis, and the focus for improvement can be put
on the probabilistic estimates relating graph Laplacians with these non-local operators.

Remark 2.8. If we take the length scale required in our main theorems ε ∼
(︂
log(n)
n

)︂1/(m+4)
,

then the number of edges in the resulting graph is n
m+8
m+4 log(n)

m
m+4 . Notice that as the manifold

dimension m increases, the graph has fewer edges and better sparsity properties. For larger m
the number of edges in the graph is slightly larger than linear in the number of nodes.

The proofs of theorems listed so far rely strongly on the intermediate results that are also
of independent interest. We present them in the next sections.

2.2. Almost-interpolation maps: lifting the discrete to the continuum. Several tech-
niques have been developed recently for performing an interpolation of functions defined on
Xn, in order to extend them to the whole M. For example, in the context of variational
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techniques and Γ-convergence, the TLp topology was developed in [29] for precisely this pur-
pose, and has been used numerous times since, for studying discrete to continuum conver-
gence [15, 20, 23, 24, 26, 30–32, 46, 56, 58]. The TLp topology involves defining measure preserv-
ing transportation maps pushing the discrete probability measure µn

.
= 1

n

∑︁n
i=1 δxi onto the

continuum probability distribution µ, and is useful for controlling energies in a Γ-convergence
framework. For problems where a maximum principle is available, which gives very strong dis-
crete stability, interpolation maps are not needed and it is sufficient to consider the restriction
of smooth functions to the graph. We refer to [10,11,53,61,68] for applications of the maximum
principle to discrete to continuum convergence.

Here, we are concerned with passing from a discrete graph problem to a nonlocal equation,
while controlling the values of the graph and nonlocal Laplacians. For this purpose, we develop
a new technique for extending discrete functions on the graph to functions on M. We define
the almost-interpolation operator Iε,Xn : L2(Xn) → L2(M) and the rescaled degree dε,Xn(x):

Iε,Xnf(x)
.
=

1

dε,Xn(x)
· 1
n

n∑︂
i=1

1

εm
η
(︂ |x− xi|)

ε

)︂
f(xi)

dε,Xn(x)
.
=

1

n

n∑︂
i=1

1

εm
η
(︂ |x− xi|

ε

)︂
for all x ∈ M,

(2.4)

where in both formulas above η is applied to the scaled Euclidean distance between x, xi ∈ Rd.
At this stage, for any x ∈ M for which dε,Xn(x) = 0, we take Iε,Xnf(x) = 0. Later on, we will
show that with very high probability dε,Xn(x) > 0 for all x ∈ M for appropriate scalings of ε
and n. Also, notice that dε,Xn is nothing but a kernel density estimator for ρ.

The following result establishes discrete to nonlocal control for Iε,Xn . In order to make the
statements precise we introduce the oscillation of a function u over a set A:

osc
A
f
.
= sup

A
f − inf

A
f.

Theorem 2.9 (Discrete to Nonlocal). Let ε≪ 1. With probability at least 1− Cε−6m exp
(︁
−

cnεm+4
)︁
we have:

|∆ε(Iε,Xnf)(x)| ≤ C
(︁
∥∆ε,Xnf∥L∞(Xn∩B(x,ε)) + osc

Xn∩B(x,2ε)
f
)︁

for all f ∈ L2(Xn) and all x ∈ M.

Notice that Theorem 2.1 allows to control the oscillation term in Theorem 2.9, which leads
to the following improved discrete to nonlocal result:

Corollary 2.10 (Improved Discrete to Nonlocal). Let ε ≪ 1. With probability at least 1 −
Cε−6m exp

(︁
−cnεm+4

)︁
we have:

∥∆ε(Iε,Xnf)∥L∞(M) ≤ C
(︁
∥∆ε,Xnf∥L∞(Xn) + ε∥f∥L∞(Xn)

)︁
for all f ∈ L2(Xn).

The proof of Theorem 2.2 combines the discrete to nonlocal control from Theorem 2.9 with
the nonlocal Lipschitz regularity estimates that we discuss next.
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2.3. Lipschitz regularity for nonlocal Laplacian. The results presented in this section are
of independent interest, but here we use them to prove our main results. First we establish the
following global nonlocal Lipschitz regularity estimates towards the proof of Theorem 2.1.

Theorem 2.11 (Global regularity). Let ε ≪ 1. Then, for every bounded, Borel function
f : M → R and every x, y ∈ M there holds:

|f(x)− f(y)| ≤ C
(︁
∥f∥L∞(M) + ∥∆εf∥L∞(M)

)︁
·
(︁
dM(x, y) + ε

)︁
.

We also have the following interior estimate, used in the proof of Theorem 2.2.

Theorem 2.12 (Interior estimate). Let ε ≪ r ≪ 1. Then, for every bounded Borel function
f : M → R, every x0 ∈ M and x, y ∈ BM(x0, r) ⊂ M, we have:

|f(x)− f(y)| ≤ C
(︂dM(x, y)

r
+
ε| log ε|

r

)︂
· ∥f∥L∞(BM(x0,7r)

+ C
(︂
rdM(x, y) +

εr

| log ε|

)︂
· ∥∆εf∥L∞(BM(x0,7r)).

Remark 2.13. We note that Theorems 2.11 and 2.12 do not require the manifold M to be
embedded in Euclidean space Rd, and they hold for an abstract Riemannian manifold.

2.4. Outline. The rest of the paper is organized as follows. In section 3 we discuss properties
of the discrete degree dε,Xn while in section 4 we deal with the almost-interpolation operator
Iε,Xn which allows us to relate discrete with continuum functions, and graph with nonlocal
Laplacians, as stated in Theorem 2.9. Towards further applications, in Section 5 we present a
result of independent interest, namely a curvature-driven error estimate on geodesic distances
in the Levi-Cività quadrilateral, frequently used in the following analysis on manifolds.

Section 6 discusses the two averaging operators in connection with the weighted Laplace-
Beltrami operator in (2.2). Further, in section 7 we introduce a biased random walk, which is a
discrete process modelled on one of the averaging operators. Sections 8, 9 and 10 are directed
towards the proofs of Theorems 2.11 and 2.12 characterizing the regularity of nonlocal Poisson
equations at the continuum level. We wrap up the paper with the proofs of our main theorems
in section 11 where we use directly the results announced in sections 2.2 and 2.3.

We emphasize that sections 3-4 and sections 6-10 are independent of each other. Readers
who decide to skip one of these sections may be able to do so and jump directly to section 11
without missing the general structure of the proofs of our main results. Throughout the paper
we will use several notions from Riemannian geometry; these are gathered in Appendix A.

PART 1

3. Concentration of measure and the discrete degree dε,Xn

In this section we work under the following hypotheses:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

(i) (M, g) is a smooth, compact, boundaryless, connected and orientable mani-
fold of dimension m, embedded in Rd,

(ii) ρ ∈ C2(M) is a positive scalar field, normalised to:
´
M ρ(x) dVolM(x) = 1,

(iii) η : [0,∞) → R is a nonnegative, nonincreasing density function, which is
Lipschitz continuous on [0, 1] and satisfies:

´
B(0,1)⊂Rm η(|w|) dw = 1. We

then denote: ηε(s) =
1
εm η

(︁
s
ε

)︁
.

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(H1)
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Remark 3.1. The orientability assumption will not be used until Section 11, which builds on
several previous results in the literature invoking this condition explicitly. We believe that the
orientability assumption can be removed from those previous results as well. For the sake of
transparency we have decided to keep this assumption, which, we should say, is quite mild for
most applications in machine learning.

We denote µ = ρ(x) dVolM(x) the probability measure on the Borel subsets of M. For each
n ≥ 1 we consider the following product space, with elements Xn:

(Mn,Borel,Pn)
.
= (M,Borel, µ)n

with Mn =
{︁
Xn = {x1, . . . , xn}; xi ∈ M for i = 1 . . . n

}︁
.

Equivalently, Xn is simply described as a set of i.i.d. samples from µ = P1, while the subscript
n in Pn emphasizes the dependence of events on the first n data points {x1, . . . , xn}.

Recall that to any discrete function f : Xn → R we associate the continuum function Iε,Xnf :
M → R, defined in (2.4). As we shall see, the event {Xn; dε,Xn(x) > 0 for all x ∈ M} ⊂ Mn,
resulting in the corresponding operator Iε,Xn being well defined and returning a Borel, bounded
function Iε,Xnf for every discrete f , occurs with high probability Pn (see Corollary 3.7).

In this section, the main point is to focus on dε,Xn versus dε and develop a series of technical
tools towards the main result in Theorem 2.9 that will be given in section 4. There are two facts
from differential geometry that we will frequently use. These facts, related to the manifold M
being embedded in Rd can be found in section A.4, but we also state them presently, for the
sake of clarity. First, there exists a constant C > 0 depending only on M such that, denoting
|B(0, 1)| the volume of the unit ball in Rm, we have for all r ≪ 1:⃓⃓

V olM(BM(x, r))− |B(0, 1)|rm
⃓⃓
≤ Crm+2 for all x ∈ M. (3.1)

Second, for all x, y ∈ M such that |x− y| ≤ R
2 with a sufficiently small R, there holds:

|x− y| ≤ dM(x, y) ≤ |x− y|+ 8

R2
|x− y|3. (3.2)

3.1. Concentration of measure lemmas. We first state a basic concentration of measure
result, including its self-contained proof that has been sketched in [13, Lemma 3.1].

Lemma 3.2. Given a bounded, Borel function ψ : M → R and ε > 0, for each x ∈ M we
consider the following random variable:

Ψε,x(Xn)
.
=

n∑︂
i=1

1{|xi−x|≤ε}ψ(xi) for all Xn = {x1, . . . , xn} ∈ Mn.

Then, there exists a positive constant C, depending only on M, such that for all ε ≪ 1 and t
satisfying ε2 ≤ t ≤ 1, and all x ∈ M, there holds:

Pn
(︂⃓⃓⃓
Ψε,x − n

ˆ
BM(x,ε)

ψ(y)ρ(y) dVolM(y)
⃓⃓⃓
≥ Ctnεm∥ρ∥C0∥ψ∥L∞(BM(x,2ε))

)︂
≤ 2 exp

(︂
− C

8
t2nεm∥ρ∥C0

)︂
.

(3.3)

Proof. 1. By comparison of the Euclidean and geodesic distances in (3.2), one observes:

BM(x, ε) ⊂ B(x, ε) ∩M ⊂ BM
(︁
x, ε+

8

R2
ε3
)︁
⊂ BM(x, 2ε) (3.4)
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for all x ∈ M and all ε ≪ 1. Further, in view of (3.1) and denoting by C a sufficiently large
constant that depends only on M, it follows that:

V olM
(︁
B(x, ε)∩M

)︁
− V olM(BM(x, ε)) ≤ V olM

(︁
BM

(︁
x, ε+

8

R2
ε3
)︁)︁

− V olM(BM(x, ε))

≤ |B(0, 1)|
(︁
(ε+ Cε3)m − εm

)︁
+ Cεm+2 ≤ Cεm+2.

(3.5)

2. The argument towards (3.3) relies on applying Bernstein’s inequality [8] to the indepen-
dent random variables

{︁
Yi

.
= 1{|xi−x|≤ε}ψ(xi)

}︁n
i=1

on Mn. By (3.4), these obey the pointwise
bound: |Yi| ≤ ∥ψ∥L∞(BM(x,2ε)) and the bound on the variance:

E
[︁
(Yi−E[Yi])2

]︁
= E[Y 2

i ]− E[Yi]2 ≤ E[Y 2
i ] =

ˆ
B(x,ε)∩M

ψ(y)2ρ(y) dVolM(y)

≤ ∥ρ∥L∞(M)∥ψ∥2L∞(BM(x,2ε))V olM
(︁
BM(x, 2ε)

)︁
≤ Cεm∥ρ∥L∞(M)∥ψ∥2L∞(BM(x,2ε)),

where in the last step we again used (3.1). We conclude that, for every δ > 0:

Pn
(︂⃓⃓
Ψε,x − E[Ψε,x]

⃓⃓
≥ δ

)︂
≤ 2 exp

(︂
− δ2

2Cnεm∥ρ∥L∞(M)∥ψ∥2L∞(BM(x,2ε)) +
4
3δ∥ψ∥L∞(BM(x,2ε))

)︂
,

which upon taking δ = Ctnεm∥ρ∥L∞(M)∥ψ∥L∞(BM(x,2ε)) yields:

Pn
(︂⃓⃓
Ψε,x− E[Ψε,x]

⃓⃓
≥ Ctnεm∥ρ∥L∞(M)∥ψ∥L∞(BM(x,2ε))

)︂
≤ 2 exp

(︂
−
Cεmnt2∥ρ∥L∞(M)

2 + 4
3 t

)︂
≤ 2 exp

(︂
− C

4
t2nεm∥ρ∥L∞(M)

)︂
.

(3.6)

Recall now (3.5) and (3.4) to get, in view of ε2 ≤ t:⃓⃓⃓
E[Ψε,x]− n

ˆ
BM(x,ε)

ψ(y)ρ(y) dVolM(y)
⃓⃓⃓
= n

⃓⃓⃓ ˆ
(B(x,ε)∩M)\BM(x,ε)

ψ(y)ρ(y) dVolM(y)
⃓⃓⃓

≤ Cnεm+2∥ρ∥L∞(M)∥ψ∥2L∞(BM(x,2ε)) ≤ Ctnεm∥ρ∥L∞(M)∥ψ∥2L∞(BM(x,2ε)).

Together with (3.6), the above implies (3.3) with constants 2C and C
4 , instead of C and C

8 in
the left and right hand sides, respectively. The result follows by rescaling the constant C.

Corollary 3.3. There exist constants C,C ′, c > 0, depending on M and ρ, such that for all
ε≪ 1 and all x ∈ M there holds:

Pn
(︂
C ′nεm ≤

n∑︂
i=1

1{|xi−x|≤ε} ≤ Cnεm
)︂
≥ 1− 2 exp (−cnεm) .

Proof. Applying Lemma 3.2 to ψ ≡ 1, yields for all ε2 ≤ t ≤ 1 with ε≪ 1, and all x ∈ M:

Pn
(︂⃓⃓⃓ n∑︂

i=1

1{|xi−x|≤ε} − n

ˆ
BM(x,ε)

ρ(y) dVolM(y)
⃓⃓⃓
≤ Ctnεm∥ρ∥L∞(M)

)︂
≥ 1− 2 exp

(︂
− C

8
t2nεm∥ρ∥L∞(M)

)︂
.
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In view of (3.1) we note that for ε≪ 1:

n

ˆ
BM(x,ε)

ρ(y) dVolM(y) ∈ nV ol(BM(x, ε)) ·
[︁
min ρ,max ρ

]︁
= n

(︂
|B(0, 1)|εm +O(εm+2)

)︂
·
[︁
min ρ,max ρ

]︁
⊂ n|B(0, 1)|εm ·

[︂1
2
min ρ, 2max ρ

]︂
.

It follows that with probability at least 1− 2 exp
(︁
−C

8 t
2nεm∥ρ∥C0

)︁
there holds:

n∑︂
i=1

1{|xi−x|≤ε} ∈
[︂1
2
n|B(0, 1)|εmmin ρ− Ctnεm∥ρ∥L∞(M),

2n|B(0, 1)|εmmax ρ+ Ctnεm∥ρ∥L∞(M)

]︂
.

Taking t appropriately small, in function of m and ρ, concludes the proof.

The next result provides another basic property of the random geometric graph, with balls
{|xi − x| ≤ ε} in Corollary 3.3 replaced by the annuli {(1− t)ε ≤ |y − x| ≤ (1 + t)ε}.

Proposition 3.4. There exist constants C > c > 0, depending on M and ρ, such that for all
ε≪ 1 and t satisfying ε2 ≤ t ≤ 1, and all x ∈ M we have:

(i) V olM

(︂
{y ∈ M; (1− t)ε ≤ |y − x| ≤ (1 + t)ε}

)︂
≤ Ctεm,

(ii) Pn
(︂ n∑︂
i=1

1{(1−t)ε≤|xi−x|≤(1+t)ε} ≤ Ctnεm
)︂
≥ 1− exp (−ctnεm) .

Proof. 1. Given x and ε, denote the closed annulus, where t ∈ [ε2, 1]:

At =
{︁
y ∈ M; (1− t)ε ≤ |y − x| ≤ (1 + t)ε

}︁
.

Using (3.2) and similarly as in (3.4), we obtain for ε≪ 1:

BM
(︁
x, (1 + t)ε

)︁
\BM

(︁
x, (1− t)ε+ Cε3

)︁
⊂ At ⊂ BM

(︁
x, (1 + t)ε+ Cε3

)︁
\BM

(︁
x, (1− t)ε

)︁
.

Hence, for t ∈ [12 , 1] there follows in virtue of (3.2):

V olM(At) ≤ V olM
(︁
BM(x, 2ε+ Cε3)

)︁
≤ Cεm ≤ Ctεm

V olM(At) ≥ V olM
(︁
BM(x,

3

2
ε)
)︁
− V olM

(︁
BM(x, ε)

)︁
≥ cεm ≥ ctεm,

For t < 1
2 we estimate more precisely, using the mean value property of the m-th power:

V olM(At) ≥ |B(0, 1)| ·
(︂
(1 + t)mεm −

(︁
(1− t)ε+ Cε3

)︁m)︂
+O(εm+2)

= |B(0, 1)|εm ·
(︂
(1 + t)m −

(︁
1− t+ Cε2

)︁m)︂
+O(εm+2)

≥ ctεm − Cεm+2,

valid when ε≪ 1. Similarly, we get the upper bound:

V olM(At) ≤ |B(0, 1)| ·
(︂(︁

(1 + t)ε+ Cε3
)︁m − (1− t)mεm

)︂
+O(εm+2)

≤ Cεm
(︂(︁

1 + t+ Cε2
)︁m − (1− t)m

)︂
+ Cεm+2 ≤ Ctεm.
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Both bounds allow to conclude the following estimate:

ctεm ≤ V olM(At) ≤ Ctεm when t ∈
[︂2C
c
ε2, 1

]︂
. (3.7)

Finally, when ε2 ≤ t < 2C
c ε

2, we simply note that with t̄
.
= 2C

c ε
2 > t there holds the

inclusion: At ⊂ At̄ and hence:

V olM(At) ≤ V olM(At̄) ≤ Ct̄εm ≤ C
t̄

ε2
· tεm =

4C2

c
tεm,

proving (i) in this last case.

2. To show (ii), we use Chernoff’s bound [8] to the i.i.d. (Bernoulli) random variables
{Y i = 1{xi∈At}}ni=1. We first consider the case t ∈

[︁
2C
c ε

2, 1
]︁
, indicated in (3.7). Denote:

p
.
= E[Y i] =

ˆ
At

ρ(y) dVolM(y) ∈ V olM(At) · [min ρ,max ρ] ⊂ [ctεm, Ctεm],

so that the version of additive Chernoff’s bound in [12][Theorem 5.7] yields:

Pn
(︂ n∑︂
i=1

Y i ≥ 2np
)︂
≤ exp

(︂
− 3

8
np

)︂
≤ exp

(︁
− ctnεm

)︁
.

We thus obtain (ii) in this particular case:

Pn
(︂ n∑︂
i=1

Y i ≤ Ctnεm
)︂
≥ 1− exp

(︁
− ctnεm

)︁
when t ∈

[︂2C
c
ε2, 1

]︂
.

To complete the argument when ε2 ≤ t < 2C
c ε

2, we set t̄ = 2C
c ε

2 as in step 1 and note that:

Pn
(︂ n∑︂
i=1

1{xi∈At} ≤
4C2

c
tnεm

)︂
≥ Pn

(︂ n∑︂
i=1

1{xi∈At} ≤ Ct̄nεm
)︂
≥ Pn

(︂ n∑︂
i=1

1{xi∈At̄} ≤ Ct̄nεm
)︂

≥ 1− exp
(︁
− ct̄nεm

)︁
≥ 1− exp

(︁
− ctnεm

)︁
.

The proof is done.

3.2. Comparison of the scaled degrees dε,Xn and dε. We now check that dε,Xn approxi-
mates, with high probability, its continuum version, given by:

dε(x) =

ˆ
BM(x,ε)

1

εm
η
(︂dM(x, y)

ε

)︂
ρ(y) dVolM(y) for all x ∈ M. (3.8)

Using normal coordinates centered at the point x (see Appendix A and the proof of Theorem
6.1 in section 6), together with the Taylor expansion of ρ around x, we may rewrite dε(x) as:

dε(x) =

ˆ
B(0,1)⊂TxM

η(|w|)
(︁
ρ(x) + ε⟨∇ρ(x), w⟩+O(ε2)

)︁(︁
1 +O(ε2)

)︁
dw

= ρ(x) +O(ε2).

(3.9)

Proposition 3.5. For each h > 0 there exists a finite set Mh ⊂ M such that, with a constant
C > 0 depending only on M, one has:

#Mh ≤ Ch−m and sup
x∈M

min
y∈Mh

dM(x, y) ≤ h.
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Proof. The proof follows by localizing and reducing to the flat case in which M is replaced by
a ball B(0, δ) ⊂ Rm. In this case, a subset of the cubical grid hZm ⊂ Rm fulfills the desired
properties.

Lemma 3.6. There exist constants C, c > 0 depending only on M, ρ and η, such that for all
ε≪ 1 and all t satisfying ε2 ≤ t ≤ 1, there holds:

Pn
(︂
sup
x∈M

⃓⃓
dε,Xn(x)− dε(x)

⃓⃓
≤ Ct

)︂
≥ 1− C(tε)−m exp

(︁
−ct2nεm

)︁
.

Proof. 1. Applying Lemma 3.2 to the functions ψ(y) = η
(︁ |y−x|

ε

)︁
, it follows that:

Pn
(︂⃓⃓⃓
dε,Xn(x)−

ˆ
BM(x,ε)

ηε(|y − x|)ρ(y) dVolM(y)
⃓⃓⃓
≤ Ct

)︂
≥ 1− 2 exp

(︁
−ct2nεm

)︁
, (3.10)

for all x ∈ M, with constants C and c independent of x. By monotonicity of η and its Lipschitz
continuity on [0, 1], for every y ∈ BM(x, ε) we have:

ηε(dM(x, y)) ≤ ηε(|y − x|) ≤ ηε
(︁
dM(x, y)− Cε3

)︁
≤ ηε(dM(x, y)) + Cε2−m · Lipη, (3.11)

in view of (3.2). Thus, for every x ∈ M there holds:⃓⃓⃓
dε(x)−

ˆ
BM(x,ε)

ηε(|y − x|)ρ(y) dVolM(y)
⃓⃓⃓
≤ CLipη · ε2−m∥ρ∥L∞(M)V olM(x, ε) ≤ Cε2 ≤ Ct,

and we see that the estimate in (3.10) is still valid after replacing the integral term by the
degree dε(x), and possibly changing the uniform constant C.

Recalling Corollary 3.3 and Proposition 3.4, we further conclude that each of the following
events (where ε, t, x are fixed):

|dε,Xn(x)− dε(x)| ≤ Ct,
n∑︂
i=1

1|xi−x|≤ε ≤ Cnεm,
n∑︂
i=1

1(1−t)ε≤|xi−x|≤(1+t)ε ≤ Ctnεm, (3.12)

hold with probability Pn at least 1− 2 exp
(︁
−ct2nεm

)︁
, in view of t ≤ 1. Let Mtε ⊂ M be the

discrete set provided by Proposition 3.5, By the union bound, the event that all conditions in
(3.12) hold for all x ∈ Mtε, has probability at least 1−C(tε)m exp

(︁
−ct2nεm

)︁
. For the rest of

the proof we assume this event holds.

2. Let x ∈ M and y ∈ Mtε with dM(x, y) ≤ tε. We write:

|dε,Xn(x)− dε(x)| ≤ |dε,Xn(x)− dε,Xn(y)|+ |dε,Xn(y)− dε(y)|+ |dε(y)− dε(x)|. (3.13)

We will show that each term in the right hand side above is bounded by Ct. This is true for
the second term, directly by (3.12), because y ∈ Mtε. The third term bound follows by (6.1):

|dε(x)− dε(y)| = |ρ(x)− ρ(y)|+O(ε2) ≤ Lipρ · dM(x, y) +O(ε2) ≤ Ct.

To treat the first term in (3.13), denote sets of indices Ix = {i; |xi − x| ≤ ε} and Iy =
{i; |xi − y| ≤ ε}. Then:

ε < |xi − y| ≤ |xi − x|+ |x− y| ≤ ε+ dM(x, y) ≤ (1 + t)ε for all i ∈ Ix \ Iy,
ε ≥ |xi − y| ≥ |xi − x| − |x− y| > ε− dM(x, y) ≥ (1− t)ε for all i ∈ Iy \ Ix.

(3.14)

In conclusion:

(1− t)ε ≤ |xi − y| ≤ (1 + t)ε for all i ∈ Ix△Iy.
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It thus follows that:⃓⃓
dε,Xn(x)− dε,Xn(y)

⃓⃓
≤ 1

n

n∑︂
i=1

⃓⃓
ηε(|x− xi|)− ηε(|y − xi|)

⃓⃓
≤ 1

n

∑︂
i∈Ix∩Iy

⃓⃓
ηε(|x− xi|)− ηε(|y − xi|)

⃓⃓
+

∥η∥L∞

nεm

n∑︂
i=1

1{(1−t)ε≤|xi−y|≤(1+t)ε}

≤
Lipη
nεm

∑︂
i∈Iy

⃓⃓⃓ |x− xi|
ε

− |y − xi|
ε

⃓⃓⃓
+ Ct ≤ C

nεm+1

∑︂
i∈Iy

|x− y|+ Ct

≤ C

nεm+1
dM(x, y) ·

n∑︂
i=1

1{|xi−y|≤ε} + Ct ≤ Ct,

where we applied conditions guaranteed in (3.12). Thus, (3.13) becomes: |dε,Xn(x)−dε(x)| ≤ Ct
for all x ∈ M on the event indicated in (3.12). This ends the proof.

From Lemma 3.6 and in view of (3.9), the operator Iε,Xn is well defined with high probability:

Corollary 3.7. There exist constants C, c > 0 depending on M, ρ and η, such that for all
ε≪ 1 and all t satisfying ε2 ≤ t ≤ 1, there holds:

Pn
(︂
sup
x∈M

⃓⃓
dε,Xn(x)− ρ(x)

⃓⃓
≤ Ct

)︂
≥ 1− C(tε)−m exp

(︁
− ct2nεm

)︁
.

In particular, taking t≪ 1, we get:

Pn
(︂
dε,Xn(x) ∈

[︁1
2
min ρ, 2max ρ

]︁
for all x ∈ M

)︂
≥ 1− Cε−m exp

(︁
− cnεm

)︁
.

Remark 3.8. Applying the second claim of Corollary 3.7 to η = 1[0,1], results in the following
improvement on Corollary 3.3, with constants C,C ′, c > 0 depending only on M and ρ:

Pn
(︂
C ′nεm ≤

n∑︂
i=1

1{|xi−x|≤ε} ≤ Cnεm for all x ∈ M
)︂
≥ 1− Cε−m exp

(︁
− cnεm

)︁
.

4. The almost-interpolation operator Iε,Xn and a proof of Theorem 2.9

In this section we work under hypothesis (H1). Let us first give a heuristic explanation of
the ideas behind the new interpolation technique. When extending a function f ∈ L2(Xn) to
the manifold M, the function f may a priori have no regularity. Even though f is defined on
a point cloud, and could be extended to a smooth function on M, there is no way to do this
while uniformly controlling any of the derivatives of the interpolation. Thus, when extending
from Xn to M, it is important to keep in mind that we must make no assumptions about the
regularity of f , and our probabilistic estimates must be applied to the graph Xn directly and
be independent of the function we are extending.

In this section, we prove Theorem 2.9 which allows to control the nonlocal Laplacian ∆ε of
the almost-interpolation Iε,Xnf , in terms of f and its graph Laplacian ∆ε,Xn .

4.1. The double convolution and a heuristic idea of proof. Let us first indicate a heuris-
tic idea behind the proof of Theorem 2.9, via the introduced interpolation technique.
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Given Xn ∈ Mn and f : Xn → R, denote F = f − Iε,Xnf and express the operator Iε,Xn as:

Iε,Xnf(x) =
1

ndε,Xn(x)

n∑︂
j=1

ηε(|x− xj |)f(xj)

=
1

ndε,Xn(x)

n∑︂
j=1

ηε(|x− xj |)
(︁
Iε,Xnf(xj) + F (xj)

)︁
=

1

ndε,Xn(x)

n∑︂
k,j=1

ηε(|x− xj |)
ndε,Xn(xj)

ηε(|xj − xk|)f(xk) +
1

ndε,Xn(x)

n∑︂
j=1

ηε(|x− xj |)F (xj)

=
1

ndε,Xn(x)

n∑︂
k=1

⎡⎣ n∑︂
j=1

ηε(|xj − xk|)
ndε,Xn(xj)

ηε(|x− xj |)

⎤⎦ f(xk) + Iε,XnF (x).

(4.1)

The term in square brackets above depends only on the random point cloud Xn and the choice
of ε. In particular, it is independent of the function f and of any of its regularity properties.
The asymptotics of this expression can be easily controlled with concentration of measure
inequalities; this is done in Lemma 4.1 below, similarly to Lemma 3.6. Consequently, the
operator Iε,Xn is proved to be compatible with the continuum averaging operator Aε in (4.4),
and this is the core idea behind the proof of Theorem 2.9.

4.2. Asymptotics of the double convolution kernel in (4.1). We have the following:

Lemma 4.1. There exists C, c > 0 depending on M, ρ and η, such that for all ε≪ 1 and all
t satisfying ε2 ≤ t ≤ 1, there holds:

Pn
(︂

sup
x,y∈M

⃓⃓⃓ 1
n

n∑︂
i=1

ηε(|xi − x|)
ρ(xi)

ηε(|xi − y|)−
ˆ
BM(x,ε)

ηε(|z − x|)ηε(|z − y|) dVolM(z)
⃓⃓⃓
≤ Ct

εm

)︂
≥ 1− C(tε)−2m exp

(︁
−ct2nεm

)︁
.

Proof. 1. For convenience, define the expressions:

gn,ε(x, y) =
1

n

n∑︂
i=1

ηε(|xi − x|)
ρ(xi)

ηε(|xi − y|), g(x, y) =

ˆ
BM(x,ε)

ηε(|z − x|)ηε(|z − y|) dVolM(z).

Applying Lemma 3.2 to functions ψ(z) = ηε(|z−x|)ηε(|z−y|)
nρ(z) for each x, y ∈ M, so that Ψε,x =

gn,ε(x, y), it follows that:

Pn
(︂
|gn,ε(x, y)− g(x, y)| ≥ Ctεm∥ηε∥2L∞(M)

)︂
≤ 2 exp

(︁
− ct2nεm

)︁
.

By Corollary 3.3 and Proposition 3.4 (ii), we conclude that each of the three types of events:

|gn,ε(x, y)− g(x, y)| ≤ Ct

εm
,

n∑︂
i=1

1|xi−x|≤ε ≤ Cnεm,

n∑︂
i=1

1(1−t)ε≤|xi−x|≤(1+t)ε ≤ Ctnεm (4.2)

where x, y, ε, t are fixed, hold with probability Pn at least 1 − 2 exp
(︁
− ct2nεm

)︁
. As in the

proof of Lemma 3.6, let now Mtn ⊂ M be the discrete set provided by Proposition 3.5. Apply
the union bound to obtain that the event in which all conditions listed in (4.2) holds for all
x, y ∈ Mtε, has probability at least 1−C(tε)−2m exp

(︁
− ct2nεm

)︁
. For the rest of the proof we

assume this event holds.
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2. Let x, y ∈ M and x̂, ŷ ∈ Mtε with dM(x, x̂) ≤ tε and dM(y, ŷ) ≤ tε. Then we have:

⃓⃓
gn,ε(x, y)− g(x, y)

⃓⃓
≤

⃓⃓
gn,ε(x, y)− gn,ε(x̂, ŷ)

⃓⃓
+
⃓⃓
gn,ε(x̂, ŷ)− g(x̂, ŷ)

⃓⃓
+
⃓⃓
g(x̂, ŷ)− g(x, y)

⃓⃓
. (4.3)

We will estimate each term in the right hand side above. Firstly, by the assumed (4.2), there
holds:

⃓⃓
gn,ε(x̂, ŷ)− g(x̂, ŷ)

⃓⃓
≤ Ct

εm . For the third term, we observe that:

⃓⃓
g(x̂, ŷ)− g(x, y)

⃓⃓
=

⃓⃓⃓ ˆ
BM(x̂,ε)

ηε(|z − x̂|)ηε(|z − ŷ|) dVolM(z)−
ˆ
BM(x,ε)

ηε(|z − x|)ηε(|z − y|) dVolM(z)
⃓⃓⃓

≤
ˆ
⋂︁

q∈{x̂,ŷ,x,y}∩MB(q,ε)

⃓⃓⃓
ηε(|z − x̂|)ηε(|z − ŷ|)− ηε(|z − x|)ηε(|z − y|)

⃓⃓⃓
dVolM(z)

+

ˆ(︁
(B(x̂,ε)∩B(ŷ,ε))△(B(x,ε)∩B(y,ε))

)︁
∩M

∥ηε∥2L∞(M).

The second integration domain above is included in:

(︂(︁
B(x̂, ε)△B(x, ε)

)︁
∪
(︁
B(ŷ, ε)△B(y, ε)

)︁)︂
∩M ⊂ At,x̂ ∪At,ŷ

where we define At,x̂ below (and At,ŷ is defined analogously):

At,x̂
.
=

{︁
z ∈ M; (1− t)ε ≤ |z − x̂| ≤ (1 + t)ε

}︁
The indicated inclusion follows from the simple set-theoretical fact that: (B1∩B2)△(B3∩B4) ⊂
(B1△B3) ∪ (B2△B4), valid for any four sets {Bi}4i=1.

Estimating volumes of the annuli At,x̂ and At,ŷ by Proposition 3.4 (i), we further obtain:

⃓⃓
g(x̂, ŷ)− g(x, y)

⃓⃓
≤ Lipηε · ∥ηε∥L∞(M)

(︁
|x− x̂|+ |y − ŷ|

)︁
· V olM(BM(x, ε))

+ ∥ηε∥2L∞(M) ·
(︁
V olM(At,x̂) + V olM(At,ŷ)

)︁
≤ Ct

ε2m+1
· tε · εm +

Ct

εm
≤ Ct

εm
.

Finally, we now bound the first term in the right hand side of (4.3). Define the set of indices
Ix

.
= {i; |xi − x| ≤ ε} and the corresponding sets Ix̂, Iy and Iŷ. Similarly to (3.14), we note:

(1− t)ε ≤ |xi − x̂| ≤ (1 + t)ε for all i ∈ Ix△Ix̂,
(1− t)ε ≤ |xi − ŷ| ≤ (1 + t)ε for all i ∈ Iy△Iŷ.
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This implies, in virtue of (4.2) and since, as above, (Ix ∩ Iy)△(Ix̂ ∩ Iŷ) ⊂ (Ix△Ix̂) ∪ (Iy△Iŷ):⃓⃓
gn,ε(x, y)− gn,ε(x̂, ŷ)

⃓⃓
≤ C

n

n∑︂
i=1

⃓⃓⃓
ηε(|xi − x|)ηε(|xi − y|)− ηε(|xi − x̂|)ηε(|xi − ŷ|)

⃓⃓⃓
≤ C

n

∑︂
i∈Ix∩Iy∩Ix̂∩Iŷ

⃓⃓⃓
ηε(|xi − x|)ηε(|xi − y|)− ηε(|xi − x̂|)ηε(|xi − ŷ|)

⃓⃓⃓
+
C

n

∑︂
i∈(Ix△Ix̂)∪(Iy△Iŷ)

∥ηε∥2L∞(M)

≤ C

n
Lipηε · ∥ηε∥L∞

∑︂
i∈Ix̂

(︁
|x− x̂|+ |y − ŷ|

)︁
+

C

nεm

(︂ n∑︂
i=1

1{(1−t)ε≤|xi−x̂|≤(1+t)ε} +

n∑︂
i=1

1{(1−t)ε≤|xi−ŷ|≤(1+t)ε}

)︂
≤ C

ε2m+1
· tε

n∑︂
i=1

1{|xi−x̂|≤ε} +
Ct

εm
≤ Ct

εm
.

As a result, (4.3) becomes: |gn,ε(x, y)− g(x, y)| ≤ Ct
εm . The proof is done.

4.3. Concluding steps of the proof. We are now equipped to prove Theorem 2.9. We first
state an alternative form of the theorem that may be of independent interest.

Given a bounded, Borel function g : M → R, define the averaging operator:

Aεg(x) =
1

dε(x)

ˆ
BM(x,ε)

1

εm
η
(︂dM(x, y)

ε

)︂
g(y)ρ(y) dVolM(y), (4.4)

where the local scaled degree dε(x) has been introduced in (3.8).

Theorem 4.2. There exists constants C, c > 0 depending on M, ρ, η, such that for all ε, t≪ 1
which satisfy ε2 ≤ t, there holds:

Pn
(︂⃓⃓⃓
Iε,Xnf(x)−Aε(Iε,Xnf)(x)

⃓⃓⃓
≤ C

(︁
t∥f∥L∞(Xn∩B(x,2ε)) + ∥f − Iε,Xnf∥L∞(Xn∩B(x,ε))

)︁
for all x ∈ M and all f : Xn → R

)︂
≥ 1− C(tε)−2m exp

(︁
−ct2nεm

)︁
.

Proof. 1. Let ε2 ≤ t ≤ 1 with ε ≪ 1. By Remark 3.8, Lemma 3.6 and Lemma 4.1 it follows
that the event:

sup
x∈M

n∑︂
i=1

1{|xi−x|≤2ε} ≤ Cnεm and sup
x∈M

⃓⃓
dε,Xn(x)− dε(x)

⃓⃓
≤ Ct,

sup
x,y∈M

⃓⃓⃓ 1
n

n∑︂
i=1

ηε(|xi − x|)
ρ(xi)

ηε(|xi − y|)−
ˆ
BM(x,ε)

ηε(|z − x|)ηε(|z − y|) dVolM(z)
⃓⃓⃓
≤ Ct

εm

(4.5)

holds with probability at least 1 − C(tε)−2m exp
(︁
− ct2nεm

)︁
. For the rest of the proof, we

assume that this event occurs. As in Corollary 3.7, the above imply for t≪ 1, that both dε,Xn
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and dε are bounded away from 0 by 1
2 min ρ, and also:

sup
x∈M

⃓⃓
dε,Xn(x)− ρ(x)

⃓⃓
≤ Ct. (4.6)

2. To estimate
⃓⃓
Iε,Xnf(x)−Aε(Iε,Xnf)(x)

⃓⃓
, we introduce an intermediate quantity:

A1
.
=

1

dε(x)

ˆ
BM(x,ε)

ηε(dM(x, z))dε,Xn(z) · Iε,Xnf(z) dVolM(z).

By the first and second conditions in (4.5) we get:⃓⃓⃓
Aε(Iε,Xnf)(x)−A1

⃓⃓⃓
≤ C

ˆ
BM(x,ε)

ηε(dM(x, z))
⃓⃓⃓
dε,Xn(z)ρ(x)

⃓⃓⃓
·
⃓⃓
Iε,Xnf(z)

⃓⃓
dVolM(z)

≤ Ct∥Iε,Xnf∥L∞(BM(x,ε)) ·
ˆ
BM(x,ε)

ηε(dM(x, z)) dVolM(z)

≤ Ct∥Iε,Xnf∥L∞(BM(x,ε)).

(4.7)

Further, we may replace the quantity A1 with:

A2
.
=

1

dε(x)

ˆ
BM(x,ε)

ηε(|x− z|)dε,Xn(z)Iε,Xnf(z) dVolM(z)

=
1

ndε(x)

n∑︂
k=1

f(xk)

ˆ
BM(x,ε)

ηε(|x− z|)ηε(|xk − z|) dVolM(z),

at the expense of the following error, controlled with the help of (3.11):⃓⃓
A1 −A2

⃓⃓
≤ C

ˆ
BM(x,ε)

⃓⃓⃓
ηε(|x− z|)− ηε(dM(x, z))

⃓⃓⃓
dVolM(z) · ∥Iε,Xnf∥L∞(BM(x,ε))

≤ C

εm
Lipη · ε2V olM(x, ε) · ∥Iε,Xnf∥L∞(BM(x,ε)) ≤ Ct∥Iε,Xnf∥L∞(BM(x,ε)).

(4.8)

Next, we replace A2 by the following new quantity:

A3
.
=

1

n2dε(x)

n∑︂
k,j=1

ηε(|x− xj |)
ρ(xj)

ηε(|xk − xj |)f(xk),

using the first property in (4.5):⃓⃓
A2 −A3

⃓⃓
≤ Ct

nεm

n∑︂
k=1

|f(zk)| · 1|xk−x|≤2ε ≤ Ct∥f∥L∞(Xn∩B(x,2ε)). (4.9)

3. Finally, the error between the quantity A3 and Iε,Xnf(x) is estimated by (4.1):⃓⃓⃓
Iε,Xnf(x)−A3

⃓⃓⃓
≤ 1

n2

n∑︂
k,j=1

|f(xk)|ηε(|x− xj |)ηε(|xk − xj |) ·
⃓⃓⃓ 1

dε,Xn(x)dε,Xn(xj)
− 1

dε(x)dε(xj)

⃓⃓⃓
+
⃓⃓
Iε,Xn

(︁
f − Iε,Xnf

)︁
(x)

⃓⃓
≤ Ct

n2ε2m
∥f∥L∞(Xn∩B(x,2ε)) ·

(︂ n∑︂
i=1

1|xi−x|≤2ε

)︂2
+

⃓⃓
Iε,Xn

(︁
f − Iε,Xnf

)︁
(x)

⃓⃓
≤ Ct∥f∥L∞(Xn∩B(x,2ε)) +

⃓⃓
Iε,Xn

(︁
f − Iε,Xnf

)︁
(x)

⃓⃓
,
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where the difference of the inverses of products of degrees is bounded by Ct, in virtue of (4.5)
and (4.6). Together with (4.7), (4.8) and (4.9), the above estimate yields:⃓⃓⃓

Iε,Xnf(x)−Aε(Iε,Xnf)(x)
⃓⃓⃓
≤ Ct

(︂
∥Iε,Xnf∥L∞(BM(x,ε)) + ∥f∥L∞(Xn∩B(x,2ε))

)︂
+
⃓⃓
Iε,Xn

(︁
f − Iε,Xnf

)︁
(x)

⃓⃓
.

Noting the following two estimates, similar to the bounds obtained above:

∥Iε,Xnf∥L∞(BM(x,ε)) ≤
1

nεm
∥f∥L∞(Xn∩B(x,2ε)) ·

n∑︂
i=1

1|xi−x|≤2ε ≤ C∥f∥L∞(Xn∩B(x,2ε)),⃓⃓
Iε,Xn

(︁
f − Iε,Xnf

)︁
(x)

⃓⃓
≤ C∥f − Iε,Xnf∥L∞(Xn∩B(x,ε)),

the proof is done.

A proof of Theorem 2.9.

One directly checks that:

f(xi)− Iε,Xnf(xi) =
ε2

dε,Xn(xi)
∆ε,Xnf(xi) for all i = 1, . . . , n, (4.10)

and also:

Iε,Xnf(x)−Aε(Iε,Xnf)(x) =
ε2

dε(x)
∆ε

(︁
Iε,Xnf

)︁
(x) for all x ∈ M.

Assume that Xn is an element of the event with probability estimated in Theorem 4.2, where
we set t = ε2. Given f : Xn → R, we let a ∈ R and apply Theorem 4.2 to f − a, so that:

|∆ε(Iε,Xnf)(x)| ≤ C
(︁
∥f − a∥L∞(Xn∩B(x,2ε)) + ∥∆ε,Xnf∥L∞(Xn∩B(x,ε))

)︁
for all x ∈ M.

The first term in the right hand side above may be bounded by oscXn∩B(x,2ε) f , upon choosing
a = u(xj) for some xj ∈ B(x, 2ε). Since the said event occurs with probability at least
1− C(ε3)−2m exp

(︁
− cεm+2

)︁
, the proof is done.

PART 2

5. The Levi-Cività quadrilateral

In this section, (M, g) is a smooth, compact, boundaryless, connected and orientable mani-
fold of dimension m. Towards further applications, we derive a curvature-driven error estimate
on geodesic distances in the Levi-Cività quadrilateral (see Figure 1), named so in connection
with the Levi-Cività parallelogram.

Recall that dM denotes the geodesic distance, Expx is the exponential map and ι > 0 is the
radius of injectivity (see section A.2). Given x ̸= y ∈ M with dM(x, y) < ι

3 , and two tangent
vectors v ∈ TxM, w ∈ TyM satisfying |v|x, |w|y < ι

3 , we consider the quantity:

L(s) = dM
(︁
Expx(sv), Expy(sw)

)︁2
for all s ∈ [0, 1],

which keeps track of the squared distance between points along two geodesics emanating from
the points x and y with directions v and w respectively–see Figure 1 below. Denote t0 =
distM(x, y) and define the flow of geodesics γ : [0, 1]× [0, t0] → M as follows. Namely, we set:



LIPSCHITZ REGULARITY OF GRAPH LAPLACIANS ON RANDOM DATA CLOUDS 23

γ(s, 0) = Expx(sv), γ(s, t0) = Expy(sw) and request that [0, t0] ∋ t ↦→ γ(s, t) is a geodesic, for

every s ∈ [0, 1]. This implies that ∇ d
dt
γ
d
dtγ = 0 and further:⃓⃓⃓ d

dt
γ(s, t)

⃓⃓⃓
γ(s,t)

=
1

t0
dM(γ(s, 0), γ(s, t0)

)︁
for all (s, t) ∈ [0, 1]× [0, t0]. (5.1)

Figure 1. The quadrilateral in Lemma 5.1, defined by its two vertices x, y and
the corresponding tangent vectors v, w.

In the following result we verify that the geodesic distance between Expx(v) and Expy(w),
which may be interpreted as the length of one of the sides in a curvlinear quadrilateral on M
(with other two vertices x and y, see Figure 1), deviates from the corresponding length of the
side in a quadrilateral in TxM, only by controlled quadratic error terms:

Lemma 5.1. In the above context, for every s ∈ [0, 1] there holds:

L′(s) = 2t0

(︂⟨︂ d

ds
γ(s, t0),

d

dt
γ(s, t0)

⟩︂
γ(s,t0)

−
⟨︂ d

ds
γ(s, 0),

d

dt
γ(s, 0)

⟩︂
γ(s,0)

)︂
L′′(s) = 2

⃓⃓⃓
Pγ(s,0),γ(s,t0)Px,γ(s,0)v − Py,γ(s,t0)w

⃓⃓⃓2
+O

(︁
t20 + s2(|v|2x + |w|2y)

)︁
,

(5.2)

where Pa,b denotes the parallel transport along the unique geodesic connecting points a, b ∈ M
with dM(a, b) < ι. In particular, writing y = Expx(t0z) for some z ∈ TxM with |z|x = 1, we
have the following expansion, valid for s ∈ [0, 1]:

L(s) = t20 + 2t0s⟨Py,xw − v, z⟩x + s2|Py,xw − v|2x +O
(︁
s2t20 + s4(|v|2x + |w|2y)

)︁
=

⃓⃓
t0z + s(Py,xw − v)

⃓⃓2
x
+O

(︁
s2t20 + s4(|v|2x + |w|2y)

)︁
.

(5.3)

The Landau symbol O above is uniform with respect to x, y, v, w and depends only on (M, g).

Proof. 1. Note first that by (5.1), we have:

L(s) = dM
(︁
γ(s, 0), γ(s, t0)

)︁
·
ˆ t0

0

⃓⃓⃓ d
dt
γ(s, t)

⃓⃓⃓
dt = t0

ˆ t0

0

⃓⃓⃓ d
dt
γ(s, t)

⃓⃓⃓2
dt.

We now differentiate in s, use the symmetry lemma in ∇ d
dt
γ
d
dsγ = ∇ d

ds
γ
d
dtγ, and the equation

of geodesic ∇ d
dt
γ
d
dtγ = 0, to find that:

L′(s) = 2t0

ˆ t0

0

⟨︂ d
dt
γ,∇ d

ds
γ

d

dt
γ
⟩︂
dt = 2t0

ˆ t0

0

⟨︂ d
dt
γ,∇ d

dt
γ

d

ds
γ
⟩︂
dt

= 2t0

ˆ t0

0

d

dt

⟨︂ d
dt
γ,

d

ds
γ
⟩︂
dt = 2t0

⟨︂ d
dt
γ(s, t),

d

ds
γ(s, t)

⟩︂⃓⃓⃓t=t0
t=0

,
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as claimed in (5.2). To compute the second derivative of L, we observe that ∇ d
ds
γ
d
dsγ(s, 0) = 0

and ∇ d
ds
γ
d
dsγ(s, t0) = 0, so that:

L′′(s) = 2t0

⟨︂
∇ d

ds
γ

d

dt
γ(s, t),

d

ds
γ(s, t)

⟩︂⃓⃓⃓t=t0
t=0

= 2t0

⟨︂
∇ d

dt
γ

d

ds
γ(s, t),

d

ds
γ(s, t)

⟩︂⃓⃓⃓t=t0
t=0

,

again in view of the symmetry lemma. Define the auxiliary vector field:

V (s, t) =
(︂
1− t

t0

)︂
Pγ(s,0),γ(s,t)Px,γ(s,0)v +

t

t0
Pγ(s,t0),γ(s,t)Py,γ(s,t0)w ∈ Tγ(s,t)M

for all (s, t) ∈ [0, 1]× [0, t0]. Properties of parallel transport yield:

∇ d
dt
γV (s, t) =

1

t0

(︂
Pγ(s,t0),γ(s,t)Py,γ(s,t0)w − Pγ(s,0),γ(s,t)Px,γ(s,0)v

)︂
,

and since V (s, 0) = Px,γ(s,0)v = d
dsγ(s, 0) and V (s, t0) = Py,γ(s,t0)w = d

dsγ(s, t0), we obtain:

L′′(s) = 2t0

ˆ t0

0

d

dt

⟨︂
∇ d

dt
γ

d

ds
γ, V (s, t)

⟩︂
dt

= 2

ˆ t0

0

⟨︂
∇ d

dt
γ

d

ds
γ, Pγ(s,t0),γ(s,t)Py,γ(s,t0)w − Pγ(s,0),γ(s,t)Px,γ(s,0)v

⟩︂
dt

+ 2t0

ˆ t0

0

⟨︂(︂
∇ d

dt
γ

)︂2 d

ds
γ, V (s, t)

⟩︂
dt

= 2

ˆ t0

0

d

dt

⟨︂ d

ds
γ, Pγ(s,t0),γ(s,t)Py,γ(s,t0)w − Pγ(s,0),γ(s,t)Px,γ(s,0)v

⟩︂
dt

+ 2t0

ˆ t0

0

⟨︂
R
(︂ d
dt
γ,

d

ds
γ
)︂ d
dt
γ, V (s, t)

⟩︂
dt

.
= 2A+ 2B.

(5.4)

In the last step of (5.4), we used the fact that d
dsγ(s, t) is a Jacobi field along the geodesic

t ↦→ γ(s, t). Below, we estimate separately the two terms A and B.

2. For the first term in the right hand side of (5.4), we write:

A =
⟨︂ d

ds
γ(s, t0), Py,γ(s,t0)w − Pγ(s,0),γ(s,t0)Px,γ(s,0)v

⟩︂
−
⟨︂ d

ds
γ(s, 0), Pγ(s,t0),γ(s,t)Py,γ(s,t0)w − Px,γ(s,0)v

⟩︂
=

⟨︂
Py,γ(s,t0)w,Py,γ(s,t0)w − Pγ(s,0),γ(s,t0)Px,γ(s,0)v

⟩︂
−
⟨︂
Pγ(s,0),γ(s,t0)Px,γ(s,0)v, Py,γ(s,t0)w − Pγ(s,0),γ(s,t0)Px,γ(s,0)v

⟩︂
=

⃓⃓⃓
Py,γ(s,t0)w − Pγ(s,0),γ(s,t0)Px,γ(s,0)v

⃓⃓⃓2
.
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For the second term, we observe that:

|B| ≤ Ct20 sup
t∈[0,t0]

⃓⃓⃓
R
(︂ d
dt
γ,

d

ds
γ
)︂ d
dt
γ(s, t)

⃓⃓⃓
· |V (s, t)|

≤ Ct20 sup
t∈[0,t0]

(︂⃓⃓⃓ d
dt
γ(s, t)

⃓⃓⃓2
·
⃓⃓⃓ d
ds
γ(s, t)

⃓⃓⃓
· |V (s, t)|

)︂
≤ CdM

(︁
γ(s, 0), γ(s, t0)

)︁2 · (︁|v|+ |w|
)︁
· sup
t∈[0,t0],s∈[0.1]

⃓⃓⃓ d
ds
γ(s, t)

⃓⃓⃓
≤ Ct20

(︁
|v|+ |w|

)︁
+ Cs2

(︁
|v|+ |w|

)︁3
,

because:

dM
(︁
γ(s, 0), γ(s, t0)

)︁
≤ dM(γ(s, 0), x) + dM(x, y) + dM(y, γ(s, t0)) = t0 + s

(︁
|v|x + |w|y

)︁
,

and because
⃓⃓
d
dsγ(s, t)

⃓⃓
≤ C for all (s, t) ∈ [0, 1] × [0, t0]. This last assertion, following from

general properties of the exponential map, will be justified in Proposition 5.2. The proof of
(5.2) is complete.

3. To show (5.3), we Taylor expand L at 0 to get:

L(s) = L(0) + sL′(0) +
s2

2
L′′(s̄) for some s̄ ∈ [0, s],

where we noted that L(0) = t0 and L′(0) = 2t0
(︁
⟨w,Px,yz⟩−⟨v, z⟩

)︁
= 2t0⟨Py,xw−v, z⟩ by (5.2).

On the other hand:

Py,γ(s̄,t0)w − Pγ(s̄,0),γ(s̄,t0)Px,γ(s̄,0)v

= Py,γ(s̄,t0)
(︁
w − Px,yv

)︁
+
(︂
Py,γ(s̄,t0)Px,yv − Pγ(s̄,0),γ(s̄,t0)Px,γ(s̄,0)v

)︂
.

(5.5)

The first vector in the right hand side above has length |w−Px,yv|y = |Py,xw−v|x. The second
vector compares the parallel transport of v from x to γ(s̄, t0) by two different routes, and has
length equal to:⃓⃓

v − Py,xPγ(s̄,t0),yPγ(s̄,0),γ(s̄,t0)Px,γ(s̄,0)v
⃓⃓
x
≤ C

(︁
t20 + s̄2(|v|2x + |w|2y)

)︁
,

as easily seen, for example, from equations of parallel transport written in normal coordinates
centered at x (see section A.3). By (5.2) and (5.5), for every s̄ ∈ [0, s] we thus get:

1

2
L′′(s̄) =

⃓⃓⃓
Py,γ(s̄,t0)w − Pγ(s̄,0),γ(s̄,t0)Px,γ(s̄,0)v

⃓⃓⃓2
+O

(︁
t20 + s2(|v|2x + |w|2y)

)︁
= |Py,xw − v|2 +O

(︁
t20 + s2(|v|2x + |w|2y)

)︁
,

which ends the proof of (5.3) and of the Lemma.

In the argument above we used the following observation:

Proposition 5.2. In the above context, there holds:⃓⃓⃓ d
ds
γ(s, t)

⃓⃓⃓
= O(1) for all (s, t) ∈ [0, 1]× [0, t0],

where the bound O depends only on (M, g).

Proof. Recall (see section A.2) that given x ∈ M and v ∈ TxM with |v|x < ι, we have
ψ(x, v)

.
=

(︁
x,Expx(v)

)︁
∈ M×M, and that the mapping ψ is a smooth diffeomorphism onto
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its image. For x, y, v, w as in the definition of the Levi-Cività quadrilateral, and for all s ∈ [0, 1],
t ∈ [0, dM(x, y)], we observe that the following composite mapping:

(x, y, v, w, s, t) ↦→
(︂
Expx(sv), Expy(sw),

t

dM(x, y)

)︂
(ψ−1,id)↦→

(︂
Expx(sv), Exp

−1
Expx(sv)

(︁
Expy(sw)

)︁
,

t

dM(x, y)

)︂
↦→

(︂
Expx(sv),

t

dM(x, y)
Exp−1

Expx(sv)

(︁
Expy(sw)

)︁)︂
ψ↦→
(︂
Expx(sv), ExpExpx(sv)

(︂ t

dM(x, y)
Exp−1

Expx(sv)

(︁
Expy(sw)

)︁)︂)︂
=

(︁
Expx(sv), γ(s, t)

)︁
is smooth in s, independently of x, y, v, w and of the scaled parameter t

dM(x,y) ∈ [0, 1]. In

particular, d
dsγ(s, t) is uniformly bounded, as claimed.

6. The averaging operators Aε, Āε and their mean value expansions

In this section, we work under the following hypothesis, that are less restrictive than (H1):

⎡⎢⎢⎢⎢⎢⎢⎣
(i) (M, g) is a smooth, compact, boundaryless, connected and orientable mani-

fold of dimension m,

(ii) ρ ∈ C2(M) is a positive scalar field,

(iii) η : [0, 1] → R is Borel regular, nonnegative, satisfying
´
B(0,1)⊂Rm η(|w|) dw =

1. It yields the positive coefficient: ση =
´
B(0,1)⟨w, e1⟩

2η(|w|) dw.

⎤⎥⎥⎥⎥⎥⎥⎦ (H2)

We consider the differential operator (see section A.3):

Af
.
=

1

ρ2
Div

(︁
ρ2∇∗f) = ∆f + 2⟨∇∗f,∇∗(log ρ)⟩x,

where ∆ is the unweighted Laplace-Beltrami operator. In turn, A is a scaled version of ∆M as
defined in (2.2). The purpose of this section is to discuss two families of “averaging” operators,
relative to the chosen η, that approximate A when the domains of averaging shrink to a point.

For a bounded, Borel function f : M → R and ε ≪ 1, the first averaging operator (already
encountered in section 4.3) is given via integrating on the geodesic ball BM(x, ε):

Aεf(x) =
1

dε(x)

ˆ
BM(x,ε)

1

εm
η
(︂dM(x, y)

ε

)︂
f(y)ρ(y) dVolM(y)

where dε(x) =

ˆ
BM(x,ε)

1

εm
η
(︂dM(x, y)

ε

)︂
ρ(y) dVolM(y) for all x ∈ M.

The second operator involves integrating on the unit ball B(0, 1) ⊂ TxM ≃ Rm and interpreting
the integrated quantities in the normal coordinates centered at a given point x:

Āεf(x) =

ˆ
B(0,1)

η(|w|)
(︂
1 + ε

⟨︁
w,∇(log ρ)(0)

⟩︁)︂
f(εw) dw for all x ∈ M.
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It is not hard to observe that both functions Aεf, Āεf : M → R are continuous and bounded
by C supx∈M |f(x)| where the constant C depends only on ρ. The relation of Aε, Āε to A is
revealed in the next result, which may be also deduced from the proof of [13, Lemma 3.5].

Theorem 6.1. For every f ∈ C3(M) there holds:

Aεf(x), Āεf(x) = f(x) +
1

2
σηε

2Af(x) +O(ε3)∥∇f∥C2(M) for all x ∈ M,

where the Landau symbol O depends only on (M, g) and ρ, and where ση is as in (H2).

Proof. 1. We fix x ∈ M and calculate in normal coordinates centered at x (recall that in these
coordinates Expx(εw) ∈ M corresponds to εw ∈ B(0, ε) ∈ TxM ≃ Rm):

Aεf(x)− f(x) =
1

dε(x)

ˆ
BM(x,ε)

1

εm
η
(︂dM(x, y)

ε

)︂(︁
f(y)− f(x)

)︁
ρ(y) dVolM(y)

=
1

dε(x)

ˆ
B(0,1)

η(|w|)
(︁
f(εw)− f(0)

)︁
ρ(εw)

√︂
det[gij(εw)] dw,

where the last integration is on the Euclidean ball B(0, 1) ⊂ Rm. Similarly, we have: dε(x) =´
B(0,1) η(|w|)ρ(εw)

√︁
det[gij(εw)] dw. Since in normal coordinates gij(εw) = δij + O(ε2), it

immediately follows that:
√︁
det[gij(εw)] = 1+O(ε2). Taylor expanding ρ ◦Expx, we now get:

dε(x) =

ˆ
B(0,1)

η(|w|)
(︁
ρ(0) + ε⟨∇ρ, w⟩+O(ε2)

)︁(︁
1 +O(ε2)

)︁
dw = ρ(0) +O(ε2), (6.1)

and thus 1
dε(x)

= 1
ρ(0) +O(ε2). Similarly, Taylor expanding f ◦ Expx we obtain:

dε(x)
(︂
Aεf(x)− f(x)

)︂
=

ˆ
B(0,1)

η(|w|)
(︂
ε⟨∇f(0), w⟩+ ε2

2
⟨∇2f(0) : w⊗2⟩+O(ε3)∥∇3f∥C0(M)

)︂
·
(︁
ρ(0) + ε⟨∇ρ(0), w⟩+O(ε2)

)︁
· (1 +O(ε2)) dw

= ερ(0)

ˆ
B(0,1)

η(|w|)⟨∇f(0), w⟩ dw

+
ε2

2
ρ(0)

ˆ
B(0,1)

η(|w|)
(︂
⟨∇2f(0) : w⊗2⟩+ 2⟨∇f(0), w⟩ ·

⟨︂∇ρ(0)
ρ(0)

, w
⟩︂)︂

dw

+O(ε3)
(︁
∥∇f∥C0(M) + ∥∇2f∥C0(M) + ∥∇3f∥C0(M)

)︁
= ε2ρ(0)

⟨︂
∇2f(0) + 2∇f(0)⊗∇(log ρ)(0) :

1

2

ˆ
B(0,1)

η(|w|)w⊗2 dw
⟩︂
+O(ε3)∥∇f∥C2(M).

Since
´
B(0,1) η(|w|)w

⊗2 dw = σηIdm, it follows that:

Aεf(x)− f(x) =
1

2
ε2ση

(︂
∆f + 2⟨∇f(0),∇(log ρ)(0)⟩

)︂
+O(ε3)∥∇f∥C2(M),

proving the claim.
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2. For the averaging operator Āε, we likewise expand and calculate in normal coordinates:

Āεf(x)− f(x) =

ˆ
B(0,1)

η(|w|)
(︂
1 + ε⟨w,∇(log ρ)(0)⟩

)︂
·
(︂
ε⟨∇f(0), w⟩+ ε2

2
⟨∇2f(0) : w⊗2⟩+O(ε3)∥∇3f∥C0(M)

)︂
dw

=
ε2

2
ρ(0)

ˆ
B(0,1)

η(|w|)
(︂
⟨∇2f(0) : w⊗2⟩+ 2⟨∇f(0), w⟩ · ⟨∇(log ρ)(0), w⟩

)︂
dw +O(ε3)∥∇f∥C1

=
1

2
ε2ση

(︂
∆f + 2⟨∇f(0),∇(log ρ)(0)⟩

)︂
+O(ε3)∥∇2f∥C1(M).

The proof is complete.

Remark 6.2. (i) When η ≡ 1
|B(0,1)| , then ση =

ffl
B(0,1)⟨w, e1⟩

2 dw = 1
2(m+2) , so that:

1´
BM(x,ε) ρ(y) dVolM(y)

·
ˆ
BM(x,ε)

f(y)ρ(y) dVolM(y) = f(x)+
ε2

2(m+ 2)
∆f(x)+O(ε3) as ε→ 0.

This observation is consistent with the mean-value expansion, valid for ρ ≡ C and A = ∆: 
BM(x,ε)

f(y) dVolM(y) = f(x) +
ε2

2(m+ 2)
∆f(x) +O(ε3).

The above expansion is, in turn, the quantitative version of one of the equivalent properties of
harmonic functions defined on U ⊂ Rm, namely: f(x) =

ffl
B(x,r) f(y) dy for all B̄(x, r) ⊂ U .

(ii) The relation of the averaging operator Aε to ∆ε defined in (1.5) is:

∆εf(x) = −dε(x) ·
Aεf(x)− f(x)

ε2
.

We may directly estimate the difference of the two studied averages:

Lemma 6.3. For every Borel, bounded function f : M → R there holds:⃓⃓
Aεf(x)− Āεf(x)

⃓⃓
= O(ε2)∥f∥L∞(BM(x,ε)) for all x ∈ M.

When f is continuous, with the modulus of continuity ω(f, ·), then:⃓⃓
Aεf(x)− Āεf(x)

⃓⃓
= O(ε2) · ω(f, ε) for all x ∈ M.

In both bounds, the quantity O depends only on (M, g) and ρ.

Proof. 1. For a fixed x ∈ M, we compute in normal coordinates centered at x:

Aεf(x)− Āεf(x)

=
1

dε(x)

ˆ
B(0,1)

η(|w|)f(εw)
(︂
ρ(εw)

√︂
det[gij(εw)]− dε(x)

(︁
1 + ε⟨w,∇(log ρ)(0)⟩

)︁)︂
dw.

(6.2)

We recall that [gij ]i,j=1...m denotes the Grammian matrix in normal coordinates and that, as
before, εw is identified with Expx(εw). Observe that by (A.5) we get:

det[gij(εw)] = det
[︁
δij −

ε2

3
Rikjs(0)w

kws +O(ε3)
]︁
i,j=1...m

= 1− ε2

3
Rikis(0)w

kws +O(ε3) = 1− ε2

3

⟨︁
[Ricij(0)] : w

⊗2
⟩︁
+O(ε3),



LIPSCHITZ REGULARITY OF GRAPH LAPLACIANS ON RANDOM DATA CLOUDS 29

where Ric denotes the Ricci curvature tensor, here computed at x. Consequently:√︂
det[gij(εw)] = 1− ε2

6

⟨︁
[Ricij(0)] : w

⊗2
⟩︁
+O(ε3),

allowing to improve (6.1) to a more precise expansion:

dε(x) =

ˆ
B(0,1)

η(|w|)
(︂
ρ(0) + ε⟨∇ρ, w⟩+ ε2

2
⟨∇2ρ(0) : w⊗2⟩+ o(ε2)

)︂
·
(︂
1− ε2

6
⟨[Ricij(0)] : w⊗2

⟩︁
+O(ε3)

)︂
dw

= ρ(0) + ε2
⟨︂1
2

ˆ
B(0,1)

η(|w|)w⊗2 dw : ∇2ρ(0)− 1

3
ρ(0)[Ricij(0)]

⟩︂
+ o(ε2)

= ρ(0) +
1

2
σηε

2
(︂
∆ρ(0)− 1

3
ρ(0)R(0)

)︂
+ o(ε2).

(6.3)

Here, R(0) denotes the scalar curvature at x and ∆ is the unweighted Laplacian.

2. In conclusion, the integration factor in (6.2) is:

ρ(εw)
√︂
det[gij(εw)]− dε(x)

(︁
1 + ε⟨w,∇(log ρ)(0)⟩

)︁
=

(︂
ρ(0) + ε⟨∇ρ(0), w⟩+ ε2

2
⟨∇2ρ(0) : w⊗2⟩+ o(ε2)

)︂
·
(︂
1− ε2

6
⟨[Ricij(0)] : w⊗2

⟩︁
+O(ε3)

)︂
−
(︂
ρ(0) + κηε

2
(︁
∆ρ(0)− 1

3
ρ(0)R(0)

)︁
+ o(ε2)

)︂
·
(︁
1 + ε⟨w,∇(log ρ)(0)⟩

)︁
=
ε2

2

⟨︂
∇2ρ(0)− 1

3
ρ(0)[Ricij(0)] : w

⊗2
⟩︂
− 1

2
σηε

2
(︁
∆ρ(0)− 1

3
ρ(0)R(0)

)︁
+ o(ε2).

Since the ε2-order term above integrates to 0, against η(|w|) on B(0, 1), we see that for con-
tinuous f , the difference in (6.2) becomes:

Aεf(x)− Āεf(x)

=
ε2

dε(x)

ˆ
B(0,1)

η(|w|)
(︁
f(εw)− f(0)

)︁
·
(︂1
2

⟨︂
∇2ρ(0)− 1

3
ρ(0)[Ricij(0)] : w

⊗2
⟩︂
− 1

2
ση∆ρ(0)−

1

6
σηρ(0)R(0) + o(1)

)︂
dw

= O(ε2) · ω(f, ε).

The estimate for bounded f is a consequence of the first equality above and of (6.3).

7. A biased random walk modeled on the averaging operator Āε

In this section, we work under hypothesis (H2). We introduce a discrete, M-valued process
whose dynamic programming principle reflects the averaging operation in Āε. Ultimately, this
process {Xε,x0

n }∞n=0 will serve for tracking the values of a solution f in function of its average.

7.1. The local isometry field Q. We start by the following easy observation:

Lemma 7.1. For a given x ∈ M, let Q be a linear isometry of TxM, such that for some
e ∈ TxM with |e|x = 1 there holds:

|∇(log ρ)(x)|xQe = ∇(log ρ)(x). (7.1)
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Then, for every bounded, Borel f : M → R we have:

Āεf(x) =
(︁
1− ε|∇(log ρ)(0)|

)︁ ˆ
B(0,1)

η(|w|)f(εw) dw

+ ε|∇(log ρ)(0)|
ˆ
B(0,1)

η(|w|)(1 + ⟨w, e⟩)f(εQw) dw,

where the formula above is written in the normal coordinates centered at x, and the integration
is on B(0, 1) ⊂ Rm ≃ TxM.

Proof. We change the variable in the second term, to obtain:

ε|∇(log ρ)(0)|
ˆ
B(0,1)

η(|w|)(1 + ⟨w, e⟩)f(εQw) dw

= ε|∇(log ρ)(0)|
ˆ
B(0,1)

η(|w|)(1 + ⟨w,Qe⟩)f(εw) dw

= ε|∇(log ρ)(0)|
ˆ
B(0,1)

η(|w|)f(εQw) dw + ε

ˆ
B(0,1)

η(|w|)⟨w,∇(log ρ)(0)⟩)f(εw) dw.

Summing with
(︁
1− ε|∇(log ρ)(0)|

)︁ ´
B(0,1) η(|w|)f(εw) dw, we get Āεf(x), as claimed.

In what follows, we will define a specific field of isometries Q on a small geodesic ball
BM(x0, ι). The field Q will be Borel-regular and will satisfy (7.1) for the chosen unit vectors
e1(x) = Px0,xe1 ∈ TxM. More precisely, given the normal coordinates on BM(x0, ι) centered

at x0 ∈ M, we write
{︁
ei =

∂
∂xi |x0

}︁m
i=1

for the orthonormal frame that spans Tx0M ≃ Rm.
Then, at each x ∈ BM(x0, ι) we consider the parallel transported orthonormal frame

{︁
ei(x)

.
=

Px0,xei
}︁m
i=1

in TxM ≃ Rm.
Define the spherical cups (interpreted as subsets of Tx0M):

S±
0 =

{︂
w ∈Rm; |w| = 1 and ⟨w,±e1⟩ > cos

8π

9

}︂
⊃ S±

1 =
{︂
w ∈ Rm; |w| = 1 and ⟨w,±e1⟩ > cos

5π

9

}︂
,

and fix one rotation Q0 ∈ SO(m) satisfying:

Q0(S
−
j ) = S+

j for j = 0, 1 with Q0(−e1) = e1.

Let Q̄ : S+
0 → SO(m) be a smooth map such that:

Q̄(e)e1 = e for all e ∈ S+
0 .

For x ∈ BM(x0, ι), using the notation ξ(x) = ∇(log ρ(x)
|∇(log ρ(x)|x whenever defined, we set Q(x) ∈

SO(TxM) as follows:

Q(x) =

⎧⎨⎩ Px0,x ◦ Q̄(Px,x0ξ(x)) ◦ Px,x0 if Px,x0ξ(x) ∈ S+
1

Px0,x ◦QT0 Q̄
(︁
Q0 · Px,x0ξ(x)

)︁
◦ Px,x0 if Px,x0ξ(x) ∈ S−

1 \ S+
1

IdTxM otherwise.
(7.2)

Clearly, property (7.1) holds for each x, with e = e1(x) = Px0,xe1.
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7.2. The probability spaces and the discrete process. We denote the following proba-
bility spaces on the collection of Borel subsets of B(0, 1) ⊂ Rm:

Ω1 =
(︂
B(0, 1),Borel, η(|w|) dw

)︂
, Ω̄1 =

(︂
B(0, 1),Borel,

(︁
1 + ⟨w̄, e1⟩

)︁
η(|w̄|) dw̄

)︂
,

together with the probability space
(︁
(0, 1),Borel, db

)︁
. The product measure on Ω1×Ω̄1×(0, 1)

will be denoted ν1. We also consider the infinite product measure space (Ω,F , ν):

Ω =
(︁
Ω1 × Ω̄1 × (0, 1)

)︁N
=

{︂
ω = (wi, w̄i, bi)

∞
i=1 with wi, w̄i ∈ B(0, 1) and bi ∈ (0, 1) for all i = 1 . . .∞

}︂
.

The product σ-algebra F has the natural filtration by {Fn}∞n=0, each generated by finite prod-
ucts (identified as subsets of F) of n Borel subsets of B(0, 1)2×(0, 1). We also write F0 = {∅,Ω}.

Equivalently, {wi}∞i=1, {w̄i}∞i=1 are collections of independent random variables sampled
from the distributions on Tx0M ≃ Rm with respective densities:

(︁
η1[0,1]

)︁
(|w|) and (1 +

⟨w̄, e1⟩)
(︁
η1[0,1]

)︁
(|w|), while {bi}∞i=1 are i.i.d. samples uniformly distributed on the interval (0, 1).

Fix x0 ∈ M, ε ∈ (0, ι2), and some sufficiently small radius r < ι
2 . We introduce the sequence

of random variables {Xε,x0
n : Ω → M}∞n=0, via the recursive formula:

X0 ≡ x0

Xn+1 =

⎧⎨⎩ Xn if Xn ̸∈ BM(x0, r)
ExpXn(εPx0,Xnwn+1) otherwise and if bn+1 ≥ ε|∇(log ρ)(Xn)|Xn

ExpXn(εQ(Xn) · Px0,Xnw̄n+1) otherwise and if bn+1 < ε|∇(log ρ)(Xn)|Xn

(7.3)

where the isometry field Q is defined in (7.2). As explained in section 7.1, we identify each
wn+1 ∈ B(0, ε) ⊂ Rm with:

∑︁m
i=1⟨wn+1, ei⟩ei(x) ∈ Tx0M. Consequently, whenever Xn ∈

BM(x0, r) and bn+1 < ε|∇(log ρ)(Xn)|Xn , then the updated process position Xn+1 equals the
exponential map ExpXn applied on the following tangent vector v ∈ TXnM:

v =

⎧⎨⎩ εPx0,XnQ̄
(︁
PXn,x0ξ(Xn)

)︁
w̄n+1 if PXn,x0ξ(Xn) ∈ S+

1

εPx0,XnQ
T
0 Q̄

(︁
Q0 · PXn,x0ξ(Xn)

)︁
w̄n+1 if PXn,x0ξ(Xn) ∈ S−

1 \ S+
1

0 otherwise.

By a further restriction on the smallness of the parameter ε, so that ε|∇(log ρ)(x)|x < 1
2 for

all x ∈ BM(x0, ι/2), we ensure that the update Xn+1 = ExpXn(εPx0,Xnwn+1) occurs with

probability at least 1
2 at each step before exiting BM(x0, r). More precisely, defining the

transition probability:

ν1
.
= η(|w|)

(︁
1 + ⟨w, e1⟩

)︁
η(|w̄|) dw dw̄ db,

there holds: ν1
(︁
Xn+1 = ExpXn(εPx0,Xnwn+1)

)︁
> 1

2 whenever Xn ∈ BM(x0, r).

Above, as in (7.3) and in the sequel, we omit the superscripts ε,x0 and write Xn instead of
Xε,x0
n when no ambiguity arises. By Lemma 7.1 and a change of variable we directly obtain:

Proposition 7.2. Given a bounded, Borel function f : M → R, there holds for all n ≥ 0:

E
(︁
f ◦Xn+1 | Fn

)︁
=

{︃
Āεf(Xn) if Xn ∈ BM(x0, r)
f(Xn) if Xn ̸∈ BM(x0, r).

We close this section by noting a bound related to stopping times. The specific stopping
time that we use will be chosen in the next section.
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Lemma 7.3. In the above context, let τ be a stopping time with respect to the filtration
{Fn}∞n=0. Assume that:

τ ≤ min{n ≥ 0; Xn ̸∈ BM(x0, r)}.
Then, if only r ≪ 1 is sufficiently small (depending on (M, g) and ρ, η), and ε≪ r, it follows
that:

E
[︁
dM(Xτ , x0)

2
]︁
≤ 3

2
mσηε

2E[τ ].

Proof. Fix n ≥ 0. On the event {τ > n}, Proposition 7.2 yields:

E
(︂
dM(Xn+1, x0)

2 − dM(Xn, x0)
2 | Fn

)︂
=

ˆ
B(0,1)

η(|w|)
(︁
1 + ε

⟨︁
w,∇(log ρ)(0)

⟩︁)︁(︂
dM(ExpXn(εw), Xn)

2 − dM(Xn, x0)
2
)︂
dw,

where the integration on B(0, 1) ⊂ TXnM is written in the normal coordinates centered at Xn.
We now apply Lemma 5.1 with s = ε, x = x0, y = Xn, v = 0 and the vector w appropriately
scaled, to get by (5.3):

dM(ExpXn(εw), Xn)
2 = dM(Xn, x0)

2 + 2ε
⟨︁
PXn,x0w,Exp

−1
x0 (Xn)

⟩︁
x0

+ ε2|w|2 +O(ε2r2 + ε4).

Observe that
´
B(0,1) η(|w|)⟨w, e⟩ dw = 0 for any fixed vector e, so consequently:

E
(︂
dM(Xn+1, x0)

2 − dM(Xn, x0)
2 | Fn

)︂
= ε2

ˆ
B(0,1)

η(|w|)|w|2 dw + 2ε2
ˆ
B(0,1)

η(|w|)
⟨︁
w,∇(log ρ)(0)

⟩︁
O(r) dw +O(ε3 + ε2r2)

= mσηε
2 +O(ε3 + ε2r2),

where the symbol O depends only on (M, g) and ρ.

It thus follows that for r sufficiently small, the above quantity is bounded from above by
3mκη, implying that the sequence of random variables:{︂

Mn
.
= dM(Xτ∧n, x0)

2 − 3

2
mσηε

2(τ ∧ n)
}︂∞

n=0

is a supermartingale with respect to the filtration {Fn}∞n=0. By Doob’s optional stopping
theorem and in view of the stopping time τ being integrable, we obtain:

0 = E[M0] ≥ E[Mτ ] = E
[︁
dM(Xτ , x0)

2
]︁
− 3

2
mσηε

2E[τ ],

as claimed.

8. The coupling argument and the first approximate Lipschitz estimate

In this section, we work under hypothesis (H2). We derive a weaker estimate than that
announced in Theorem 2.11, valid for the pairs of points whose distance is bounded away from
0 at the scale ε. This restriction will be removed by the complementary estimate in section
9, whereas the main bounds in Theorems 2.11 and 2.12, will be closed in section 10. For the
proofs, we use the probabilistic interpretation of the averaging operator Āε developed in section
7.2; we trace the value of f along the biased random walk {Xε,x0

n }∞n=0 started at x0 and its
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coupled walk {Yn}∞n=0 started at a given y0. We choose a stopping time when the two processes
almost coalesce (at the scale ε) or drift apart (at the scale r).

Theorem 8.1. Let ε≪ r ≪ 1. Then, for every bounded, Borel function f : M → R and every
x0, y0 ∈ M satisfying dM(x0, y0) ∈ (3ε, r), there holds:

|f(x0)− f(y0)| ≤ sup
{︂
|f(x)− f(y)|; x ∈ BM(x0, r + ε), dM(x, y) ≤ 3ε

}︂
+

(︃
6(m+ 1)

r
∥f∥L∞(BM(x0,2r+3ε)) +

4r

ση

∥Āεf − f∥L∞(BM(x0,2r))

ε2

)︃
dM(x0, y0).

Proof. 1. Fix x0, y0, ε as in the statement and recall the process {Xε,x0
n }∞n=0 introduced in

section 7.2, relative to x0, ε, r. We now define a coupled process {Yn : M → R}∞n=0 by the
following recursive construction:

Y0 ≡ y0

Yn+1 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Yn or dM(Xn, Yn) ≤ 3ε and dM(Xn, Yn) ≥ r
or Xn ̸∈ BM(x0, r)

ExpYn
(︁
εPXn,YnRefln(Px0,Xnwn+1)

)︁
otherwise
and if bn+1 ≥ ε|∇(log ρ)(Yn)|Yn

ExpYn
(︁
εQXn(Yn) · PXn,YnPx0,Xnw̄n+1

)︁
otherwise
and if bn+1 < ε|∇(log ρ)(Yn)|Yn

(8.1)

Here, the linear map Refln : TXnM → TXnM denotes the Householder projection, namely
the reflection across the hyperplane in TXnM which is perpendicular to the tangent vector
Exp−1

Xn
(Yn). Note that this vector is well-defined and nonzero in the indicated sub-case of

(8.1). More precisely, we put:

Refln(w) = w −
2
⟨︁
w,Exp−1

Xn
(Yn)

⟩︁
dM(Xn, Yn)2

Exp−1
Xn

(Yn) for all w ∈ TXnM.

The rotation field QXn is defined for every y ∈ BM(x0, ι) similarly to (7.2), by means of Q0

and Q that have been introduced in section 7.1:

QXn(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

PXn,YnPx0,Xn ◦ Q̄
(︁
PXn,x0Py,Xnξ(y)

)︁
◦ PXnx0Py,Xn

if: PXn,x0ξ(Xn) ∈ S+
1 and PXn,x0PYn,Xnξ(y) ∈ S+

0

or if: PXn,x0ξ(x) ∈ S−
1 \ S+

1 and PXn,x0PYn,Xnξ(y) ∈ S+
0 \ S−

0

or if: PXn,x0ξ(x) not defined and PXn,x0PYn,Xnξ(y) ∈ S+
1

PXn,YnPx0,Xn ◦QT0 Q̄
(︁
Q0 · PXn,x0Py,Xnξ(y)

)︁
◦ PXnx0Py,Xn

if: PXn,x0ξ(Xn) ∈ S−
1 \ S+

1 and PXn,x0PYn,Xnξ(y) ∈ S−
0

or if: PXn,x0ξ(x) ∈ S+
1 and PXn,x0PYn,Xnξ(y) ∈ S−

0 \ S+
0

or if: PXn,x0ξ(x) not defined and PXn,x0PYn,Xnξ(y) ∈ S−
1 \ S+

1
IdTyM if PXn,x0PYn,Xnξ(y) not defined.

(8.2)

We observe that QXn is Borel-regular and that each QXn(y) ∈ SO(TyM) satisfies the property
(7.1) with e = PXn,yPx0,Xne1.

Define now the random variable:

τ ε,x0,y0
.
= min

{︁
dM(Xn, Yn) ≤ 3ε or dM(Xn, Yn) ≥ r or Xn ̸∈ BM(x0, r)

}︁
,
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which is a stopping time relative to the filtration {Fn}∞n=0. In particular ν(τ < ∞) = 1, as in
view of the definitions (7.3), (8.1) and the assumed smallness ε it follows that:

ν1
(︁
Xn+1 = ExpXn

(︁
εPx0,Xnwn+1

)︁)︁
>

1

2

and ν1
(︁
Yn+1 = ExpYn

(︁
εPXn,YnRefln(Px0,Xnwn+1)

)︁)︁
>

1

2
for n < τ.

Similarly to Proposition 7.2, we apply the change of variable PXn,x0PYn,Xn to conclude:

E
(︁
f ◦ Yn+1 | Fn

)︁
=

{︃
Āεf(Yn) if n < τ
f(Yn) if n ≥ τ.

(8.3)

2. We now observe that the sequence of random variables:{︁
Mn

.
= |f ◦Xτ∧n − f ◦ Yτ∧n|+ 2∥Āεf − f∥L∞(BM(x0,2r)) · (τ ∧ n)

}︁∞
n=0

is a submartingale with respect to the filtration {Fn}∞n=0, in virtue of the following bound:

E
(︁
|f◦Xn+1 − f ◦ Yn+1| − |f ◦Xn − f ◦ Yn| | Fn

)︁
≥

⃓⃓
E
(︁
f ◦Xn+1 − f ◦ Yn+1 | Fn

)︁⃓⃓
− |f ◦Xn − f ◦ Yn|

=
⃓⃓
Āεf(Xn)− Āεf(Yn)

⃓⃓
− |f ◦Xn − f ◦ Yn|

≥ −
(︁
|Āεf(Xn)− f(Xn)|+ |Āεf(Yn)− f(Yn)|

)︁
≥ −2∥Āεf − f∥L∞(BM(x0,2r)),

valid on the event {τ > n} by Proposition 7.2 and (8.3). On the other hand, when {n ≥ τ},
it trivially follows that: E

(︁
|f ◦Xτ∧(n+1) − f ◦ Yτ∧(n+1)| − |f ◦Xτ∧n − f ◦ Yτ∧n| | Fn

)︁
= 0 ≥

−2∥Āεf − f∥L∞(BM(x0,2r)). Consequently:

|f(x0)− f(y0)| = E[M0] ≤ E[Mτ ] = E
[︁
|f ◦Xτ − f ◦ Yτ |

]︁
+ 2∥Āεf − f∥L∞(BM(x0,2r)) · E[τ ]

≤
ˆ
{dM(Xτ ,Yτ )≤3ε}

|f(Xτ )− f(Yτ )| dν + 2∥f∥L∞(BM(x0,2r+3ε)) · ν
(︁
dM(Xτ , Yτ ) > 3ε

)︁
+ 2∥Āεf − f∥L∞(BM(x0,2r)) · E[τ ],

(8.4)

by Doob’s optional stopping theorem. We further write:

ν
(︁
dM(Xτ , Yτ ) > 3ε

)︁
≤ ν

(︁
dM(Xτ , Yτ ) ≥ r

)︁
+ ν

(︁
dM(Xτ , x0) ≥ r

)︁
. (8.5)

In the remaining part of the proof, we will estimate the three quantities:

ν
(︁
dM(Xτ , Yτ ) ≥ r

)︁
, ν

(︁
dM(Xτ , x0) ≥ r

)︁
, E[τ ], (8.6)

and derive the almost Lipschitz estimate claimed in the Theorem, from (8.4).

3. We start by estimating the following conditional expectation, on the event {τ > n}:

E
(︁
dM(Xn+1, Yn+1)

2 − dM(Xn, Yn)
2 | Fn

)︁
=

(︁
1− εmax

{︁
|∇(log ρ)(Xn)|Xn , |∇(log ρ)(Yn)|Yn

}︁)︁
·

·
ˆ
B(0,1)

η(|w|)
(︂
dM

(︁
ExpXn(εw), ExpYn(εPXn,YnReflnw)

)︁2 − dM(Xn, Yn)
2
)︂
dw

+ ε∥∇(log ρ)∥L∞(M) ·
ˆ
B(0,1)2

⃓⃓
dM(ExpXn(εq1), ExpYn(εq2))

2 − dM(Xn, Yn)
2
⃓⃓
dν1

(8.7)
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where both integrations on B(0, 1) ⊂ TXnM are written in normal coordinates centered at
Xn. In the second integrand above, vectors q1 ∈ TXnM, q2 ∈ TYnM satisfy |q1|Xn , |q2|Yn ≤ 1.
Thus, it follows by (5.3) that the error quantity in (8.7) is bounded by:

∥∇(log ρ)∥L∞(BM(x0,2r)) · O(ε2dM(Xn, Yn) + ε3) ≤ ∥∇(log ρ)∥L∞(M) · O(ε2r + ε3).

The first term in the right hand side of (8.7) may be estimated through applying Lemma
5.1 to x = Xn, y = Yn, s = ε, and the corresponding variation vectors w ∈ TXnM and
PXn,Yn(Reflnw) ∈ TYnM. We obtain:

dM
(︁
ExpXn(εw), ExpYn(εPXn,YnReflnw)

)︁2 − dM(Xn, Yn)
2

= 2ε
⟨︁
Reflnw − w,Exp−1

Xn
(Yn)

⟩︁
Xn

+ ε2|Reflnw − w|2Xn
+O(ε2r2 + ε4)

= −4ε
⟨︁
w,Exp−1

Xn
(Yn)

⟩︁
Xn

+ 4ε2
⟨︂
w,

Exp−1
Xn

(Yn)

|Exp−1
Xn

(Yn)|

⟩︂2

Xn

+O(ε2r2 + ε4),

and thus (8.7) becomes, provided that r and ε are sufficiently small:

E
(︁
dM(Xn+1, Yn+1)

2 − dM(Xn, Yn)
2 | Fn

)︁
= (1−O(ε)) ·

(︂
4ε2

ˆ
B(0,1)

η(|w|)
⟨︂
w,

Exp−1
Xn

(Yn)

|Exp−1
Xn

(Yn)|

⟩︂2
dw +O(ε2r2 + ε4)

)︂
+O(ε2r + ε3)

= 4ε2ση +O(ε2r2 + ε3) ≥ 3ε2ση.

(8.8)

4. We continue by estimating another conditional expectation on the event {τ > n}:

E
(︁
dM(Xn+1, Yn+1)− dM(Xn, Yn) | Fn

)︁
≤

(︁
1− εmax

{︁
|∇(log ρ)(Xn)|Xn , |∇(log ρ)(Yn)|Yn

}︁)︁
·

·
ˆ
B(0,1)

η(|w|)
⃓⃓⃓
dM

(︁
ExpXn(εw), ExpYn(εPXn,YnReflnw)

)︁
− dM(Xn, Yn)

⃓⃓⃓
dw

+
⃓⃓⃓
|∇(log ρ)(Xn)|Xn − |∇(log ρ)(Yn)|Yn

⃓⃓⃓
· O(ε2)

+ εmin
{︁
|∇(log ρ)(Xn)|Xn , |∇(log ρ)(Yn)|Yn

}︁
·

·
ˆ
B(0,1)

⃓⃓⃓
dM

(︁
ExpXn(εQ(Xn)w̄), ExpYn(εQ

Xn(Yn)PXn,Ynw̄)
)︁
− dM(Xn, Yn)

⃓⃓⃓
dν1(w̄)

.
= A+O(ε2r) +B,

(8.9)

where the integration on B(0, 1) ⊂ TXnM is written in the normal coordinates centered at Xn.

To estimate the term A, we first rewrite the expansion (5.3) in the following form:

L(ε) = |t0z + ε(Py,xw − v)|2 +O(ε2t20 + ε4).

When t0 > 3ε and |v|x, |w|y ≤ 1, which imply: |t0z + ε(Py,xw − v)| ≥ t0 − 2ε ≥ t0
3 , Taylor

expanding the square root function yields:

L(ε)1/2 = |t0z + ε(Py,xw − v)|+ 1

2|t0z + ε(Py,xw − v)|
O(ε2t20 + ε4)

= |t0z + ε(Py,xw − v)|+O(ε2t0 + ε3).
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Hence, for all w ∈ B(0, 1) ⊂ TXnM we obtain:

dM
(︁
ExpXn(εw), ExpYn(εPXn,YnReflnw)

)︁
− dM(Xn, Yn)

= L(ε)1/2 − |t0z|

=
⃓⃓⃓
Exp−1

Xn
(Yn)−

2ε⟨w,Exp−1
Xn

(Yn)⟩
dM(Xn, Yn)2

· Exp−1
Xn

(Yn)
⃓⃓⃓
− |Exp−1

Xn
(Yn)|+O(ε2r + ε3).

Using once more the fact that: ε|Reflnw − w| ≤ 2ε|w| < 2ε < |Exp−1
Xn

(Yn)|, we conclude that
the the difference of the first two terms in the right hand side above is symmetric in w, and
hence integrates to 0 on B(0, 1). This yields the bound on A:

A ≤ O(ε2r + ε3). (8.10)

5. Similarly, we now estimate the quantity B in (8.9) by:

B ≤ εmin
{︁
|∇(log ρ)(Xn)|Xn , |∇(log ρ)(Yn)|Yn

}︁
·

·
ˆ
B(0,1)

⃓⃓⃓⃓⃓
Exp−1

Xn
(Yn) + ε

(︁
PYn,XnQ

Xn(Yn)PXn,Ynw̄ −Q(Xn)w̄
)︁⃓⃓

− |Exp−1
Xn

(Yn)|
⃓⃓⃓
+O(ε2) dν1(w̄)

≤ ε2min
{︁
|∇(log ρ)(Xn)|Xn , |∇(log ρ)(Yn)|Yn

}︁
·

· sup
w̄∈B(0,1)⊂TXnM

⃓⃓⃓
PYn,XnQ

Xn(Yn)PXn,Ynw̄ −Q(Xn)w̄
⃓⃓⃓
Xn

+O(ε3).

Clearly, the supremum in the above expression is bounded by 2. This implies:

B ≤ 1

2
ε2ση +O(ε3) when min

{︁
|∇(log ρ)(Xn)|Xn , |∇(log ρ)(Yn)|Yn

}︁
≤ ση

4
.

In the opposite case, when min
{︁
|∇(log ρ)(Xn)|Xn , |∇(log ρ)(Yn)|Yn

}︁
>

ση
4 , we get:

⃓⃓
PYn,Xnξ(Yn)− ξ(Xn)

⃓⃓
≤ 2 ·

⃓⃓
PYn,Xn∇(log ρ)(Yn)−∇(log ρ)(Xn)

⃓⃓
Xn

min
{︁
|∇(log ρ)(Xn)|Xn , |∇(log ρ)(Yn)|Yn

}︁
≤

2 · Lip∇(log ρ)

min
{︁
|∇(log ρ)(Xn)|Xn , |∇(log ρ)(Yn)|Yn

}︁dM(Xn, Yn),

(8.11)

where Lip∇(log ρ) denotes the Lipschitz constant of ∇(log ρ) on M. In particular, for r suf-

ficiently small there holds:
⃓⃓
PYn,Xnξ(Yn) − ξ(Xn)

⃓⃓
≤

8·Lip∇(log ρ)

ση
r ≪ 1. In conclusion, either

PXn,x0ξ(Xn) ∈ S+
1 and PXn,x0PYn,Xnξ(Yn) ∈ S+

0 so that:

PYn,XnQ
Xn(Yn)PXn,Ynw̄ −Q(Xn)w̄

= PX0,Xn

(︂
Q̄
(︁
PXn,x0PYn,Xnξ(Yn)

)︁
− Q̄

(︁
PXn,x0ξ(Xn)

)︁)︂
PXn,x0w̄,

or else PXn,x0ξ(Xn) ∈ S−
1 \ S+

1 and PXn,x0PYn,Xnξ(Yn) ∈ S−
0 , so that:

PYn,XnQ
Xn(Yn)PXn,Ynw̄ −Q(Xn)w̄

= PX0,Xn ◦QT0
(︂
Q̄
(︁
Q0 · PXn,x0PYn,Xnξ(Yn)

)︁
− Q̄

(︁
Q0 · PXn,x0ξ(Xn)

)︁)︂
PXn,x0w̄.
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In both cases, we obtain by (8.11):

sup
w̄∈B(0,1)⊂TXnM

⃓⃓
PYn,XnQ

Xn(Yn)PXn,Ynw̄ −Q(Xn)w̄
⃓⃓
≤ LipQ̄ ·

⃓⃓
PYn,Xnξ(Yn)− ξ(Xn)

⃓⃓
Xn

≤
2 · Lip∇(log ρ) · LipQ̄

min
{︁
|∇(log ρ)(Xn)|Xn , |∇(log ρ)(Yn)|Yn

}︁r,
which implies:

B ≤ O(ε2r + ε3) when min
{︁
|∇(log ρ)(Xn)|Xn , |∇(log ρ)(Yn)|Yn

}︁
>
ση
4
.

In conclusion, it follows that:

B ≤ 1

2
ε2ση +O(ε2r + ε3). (8.12)

6. The estimates (8.9), (8.10), (8.12) imply that on the event {τ > n}:

E
(︁
dM(Xn+1, Yn+1)− dM(Xn, Yn) | Fn

)︁
≤ 1

2
ε2ση +O(ε2r + ε3). (8.13)

We are now ready to estimate the quantities in (8.6). Firstly, in virtue of (8.8) and (8.13), we
obtain the following estimate, valid on {τ > n}:

E
(︂
dM(Xn+1,Yn+1)−

1

2r
dM(Xn+1, Yn+1)

2 | Fn
)︂

≤ dM(Xn, Yn)−
1

2r
dM(Xn, Yn)

2 − ε2ση
2r

,

because 1
2ε

2ση + O(ε2r) − 3σηε2

2r ≤ − ε2ση
2r if only r is sufficiently small. Consequently, the

following sequence of random variables:{︂
M̄n

.
= dM(Xτ∧n, Yτ∧n)−

1

r
dM(Xτ∧n, Yτ∧n)

2 +
σηε

2

2r
(τ ∧ n)

}︂∞

n=0

is a supermartingale with respect to the filtration {Fn}∞n=0. By an application of Doob’s
optional stopping theorem, we infer that:

E
[︂
dM(Xτ ,Yτ )−

1

2r
dM(Xτ , Yτ )

2
]︂
+
σηε

2

2r
E[τ ]

= E[M̄ τ ] ≤ E[M̄0] = dM(x0, y0)−
1

2r
dM(x0, y0)

2 ≤ dM(x0, y0).

Since for ε sufficiently small there holds dM(Xτ , Yτ ) ≤ 4r
3 , it further follows that: dM(Xτ , Yτ )−

1
2rdM(Xτ , Yτ )

2 ≥ 1
3dM(Xτ , Yτ ), hence the above displayed inequality yields:

1

3
E
[︁
dM(Xτ , Yτ )

]︁
+
σηε

2

2r
E[τ ] ≤ dM(x0, y0). (8.14)

In particular, we get:

E[τ ] ≤ 2r

σηε2
dM(x0, y0) (8.15)

and also, via Markov’s inequality:

ν
(︁
dM(Xτ , Yτ ) ≥ r

)︁
≤ E[dM(Xτ , Yτ )]

r
≤ 3

r
dM(x0, y0).
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Finally, Lemma 7.3 and (8.15) give:

ν
(︁
dM(Xτ , x0) ≥ r

)︁
≤ E[dM(Xτ , x0)

2]

r2
≤ 3m

r
dM(x0, y0).

Recalling (8.4) and (8.5), we conclude:

|f(x0)− f(y0)| ≤ sup
{︂
|f(x)− f(y)|; x ∈ BM(x0, r + ε) dM(x, y) ≤ 3ε

}︂
+

6(m+ 1)

r
∥f∥L∞(BM(x0,2r+3ε))dM(x0, y0)

+
4r

ση
·
∥Āεf − f∥L∞(BM(x0,2r))

ε2
dM(x0, y0),

as claimed.

9. The second approximate Lipschitz estimate

In this section, we work under hypothesis (H2) and develop a complementary estimate to
Theorem 8.1. Additionally, we assume there exists an open set S ⊂ B(0, 1) and c > 0 with:

η(|w|) ≥ c for all w ∈ S. (9.1)

Clearly, S can be taken to be rotationally invariant, for example: S = B(0, δ1) or S =
B(0, δ2) \ B̄(0, δ1) where 0 < δ1 < δ2 < 1. The condition (9.1) is a very natural assump-
tion for applications and thus sufficient for our main goal in this paper. However, we remark
that it can be relaxed as we discuss in Remark 10.4.

Theorem 9.1. There exists a constant θ ∈ (0, 1) depending only on η, such that the following
holds if only ε ≪ 1. Let f : M → R be a bounded, Borel function. Then for every x0, y0 ∈ M
satisfying dM(x0, y0) ≤ 3ε there holds:

|f(x0)− f(y0)| ≤ θ · sup
{︂
|f(x)− f(y)|; x ∈ BM(x0, N̄ε), dM(x, y) ≤ 5ε

}︂
+ N̄ε∥∇(log ρ)∥L∞(M) · ∥f∥L∞(BM(x0,N̄ε)) + Cε2∥f∥L∞(BM(x0,N̄ε))

+ N̄∥Āεf − f∥L∞(BM(x0,N̄ε)).

The constant C above depends on (M, g) and η, whereas N̄ depends only on η.

The proof pursues the argument in the local (normal) coordinates. Given x0, y0 ∈ M such
that dM(x0, y0) ≤ 3ε ≪ 1, consider the smooth diffeomorphism ϕε,x0,y0 of B(0, 1) ⊂ Tx0M
onto its image in Tx0M:

ϕε,x0,y0(w) =
1

ε
Exp−1

x0 Expy0
(︁
εPx0,y0w

)︁
for all w ∈ B(0, 1). (9.2)

We start by the following observation:

Proposition 9.2. Let S ⊂ B(0, 1) ⊂ Rm be a rotationally symmetric, open set of the form:
S = B(0, δ2) \ B̄(0, δ1) for some 0 < δ1 < δ2, and let c > 0 satisfy (9.1). Then there exist a
constant α > 0 and an integer N > 1, such that:

(i) α
.
=

ˆ
{⟨w,e1⟩∈( 1

4N
, 1
2N

)}
η(|w|) dw ∈ (0, 1),

(ii) |S ∩ ϕε,x0,y0(S)| > 1
2 |S|, whenever dM(x0, y0) ≤ ε

N and ε≪ 1.
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Proof. Condition (i) is evident in view of (9.1), for any N > 1
δ2
. To prove (ii), we write

y0 = Exp−1
x0 (εz) where z ∈ B(0, 1) ⊂ Tx0M and note that ϕε,x0,y0(w) = γ(1), where one solves:{︃

ẇi(t) = −εΓijk(εtz)wj(t)zk, t ∈ [0, 1]

w(0) = w.

{︃
γ̈i(s) = −εΓijk(εγ(s))γ̇

j(s)γ̇k(s), s ∈ [0, 1]

γ̇(0) = w(1), γ(0) = z.

Since the map: (︁
z ∈ B(0, 1), w ∈ B(0, 1), |ε| ≪ 1, s ∈ [0, 1]

)︁
↦→ γ(s)

is smooth, with all its derivatives bounded, and since Γijk(0) = 0, standard arguments in the
theory of systems of ODEs imply that:

ϕε,x0,y0(w) = z + w +O(ε2), ∇ϕε,x0,y0(w) = Idm +O(ε2). (9.3)

Here, the Landau symbol O above refers to any quantity that is bounded together with its
derivatives, with a bound depending only on (M, g).

For a given δ > 0, let ψ ∈ C∞
0 (S) be such that

´
|1S − ψ| < δ. We then estimate the

symmetric difference of the sets S and ϕε,x0,y0(S) by changing variable in view of (9.3):

|S△ϕε,x0,y0(S)| =
ˆ

|1S − 1ϕε,x0,y0 (S)
|

≤
ˆ

|1S − ψ|+
ˆ

|ψ − ψ ◦ ϕ−1
ε,x0,y0 |+

ˆ
|ψ ◦ ϕ−1

ε − 1ϕε,x0,y0 (S)
|

=

ˆ
|1S − ψ|+

ˆ
|ψ ◦ ϕε,x0,y0 − ψ| · | det∇ϕε,x0,y0 |+

ˆ
|1S − ψ| · | det∇ϕε,x0,y0 |

≤ δ + 2

ˆ
|ψ ◦ ϕε,x0,y0 − ψ|+ 2δ.

(9.4)

By choosing an appropriate approximating function ψ, the integral in the right hand side

above may be bounded by: C
δ

(︁
|z| + O(ε2)

)︁2
. Taking 3δ < |S|

4 and |z| < 1
N to the effect

that also C
δ

(︁
|z| + O(ε2)

)︁2
< |S|

4 if only N is large enough and ε ≪ 1, we conclude that

|S △ ϕε,x0,y0(S)| <
|S|
2 . Consequently, there follows (ii) because:

|S ∩ ϕε,x0,y0(S)| = |S| − |S \ ϕε,x0,y0(S)| ≥ |S| − |S △ ϕε,x0,y0(S)| ≥
1

2
|S|,

and because dM(x0, y0) = ε|z|.

A proof of Theorem 9.1.

1. Given x0, y0 ∈ M such that 0 < dM(x0, y0) ≤ 3ε, we write:⃓⃓
f(x0)− f(y0)

⃓⃓
≤ |Āεf(x0)− f(x0)|+ |Āεf(y0)− f(y0)|+ |Āεf(x0)− Āεf(y0)|
≤ 2∥Āεf − f∥L∞(BM(x0,4ε)) + 2ε∥∇(log ρ)∥L∞(M) · ∥f∥L∞(BM(x0,5ε))

+
⃓⃓⃓ ˆ

B(0,1)
η(|w|)

(︂
f(Expx0(εw))− f(Expy0(εPx0,y0w))

)︂
dw

⃓⃓⃓
.

(9.5)

As usual, the integration on B(0, 1) ⊂ Tx0M ≃ Rm is written in the normal coordinates
centered at x0. We denote εz = Exp−1

x0 (y0) and express the integral in (9.5) as:ˆ
B(0,1)

η(|w|)
(︂
f(Expx0(εw))− f(Expy0(εPx0,y0Refl(w)))

)︂
dw, (9.6)
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where Refl : Tx0M → Tx0M is the reflection across the hyperplane perpendicular to z:

Refl(w) = w −
2⟨w,Exp−1

x0 (y0)⟩
dM(x0, y0)

Exp−1
x0 (y0) for w ∈ Tx0M.

Our goal is now to estimate the quantity in (9.6). Below, we consider two cases towards closing
the bound in (9.5). Recall that N, s, α are as in Proposition 9.2.

2. We first analyze the case dM(x0, y0) ≤ ε
N . We split the integral in (9.6) on the following

two integration sets, recalling that ϕε = ϕε,x0,y0 is defined in (9.2):

ˆ
S∩ϕε,x0,y0 (S)

η(|w|)
(︂
f(Expx0(εw))− f(Expx0(εϕε,x0,y0Refl(w)))

)︂
dw

+

ˆ
B(0,1)\(S∩ϕε,x0,y0 (S))

η(|w|)
(︂
f(Expx0(εw))− f(Expy0(εPx0,y0Refl(w)))

)︂
dw.

(9.7)

To deal with the first integral, we change the variable through the piecewise C1 diffeomorphism
w ↦→ ϕεRefl w, and recall (9.3) to compute:

ˆ
S∩ϕε(S)

f(Expx0(εw))− f(Expx0(εϕεRefl(w))) dw

=

ˆ
S∩ϕε(S)

f(Expx0(εw)) dw −
ˆ
ϕε(S)∩ϕεReflϕε(S)

f(Expx0(εw)) · | det∇ϕε|−1 dw

≤
ˆ
S∩ϕε(S)

f(Expx0(εw)) dw −
ˆ
ϕε(S)∩ϕεReflϕε(S)

f(Expx0(εw)) dw +O(ε2)∥f∥L∞(BM(x0,2ε))

≤ ∥f∥L∞(BM(x0,2ε))

(︂
O(ε2) +

⃓⃓(︁
S ∩ ϕε(S)

)︁
△
(︁
ϕε(S) ∩ ϕεReflϕε(S)

)︁⃓⃓)︂
≤ ∥f∥L∞(BM(x0,2ε))

(︂
O(ε2) +

⃓⃓
S△ϕεReflϕε(S)

⃓⃓)︂
≤ O(ε2) · ∥f∥L∞(BM(x0,2ε)).

The final bound above follows by using (9.3) in:

ϕεReflϕε(w) =
1

ε
Exp−1

x0 (y0) + Reflϕε(w) +O(ε2)

=
1

ε
Exp−1

x0 (y0) + Refl
(︂1
ε
Exp−1

x0 (y0) + w
)︂
+O(ε2) = Reflw +O(ε2)

and applying the same argument as in (9.4) with δ = ε2.

In conclusion, we may use the splitting in (9.7) to estimate:⃓⃓⃓ˆ
B(0,1)

η(|w|)
(︂
f(Expx0(εw))− f(Expy0(εPx0,y0Refl(w)))

)︂
dw

⃓⃓⃓
≤

⃓⃓⃓ˆ
S∩ϕε,x0,y0 (S)

(η(|w|)− c) ·
(︂
f(Expx0(εw))− f(Expx0(εϕε,x0,y0Refl(w)))

)︂
dw

⃓⃓⃓
+
⃓⃓⃓ˆ

B(0,1)\(S∩ϕε,x0,y0 (S))
η(|w|)

(︂
f(Expx0(εw))− f(Expy0(εPx0,y0Refl(w)))

)︂
dw

⃓⃓⃓
+O(ε2) · ∥f∥L∞(BM(x0,2ε)),
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and further:⃓⃓⃓ ˆ
B(0,1)

η(|w|)
(︂
f(Expx0(εw))− f(Expy0(εPx0,y0Refl(w)))

)︂
dw

⃓⃓⃓
≤ O(ε2)∥f∥L∞(BM(x0,2ε)) +

(︂ˆ
S∩ϕε(S)

(η(|w|)− c) dw +

ˆ
B(0,1)\(S∩ϕε(S))

η(|w|) dw
)︂

· sup
{︂
|f(x)− f(y)|; x ∈ BM(x0, ε), dM(x, y) ≤ 3ε

}︂
≤ O(ε2)∥f∥L∞(BM(x0,2ε))

+
(︁
1− c|S ∩ ϕε(S)|

)︁
· sup

{︂
|f(x)− f(y)|; x ∈ BM(x0, ε), dM(x, y) ≤ 3ε

}︂
≤ O(ε2)∥f∥L∞(BM(x0,2ε))

+
(︂
1− c|S|

2

)︂
· sup

{︂
|f(x)− f(y)|; x ∈ BM(x0, ε), dM(x, y) ≤ 3ε

}︂
by Proposition 9.2 (ii) since dM(x0, y0) ≤ ε

N . Inserting the above estimate in (9.5) yields:⃓⃓
f(x0)− f(y0)

⃓⃓
≤ 2∥Āεf − f∥L∞(BM(x0,4ε)) + 2ε∥∇(log ρ)∥L∞(M) · ∥f∥L∞(BM(x0,5ε))

+O(ε2)∥f∥L∞(BM(x0,2ε))

+
(︂
1− c|S|

2

)︂
· sup

{︂
|f(x)− f(y)|; x ∈ BM(x0, ε), dM(x, y) ≤ 3ε

}︂
.

(9.8)

3. In the remaining case dM(x0, y0) >
ε
N , we split the integral (9.6) on the two sets:⃓⃓⃓ ˆ

{⟨w, z
|z| ⟩∈(

1
4N

, 1
2N

)}
η(|w|)

(︂
f(Expx0(εw))− f(Expy0(εPx0,y0Refl(w)))

)︂
dw

⃓⃓⃓
+
⃓⃓⃓ˆ

B(0,1)\{⟨w, z
|z| ⟩∈(

1
4N

, 1
2N

)}
η(|w|)

(︂
f(Expx0(εw))− f(Expy0(εPx0,y0Refl(w)))

)︂
dw

⃓⃓⃓
≤ α · sup

{︂
|f(x)− f(y)|; x ∈ BM(x0, ε), dM(x, y) ≤ dM(x0, y0)−

ε

4N

}︂
+ (1− α) · sup

{︂
|f(x)− f(y)|; x ∈ BM(x0, ε), dM(x, y) ≤ 5ε

}︂
.

(9.9)

The last estimate above is a consequence of (5.3) as follows. For any w ∈ B(0, 1) satisfying:

⟨w, z|z|⟩ ∈ ( 1
4N ,

1
2N ), there holds: |z− 2⟨w,z⟩

|z|2 z| =
⃓⃓
|z|− 2⟨w,z⟩

|z|
⃓⃓
= dM(x0,y0)

ε −2⟨w, z|z|⟩ > 0, because

dM(x0, y0) = |εz|. Thus, we may apply square root to the expansion in (5.3) and control the
error terms, for all ε sufficiently small:

dM
(︁
Expx0(εw), Expy0(εPx0,y0Reflw)

)︁
=

⃓⃓
εz − 2ε⟨w, εz⟩

|εz|2
εz
⃓⃓
+O(ε2)

≤ ε
⃓⃓⃓
|z| − 1

2N
+O(ε2) ≤ ε|z| − ε

4N
.

This proves (9.9). Combining with (9.5), we obtain:⃓⃓
f(x0)−f(y0)

⃓⃓
≤ α ·max

{︁
κ1, κ̃1

}︁
+ (1− α) · sup

{︂
|f(x)− f(y)|; x ∈ BM(x0, ε), dM(x, y) ≤ 5ε

}︂
+ 2∥Āεf − f∥L∞(BM(x0,4ε)) + 2ε∥∇(log ρ)∥L∞(M) · ∥f∥L∞(BM(x0,5ε)),

(9.10)
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where for all i = 1 . . . 4(3N − 1) we have denoted:

κi
.
= sup

{︂
|f(x)− f(y)|; x ∈ BM(x0, iε),

ε

N
< dM(x, y) ≤ dM(x0, y0)−

iε

4N

}︂
,

κ̃i
.
= sup

{︂
|f(x)− f(y)|; x ∈ BM(x0, iε), dM(x, y) ≤ ε

N

}︂
.

Observe that since dM(x0, y0) ≤ 3ε, there exists i as above for which κ̃i ≥ κi (indeed, the set
over which the supremum is taken in the definition of κ4(3N−1) is empty). Iterating i times the
expression (9.10), we arrive at:⃓⃓

f(x0)− f(y0)
⃓⃓
≤αi · sup

{︂
|f(x)− f(y)|; x ∈ BM(x0, iε), dM(x, y) ≤ ε

N

}︂
+ (1− αi) · sup

{︂
|f(x)− f(y)|; x ∈ BM(x0, iε), dM(x, y) ≤ 5ε

}︂
+

2(1− αi)

1− α
∥Āεf − f∥L∞(BM(x0,4iε))

+
2ε(1− αi)

1− α
∥∇(log ρ)∥L∞(M) · ∥f∥L∞(BM(x0,5iε)).

(9.11)

4. Finally, we combine (9.8) and (9.11) to conclude the estimate in the Theorem, in which

the term: sup
{︂
|f(x)− f(y)|; x ∈ BM(x0, 12Nε), dM(x, y) ≤ 5ε

}︂
is multiplied by the factor:

αi
(︁
1− c|S|

2

)︁
+ (1− αi) = 1− αic|S|

2
≤ 1− α4(3N−1)c|S|

2

.
= θ.

Namely, we get:

|f(x0)− f(y0)| ≤ θ · sup
{︂
|f(x)− f(y)|; x ∈ BM(x0, 12Nε), dM(x, y) ≤ 5ε

}︂
+ 24N∥Āεf − f∥L∞(BM(x0,48Nε))

+ 24Nε∥∇(log ρ)∥L∞(M) · ∥f∥L∞(BM(x0,60Nε)) +O(ε2)∥f∥L∞(BM(x0,12Nε)).

The proof is complete.

10. Closing the bounds and proofs of Theorems 2.11 and 2.12

In this section, we work under hypothesis (H2) and the additional property 9.1. We will
conclude the proofs of the local and global approximate Lipschitz estimates in the continuum
setting. The proof of the global estimate is less involved, as it can directly utilize the contraction
property in Theorem 9.1. For the local estimate, we needan extra iteration argument.

10.1. The global bound and a proof of Theorem 2.11. We first deduce a version of the
approximate Lipschitz estimate in Theorem 2.11, involving the auxiliary averaging operator Āε

rather than Aε. This allows for a more precise estimate, where the factors C below depend only
on the manifold (M, g) and the radial weight function η, while the dependence on the drift field
ρ, occurring through ∥∇(log ρ)∥L∞ , is present in just one specific error term. This observation
is consistent with the analysis of the pure Laplace-Beltrami operator case ρ ≡ const.
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Theorem 10.1. Let ε ≪ 1. Then, for every bounded, Borel function f : M → R and every
x0, y0 ∈ M we have the following estimate, where constants C depend only on (M, g) and η:

|f(x0)− f(y0)| ≤ C
(︂
∥f∥L∞(M) +

∥Āεf − f∥L∞(M)

ε2

)︂
· dM(x0, y0)

+ Cε
(︂
(∥∇(log ρ)∥L∞(M) + 1) · ∥f∥L∞(M) +

∥Āεf − f∥L∞(M)

ε2

)︂
.

Proof. By Theorems 8.1 and 9.1 we obtain:

|f(x0)− f(y0)| ≤ θ · sup
{︂
|f(x)− f(y)|; x, y ∈ M, dM(x, y) ≤ 5ε

}︂
+ C

(︂
∥f∥L∞(M) +

∥Āεf − f∥L∞

ε2

)︂
· dM(x0, y0)

+ C
(︂
ε∥∇(log ρ)∥L∞(M) · ∥f∥L∞(M) + ε2∥f∥L∞(M) + ∥Āεf − f∥L∞(M)

)︂
,

(10.1)

valid whenever dM(x0, y0) < r and for ε≪ 1 small enough. Taking the supremum over the set
{x, y ∈ M, dM(x, y) ≤ 5ε} in the left hand side above, and recalling that θ < 1, we arrive at:

sup
{︂
|f(x)− f(y)|; x, y ∈ M, dM(x, y) ≤ 5ε

}︂
≤Cε

(︁
∥∇(log ρ)∥L∞(M) + 1

)︁
∥f∥L∞(M) + C

∥Āεf − f∥L∞(M)

ε
.

Inserting the above bound into (10.1) achieves the proof when dM(x0, y0) < r. The general
case and the global estimate follow by compactness of M.

A proof of Theorem 2.11. The result follows from Theorem 10.1, upon replacing Āεf by
Aεf , invoking Lemma 6.3, and recalling that Aεf(x)− f(x) = −(ρ(x) +O(ε2))ε2∆εf(x).

10.2. The local bound and a proof of Theorem 2.12. We now present the interior coun-
terpart of the previously established estimates.

Theorem 10.2. Let ε ≪ r ≪ 1. Then, for every bounded, Borel function f : M → R and
every x0, y0 ∈ M with dM(x0, y0) < r, there holds:

|f(x0)− f(y0)| ≤ C
(︂dM(x0, y0)

r
+
ε| log ε|

r

)︂
· ∥f∥L∞(BM(x0,3r))

+ C
(︂
rdM(x0, y0) +

εr

| log ε|

)︂
·
∥Āεf − f∥L∞(BM(x0,3r))

ε2
.

The constant C depends on (M, g), η and ∥∇(log ρ)∥L∞(M).

Proof. Let dM(x0, y0) < r. Combining Theorems 8.1 and 9.1, we obtain:

|f(x0)− f(y0)| ≤ θ · sup
{︂
|f(x)− f(y)|; x ∈ BM(x0, r + N̄ε), dM(x, y) ≤ 5ε

}︂
+ C

(︂
ε+

dM(x0, y0)

r

)︂
· ∥f∥L∞(BM(x0,2r+N̄ε))

+ C
(︂
ε2 + rdM(x0, y0)

)︂
·
∥Āεf − f∥L∞(BM(x0,2r+N̄ε))

ε2
,

(10.2)

where C depends on (M, g) and η, while both θ ∈ (0, 1) and N̄ depend only on η.
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Next, we bound the first term in the right hand side above. Let x, y ∈ M satisfy dM(x, y) ≤
5ε. Using (10.2) with r replaced by a new radius R = log θ

log ε ·
r
2 , we deduce:

|f(x)− f(y)| ≤ θ · sup
{︂
|f(x̄)− f(ȳ)|; x̄ ∈ BM(x,R+ N̄ε), dM(x̄, ȳ) ≤ 5ε

}︂
+ C

ε| log ε|
r

· ∥f∥L∞(BM(x,2R+N̄ε)) + C
εr

| log ε|
·
∥Āεf − f∥L∞(BM(x,2R+N̄ε))

ε2
.

We now iterate the above inequality for a total of k = ⌈ log εlog θ⌉ times, to get:

|f(x)− f(y)| ≤ θk · sup
{︂
|f(x̄)− f(ȳ)|; x̄ ∈ BM(x0, k(R+ N̄ε)), dM(x̄, ȳ) ≤ 5ε

}︂
+ C

(︂ k−1∑︂
i=0

θi
)︂
·
(︂ε| log ε|

r
∥f∥L∞(BM(x,k(2R+N̄ε))) +

εr

| log ε|
∥Āεf − f∥L∞(BM(x,k(2R+N̄ε)))

ε2

)︂
.

Observe that θk < θ · θlog ε/ log θ = θ · ε < ε, and also:

k(R+ N̄ε) < k(2R+ N̄ε) <
(︂
1 +

log ε

log θ

)︂(︂ log θ
log ε

+ 1
)︂
<

3

2
r

if only ε≪ 1. Thus, the previous estimate may be rewritten as:

|f(x)− f(y)| ≤ 2ε∥f∥L∞(BM(x, 3
2
r))

+
C

1− θ

(︂ε| log ε|
r

∥f∥L∞(BM(x, 3
2
r) +

εr

| log ε|
∥Āεf − f∥L∞(BM(x, 3

2
r))

ε2

)︂
≤ C

ε| log ε|
r

∥f∥L∞(BM(x, 3
2
r) + C

εr

| log ε|
∥Āεf − f∥L∞(BM(x, 3

2
r))

ε2

)︂
.

In view of (10.2), this implies:

|f(x0)− f(y0)| ≤ C
(︂dM(x0, y0)

r
+
ε| log ε|

r

)︂
· ∥f∥L∞(BM(x0,

8
3
r))

+ C
(︂
rdM(x0, y0) +

εr

| log ε|

)︂
·
∥Āεf − f∥L∞(BM(x0,

8
3
r))

ε2
.

(10.3)

which proves the claim.

A proof of Theorem 2.12.

We first replace Āεf(x) by Aεf(x) in (10.3) and invoke Lemma 6.3 to absorb the error term(︁
rdM(x0, y0)+

εr
| log ε|

)︁
O(ε2)∥f∥L∞(BM(x0,3r)/ε

2 in the term
(︁dM(x0,y0)

r + ε| log ε|
r

)︁
∥f∥L∞(BM(x0,3r),

provided that ε is small enough.

Further, recall Remark 6.2 (ii) to replace Aεf − f by Cε2∆εf . Finally, we use the obtained
bound with 2r instead of r for x, y ∈ BM(x0, r) satisfying dM(x, y) < 2r.

Remark 10.3. The estimates in Theorems 2.11 and 2.12 with any given probability density
ρ may be deduced from the same statements with ρ0 ≡ 1. Indeed, write:

|f(x)− f(x)| ≤ 1

min ρ

(︂⃓⃓
(ρf)(x)− (ρf)(y)

⃓⃓
+
⃓⃓
ρ(x)− ρ(y)

⃓⃓
|f(y)|

)︂
,
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and note the following formula for the non-local Laplacian ∆0
ε with respect to ρ0:

∆0
ε

(︁
ρf

)︁
(x) = ∆εf(x) +

f(x)

εm+2

ˆ
M
η
(︂dM(x, y)

ε

)︂
(ρ(x)− ρ(y)) dVolM(y).

The usual calculation in normal coordinates at x yields:
´
M η

(︁dM(x,y)
ε

)︁
(ρ(x)−ρ(y)) dVolM(y) =

εm
´
B(0,1)⊂TxM η(|w|)

(︁
ε⟨∇ρ(x), w⟩ + O(ε2)

)︁
(1 + O(ε2)) dw = O(εm+2), for ε ≪ 1 when the

integration variable y is close to x ∈ M. Consequently, applying Theorems 2.11 and 2.12 to
the density ρ0 and to the function ρf , yields the claimed bounds for |f(x)− f(y)| relative to ρ.

While the above argument can be used to reduce our regularity estimates to the case of
constant ρ, we want to highlight that the partial estimates which obtained along the way in
our proofs (Theorems 8.1, 10.1 and 10.2) carry some precise information about the dependence
of constants, which we feel are of independent interest. Likewise, the construction of the biased
random walk modeled on the averaging operator Āε which admits completely arbitrary ρ, is
new in this context and worthy of presentation.

Remark 10.4. We note that condition (9.1) used in Theorem 9.1, can be relaxed to a more
general assumption that η is only bounded and measureable. First, we write:

f −A2
εf = (f −Aεf) +Aε(f −Aεf).

By Remark 6.2 (ii) and the expansion dε = ρ+O(ε2) we deduce:

|f −A2
εf | ≤ Cε2|∆εf |.

This allows us to replace the averaging operator Aε by A2
ε in the proof of Theorem 9.1 (more

correctly, we replace Aε by A2
ε, but the proof may proceed with either due to Lemma 6.3). We

now note, again using the expansion dε = ρ+O(ε2), that we can write:

A2
εf(x) =

1

dε(x)

ˆ
M

1

εm
ϕ(x, z)f(z)ρ(z)dVolM(z) +O(∥f∥∞ε2),

where:

ϕ(x, z) =

ˆ
M

1

εm
η

(︃
dM(x, y)

ε

)︃
η

(︃
dM(y, z)

ε

)︃
dVolM(y). (10.4)

Using the change of variables y = Expx(εỹ) in (10.4), one can show that:

ϕ(x, z) =

ˆ
TxM

η (|ỹ|) η (|z̃ − ỹ|) dỹ +O(ε2).

Hence, by working with A2
ε in Theorem 9.1 we can essentially replace the kernel η with the

convolution ζ = η ∗ η in all arguments. When η is bounded and measureable, the convolution
ζ is continuous, and so (9.1) holds for ζ without any additional assumptions on η. The proof
of Theorem 9.1 now proceeds by replacing Aε with A2

ε.

PART 3

11. Applications to Lipschitz regularity in graph-based learning

In this section, we work under hypothesis (H1). Note that the additional assumption 9.1
holds automatically, in view of continuity of η on [0, 1]. Below, we prove our main results,
concerning Lipschitz regularity for solutions of graph PDEs.
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11.1. Graph Poisson equations: proofs of Theorem 2.1, Theorem 2.2 and Corollary
2.10. We deduce the three announced global-local Lipschitz regularity estimates.

A proof of Theorem 2.1.

We assume that the events indicated in Theorem 2.9 and in Lemma 3.6 with t = ε2, hold.
Let f : Xn → R. Since oscXn f ≤ 2∥f∥L∞(Xn), we obtain:

∥∆ε(Iε,Xnf)∥L∞(M) ≤ C
(︁
∥∆ε,Xnf∥L∞(Xn) + ∥f∥L∞(Xn)

)︁
.

Inserting the above into the conclusion of Theorem 2.11 yields, for all x, y ∈ M:

|Iε,Xnf(x)− Iε,Xnf(y)| ≤ C
(︁
∥f∥L∞(Xn) + ∥∆ε,Xnf∥L∞(Xn)

)︁
· (dM(x, y) + ε), (11.1)

where we used that ∥Iε,Xnf∥L∞(M) ≤ ∥f∥L∞(Xn). Since by Corollary 3.7 we have dε,Xn ≥ c,
recalling (4.10) we get:

|f(xi)− Iε,Xnf(xi)| ≤
ε2

dε,Xn(xi)
|∆ε,Xnf(xi)| ≤ Cε2∥∆ε,Xnf∥L∞(M) for all i = 1, . . . , n.

Therefore:

|f(xi)− f(xj)| ≤ |f(xi)− Iε,Xnf(xi)|+ |Iε,Xnf(xi)− Iε,Xnf(xj)|+ |Iε,Xnf(xj)− f(xj)|
≤ Cε2∥∆ε,Xnf∥L∞(Xn) + |Iε,Xnf(xi)− Iε,Xnf(xj)|.

Combining the above with the estimate (11.1) completes the proof.

A proof of Corollary 2.10.

Assume that both events indicated in Theorems 2.1 and 2.9 hold. Given f : Xn → R, the
conclusion of Theorem 2.1 implies that:

osc
Xn∩B(x,2ε)

f ≤ C
(︁
∥f∥L∞(M) + ∥∆ε,Xnf∥L∞(M)

)︁
ε for all x ∈ M.

The result follows then by invoking Theorem 2.9.

A proof of Theorem 2.2.

The proof follows the same steps as in the proof of Theorem 2.1, except that now we use the
local estimates from Theorem 2.12 instead of the global estimates from Theorem 2.11.

11.2. Graph Laplacian eigenvectors: proofs of Theorem 2.3 and Corollary 2.5. We
apply Theorem 2.1 to deduce both results, as follows.

A proof of Theorem 2.3 and Corollary 2.5.

Assume that the event indicated in Theorem 2.1 holds. Let f : Xn → R be a non-zero

function such that λf ≤ Λ, where λf =
∥∆ε,Xnf∥L∞(Xn)

∥f∥L∞(Xn)
. Fix ε ≤ c

λf+1 where c > 0 is, as usual,

a sufficiently small constant depending only on M, ρ, η that will be specified later.

Assume further that the event in Corollary 3.3 holds for all x ∈ Xn and with ε replaced by a
sufficiently small radius r

2 , depending on Λ and also specified later. In particular, noting that

by (A.7) we have: BM(x, r) ⊃ B
(︁
x, r2

)︁
, the result in Corollary 3.3 yields:

Pn
(︂ n∑︂
j=1

1{dM(xj ,xi)≤r} ≥ C ′nrm, for all xi ∈ Xn
)︂
≥ 1− 2n exp

(︁
− cnrm

)︁
(11.2)
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Let now xi ∈ Xn be such that ∥f∥L∞(Xn) = |f(xi)|. By Theorem 2.1 it follows that:

|f(xi)− f(xj)| ≤ C(λf + 1)∥f∥L∞(Xn)

(︁
dM(xi, xj) + ε

)︁
= C(λf + 1) · |f(xi)|

(︁
dM(xi, xj) + ε

)︁
for all xj ∈ Xn,

(11.3)

which implies, provided that r + ε ≤ 1
2C(Λ+1) ≤

1
2C(λf+1) :

|f(xj)| ≥ |f(xi)| −
⃓⃓
f(xi)− f(xj)

⃓⃓
≥ |f(xi)| − C(λf + 1)|f(xi)|(r + ε)

=
(︁
1− C(λf + 1)(r + ε)

)︁
|f(xi)| ≥

1

2
∥f∥L∞(Xn) for all xj ∈ BM(xi, r)

In conclusion:

∥f∥L∞(Xn) ≤
2

Ni

n∑︂
j=1

1{dM(xi,xj)≤r}f(xj) ≤
2n

Ni
∥f∥L1(Xn)

where Ni =
n∑︂
j=1

1{dM(xi,xj)≤r}.

Choose r ≪ 1 which satisfies: r ∈
[︁

c
Λ+1 ,

1
4C(Λ+1)

]︁
. It then follows by (11.2) that Ni ≥ cn

(Λ+1)m

and, consequently, the formula displayed above becomes the bound in Corollary 2.5:

∥f∥L∞(Xn) ≤ C(Λ + 1)m∥f∥L1(Xn).

Inserting this into the first estimate of (11.3) yields, in turn, the bound in Theorem 2.3. This
completes the argument, since we also easily observe that the probability of the two assumed
events is bounded from below by:

1−Cε−6m exp(−cnεm+4)−2n exp(−cnrm) ≥ 1−Cε−6m exp(−cnεm+4)−2n exp
(︁
−cn(Λ+1)−m

)︁
,

as claimed.

11.3. C0,1 convergence rates for graph Laplacian eigenvectors in the large data limit:
a proof Theorem 2.6. We apply Theorem 2.1 to conclude our final result.

A proof of Theorem 2.6.

Fix ε≪ 1 and let f be a normalised eigenvector of ∆ε,Xn with eigenvalue λ, i.e.:

∆ε,Xnf = λf and ∥f∥L2(Xn) = 1.

Assume that Xn is an element of the intersection of events defined in Theorem 2.1 and Corollary
2.5. According to [13, Theorem 2.6], with probability at least 1−Cn exp

(︁
−cnεm+4

)︁
there exist

a normalized eigenfunction f̃ of ∆M with eigenvalue ˜︁λ, so that:

∆Mf̃ = λ̃f and ∥f̃∥L2(M) = 1,

for which there holds:

|λ− λ̃|+ ∥f − f̃∥L2(Xn) ≤ Cε.

Since M is smooth, compact and boundaryless and f̃ is smooth, then the pointwise consistency
result in [13, Theorem 3.3] yields that with probability at least 1− 2n exp

(︁
−cnεm+4

)︁
we have:

∥∆Mf̃ −∆ε,Xn f̃∥L∞(Xn) ≤ Cε.
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Here, and in the rest of the proof, C and the Landau symbol O depend on λ. Denote
g = f − f̃ . We may, without loss of generality (since otherwise the claimed result is trivially

true) assume that g ̸≡ 0, so that λg =
∥∆ε,Xng∥L∞(Xn)

∥g∥L∞(Xn)
is well defined. By a direct computation:

∆ε,Xng =
(︁
∆ε,Xnf −∆Mf̃

)︁
+
(︁
∆Mf̃ −∆ε,Xn f̃

)︁
= λf − λ̃f̃ +O(ε)

= λ(f − f̃) + (λ− λ̃)f̃ +O(ε).

Consequently: ∥∆ε,Xng∥L∞(Xn) ≤ λ∥g∥L∞(Xn)+Cε(1+∥f̃∥L∞(M)) ≤ Cε, since f̃ is a normalised
eigenvalue of ∆M. Hence:

λg ≤ λ+
Cε

∥g∥L∞(Xn)
,

which, in case λg ≥ λ+1, clearly implies: ∥g∥L∞(Xn) ≤ Cε. On the other hand, when λg ≤ λ+1,
Corollary 2.5 yields, in view of ∥ · ∥L1(Xn) ≤ ∥ · ∥L2(Xn):

∥g∥L∞(Xn) ≤ C(λg + 1)m+1∥g∥L1(Xn) ≤ C(λg + 1)m+1ε ≤ C(λ+ 2)m+1ε = Cε.

In either case, we see that there holds: ∥g∥L∞(Xn) ≤ Cε. We now invoke Theorem 2.1 to get:

|g(xi)− g(xj)| ≤ C
(︁
∥g∥L∞(Xn) + ∥∆ε,Xng∥L∞(Xn)

)︁
·
(︁
dM(xi, xj) + ε

)︁
≤ Cε (dM(xi, xj) + ε) for all xi, xj ∈ Xn.

This completes the proof by union bounding on the indicated events.

Appendix A. Riemannian geometry notation

In this section we review the basic notions from differential geometry.

A.1. Riemannian geometry and parallel transport. LetM be a smooth, compact, bound-
aryless, connected and orientable manifold of dimension m, equipped with a smooth Riemann-
ian metric g. For x ∈ M, we write TxM for the tangent space at x and TM for the tangent
bundle ofM. The scalar product of any two tangent vectors v, w ∈ TxM, given by the quadratic

form g(x) evaluated on (v, w), is denoted by ⟨v, w⟩x while the length of v is |v|x = ⟨v, v⟩1/2x .
We will usually omit the subscript x if no ambiguity arises. A smooth assignment of tangent
vectors: M ∋ x ↦→ v(x) ∈ TxM is called a vector field.

Associated to g is the Levi-Cività connection ∇, which is the unique torsion-free connec-
tion that is metric g-compatible. Given two vector fields v and w, the connection allows to
differentiate v in the direction w, returning a new vector field ∇wv. The value of ∇wv at x
depends only on the values of w along a curve γ satisfying γ(0) = x and γ̇(0) = v. Keeping
this in mind, we can differentiate vector fields v that are defined only along a given smooth
curve γ : [a, b] → M (rather than on the whole M), in the direction γ̇. If ∇γ̇(t)v(γ(t)) = 0 for
all t ∈ [a, b], then v is called parallel along γ.

For every v̄ ∈ Tγ(a)M there always exists the unique vector field v parallel along γ, such
that v(γ(a)) = v̄. This construction gives raise to the linear isometry map:

Tγ(a)M ∋ v̄ ↦→ P γγ(a),γ(b)v̄
.
= v(γ(b)) ∈ Tγ(b)M,

called the parallel transport along γ. We omit the reference to the curve γ in P γ if there is
no ambiguity. In particular, we write Px,y for parallel transport along the unique geodesic
connecting nearby points x, y ∈ M.
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A.2. Geodesics and normal coordinates. A smooth curve γ : [a, b] → M such that its
tangent vector field d

dtγ(t)
.
= γ̇(t) is parallel along γ, i.e. ∇γ̇(t)γ̇(t) = 0 for all t ∈ [a, b], is called

a geodesic. Here, ∇ is used to denote the Levi-Cività connection as in A.1. For every x ∈ M
and v ∈ TxM there exists a unique geodesic γv : (−∞,∞) → M satisfying:

γv(0) = x and γ̇v(0) = v. (A.1)

We will often consider a flow of geodesics γ : [−ε, ε]× [0, t0] → M, where ∇ d
dt
γ(s,t)

d
dtγ(s, t) = 0

for all (s, t) ∈ [−ε, ε] × [0, t0]. Then the variation field J(t) = d
dsγ(0, t), called the Jacobi field

along the curve γ(0, ·), satisfies the second order ODE:(︁
∇ d

dt
γ(0,t)

)︁2
J(t) +R

(︂
J(t),

d

dt
γ(0, t)

)︂ d
dt
γ(0, t) = 0 for all t ∈ [0, t0]. (A.2)

Here, R stands for the Riemann curvature form, which for three vector fields u, v, w returns
the following vector field:

R(u, v)w = ∇u∇vw −∇v∇uw −∇[u,v]w,

where [u, v] = ∇uv −∇vu is the commutator of u and v. We also recall the symmetry lemma
(independent of the geodesic property for the flow of curves γ):

∇ d
dt
γ(s,t)

d

ds
γ(s, t) = ∇ d

ds
γ(s,t)

d

dt
γ(s, t) for all (s, t) ∈ [−ε, ε]× [0, t0].

The length of a smooth curve γ : [a, b] → M is computed as: length(γ) =
´ b
a |γ̇(t)|γ(t) dt.

For every x, y ∈ M this gives raise to the well-defined metric distance:

dM(x, y) = min
{︁
length(γ); γ(a) = x, γ(b) = y

}︁
. (A.3)

The open ball in this metric is denoted by BM(x, r) = {y ∈ M; dM(x, y) < r}. When
dM(x, y) < ι for a sufficiently small radius ι > 0, depending (in view of compactness) only on
(M, g), then the minimization in (A.3) is realised by the unique, up to re-parametrisation, curve
γ : [0, 1] → M which is a geodesic. Automatically, one has: |γ̇(t)|γ(t) ≡ length(γ) = dM(x, y).

For every x ∈ M one considers the exponential mapping TxM ⊃ B(0, ι) ∋ v ↦→ γv(1) ∈ M,
where γv is the geodesic as in (A.1). This mapping is usually denoted by Expx(v)

.
= γv(1),

and it is a smooth diffeomorphism onto its image. By compactness of M, also the mapping:

TM ⊃ U ∋
(︁
x ∈ M, v ∈ B(0, ι) ⊂ TxM

)︁
↦→ ψ(x, v)

.
=

(︁
x,Expx(v)

)︁
∈ M×M,

is well defined on an open neighbourhood U of a zero-section in M, and it is a smooth diffeo-
morphism onto its image. Any orthonormal basis for TxM gives an isomorphism TxM ⋍ Rm.
Then, the inverse of the exponential map:

BM(x, ι) ∋ y ↦→ Exp−1
x (y) = v ∈ TxM ⋍ Rm (A.4)

is called the normal coordinate chart centered at x.

A.3. Formulas in coordinates. We now recall that in a given local coordinate chart:

U ∋ x ↦→ (x1, . . . , xm) ∈ Rm

(not necessarily normal as in (A.4)) on an open subset U ⊂ M, the tangent space TxM is
spanned by coordinate vectors

{︁
∂
∂xi

}︁m
i=1

, each corresponding to the smooth curve γ(t) = x+t ∂
∂xi

on M passing through γ(0) = x. The metric g is represented as the symmetric matrix field
[gij(x)]i,j=1...m on U , so that ⟨v, w⟩x = gij(x)v

iwj for all v = vi ∂
∂xi

, w = wi ∂
∂xi

∈ TxM. Here
and below, we use the Einstein summation convention on repeated lower and upper indices.
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For a vector field v = vi ∂
∂xi

on U , the corresponding coordinates of ∇ ∂

∂xj
v = (∇jv

i) ∂
∂xi

are:

∇jv
i = ∂vi

∂xj
+ Γijkv

k, given through the Christoffel symbols:

Γijk =
1

2
gis

(︂∂gsk
∂xj

+
∂gsj
∂xk

−
∂gjk
∂xs

)︂
.

As customary, [gij(x)]i,j=1...m is the inverse matrix of [gij(x)]i,j=1...m, so that gisgsj = δij equal-
ing 1 for i = j and 0 otherwise.

For a smooth curve γ : [a, b] → M written in coordinates: γ(t) =
(︁
γ1(t), . . . , γm(t)

)︁
, a vector

field [a, b] ∋ t ↦→ v(t) = vi(t) ∂
∂xi

∈ Tγ(t)M is parallel along γ if it satisfies the ODE system:

v̇i(t) + Γijk(γ(t))v
j(t)γ̇k(t) = 0 for all i = 1 . . .m and all t ∈ [a, b].

Consequently, equations of geodesic are:

γ̈i + Γijkγ̇
j γ̇k = 0 for all i = 1 . . .m.

We also have: R(v, w)z = −Rkijsviwjzs ∂
∂xk

, where:

Rkijs =
∂Γkis
∂xj

−
∂Γkjs
∂xi

+ ΓkjlΓ
l
is − ΓkilΓ

l
js

are the components of the Riemann curvature tensor. Denoting: ∇ ∂

∂xi
∇ ∂

∂xj
v =

(︁
∇i∇jv

k
)︁
∂
∂xk

,

it follows that: ∇i∇jv
k −∇j∇iv

k = −Rkijsvs.
In the normal coordinates (A.4), centered at a point x ∈ M, corresponding to 0 ∈ Rm, we

have the useful identities:

[gij(0)]i,j=1...m = Idm, Γkij(0) = 0,
∂gij
∂xk

(0) = 0,
∂2gij
∂xk∂xs

(0) = −2

3
Rikjs(0),

valid for all i, j, k, s = 1, . . . ,m. Consequently, we obtain the Taylor expansion:

gij(y) = δij−
1

3
Rikjs(0)y

kys+O(|y|3) for all i, j = 1, . . . ,m and all y ∈ B(0, ι) ⊂ Rm. (A.5)

The contravariant derivative (the gradient) of a scalar field f : M → R is the vector field

∇∗f = (∇if) ∂
∂xi

on M, whose coordinates are: ∇if = gik ∂f
∂xk

. The divergence of ∇∗f , called
the Laplace-Beltrami operator of f is given by:

∆f
.
= Div(∇∗f) = ∇i∇if = gik

∂2f

∂xi∂xk
+
(︂∂gij
∂xi

+ Γiikg
jk
)︂ ∂f
∂xj

= gik
(︂ ∂2f

∂xi∂xk
− Γjik

∂f

∂xj

)︂
.

We will also consider the following weighted Laplace-Beltrami operator with respect to a pos-
itive scalar field ρ : M → R:

1

ρ2
Div(ρ2∇∗f) = ∆f + 2gik

∂(log ρ)

∂xi
∂f

∂xk
= ∆f + 2∇if · ∇s(log ρ)gis

= ∆f + ⟨∇∗f,∇∗(log ρ)⟩x.

We remark that in normal coordinates centered at x, the Laplace-Beltrami operator computed

at x, coincides with the usual Laplacian
∑︁m

i=1
∂2f

(∂xi)2
(0) in those coordinates, and similarly:

1

ρ2
Div(ρ2∇∗f) =

m∑︂
i=1

∂2f

(∂xi)2
(0) + 2

m∑︂
i=1

∂f

∂xi
∂(log ρ)

∂xi
(0).
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A.4. The embedded manifold. When M is embedded in the ambient space Rd, it inherits
its Euclidean structure. There are two related facts that will be frequently used in the sequel.
First, it follows from the Rauch Comparison Theorem [9, 13, 16] that there exists C > 0
depending on M (more precisely, on the upper bound of the sectional curvatures) such that
for all r ≪ 1: ⃓⃓

V olM(BM(x, r))− |B(0, 1)|rm
⃓⃓
≤ Crm+2 for all x ∈ M. (A.6)

Here, |B(0, 1)| denotes the volume of the unit ball in Rm. The volume V olM(BM(x, r)) of the
indicated geodesic ball, is related to the Riemannian volume form dVolM in:

V olM(BM(x, r)) =

ˆ
BM(x,r)

1 dVolM.

In local coordinates dVolM is given by: dVolM(y) =
(︁
det[gij ]i,j=1...m

)︁1/2
dy1 ∧ . . . ∧ dym.

The second fact [23, Proposition 2] states that for all x, y ∈ M whose distance in Rd satisfies
|x− y| ≤ R

2 with a sufficiently small R (more precisely, R is the reach of M), there holds:

|x− y| ≤ dM(x, y) ≤ |x− y|+ 8

R2
|x− y|3. (A.7)
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