IMPROVED SPECTRAL CONVERGENCE RATES FOR GRAPH
LAPLACIANS ON e-GRAPHS AND i£-NN GRAPHS
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ABSTRACT. In this paper we improve the spectral convergence rates for graph-based approx-
imations of weighted Laplace-Beltrami operators constructed from random data. We utilize
regularity of the continuum eigenfunctions and strong pointwise consistency results to prove
that spectral convergence rates are the same as the pointwise consistency rates for graph Lapla-
cians. In particular, for an optimal choice of the graph connectivity ¢, our results show that the
eigenvalues and eigenvectors of the graph Laplacian converge to those of a weighted Laplace-
Beltrami operator at a rate of O(n_l/(m+4)), up to log factors, where m is the manifold di-
mension and n is the number of vertices in the graph. Our approach is general and allows
us to analyze a large variety of graph constructions that include e-graphs and k-NN graphs.
We also present the results of numerical experiments analyzing convergence rates on the two
dimensional sphere.

1. INTRODUCTION

Our work is motivated by applications in machine learning, statistics and artificial intelligence.
There, the goal is to learn structure from a given data set X = {z1,...,z,}. To do this several
authors have proposed the use of graphs to endow data sets with some geometric structure,
and have utilized graph Laplacians to understand how information propagates on the graph
representing the data. Graph Laplacians and their spectra form the basis of algorithms for
supervised learning [1,4, 48, 56], clustering [41,51] and dimensionality reduction [2,16]. The
works [43,49,53] discuss Laplacian regularization in the context of non-parametric regression.
Bayesian approaches to learning where graph Laplacians are used to define covariance matrices
for Gaussian priors have been proposed in [5,36,57].

To better understand algorithms based on graph Laplacians, it has proven useful to study
the large sample size asymptotics of graph Laplacians when these capture the closeness of data
points in Euclidean space, as is the case in constructions such as e-graphs or k-NN graphs. In
this limit, we pass from discrete graph Laplacians to continuum Laplace-Beltrami operators,
or weighted versions thereof, and in particular graph Laplacians are seen as specific discretiza-
tions of continuum operators. By analyzing the passage to the limit one effectively studies
the consistency of algorithms that utilize said operators. In doing so, one gathers information
about allowed choice of parameters, and gets insights about computational stability of algo-
rithms (e.g. [24,34,35]). Naturally, in order for the “passage to the continuum” to imply any
sort of consistency for a particular machine learning algorithm, it is important to study the
convergence in an appropriate sense.

Early work on consistency of graph Laplacians focused on pointwise consistency results for
e-graphs (see, for example, [3,30,32,33,45,50]). There, as well as hereinafter, the data is
assumed to be an i.i.d. sample of size n from a ground truth measure p supported on an
m-dimensional submanifold M embedded in a high dimensional Euclidean space R¢ (i.e., the
manifold assumption [14]) and pairs of points that are within distance ¢ of each other are given
high weights. Pointwise consistency results show that as n — oo and the connectivity parameter
e — 0 (at a slow enough rate), the graph Laplacian applied to a fixed smooth test function
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converges to a continuum operator, such as a weighted Laplace-Beltrami operator applied to the
test function. Recent work is moving beyond pointwise consistency and studying the sequence
of solutions to graph-based learning problems and their continuum limits, using tools like I'-
convergence [11,18,28,47], tools from PDE theory [8,9,11,19,25,54] including the maximum
principle and viscosity solutions, and more recently random walk and Martingale methods [12].
Regarding spectral convergence of graph Laplacians, the regime n — oo and ¢ constant was
studied in [52], and in [46] which analyzes connection Laplacians. Works that have studied
regimes where ¢ is allowed to decay to zero include [27], [44], [7], and [22].

The starting point for our work is the paper [22] which used ideas from [7] in order to obtain
what to the best of our knowledge are the state of the art results on spectral convergence of
e-graph Laplacians. These results can be summarized as follows. With very high probability
the error of approximation of eigenvalues of a continuum elliptic differential operator by the
eigenvalues of their graph Laplacian counterpart scales like

log(n)Pm

e+ nl/mg

9

where p,, = 1/m for m > 3, p2 = 3/4, and ¢ is the length scale for the graph construction. These
results suggested that the best rate of convergence is achieved when ¢ is chosen to scale like

log(n)prn
nl/m

For eigenvectors, the error of approximation in the L? norm was shown to scale like the square
root of the convergence rate of eigenvalues, so O(n_l/ 4m) up to log factors. In this paper, we
improve in several regards the results presented in [22]. Our contributions to the analysis of
spectral convergence of graph Laplacians constructed from e-graphs are summarized as follows:

, in which case the convergence rate for eigenvalues is O(nil/ 2m) up to log factors.

(1) In the e-graph setting, we show that the eigenvalues of the graph Laplacian converge
(with rates), provided that ¢ scales like

1/m
M <Kek 1.
nl/m
This result is valid for all m > 1. This improves the results in [22] by removing an
additional logarithmic term. In a sense, the lower bound on the allowed values for &
for the convergence to hold is an optimal requirement due to the connectivity threshold
results for random geometric graphs [42].
(2) In the e-graph case, when ¢ scales like

1
(1.1) C <1°g(”)> o<,
n

we show that the rate of convergence of eigenvalues coincides with the pointwise con-
vergence rates of the graph Laplacian (e.g [32]), and in particular with high probability
log(n) ) 1/(m+4)

scale linearly in the connectivity length-scale . If we choose e = C (T

, then
we obtain convergence rates of O(nfl/ (m+4)), up to log factors, which is sharper than
the O(n~1/2™) convergence rate from [22] when m > 5.

(3) We establish convergence rates for eigenfunctions under L?-type distances that will be
made explicit later on. In particular, in the same regime for € given in (1.1), we establish
that the rate of convergence of eigenvectors scales linearly in €, matching the convergence
rate of eigenvalues as well as the pointwise convergence rates. Thus, choosing again

O (M)l/(m+4)

, we obtain convergence rates for eigenvectors of O(n_l/ (m+4)),
—1/4m)

n

which is far sharper than the O(n convergence rates from [22].

A second main contribution of our work is to provide spectral consistency results for graph
Laplacians constructed from k-NN graphs. Our work is the first one to obtain any rates of
convergence in such a setting. Moreover, in proving the spectral convergence we also obtain
rates for pointwise convergence which to the best of our knowledge are also new in the literature.
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There are very few works in the literature that we are aware of that have rigorously addressed
consistency for graph Laplacians associated to k-NN graphs. In [50] pointwise convergence is
analyzed (without providing any rates). In [21] asymptotic spectral convergence is discussed,
but no rates are provided. In [19], pointwise consistency with rates is established for the game-
theoretic p-Laplacian on k-NN graphs. Posterior work to the first version of this paper, like
that in [15], have considered more general normalizations for k-NN graphs in order to induce
different ways in which data density affects the behavior of data analysis algorithms.

In practical applications, k-NN graphs are almost always preferred over e-graphs, due to their
far better sparsity and connectivity properties (see, e.g., [10,19] for semi-supervised learning,
and [55] for spectral clustering). Since the k-nearest neighbor relation is not symmetric, k-NN
graphs are normally symmetrized in order to ensure the graph Laplacian is self-adjoint and the
spectrum real-valued. On a symmetrized k-NN graph, the local neighborhood is no longer a
Euclidean or geodesic ball, and is in fact not even symmetric. This raises technical difficulties
in obtaining pointwise consistency results with rates, and makes the analysis far more involved
than it is for e-graphs.

Our contributions in this setting are as follows:

(1) We provide spectral convergence rates for graph Laplacians when the graph is a k-NN
graph, provided k scales like

log(n) < k < n.

This result is valid for all m > 1. Moreover, we show that the rates of convergence
coincide with the pointwise convergence rates (see Theorem 3.7 below) when k scales
like

(1.2) C’log(n)miﬂnmi+4 log(n)mi+4 <k <<n.

(2) We establish convergence rates for eigenvectors under different topologies of interest
that will be discussed later on. Moreover, in the regime

Clog(n)miﬂnmi+4 log(n)mi+4 <k<n,

the convergence rate for eigenvectors coincides with the convergence rates of eigenvalues
and also the pointwise convergence rates from Theorem 3.7.

It is worth mentioning that all our estimates hold with high probability for finite (although
possibly large) n. These results imply a quantitative improvement to a large body of work that
has built on previous spectral convergence results. For example the works [22,23,26] get directly
benefited from our new estimates.

There are two essential steps in our analysis that allow us to improve in several regards the
rates presented in [22] for the e-graph case. In the first step, we use a simple modification of the
construction of discretization and interpolation maps introduced in [7] (a construction that was
later used in [22], though cast in the language of optimal transport), in order to prove spectral
convergence (with rates) for a wider range of scalings of ¢ valid for all dimensions m > 2. A
more detailed outline of the construction of these maps and a discussion on what needs to be
adjusted from [22] is discussed in Section 2.4 below.

The second step in our analysis makes use of a simple argument for comparing eigenvalues of
different self-adjoint operators. To illustrate the idea, let A, B : H — H be linear operators on
a Hilbert space H, with A self-adjoint. Let u be an eigenfunction of A with eigenvalue \,, and
let w be an eigenfunction of B with eigenvalue \,,. We may assume ||u||g = ||w|/g = 1. Since
A is self-adjoint

A(u, wyg = (Au,w)g = (u, Aw)g = Ay {u, w)g + (u, (A — B)w) g,

and thus
HAU} — B'LUHH

[{u, w) |
3
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This inequality allows us to convert pointwise estimates on ||Aw — Bw|| g into estimates on the
spectrum, provided (u,w)p is bounded away from zero. For graph Laplacians, A should, say,
represent the graph Laplacian, while B represents the continuum (weighted) Laplace-Beltrami
operator (or, more accurately, its restriction to the graph). The key ingredients in our proof are
good pointwise estimates, which rely essentially on the regularity of the continuum eigenfunc-
tions, and the a priori eigenfunction convergence rate from the first step of our analysis, which
ensures (u,w)y is bounded away from zero. The bottom line is that our a priori (non-optimal)
spectral convergence rates can be bootstrapped to make them coincide with the pointwise con-
sistency rates, provided we are willing to shrink the allowed asymptotic scaling for € slightly.
The consistency of eigenfunctions will be a consequence of the a priori convergence rate for
eigenvalues. This is made explicit by following some of the steps in the proof of the classical
Davis-Kahan theorem.

Regarding the results for k-NN graphs, we first notice that these types of graphs can be
thought of intuitively as e-graphs where one allows € to vary in space. Given the inhomogeneity
of the natural length scale ¢ (and which intuitively is influenced by data density), the first part
of our analysis must rely on the definition of new discretization and interpolation maps that
are tailored to the inhomogeneous length-scale setting. After a careful analysis, we are able to
provide a priori spectral convergence rates analogous to the a priori rates obtained for e-graphs.
These non-optimal rates can then be bootstrapped to improve them just as in the e-graph
case, using the pointwise consistency results that we derive in Theorem 3.7. We note that the
pointwise consistency results for graph Laplacians on k-NN graphs do not follow directly from
viewing the graph as an e-graph with ¢ varying in space. Indeed, looking forward to the proof of
Theorem 3.7, the local neighborhood on a mutual (or exclusive) k-NN graph is asymptotically
non-symmetric, due to non-uniformity of the data distribution, and so pointwise consistency for
k-NN graph Laplacians requires a far more careful analysis than for e-graphs, where the local
neighborhoods are balls.

1.1. Outline. The rest of the paper is organized as follows. In Section 2 we give the precise set-
up used throughout the paper, state our assumptions, and present our main results. Specifically,
Section 2.1 contains the precise definitions of the graph constructions that we study. In Section
2.2 we state our main results regarding convergence of eigenvalues for both e-graphs as well as
k-NN graphs, and in Section 2.3 we present the results regarding convergence of eigenvectors. In
Section 2.4 we provide an outline of our proofs. In Section 3 we present the pointwise consistency
results of graph Laplacians which will be needed later on. In Section 4 we present the proofs
of our main results. More specifically, in Section 4.1 we present the analysis for the e-graph
case, and in Section 4.2 for k-NN graphs. In Section 5 we discuss other modes of convergence
for eigenvectors, and in particular the 7'L?-convergence which implies Wasserstein convergence
of Laplacian embeddings. In Section 6 we present the results of numerical experiments for
convergence rates for k-NN and e-graph Laplacian spectra to the spherical harmonics on the
two dimensional sphere, and we conclude in Section 7.

2. SET-UP AND MAIN RESULTS

Let M be a compact, connected, orientable, smooth m-dimensional manifold embedded in
R¢. We give to M the Riemannian structure induced by the ambient space R?. With respect
to the induced metric tensor, we let Volys be M’s volume form and we let p be a probability
measure supported on M with density (with respect to the volume form) p : M — (0, c0) which
we assume is bounded, and bounded away from zero, i.e.

0<pmin§pgpmaw<ooa

and is at least C>Y(M), which here should be interpreted as saying that p, expressed in normal
coordinates, has second derivatives that are ¥-Holder continuous. All the previous assumptions
on p are not rare in theoretical works on graph-based learning. They form a concrete set

of assumptions where tangible connections between machine learning algorithms (like spectral
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clustering) and PDEs can be established. Relaxing these assumptions, for example the lower
bound on p, is a compelling research direction that we do not pursue in this paper.
Let X = {x1,...,z,} be a set of i.i.d. samples from p, and let u, denote the associated

empirical measure, i.e.
n
1
n -
=1

In what follows we will use the notation L?(u) to denote the space of L?-functions with
respect to the measure p, and by L?(u,) the space of functions u : X — R. We endow L?(1)
with the inner product

Do = [ @) @uta). 1.7 € 120,
and L?(p,) with the inner product
(U, ) 2y = % S (i), @€ L(m).
=1

2.1. Graph constructions. In this section we define two different graph constructions on X
with the purpose of leveraging the geometry of the manifold M.

2.1.1. e-graphs. Let ¢ > 0. We construct a weighted graph G° = (X, w®) as follows. First, we
put an edge between x; and x; and between z; and x; (and write z; ~ x;) provided that

lzi — x| <e,

where in the above, |z; — z;| is the Puclidean distance between the points z;, z;. We let
E = {(i,j) € {1,...,n}?> : &; ~ z;} be the set of such edges. We may endow edges with
weights that depend inversely on the distance between the vertices connected by them. For
that purpose, let 7: [0,00) — [0,00) be a non-increasing function with support on the interval
[0,1] and whose restriction to [0, 1] is Lipschitz continuous. For convenience we assume that
n(1/2) > 0. We introduce the constant

(2.) 7= [ Pty

where y; represents the first coordinate of the vector y € R™. Notice that a simple computation
using radial coordinates shows that when n(t) = 1o 1;(t) then o, = where ayy, is the volume
of the m-dimensional Euclidean unit ball.

To every given edge (i, j) € E we assign the weight wg , where

(2.2 w;yzn('f”;y')

and we can consider the weighted graph G®(X,w*®). In fact, note that if the points x;, z; are
not connected by an edge in £ then wg . = 0.

Having introduced the graph G¢, we define an associated graph Laplacian operator £ which
for a given u € L?(j,) is defined as

(23) () = ey Do (ul) — ulay)).
j=1

Qm
m—+2"

Note that in principle x need not be a vertex of the graph to make sense of the above expression,
but unless otherwise stated, in the sequel £¢ will be thought of as an operator £° : L?(ju,) —
L (pa).

It is well known in the literature (e.g. [51]) that £ is a positive semi-definite self-adjoint
operator with respect to the inner product (-, -) L2(un)- 10 particular, we can list its eigenvalues
(repeated according to multiplicity) as

0=MA <A< <A,
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A] always being equal to zero. Also, it is possible to find an orthonormal basis of eigenvectors
for L?(pu,). Moreover, a graph Dirichlet energy associated to £ defined by

1
e O e, (u(@) — (@) = 2L W) 2, w € L (k).

1]

(2.4) be(u) :=

can be used to define the eigenvalues of L£° variationally. Namely, the Courant-Fisher minmax
principle says that

(2.5) A = %énin max 7682@)
€6; ueS\{0} HUHL2(N“)
where in the above &; denotes the set of all linear subspaces of L?(,) of dimension .

In this paper we will restrict our attention to the definition of graph Laplacian in (2.3)
(known in the literature as unnormalized Laplacian), but we note that there are several other
normalizations that are of high interest in machine learning (e.g. [51]), and we expect we can
carry out a similar analysis for other normalizations.

2.1.2. Undirected k-NN graph. A different graph construction on X proceeds not by fixing a
length-scale ¢ but rather by specifying for each point in X a set of nearest neighbors.

Definition 2.1. Let k € IN. We define a relation ~p, on X x X by declaring
Ty ~E Iy,
if ¢ is among the k nearest neighbors (in the Euclidean distance sense) of x;.

In this section we symmetrize the relation ~j, and place an edge between x; and z; if x; ~j x;
or xj ~j ;. This is often called the symmetric k-nearest neighbor (or k-NN) graph [39]. While
the graph described above is unweighted, i.e., n = 1], we will use a weighted construction
given below in (2.9). Another popular construction is the mutual k-NN graph, where we connect
x; to x; if x; ~p x; and xj ~p x;. While in the sequel we formulate our results for symmetric
k-NN graphs, they apply with minor modifications to mutual k-NN graphs as well.

To construct the k-NN graph Laplacian, let

(2.6) Ne(z)= > 1
J:0<]zj—z|<e

be the number of random samples in a punctured Euclidean e-neighborhood of x. Given 1 <
k <n —1 define

(2.7) er(x) :=min{e >0 : N.(z) > k}.

The value e(z) is the Euclidean distance from z to the k' nearest neighbor of z from the
samples z1,...,z,. Thus, z; ~ x; if and only if |z; — x| < ex(x;). Finally, we define

(2.8) (2, y) i= max{ex(r), ex(y)}-

Notice that |z; — z;| < ri(x;,x;) if and only if 2; and x; are connected by an edge in the
symmetric k&-NN graph. We would obtain the mutual k-NN graph by setting ri(z,y) =

min{ex(z), ex(y)}-
The undirected k-NN graph Laplacian of an element u € L?(p,,) is defined by

1 /no,\ 1+2/m & ,
k m Tk (25,)
(2.9) Lhu(a) = - (07 z;wx';x] (ulz) — ulz;)),
‘7:
where w;’jg(cm] ) has the same meaning as in (2.2). As in the e-graph case, we will assume for

the most part that z is one of the elements in X and hence £F is interpreted as an operator
from L?(p,) into L% (). We list the eigenvalues (repeated according to multiplicity) of £ as

0=AF <A5 <o <A
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and define an associated graph Dirichlet energy by

1 /nagy,\1+2/m (T
1,

This functional can be used to define the eigenvalues of £* via the variational formula
L. bi(u)

— min 2 ’
2 5e6; ues\{0} HUHLQ(;M)

(2.11) AF =
Remark 2.2. Notice that the rescaling factor (%)lw/m in (2.9) is equal to 1/7™*2 where r
is the radius of an m-dimensional Euclidean ball with volume k/n. This is the same type of
rescaling factor that appears in the definition of the e-graph Laplacian £¢ in (2.3).

2.2. Convergence of eigenvalues.

2.2.1. e-graph. In our first main result we establish error bounds between the eigenvalues A} of
the graph Laplacian £°, and the eigenvalues \; of a differential operator A, that for smooth
functions f : M — R is defined as

(2.12) A,f = 21pdiv(p2v f).

In the above div stands for the divergence operator on M, and V for the gradient in M. It
turns out that A, is a positive semi definite operator with a nice point spectrum so that in
particular its eigenvalues can be listed (repeated according to multiplicity) in increasing order
as
0< A <<,
In addition, each eigenvalue has finite multiplicity, the sequence of eigenvalues grows to infin-
ity, and it is possible to find an orthonormal basis for L?(u) consisting of eigenfunctions, i.e.
functions f that satisfy the equation A,f = Af.
The eigenvalues of A, can be described variationally in terms of the Dirichlet energy

Da(f) == {fM’Vf (2)Pp*(w)d Vol (), if f € H ()

00, otherwise,

where in the above H'(p) is the space of functions with a weak gradient in L?(u). Indeed,

(2.13) A= 1 min max _Da(f).

2 se&; fes\{o} |1.f 1172,
where in the above &, is the set of linear subspaces of L?(y) of dimension /. The minimum is
reached when S is taken to be the span of the first [ eigenfunctions of A,. We also notice that
when f is regular enough (in particular if f € H?(u)) then Da(f) coincides with 2(A,f, P 2w
thanks to the integration by parts formula.

Throughout the paper we will state our probabilistic estimates in terms of parameters ¢ (the
graph connectivity), n (the number of data points), and two parameters 6, that describe the
error of discrete-to-continuum approximation. At this stage we offer a simple description of
the meaning of the parameters ¢ and . We construct a probability distribution with density
pn mediating between the empirical measure p, and the ground-truth distribution p. This
density is a piecewise constant function defined over regions in M of diameter ~ ¢, and the
parameter ¢ will describe how close this intermediate measure is from the empirical measure
ln in a suitable optimal transport sense. Since we will also have to guarantee that p, is close
enough to the original p in a suitable sense, we will not be able to select a very small value of
0 to get the approximation to p with very high probability. The parameter 6 will allows us to
control the probability that the constructed p, satisfies the desired properties: p, is close to
ln, and at the same time it is close to the original p in a uniform sense; see Proposition 2.12

for more details. The introduction of this intermediate measure substitutes the direct discrete
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to continuum comparison that other papers in the literature have considered to study similar
problems. This modification is what allows for less restrictive assumptions on ¢, just as in [13].
The following are technical “smallness” assumptions on our parameters that guarantee that we
have entered the regime where the statements of our theorems are meaningful.

Assumption 2.3. In the e-graph setting, for 9,5 and € we assume
(1) € is small enough and in particular satisfies
(2.14) 2 < min{1,ip, K~V/2, R/2} =: 2e 0.
where 19, K, R are geometric quantities defined in Section 3.1.
(2) § < %e.
(3) & is larger than nlﬁ

+ < Bmin - ophere is a constan at depends only on dimension m, p, an

C0+9) < P here C tant that d d l d p d
on geometric quantities of the manifold M, such as the injectivity radius, sectional
curvature, or reach.

In the k-NN setting, for 9,5 and k we assume
(1) (k/n)"™ is small enough and in particular satisfies
2(k/n)Y™ < C,min{1,i9, K~/2, R/2} =: 2e 4.
where C,, is a constant that depends on the density p.
(2) & < c,(k/n)t/m.
(3) § is larger than nl%

(4) C(0 4 6) < Pmin where C is a constant that depends only on dimension m, p, and
on geometric quantities of the manifold M, such as the injectivity radius, sectional
curvature, or reach.

We are ready to state our first main result.

Theorem 2.4 (Rate of convergence for eigenvalues). Suppose that M, u satisfy the assumptions
from Section 2. Suppose that the quantities §,0,¢ satisfy Assumptions 2.3. Then:
(1) For everyl € IN, there is a constant ¢; such that if

VNE+CO+6) <q,
then with probability at least 1 — Cn exp(—C’nHzgm),

5
I\ — o] < C (s(\/fw 1)+ 2 +9> N

(2) Moreover, for every l € N there is a constant ¢; such that if
5
(5\/)\1—1—4—6—1—«9) N <q
€

then, with probability greater than 1 —2Cn exp (—cn5m+4) —Cn exp(—chng) we have
IA] — opN| < Ce.

Let us pause for a moment and discuss the content of Theorem 2.4. A consequence of the

1/m ~
first part of the theorem is that as long as € > (%) , then it is possible to pick § and 6
(ort+1) log(n)
Cné™m

and & converge to zero, and with probability one

XS — ol < C(0+6) = 0.
8
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That is, we can make the error of approximation of eigenvalues converge to zero as n — oo

1/m
provided that € > (%) . This result is valid for all m > 1, removing in this way an extra

logarithmic factor that was present in the results from [22] when the dimension was m = 2;
notice also that the results in [22] are stated in the case m > 2 only, but as we show throughout
our paper there is no reason to exclude the case m = 1 from the convergence results. Of
course, the first part of the theorem gives more than just asymptotic convergence and we do
get rates. We would like to note that the removal of this logarithmic factor has been done
recently in [40] and [13] for other, related, variational problems on graphs. Here we remove
the extra logarithmic factors while obtaining rates of convergence. Notice, however, that our
estimates would predict that the rates of convergence become quite slow as we get close to the

1/m
scaling (%) , which is the connectivity threshold of the graph. The rates of convergence

degrade as we approach the connectivity threshold because the graph is irregular on the smallest
length scale of nearest neighbors. However, we expect that on a larger macroscopic scale, the
irregularities will average out, and it may be possible to extend the linear O(e) rate to the range

log(n) \ /™ log(n) ) /(M +4) , : :
<T) LeK <T) . We expect this to require deeper tools and techniques from

the theory of stochastic homogenization, and leave this to future work.

1
The second part of the theorem in particular implies that if ¢ is larger than % m+4, then

with high probability the rate of convergence of eigenvalues and eigenvectors of £ towards those
of A, is linear in €. In particular, for any p > 1 we can make the choice

1
1 m+4

for a constant ¢, to obtain that the eigenvalue convergence rate

1
1 mtd
A — oyl < Co ( Ogé”)> o

holds with probabilty at least 1—cn ™. A similar comment holds for Theorem 2.7 (2). We believe
that for eigenvectors the linear convergence rate is the best possible for a generic manifold M and
kernel 7. In numerical analysis of PDEs, one normally sees second order O(g?) convergence rates
for the spectrum of the Laplacian on a uniform grid in Euclidean space, due to using symmetric
stencils for the Laplacian (see, e.g., [38]), where first order error terms exactly cancel out, and
the lack of discretization errors due to the curvature of the manifold. In our manifold setting,
the curvature of the manifold arises in the first order error terms and prevents the scheme from
attaining second order accuracy. We also note that the numerical scheme provided by the graph
Laplacian (2.3) is not a symmetric stencil (i.e., the neighbors of x are not of the form = + v
and x — v), and so the first order terms cancel out only on average, after random fluctuations

1/(m+2)
are accounted for, which necessitates the larger length scale £ > (@ for pointwise
consistency. In the flat Euclidean setting, it may be possible to improve convergence rates to

log(n) 1/(m+6)

O(£?) with a more severe length scale restriction & > (T . Regarding convergence

rates for eigenvalues, we actually believe that they may be faster than the convergence rates for
eigenfunctions. This is because eigenvalues may be defined by computing the Dirichlet energy
of a normalized eigenvector of the graph Laplacian, and thus is computed by taking a double
sum which in principle may homogenize better. This is by no means a proof and only reveals a
simple intuition.

Finally, we would like to remark that we can trace the dependence of all the constants
appearing in Theorem 2.4 on the different parameters of the problem, but we have decided not
to state them explicitly to immensely facilitate our presentation.
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2.2.2. k-NN graph. In the k-NN graph case we show that the eigenvalues of £* converge towards
the eigenvalues of the operator AJPV N defined for smooth functions f : M — R according to

L. 1om
(2.15) AN f = —2—pdlv(p1 2my .

This operator has similar spectral properties as A,. In particular, if we list its eigenvalues as
0§A1§A2§7

they can be written as
1. Dy_o/m(f)

Al = — 1mnin max
2 See,; fes\{0} HfH%Z(u)

where now the associated Dirichlet energy D;_5/,, takes the form

Sl VE @202/ (@)d Vol (@) if f € H(u)
+00 otherwise.

(2.16) D1—2/m(f) = {

Following a remark in [21], it is possible to show that the spectrum of LF converges as n — 0o
towards the spectrum of Aév N provided that k scales like

(log(n))™"™ < k < n.

No rates are provided in [27] as the convergence is deduced using the notion of I'-convergence.
Besides enlarging the set of admissible values of k for which we can prove the spectral conver-
gence, we establish the following convergence rates. They are analogous to the ones stated in
Theorem 2.4 for e-graphs.

Theorem 2.5 (Rate of convergence for eigenvalues). Suppose that M, u satisfy the assumptions
from Section 2. Suppose that the quantities 9,0, k satisfy Assumptions 2.53. Then:
(1) For everyl € IN, there is a constant ¢; such that if

VAk/n)Y™ 4 C0+6) < ¢
then, with probability at least 1 — Cn exp(—CnHZEm), we have

k 1/m ~ 1/m
\Af—amysw((n) (\/A7+1)+5(%) +0>A,.

(2) Moreover, for every l € N there is a constant ¢; such that if

1/m " 1/m
(<7’z> \/EM(%) +9) N<e

then, with probability greater than 1 — Cnexp (—c(k:/n)4/mk:) —Cn exp(—CnGQSm) we
have

I — g N| < C(k/n)t™.

Let us note that, as in the case of the e-graph, we can simplify the statement of part (2). For
any p > 1 we can make the choice

m

k=cp log(n)m7+4nmi+4L

for a constant ¢, to obtain that the eigenvalue convergence rate
1
log(n) | m+4
ol <y (BE0)

holds with probabilty at least 1 — e¢n™P. A similar commment holds for the convergence rate in
Theorem 2.9 (2).

10



Remark 2.6. Theorems 2.4 and 2.5 have a similar form that becomes more evident when in
Theorem 2.4 we replace A7 by AF, A; (of (A,) by A, (of Af)VN), and ¢ by (k/n)Y/™ to recover a
statement similar to that of Theorem 2.5. Notice that (k/n)'/™ is the natural counterpart of
€. Notice, on the other hand, that despite the similarities in these two settings, k-NN graphs
adjust to the data density in a different way than their e-graph counterparts, and in particular,
the limiting operators in each case are different. Other works, posterior to the first version
of this paper, like that in [15], have considered more general normalizations for k-NN graphs
in order to induce different ways in which data density affects the behavior of data analysis
algorithms.

2.3. Convergence of eigenvectors. We also establish convergence rates for the eigenvectors
of L® towards eigenfunctions of A,, as well as convergence rates of eigenvectors of LF towards
eigenfunctions of Af)v N Naturally, we first need to specify the sense in which the convergence is
to take place. To describe this, let us first notice that the eigenfunctions of both A, and Af)v N
are continuous functions, so that pointwise evaluation of eigenfunctions makes perfect sense. In
particular, we can restrict a given eigenfunction f to X and the quantity ||u — f H%Q(N/n) would

be well defined for every u € L?(u,). Furthermore, if f solves the elliptic equation

Apf = /\f

for some A > 0, then, by the regularity theory of elliptic operators [29] (which can be lifted
from the Euclidean setting to the curved manifold setting given the assumptions that we made
on M at the beginning of Section 2) and the regularity assumption on the density p € C?(M),
it follows that f is at least a C3(M) function. That is, its first, second and third derivatives
are continuous, and given the compactness of M also bounded. The same regularity holds
for eigenfunctions of Aév N Said regularity will be needed in order to apply the pointwise
consistency results from Theorem 3.3 (for the e-graph case) and Theorem 3.7 (for the k-NN
case) to a given eigenfunction f.
We have the following convergence result for e-graphs.

Theorem 2.7 (Rate of convergence for eigenvectors). Suppose that M, u satisfy the assump-
tions from Section 2. Suppose that the quantities §,0, e satisfy Assumptions 2.8. Then:
(1) For everyl € IN there is a constant ¢; such that if

(6\/)\74-5—1—64—9) N <,

then with probability at least 1 — Cn exp(—C’nHQEm), for every u; normalized eigenvector
of L5 with eigenvalue Xj, there is a normalized eigenfunction f; of A, with eigenvalue

A\, such that
5 1/2
lur = fill L2 ) < <Cz (6+5+9>) + C)6.

(2) For everyl € IN there is a constant ¢; such that if

5
(s\//\ﬁ+€+e+0> A < a,

then with probability at least 1 — Cn exp(—C’n@QEm) — Cnexp (—C’nsm+4), for every
normalized eigenvector of L with eigenvalue A7, there is a normalized eigenfunction f
of A, with eigenvalue \; such that

lw = fill L2(un) < Cle.
11



Remark 2.8. The constant C; in Theorem 2.7 (ii) depends on the C® norm of all normalized
eigenfunctions f; of A, with eigenvalue );, since our proof uses the pointwise consistency of
graph Laplacians. The constant Cj is also inversely proportional to the spectral gap ~; defined
as

Y = min{|)\l — )\j’ : )\l 7é )‘j}-
A similar remark holds for the analogous result for k-nearest neighbor graphs given in Theorem
2.9.

As in Theorem 2.4, the main difference between the error estimates presented in Theorem 2.7
is the regimes of ¢ for which they are meaningful. In general we may use energy arguments as
in [7] to obtain convergence rates that scale like the square root of the rates of convergence for
eigenvalues. On the other hand, in the regime ¢ > ;f/gjjﬂ we can show that eigenfunctions of
the graph Laplacian converge to eigenfunctions of A, linearly in the connectivity length-scale
€, coinciding in this way with the rates for eigenvalues and also with the rates of pointwise
convergence (see Theorem 3.3).

The analogous estimates for k-NN graphs are the following.

Theorem 2.9 (Rate of convergence for eigenvectors). Suppose that M, u satisfy the assump-
tions from Section 2. Suppose that the quantities 6,0,k satisfy Assumptions 2.3. Then:
(1) For everyl € IN there is a constant ¢; such that if

(/)™ /N + (0 /R)™ 4+ 0N < a,

then with probability at least 1 — Cn exp(—C’angm), for every u; normalized eigenvector
of LF with eigenvalue )\f, there is a normalized eigenfunction f; of AI]DVN with eigenvalue
A, such that

- 1/2 ~
lw = fill 2oy < (C’z (5(n/k)1/m + (k/n)"™ + 0)) + Cy0.
(2) For everyl € IN there is a constant ¢; such that if
((k/m) ™ N/ N+ 8(n/ k)™ + )N < e,

then with probability at least 1 — Cn exp(—CnHQSm) — Cnexp (—c(k/n)4/mk), for every
w; normalized eigenvector of L¥ with eigenvalue )\f, there is a normalized eigenfunction
fi of Af)VN with etgenvalue \; such that

lr = fill 2y < Cille/n)'/™.

There are other ways to study the convergence of eigenvectors of graph Laplacians. As we
will see in Section 5, Theorems 2.7 and 2.9, and the regularity of eigenfunctions of A, and
Afjv N imply the convergence of eigenvectors in the so called T'L?-sense (see [22]). This notion
of convergence makes explicit a way to compare different spectral embeddings that form the
basis of algorithms like spectral clustering [51]. To be more precise let L € IN. With the first L
eigenvectors uy, . .., ur, of £ (or £¥) one can construct an embedding of the data set

Fn:{xl,...,xn}%RL

ul(acl)
Fy(z;) = :
ury, (l’z)
The resulting set of points can be represented by the measure Fysu, , i.e., the push-forward of
the original empirical measure u,, by the graph Laplacian embedding F},. A natural question to
ask in this setting is: how far apart is Fysu, from the measure Fyu, where F' is the continuum
Laplacian embedding;:
F: M —RF
12



fi(x)
Flx)=1 + [,
fr(z)

constructed from eigenfunctions fi, ..., fr, of the continuum operator A, (or Aév N)? We answer
this question in terms of the Wasserstein distance W between Fsp, and Fyu, which we recall
is defined by

2.17 Wa(Fyu, F; = min z — yl?dn(z,y),

(217) (Bt Fyge) 1= min [ oy an(ay

where I'(Fypi, Frypin) denotes the set of couplings or transport plans between Fyu and Fpfip.
This way of comparing the spectral embeddings was proposed in [23].

Corollary 2.10. Suppose that M, u satisfy the assumptions from Section 2.

(1) (e-setting) Suppose that the quantities 5,6’,5 are small enough as in 2 in Theorem 2.7.
Then, with probability at least 1 — Cnexp(—Cnf?6™) — Cn exp (ansm‘M), we have

WQ(Fﬁ,U,, Fnﬁru’n) < Ce + CWa(p, pn),

where Fy, is the graph Laplacian embedding constructed from the first L eigenvectors of
LE, and F is the Laplacian embedding constructed using the eigenfunctions fi,..., fr of
A, from Theorem 2.7.

(2) Suppose that the quantities g, 0, (k:/n)l/m are small enough as in 2 in Theorem 2.9.
Then, with probability at least 1 — Cn exp(—Cnh25™) — Cnexp (—C(k:/n)4/mk), we have

Wa(Fypt, Fugpin) < C(k/n)/™ + CWa(p, i),

where Fy, is the graph Laplacian embedding constructed from the first L eigenvectors of
LF, and F is the Laplacian embedding constructed using the eigenfunctions fi,..., fr,
of Af)VN from Theorem 2.9.

Remark 2.11. Probabilistic bounds for

W) = min [ du(e.y)Pdnay)
el(v,7) J Mx M

can be easily derived using a localization argument (to deal with the curved manifold) and the
concentration inequalities estimating the Wasserstein distance between empirical measures and
their ground truth counterparts in the Euclidean setting (see [20] and a more recent treatment
with improved constants and better scalability with respect to dimension in [37]). The localiza-
tion argument is used simply to partition the manifold M into a fixed number of regions that
are bi-Lipschitz homeomorphic to a bounded domain in IR™. One can then lift the concentration
results in Euclidean space R™ to the manifold. In particular, Wa(u, ) scales like nlﬁ

2.4. Outline of proofs and discussion. The proofs of our main theorems follow the same
structure in both the e-graph and k-NN settings. For this reason we outline our proofs only in
the e-graph setting and then simply state the modifications needed in order to cover the k-NN
case.

Our first step is to establish some a priori (and non-optimal) rates of convergence for eigen-
values of £ towards eigenvalues of A,. In principle, we could cite the results already proved
in [22], but we have decided to prove our own a priori results, so that we have the opportunity to
present a simpler approach that works for a larger set of values of £ than those covered in [22].

To discuss our construction, it is worth first reviewing the one in [7], which is a main influence
for the construction in our work and the work in [22]. There the main idea is to construct maps

P: L (p) = L2 (pn),  T: LP(pn) = L?(n)
13



that are almost isometries when restricted to functions of low Dirichlet energy (in discrete and
continuum settings), and for which one has estimates of the form

b(Pf) < (1+e)oyDalf), Vf € L*(n),
and

(2.18) onD2(Zu) < (1 +e)be(u), Yue LQ(un),

where e is thought of as a small error term. When combined with the variational identities (2.5)
and (2.13), these inequalities produce error bounds for the difference between eigenvalues of £°
and A,: one can upper bound \; with A; 4+ Ce choosing S in (2.13) to be the image under P
of the span of the first | eigenvectors of A,, and likewise, one can upper bound )\; by A7 + Ce
choosing S in (2.5) to be the image under Z of the span of the first [ eigenvectors of L. Now,
the maps P and Z introduced in [7] are based on an co-optimal transport map between p and
tn. That is, they use a map T : M — {x1,...,z,} that pushes forward the measure y into the
empirical measure p,, and does so in such a way that it minimizes the quantity
0 := sup dym(z, T (x)),
TeEM

over all possible such transport maps. 71" can be used to generate a tessellation Uy, ..., U, of M
(here U; := T~*({x;})) , with the property that all cells U; have y-measure equal to 1/n and
diameter bounded by 2. The maps P and Z are then defined according to

(Ph@) =n- [ f@p@ys, fe L)

and
Tu = A._9sP*u, ue€ L*(u,).

where P* is the adjoint of P (i.e. composition with 7") and A._ss is a convolution operator with
respect to a very carefully chosen kernel (chosen conveniently to guarantee the energy inequality
(2.18)) with bandwidth ¢ — 2§. Notice that in order to get convergence rates for the spectrum
it is crucial that the leading term on the right hand side of (2.18) is b.(u) (with no constants
in front). In this construction it is also important to have ¢ > 26. Now, as proved in [22], the
scaling of § = doo (i, ptry) in terms of n is

log(n)3/4 =9
(2.19) 5~ C {10;(;/)21 P
Taim . m >3,
/
which means that in dimension m = 2, ¢ is forced to be larger than logé?/); ", The extra

logarithmic factor with respect to the connectivity threshold has been shown to be unnecessary
in order to establish consistency of closely related problems as illustrated in [13] and [40]. Here
we also remove the extra logarithmic factor, offering also quantitative rates of convergence; our
analysis also covers the case m = 1 which was not explicitly included in some of the previous
works in the literature. For that purpose, we use modified discretization and interpolation
maps P, Z constructed as before, but based on a map 7" pushing forward a conveniently chosen
measure [i,, with density p, (uniformly close to p) into the empirical measure p,. The idea is
that 11, can be chosen to be closer to p, in the co-OT sense than p itself. More precisely we
have the following proposition which is proved in the Appendix.

Proposition 2.12. Suppose that M, ju satisfy the assumptions from Section 2. Suppose that the
quantities 0,0, & satisfy Assumptions 2.3. Then, with probability greater than 1—n exp(—Cn#?6™),
there exists a probability measure (i, with density function p, : M — R such that
min  sup du (2, T(z)) <9,
Tﬂ“n:lin reM

and such that

o= Pl < € (6+3) .
14



We will use T to denote an optimal transport map.

(a+1) log(n)
Cném
Then it follows that with probability at least 1 — n% there exists a measure i, such that

Remark 2.13. Suppose that in Proposition 2.12 we take 0 := for some o > 1.

min  sup da(z, T(z)) < &
Tipin=pn e M

and

(a+1)log(n) , g) |
Cno™

lp = Pnllpeequy < C (

log(n)!/™

In particular, if § is set to scale like > T

small.

< 6 < 1, we can make o — pullLoo () arbitrarily

After we derive some properties of the new maps P and T we will be able to prove the first
part of Theorem 2.4, as well as the first part of Theorem 2.7 following the proof scheme in [22].
We will also be able to prove the second part of Theorem 2.9. For this we follow some of
the steps in the proof of the Davis-Kahan theorem. We will need to use pointwise consistency
for the graph Laplacian together with our a priori estimates for the error of approximation of
eigenvalues in order to isolate eigenvalues of A, and match them with eigenvalues of £°. We
notice that the pointwise consistency for e-graphs has been established in previous works [32].
For completeness, we give a rather simple proof of consistency in Section 3.3. To apply the
pointwise consistency we require regularity of the continuum eigenfunctions (see the discussion
at the beginning of Section 2.3), which is an ingredient that has not been utilized in previous
works on spectral convergence.

Finally, to improve the rates of convergence for eigenvalues (i.e. to obtain the second part
of Theorem 2.4) we will use the error rates for the convergence of eigenvectors as follows. Let
us fix [ € IN and let u be a normalized eigenvector of £° with corresponding eigenvalue A7. We
know a priori that we can find f € L?(u) a normalized eigenfunction of A, with eigenvalue ),
that is close to u, so that in particular

(2.20) <u, f>L2(Mn) >c>0,

where ¢ is independent of e, or n; in the above formula we interpret f as the restriction of
f:M —= R to X (a well defined operation given the continuity of eigenfunctions of A,). We
will then arrive to an inequality of the form

[(u, L5f — UﬂApf>’L2(,un)
[y £ 22 ()

X7 = o] = < 206" = 000 20
The above computations show that in order to estimate |[Aj — )| it suffices to use the pointwise
consistency of graph Laplacians applied to the function f.

For the most part, the proof strategy for Theorems 2.5 and 2.9 is similar to the one described
before. However, there are two important modifications we need to make. First, the pointwise
estimates for £Ff(x;) — UnAf)V N f(x;) require new technical computations which are presented
in detail in Section 3.4. These results are new in the literature. Second, regarding the relevant
a priori estimates, we must first construct a new interpolation map Z as now the connectivity
length-scale changes in space. Once the main properties of the new map I have been established
our desired results will follow in the exact same way as in the e-graph case.

We suspect that our eigenvector and eigenvalue rate of O (n_l/ (m+4)) is close to optimal.
In the general manifold setting, we suspect O(n~'/™) to be the optimal convergence rate for
eigenvectors, since this represents the resolution of the point cloud (i.e., the typical inter-point
distance). It would be interesting to establish lower bounds for all convergence rates in this

paper. We point out that some parts of our proof for the eigenvalue convergence rate can
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produce lower bounds. For example, in the e-graph setting, we look forward to (4.17) in the
eigenvalue convergence rate proof, which yields
Al —ophil > Cr sup [(u, L5 — 0y DApf) 20|

FeS(Ap,A)

ueS(LEAF)
with probability at least 1—2exp (—cn), where S(A,, ) is the set of unit norm eigenfunctions of
A, with eigenvalue A, and S(L?, A) is the corresponding set for £°. Obtaining lower bounds on
the right hand side would prove lower bounds on the eigenvalue convergence rate. This appears
to be a hard problem that will involve tools from the field of stochastic homogenization, since
the pointwise consistency errors may average out against u to something smaller than the upper
bound given by the application of Cauchy-Schwartz that we made above. We plan to explore
lower bounds in a future work.

3. POINTWISE CONSISTENCY OF GRAPH LAPLACIANS

In this section we prove pointwise consistency with a linear rate for our two constructions of
the graph Laplacian. The e-graph Laplacian is considered in Section 3.3, while the undirected
k-NN Laplacian is considered in Section 3.4. For the e-graph Laplacian, the linear rate was
established earlier in [32]; we give a simpler proof for completeness. Consistency for k-NN graph
Laplacians was studied in [50], but the methods used were unable to establish any convergence
rates.

Before giving the pointwise consistency proofs, we review some differential geometry in Sec-
tion 3.1, and concentration of measure in Section 3.2.

3.1. Differential geometry. We first briefly review some basic results from differential ge-
ometry. We refer the reader to [17] for more details. We write By(z,7) C M to denote the
geodesic ball in M of radius r centered at x, while we use B(z,r) to denote Euclidean balls in
R™ or in R% depending on context. For each 2 € M, exp, : T, M — M is the Riemannian
exponential map. Let K be an upper bound on the absolute values of the sectional curva-
tures, let R be the reach of M, and let ig be a lower bound on the injectivity radius of M.
For any 0 < r < min{ig, K~'/2}, exp, : B(0,r) — M is a diffeomorphism between the ball
B(0,r) C T, M and the geodesic ball By(z,7) C M. Let us denote the Jacobian of exp, at
v e B(0,r) C T, M by Jy(v). By the Rauch Comparison Theorem

(3.1) (1+CK[*) ™ < J,(v) <1+ CK|v|.
It follows that
(3.2) | Volp(Baq(, 7)) — ™| < CKr™ 2,

We also recall [22, Proposition 2]

8
(3.3) |z —y| < dm(z,y) < Iw—y\+@lw—yl37

provided |z — y| < R/2. In the above dq denotes the geodesic distance on M.

Throughout this section we always assume n and ¢ satisfy Assumptions 2.3. We use C,c > 0
to denote arbitrary constants that depend only on dimension m, p, and on the geometric
properties of the manifold M, such as the injectivity radius or sectional curvature. We always
have 0 < ¢ < 1and C > 1.

3.2. Concentration of measure. We now state a simple concentration inequality, which fol-
lows from Bernstein’s inequality [6], that is particularly convenient for analysis of graph Lapla-
cians.

Lemma 3.1. Suppose that M, satisfy the assumptions from Section 2 and let x1,...,x, be
samples from p. Let ¥ : M — R be bounded and Borel measurable. For x € M define

V=Y o).

|z —z|<e
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Then for any €2 < 6 <1
(3.4) P (|¥ — a| > Cpmaz||t]|ccdne™) < 2exp (—cpmaz52n5m) ,

where [|¥]loo = [V Loo (B (w,2¢)) and
(3.5) a=n / D()p(y) dVolp(y).
BM(:B,E)

Remark 3.2. It is important to point out that a # E[¥], since the definition of ¥ uses the metric
in the ambient space, while in the definition of a we integrate over geodesic balls. We also point
out that the restriction § > €2 allows us to ignore any effects of the curvature of the manifold.

Proof. The argument is similar to [8, Lemma 1], but we include the proof for completeness. Let
Z;i = 1jg,—a|<y¥ (). The Bernstein inequality applied to > 7" | Z; yields
(3.6) P (|0 — E[W]| > nt) < 2 nt?
. — n exp | ———
SR W TPy

for any t > 0, where 0 = Var(Z;), b > 0 satisfies | Z; — E[Z;]| < b almost surely, and
BY =0 [ b)) dVolu(y)
B(z,e)NM

By (3.3) we have
(3.7) B(x,e) C B(x,e) "M C By(z,e + 83 /R?) € Byy(z, 2¢)

provided 8¢3/R? < e, which is guaranteed by the Assumptions 2.3. Let us write [|[1)|/occ =
191l oo (B (2,2¢))- Then by (3.7) and (3.2) we have

(3.8) IE[W] — a| < Cpmaz|[t)]lson Vol (Ba(z, e + 8% /R*) \ Ba(w,€))
< Cpmaw’|¢“oon5m+2a

for € sufficiently small. We also have by (3.7) that

(3:9) 7 <BZH = [ 6(w)Pel) dVolly) < Comlvlie™
B(z,e)NM

and

(3.10) 12~ BIZ| < ||+ [ELZ)] < |2 + EIZ) < 24|

so we can take b = 2[[1)]|oo. We now set t = ppaz||1]|cce™d in (3.6), for 6 > 0, and combine this
with (3.8) and (3.9) to obtain

2, -m
P (| —E[¥]| > Cpomaz|tilloo(d +*)ne™) < 2exp <_cpm5n€>

1+6

for constants C, ¢ > 0 depending only on M. Restriting 2 < § < 1 completes the proof. O

3.3. e-graph. We now turn to proving pointwise consistency of the e-graph Laplacian. Our
main result is the following uniform consistency estimate.

Theorem 3.3 (Consistency for e-graph). Let f € C3(M). Then for e < 3§ < e~ ! we have

(3.11) P max L5 f (i) — oA, f(25)] > C5| < 2nexp (—e6’ne™?),
where C depends on || fllcs By (zse)) @ [f11;B s (ws,2¢), Where [f11,Byq(xi,2¢) 8 the Lipschitz con-
stant of the function f when restricted to the ball Bag(x;, 2¢).

17



The proof of Theorem 3.3 is split into two lemmas, Lemma 3.4 and Lemma 3.5. Lemma 3.4
controls the fluctuations between the graph Laplacian and the nonlocal operator

. 1 T—y
312 L@ = [ () G - ) avel)
€ B (z,e) €
Lemma 3.5 establishes consistency of the nonlocal operator L, to A, as ¢ — 0.
Lemma 3.4. Let f € CY(M). Then forz € M ande < <e!
(3.13) P [|£°f(2) = L34/ (2)] > Clf1py(ee)d] < 2exp (—cne™+?)
Proof. The proof is a direct application of Lemma 3.1 with

60) = e (257 ) - 1)

3

and a = LS, f(x). We simply need to compute

C[.ﬂ 1; B (z,2¢€)

HwHLOO(BM (z,2¢)) < nem+1

Lemma 3.5. For f € C3(M) and x € M
(3.14) |L5f (@) — onApf(2)] < C+ (| flles B (ae)))E-

Proof. Let us define the intrinsic version of L, to be

B15) L) = o [ ( )n(dM(””’y)) (@) — £())p(y) Volm(y)

€
Since 7 is Lipschitz, it follows from (3.3) that

(3.16) L7 f(2) = L5f(@)] < Clf 1B (el

Let w(v) = f(exp,(v)) and p(v) = p(exp,(v)); that is w and p are the functions f and p
expressed in normal Riemannian coordinates. Then we have

be = - ! M w(v) —w v v)dv
citw =g [, (%) w) w0

9

1
g2 B(0,1)
Using the Taylor expansions J;(ev) = 1+ O(e?), p(ev) = p(0) + Vp(0) - ve + O(g?), and

1 ([v]) (w(ev) = w(0))p(ev) Jx(ev) dv.

1
w(ev) —w(0) = Vw(0) - ve + V" V2w (0)ve? + O(H?U||CS(B(O7E))E3),

a standard computation yields

E;ls (x) = —0oy (Vw(O) -Vp(0) + p(QO)AMw(O)> + O(c3e) = —;—;div(p2Vw)’v:0 + O(c3¢),
where
c3 =1+ [[wllcs(Bo,e))-

The proof is completed by recalling (3.16) and noting that —g—;div(p2Vw) ‘U:O =o0,A,f(x). O

Remark 3.6. In the previous proof we have implicitly used the fact that the norms [[w||cs(p(0.¢))
and || fll¢s(Bu(z,c)) are equivalent. This can be justified as follows. Writing the covariant
derivatives V1 f, V2 f and V3 f in normal coordinates around a point (see Section 2 in [31]), and
using standard expansions for the Christoffel symbols and metric tensor in these coordinates,
it is not difficult to see that:

(1= Ce)llwlleso,e)) < NfllesBu@e) < 1+ Ce)llwllespo,e)),

from where the equivalence of the norms follows.
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We now give the proof of Theorem 3.3.

Proof of Theorem 3.3. Combining Lemmas 3.4 and 3.5 we have
(3.17) P[|L5f(2) — 0pA,f(2)| > O] < 2exp (—cdne™?)

for any x € M and € < § < ¢~!. Conditioning on x; and using the law of conditional probability
yields
P [|L° f(x;) — opA,f ()| > C6] < 2exp (—052n€m+2)

for any 1 <4 < n. The proof is completed by union bounding over x1, ..., T;,. U

3.4. Undirected KNN graph Laplacian. We now turn to the case of the undirected k-NN
graph Laplacian £F. The consistency proof here is more involved, since the neighbors in the
symmetrized k-NN relation do not fall in a ball (even on average), due to the variability of the
distribution p. The additional neighbors added in the symmetrization are in fact important for
consistency of the undirected k-NN graph Laplacian, and when p is not constant the additional
points are not symmetrically distributed about x. This must be accounted for in the consis-
tency results, and introduces an additional drift term in the limiting weighted Laplace-Beltrami
operator. The form of the continuum operator Af,v N was established in [50], where the authors
proved consistency without a convergence rate.
Our main result in this section is the following uniform consistency estimate.

Theorem 3.7 (Consistency for undirected k-NN Laplacian). Let f € C3(M). For 1 < k <
eney and C(k/n)Y™ < 6 < (k/n)~Y/™ we have

(3.18) P <max L8 f (i) — og AN f(ay)| > 05> < Cnexp (—052(k/n)2/mk) ,

1<i<n
where C' depends on | fl|cs -

The proof of Theorem 3.7 follow from Lemmas 3.10 and 3.11 below. Before presenting the
lemmas and proofs, we must introduce some notation. We recall ri(z,y) = max{ex(z),r(y)},

as defined in (2.8). For x € M define (x) by

(3.19) k= amp(z)ne(z)™,
and set
(3.20) r(z,y) := max{e(z),e(y)}.

Lemma 3.8. Let x € M and suppose that ¢ < exq. Then fore? <5 <1
(3.21) P [|No(2) — aump(z)ne™| > Cone™] < 2exp (—cd’ne™).

Proof. Applying Lemma 3.1 with ¢ = 1 yields

P

Ne(z) — n/ p(y) dVolp(y)| > C(Snem] < 2exp (—c6’ne™) .
B (z,e)

By Taylor expansion we have
w [ ) dVeluly) = amplene" + O(ne ),
BM (x,a)

Noting that €2 < § completes the proof. O
Lemma 3.9. Forx € M, 1 <k < cne’{y and C(k/n)2/m < § <1 we have

(3.22) P [|amp(z)nek(x)™ — k| > Cok] < dexp (—0521@‘) .
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Proof. Let C' be the constant from Lemma 3.8 and define € by
Cmpl@)ne™ = k(1 + Clag plw) 1),

Then we have

P (amp(x)nek(x)™ > k(1 + C6)) =P (ex(x) > ¢€)
<P (N:(z) < k)
<P (Ne(2) — amp(z)ne™ < —C'a, p(z) ko)
< P (|Ne(z) — amp(x)ne™| > C'éne™) .

Since ¢(k/n)'/™ < & < C(k/n)Y/™ the restriction ¢ < e from Lemma 3.8 is satisfied when
k < cne’ly. Therefore, we can invoke Lemma 3.8 to find that

P (nowmp(z)er(z)™ > k(1 + C3)) < 2exp (—c6%k) .
for e2 < § < 1. This establishes one direction of (3.22); the proof of the other is similar. O

We set €mqr = maxgea £(2), and define the nonlocal operator
3.23 Eﬁfx:% / 7]( >fa:—fypdeolMy.
B2 L@ =) [ () ) U@ - F)ee) dVolu)

Our first lemma shows that the nonlocal operator Eﬁl describes the average behavior of the
unweighted k-nearest neighbor graph Laplacian £F.

Lemma 3.10. Let f € C*(M). Then for x € M and C(k/n)"/™ < § < (k/n)~Y/™

(3.24) P (125 f(2) = L3S (@) 2 ClfBu(e20man)d] < Cexp (=t (k/m) k).
Proof. Define

(3.25) A={j: |o—xj| <rilaj,x)},

and

(3.26) A(s)={j : |z —zj| <r(zj,z)(1+s)}.

By Lemma 3.9, there exists C > 0 such that

(3.27) P(lep(z)™ — e(z)™| > Ce(z)™) < 6exp(—cdk)

and

P max lek(xi)™ —e(z)™| > éés(xj)m < 6nexp(—ci?k)
<j<n

for C'(k/n)?/™ < § < 1. Fix such a § > 0 and assume that

(3.28) lep(2)™ — e(z)™| < Cde(x)™
and
(3.29) Jmax ek (r;)™ — (@)™ < Ce(ws)™.

Then it follows that
iz, )™ = max {eg ()", e ()™} < (1 + C8) max {e(z;)™, e(x)™} = (1 + CO)r(zj, x)™.
Since (14 C6)/™ <1+ C8 we obtain
re(zj,x) < (1+ 5’5)7’(@-,93),
and so A C A(C6). A similar argument shows that A(—C4) C A.

We define 1 /rcp~ 142/m
Li) == ("2m) ST w0 - ),

n
JEA(0)
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and note, using A(—Cé8) C A c A(C6), that

C

Lf(x) = L8 f ()] < () > |f (5) = f(2)]

FEA(CH\A(-CS)

+ S Y T f(ag) — )]

FEA(-C))

By the Chernoff bounds we have
P (#A(C*é) — #A(~C8) > Céns(x)m) < 2exp(—co?k),
for 0 <0 <1, and by (3.28) and (2.14) we have
r(z),x) Tk(fﬂjziv)’ < C6.

max |wg;y " — Wae

Setting & = (k/n)'/™t we have

(3.30) P(ILf(2) = £ (@) = Clf1Bp(z2emant) < Cexp(—ct®(k/n)* k)

for C(k/n)/™ <t < (k/n)~%/™. The proof is completed by invoking Lemma 3.1 to obtain
(LA F () = LE@)| 2 Clf)1pauto 2emant) < 2ex0 (—ct?(h/n)?/ k)
for C(k/n)Y/™ <t < (k/n)~Y™, and combining with (3.30). O
We now establish consistency of the nonlocal operator Eﬁl with the weighted Laplacian

NN
ANN.

Lemma 3.11. There exists ¢ > 0 depending on p, so that for f € C3(M), z € M, and k < cn,
we have

(3.31) |Lrif () = g AN F(2)] < O+ | Fllos (B (@,eman)) JE(@)-

Proof. Throughout the proof we write € = ¢(x), and note that

1/m 1/m
C<k) Ssﬁsmax§C<k) .
n n

We first define the intrinsic version of £I:L’ls, given by
— (Pam) dpm(.y) -

i pw= (M) [ (S () - et dVolu (o)
Since 7 is Lipschitz it follows from (3.3) that
(3.33) |Lf () = L f(@)] < ClU Bt eman) B/ ™ < ClU B eman) &
Let w(v) = f(exp,(v)) and p(v) = p(exp,(v)). Then we have

o\ H2/m v _
Let us set s(v) = (p(exp,(v))/p(x ))l/m = (p(v)/p(0))"/™, s that

e(z)
min{1,s(v)}

Then making a change of variables v" = v/e, and renaming v’ as v, yields

r(z,exp,(v)) = e max{1, s(v) "'} =

= — MJ 2 V| min SEV WI\EV) — W p(EU) EV) av
(331 L) =—(=") /Bm”(' {1,s(e0)}) (wlew) = w(0) T uev)
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where C' = ¢ le,4.. We now use the Taylor expansions J,(sv) = 1+ O(e?), p(ev) = p(0) +
Vp(0) - ve + O(£2),

1
w(ev) —w(0) = Vw(0) - ve + v V2w(0)ve? + O(”w“c3(3(0,emax))€3)u
and
1 2
s(ev) =1+ EVIogp(O) -ve + O(e7),

to obtain
Lf(z) = — (”;’“)2/’"/377 (jol(1 + [V log p(0) - v]-)) (Vaw(0) - ve + %v Y 2w(0)ve2)
(14 Vlogp(0) - ve) dv + O(e),
where a_ = min{0,a} and

B={veR™: [v|(1+ 5[VIlogp(0)-v]-) <1}

We now make the change of variables

For sufficiently small € > 0, ® is invertible and
v==>0""(2) = 2(1 — £[Vlogp(0) - 2] + O(£?)).

Note that for v with Vlogp(0) - v > 0, we have D®(v) = I and det(D®(v)) = 1. For v with
Vlogp(0) - v < 0 we have

DO(v) =1 + % ((V1ogp(0) - v)I + Vlog p(0) @ v) .
Using the Taylor expansion det(I +eX) =1+ eTr(X) + O(e?) we have

det(D®(v)) = 1 + % ((V1og p(0) - v)m + (Vlog p(0) - v)) + O(£2)
=1+e(1+1)(Viogp(0)-v)+ O(c?).
Thus, for all v we have
[det(DB(v)| " = 1~ (1 + 4)[VIogp(0) - v] + O(2),
and so

dv = (1 —e(1+ 2)[Viogp(0) - v]- + O(?))dz.
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Therefore
Lf(x)
nouy, \ 2/m 2
=— (T)Q/ /B(O ) n(|z]) (Vw(O) - zE — 6E[V log p(0) - 2] -Vw(0) - z + %:c : V2w(0)x£2>
(14+eViogp(0)-2) (1 —e(1+ L1)[Viogp(0) - z]-) dz + O(e)
nouy, \ 2/m 2
=— (T)Q/ /B(O ) n(|z|) (Vw(O) - zE — 6E[V logp(0) - 2] -Vw(0) - z + %:c : V2w(0)x£2>
(1—e(1+ 1)[Viogp(0) - z]- +eVliogp(0) - z) dz + O(e)
2/m 1
=0 [ (=) ((T08p0)-(Tw(0) ) + 5o Tu(0)e
— (14 2)[Viogp(0) - 2] (Vw(0) - z)) dz + O(e)
= —0,p(0)"*™(V1og p(0) - Vw(0) + $Aw(0))

= p(0) /™ (L + 31)/3(0 1)77(|2|) [Viogp(0) - 2] (Vw(0) - 2) dz +O(e).

I
In the final integral above, let A be an orthogonal transformation so that
AV logp(0) = [V1og p(0)lem

and make the change of variables y = Az to deduce

I = [Vlogp(0)| /B oy 78D min OH AT 0(0) )

— [V log p(0)] > _[AVw(0)]; /B 1y 7l minum, O}y dy

=1

— |V log p(0)| [AVw(0)] /B 1y, 0}

. %|Vlogp(0)|[AVw(O)]m 0 (lyl) v2, dy
B(0,1)
= 7|V 1og p(0) [AV(0)]

= %Vlogp(()) - Vw(0).

This gives
_on

Lf(x) = 5 p(0)72/m(Aw(0) + (1 - %)Vlogp(O) -Vw(0)) + O(e)
op 1

= - ——div(p' " Vw) + O(c) = 0, ANV f + O(e),
which completes the proof. O

We now give the proof of Theorem 3.7.

Proof of Theorem 3.7. We proceed as in the proof of Theorem 3.3. Combining Lemmas 3.10
and 3.11 we have

P (|£kf(:n) - UnAéVNf(fUﬂ > 05> < Cnexp (—cég(k/n)Q/mk> ,

for any x € M, 1 < k < cne’{y, and C(k/n)Y™ < § < (k/n)~Y™. We complete the proof by
conditioning on x;, using the law of conditional probability, and applying a union bound. [
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4. PROOFS OF MAIN RESULTS

Here we prove all of our main results. The structure of the proofs is exactly the same for the
e-graph and the k-NN settings.

4.1. e-graph. Let ¢, g 0 be positive numbers satisfying Assumptions 2.3. Associated to these
numbers we consider the density p, from Proposition 2.12 (which exists with probablhty greater

than 1 — nexp(— Cn925 )) and we let T be an 0o-OT map between 1, and p,. Let U1, e Un
be defined by

(7,‘ = T{l({xz})
We can then define the contractive discretization map P: L2(j) — L%(pun) by

(41) (Ph@) =n- [ f@pla)ds, 1 e L),

and the extension map P*: L%(un) — L2(fin) by

(4.2) (Pru)(x) =Y u(z)lg (z), e L ().
=1

We note that P*u can be written as P*u = uwoT. We then define the interpolation map
I: L*(pp) — Lip(M)

(4.3) Tu=A__zP*u

where A__,x is a convolution operator using the kernel K,(-,-) (defined below) with bandwidth
£ —25. To define the kernel K, we let : [0, 00) — [0, 00) be given by
1 o0
(4.4) bt) = - / n(s)sds,
On Jt
and set

Ky (z,y) = fw <W> :

The operator A, then takes the form

A f(z /K z,y) f(y)du(y),

where in the above 7(z) is a normalization factor given by

_ / Ko (2, y)duly),
M

and serves as normalization constant. Note that in the above we integrate with respect to the
density p and not with respect to p,. This is because p, is discontinuous, and for some of the
estimates that we will use later on, we need to integrate with respect to a smoother density.

In order to prove the first part of Theorem 2.4 we use the following two propositions. These
two results contain the fundamental a priori estimates that we use in the sequel.

Proposition 4.1 (Inequality for Dirichlet energies). Let ¢, S, and 0 be fized but small enough

numbers satisfying Assumptions 2.3. Then, with probability greater than 1 —Cn exp(—CnGng)
we have:

(1) For any f € L*(u),

b.(Pf) < (1 +C (i +e +9>> onDs(f),
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(2) For any u € L*(uy,),

oy Da(Zu) < <1 +C <§+a+ 9>> be (),

Proposition 4.2 (Discretization and interpolation maps are almost isometries). Let €, g, and
0 be fized but small enough numbers satisfying Assumptions 2.3. Then, with probability at least
1 — Cnexp(—Cn#*5™) we have:

(1) For every f € L*(u),
170220 = 1P,
(2) For every u € L*(uy),

10122,y = 1Tl | < Cellilaguy Vo) + 0 + 8wl .

< O3 120/ DalF) + C(0 +3) 1 32,

Before proving these two propositions it will be convenient to introduce two intermediate
(non-local) Dirichlet energies of interest and establish a connection between them. First, we
define the non-local energy

(4.5)
Eif)i= [ e () (@)= 1) P @) Vola(a)d Volaalw), S € LM,

and the closely related

(4.6)
B = [ e () ()0 Potedptu)a Volsa)d Volaa(o). 1 € LM ).

Notice that the only difference between E, and E, is the density we integrate with respect to.
Moreover, for the density p, from Proposition 2.12 we have

(4.7) (1= CO+)E(f) < E(f) < (L+CO+8)E(f), Vf €L (w),

for some constant C', which follows from the fact that

p(@) < (@) + Ip = Balloq < Bole) + 85 ()

Pmin

and

C(6+90)
Pmin

We are now ready to prove Proposition 4.1 and Proposition 4.2.

p(z).

pn(x) < p(2) + o = PnllLee ) < p(2) +

Proof of Proposition 4.1. First, we can use Lemma 5 in [22] to conclude that for all 7 > 0 small
enough and all f € L?(p),

E.(f) < (14 Cyr + CmKr*)a,Da(f),
and Lemma 9 in [22] to get
oyDa(Arf) < (1+Cr+CmEr?) - (1 +C(1 + 1/0,)mKr?)E.(f).
We can then use 2.12 to obtain
(4.8) E.(f) < (1+Cr+CmKr?)(1+C(0+6))oyDa(f),
as well as

(4.9) oy Da(Arf) < (14 Cr+CmEKr?) - (14 C(1 4+ 1/o))mKr?)(1 + C(0 + 8)) E.(f).
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On the other hand, if we replace P, P* §,T,, and p with ﬁ, ﬁ*, g, Tn and py, (where recall 5
is an upper bound for the co-OT distance between fi,, and ), we can copy word for word the
proofs in Lemmas 13 and 14 in [22] to deduce

be(Pf) < <1 +05) a+26(f)

as well as

(4.10) E_(Pu) < <1+ci> be (u)

for every f € L?(u) and u € L?(uy,,). Putting together the above estimates with (4.8) and (4.9)

with r = £ — 24, and using the smallness Assumptions (2.3) on ¢, 5 and 0, we obtain the desired
inequalities. O

Proof of Proposition 4.2. The proof follows the same ideas used when proving the analogous
results in [22]. The setting is slightly different because the discretization and interpolation
maps have changed.

To prove the first assertion, we start by noticing that

1120 = [ 0 B ) iNolua(o) + 11,

The first term on the right hand side is in absolute value less than

P — Pull oo ()

- 11120
and so
(4.11) 1122y — 12| < CO+D)1£122,,

Notice also that by definition of P* we have
1P*PF11Z 2y = 1PFI172 (-
It follows that,
VP A1y = 11220 | < 1P PEIaay = 11| + 11220 = 17132
< Oz [1P*Pe ez = 1 2| + €O + DI P
< O fllz2lIP*Pf = fllz2qa,y + C0 + g)”f”%/?(u)

On the other hand,

|P*Pf — e = Z/ (p*Pf x)>2;5n(w)dvol/\/[(x)
(P

—Z / Pra )zﬁndeolM(x)
_Z/ <n - F(y)pn(y)d Vol (y) — f(x))Qﬁn(x)dVolM(x)
—Z / (n - (ar))ﬁn(y)dVolM(y)>2ﬁn(x)dVolM(x)

< nz / U0 = )t ) Volaa (1) Vol
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Let us now show that the last term in the above chain of inequalities can be controlled by
C(52E25~( f), where actually C' is a constant that only depends on dimension. For this purpose
we use an idea described in Lemma 3.4 in [7] to estimate each of the terms

n [ () = F@)P @) Volag () Voluu(z).

For fixed z,y € U let W := M N B(x,26) N B(y, 20), where B(x,20) is the Euclidean ball of
radius 20 centered at x. For every z € W we have

[f(z) = )PP <21f(2) = F)P +2|f(y) = F(2) ],

and in particular

@) — f@)? < / (@) — F(2)Pd Voly(z) + / F) — F(2)2dVolp(2)

VO]M V IM

x — 2| 9
< —— x) — f(2)]°d Volpy (2
—v01M<W>/M”< —) 15 - s PavoLu()
2 ly — Z) 2
+ o5 = — f(2)|7d Volp (=
vt o (M) 1) = FoRavoLu(o
C x—2z C
<o [ ("= o - seravou) + < [ (M) 1500 - s voL(e),
oM Jm 20 oM Jm 2
Integrating with respect to x and y in both sides of the inequality we get

/ / (@) — F@)I2Pn(2)7n (y)d Volag()d Vol (y)

//(

Summing over all ¢ = 1,...,n we deduce from the above expression that

)rf< ) = ()P (@) (2)d Vol aa(2)d Vol (2)

IP*Pf = fll72,) < CO°Eys(f) < C3*Da(f),

where for the last inequality we have used the same arguments as in the proof of Proposition
4.1.

To show the second assertion we notice that from ||ul|z2(,,) = [[P*ul[z2(,) and the triangle
inequality we get
<A Pu—PuHLz )

1Zull 2y = Null 22 ) 95

< (1+”p—pn|°°).||A s Pru— Prul| g

Pmin
< <1+”'O;M’°> . Ce\/E_5(P*u)
< Ce be(u)a

where for the third inequality we have used Lemma 8 in [22] (notice that our definition of E,
has an extra factor of 7~2 when compared to the definition in [22]), and for the last one we have
used Lemma 4.7 and (4.10). Also, notice that

Tull 2,y = 1A Pl 2@, < CIPull 2@, = Cllull,2

(Bn) — (kn)»

where the inequality follows from Lemma 8 in [22] and the fact that by introducing a multi-
plicative constant we can change integrals with respect to p with integrals with respect to py,
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and vice-versa (according to Proposition (2.12)). Therefore,

(1l 2y + el 22 )

(I Zull gy + 2 )

1Zulagy = Il 2| < |10l 2y — lullz2gun)

< ‘IIfUHL?(ﬁn) = llull£2(un)
< CE\/MHUHLQ(IM)‘

Finally, we use (4.11) to compare Hqu%Q(ﬁn) and Hqu%?(u)'

O

With Proposition 4.1 and 4.2 in hand the proof of the first part of Theorem 2.4 now follows
from standard arguments.

Proof of 1) in Theorem 2.4. Let fi,..., fi be an orthonormal set (in L?(y)) of eigenfunctions

of A, corresponding to its first [ eigenvalues. For ¢ = 1,...,1 let
v; = ﬁ fz
Applying the first part of Proposition 4.2 to functions f of the form:
f=rf-1

we can get the bound,

~ - 1
IULEhmo—@u%hmwlSCVE&+CW+5%EE=

where the last inequality is valid thanks to our smallness assumption for 5 and 6. Since
(fi, f3) 12(u) = Oij, the above inequality implies that the vectors vy,...,v; are linearly inde-
pendent, and so the subspace S := Span{vi,...,v;} has dimension [. We can use (2.5) to
conclude that

A7 < max  b.(v).

1
2 vES
ol ) =1

Now, each element v of S is of the form

l
v=> a;Pf;
i=1

for some coefficients a;, so that

l
v="P(Y aifi) = P(f),
=1

and in particular,

1
S D2() = (B, Prrgy < NI IR,
By Proposition 4.1 we know that,

1 1.~ ) ~ ) ~
§b5(v) = ibE(Pf) < (1+CE+C&?+C’9+C’5)%D(]") < (1+Cg+Ce+09+05)0n)\l||f|]%2(u).
If |[v|lg2(y,) = 1, Proposition 4.2 implies

£ 1720 < L+ C8VN +C(6 +3).
Thus,

~ 5
X < aphi 4+ C0OV N+ ~ et

This establishes the upper bound for Aj in terms of A;.
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To obtain the lower bound, we let uj,...,u; be an orthonormal set of eigenvectors of L
corresponding to its first [ eigenvalues. We define functions f; € L?(u), according to

fi ::fui, i=1,...,L
Thanks to the smallness assumption of the parameters 6~, g, 0, we see that S := span{fi,..., fi}

has dimension [. Just as in the proof of the upper bound we can use the second parts of
Propositions 4.1 and 4.2 to conclude that

5
anAlﬁ)\f—i—C(E )\f+5+5+0> AL

However, using the upper bound for Aj, we can replace all the appearances of Aj in the above
error terms with \;, and obtain the desired inequality.
O

We can now prove Theorem 2.7. We start with its second part.

Proof of 2) in Theorem 2.7. A given eigenvalue A > 0 of A, is equal to A\j11,..., \j1 for some
1 and some k, where k is the multiplicity of A. Associated to A\ we define the gap ) according
to:

L
(412) N = 5m1n{|/\—/\i\,\/\—)\i+k+1\}.

Now, for every N € IN, we can pick ¢, # and 5 to be small enough so that foreveryl =1,..., N
we have

]
C<€\/)\>l+€+€+0> )\lg’w\l.

In particular, for such choice of parameters and according to Theorem 2.4, with probability
greater than 1 — C'nexp(—nf26™) we have

(4.13) ‘)\ZE—O},)\” S'y;w Vl:1,...,N.

Let A be one of A\i,...,A\y. By making N slightly larger if necessary, we can assume that
i+k < N (where i and k are as defined earlier for \). Let S be a subspace of L?(u,) spanned
by eigenvectors of £° with corresponding eigenvalues A7, ,..., A7, and let us denote by Ps
the orthogonal projection onto .S, and by P§ the orthogonal projection onto the orthogonal
complement of S. We know that an arbitrary unit norm eigenfunction f of A, with eigenvalue
Mis at least C3(M), and since A ,u = Au, we obviously have that A u is also C3(M). Restricting
f and A,f to the point cloud X, we can view both of these functions as elements in L?(u,,),
and we can also see that

PgA,f=APsf=X Y (£ )12t

JAi+L,. itk
where 7, ...,1; is an orthonormal basis of eigenvectors of £ with corresponding eigenvalues
A5, ..., A5, Likewise, we can compute L£°f (again thinking of f as its restriction to X) and see

that
L
PyLf= Y X5 2 U5
JFi+L,. itk
Subtracting these two expressions and using the orthogonality of the wj we obtain

min{[A; — Al NS pgr = AP Fllr2 () < I1P5 (L5F = Dpf)llr2 i) < IE°F = Apfll 22 )
However, from (4.13) we have
YA < min{|A7 — Al (A1 — AlL

and so

1
1Py fllp2 () < %Hﬁsf — Do fllr2(un-
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Naturally, since PSL f=f— Psf we obtain

1
(4.14) If = PsfllL2(u,) < %Hﬁf = Bpfllr2(un)-
On the other hand, from the pointwise consistency results from Theorem 3.3 it follows that if
f1,..., fx is an orthonormal basis for the eigenspace of eigenfunctions of A, with eigenvalue A,

then with probability greater than 1 — 2kn exp (—cn5m+4) we have
1L f; = Apfillreguy < Ce, Vi=1,...k.

Combining the above with (4.14) we conclude that with probability greater than 1—Cn exp(—n¢92gm)—
2kn exp (—cnem+4) we can find an orthonormal set vy, ..., v, spanning S such that

1fj = villL2(u,) < Ce, Vi=1,....k.

In turn this implies that if uj,...,ux is a family of orthonormal eigenfunctions of £° with
corresponding eigenvalues A7, q,..., A7 ;, then there exists an orthonormal set fq,..., f} of
eigenfunctions of A, with eigenvalue A such that

lui = Fill L2(un) < Ce.

This implies the desired result. U

Proof of 1) in Theorem 2.7. In general it will not be meaningful to use the pointwise consistency
results from Theorem 3.3 because € here can be smaller than what the probabilistic estimates
in Theorem 3.3 allow it to be. Thus, we use an energy estimate based on Propositions 4.1 and
4.2 just as in [22]. Since this argument has been shown in detail in [22], here we only present
the proof for the first non-trivial eigenvectors.

The first non-trivial eigenvalue A of A, is equal to Ao,..., \p41 where k is its multiplicity.

Let f be an eigenfunction of A, with eigenvalue A and let u be equal to u = P f where P is
as in (4.1). Consider now the span of a set of orthonormal eigenvectors of £° with eigenvalues
55+, A% 1, and denote this linear subspace by S.
We see from Proposition 4.1 that

(4.15)
(1 +C (g +e+ 9)) opAe = (1 +C <i +6+0>> oyDa(f) > be(u) = (L, u)2(,,)

2 )\gHPS’UH%Z(M) + Negallu — PSUH%%,M)-

= A5(lull e,y = Ilu = Psullaq,,) + Xsollu = Psull?s,,)-
Using the estimates from the first part of Theorem 2.4 and Proposition 4.2 we have that as long
as ¢ and 6 are small enough, then with probability greater than 1 — Cnexp <—cn925m>,

|Un)\2—>\§|§0<g+e—|—9) S%

5
lonAkt2 — Appo| < C <E te +9> < %
and N
1— HU‘|%2(M)| < C(0+9),

where C' is some constant that may depend on A and where ) is the spectral gap defined in
(4.12). Combining the above inequalities with (4.15) we conclude that

N 1/2
C (6

u — Psu <|{—1|-+e+90 .

| S| 12 (1) (% (5 ))
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Now, by definition

w(ai) — flas) = Bf(e) — flas) = n / (F(x) — F(2:))Pn()d Vol (2).

U;
We notice that the last term is in absolute value less than

|’Vf”L°°(u)57
and that ||V f|| 1o, is finite because f is actually C*(M). In particular,
1f —ull g2, < Cpd,

Therefore,

c (3 2
1f = PsPfllr2(un) < (W (6 +€+9>> + Cm,A0.

From this it is straightforward to see that if fi,..., fr form an orthonormal basis for the
eigenspace of eigenfunctions of A, with eigenvalue A, then we can find an orthonormal set
v1,...,V; spanning S such that

c (3 V2
Hfj_'UjHL2(Hn)§ (7)\ (€+€+9)> +CM,)\53 Vi=1,...,k.

In turn this implies that if ui,...,uy is a family of orthonormal eigenfunctions of £° with
corresponding eigenvalues A3, ..., A7, ;, then there exists an orthonormal set f1,..., fi of eigen-
functions of A, with eigenvalue \ such that

c (3 V2
||uj—fj||L2(Hn)§ (7)\ (6—|—6—|—9)> —|—CM7)\5, Vi=1,...,k.

This implies the desired result.

We are ready to prove 2) in Theorem 2.4.

Proof of 2) in Theorem 2.4. First notice that if X\ > 0 is an eigenvalue of A, and A\* > 0 is an
eigenvalue of the graph Laplacian £, then,

LEf — opA
(4.16) logA = A| < inf 1£%7 = 7Bl

S(ApA u,
JGES((E;AQ) s £ )

where in the above S(A,, A) is the set of unit norm eigenfunctions of A, with eigenvalue X, and
S(L%, 1) is the set of eigenvectors of £ with eigenvalue A\°. To see this, let f € S(A,,A) and
u € S(L5,X°). Then, we can restrict f and A,f to the point cloud and get
Ny ) 22 (un) = (L7, ) 12(u0)

= (u, L°f) 12(un)

= <u, Esf - Un)\f + Uﬂ)\f>L2(un)

= 0'77>\<u, f>L2(Mn) + <U, Esf - UWAPf>L2(Mn)'
Rearranging the terms we obtain

(4.17) A — o) = (u, L5 — onBpf) r2un)
! (s £) 22 1)

provided (u, f) L2(un) 7 0. Applying the Cauchy-Schwarz inequality we obtain

1£5f — UnAprLQ(un)

(s £) 12 1)
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Take A = A, and A* = A7 in the above formula. From Theorem 2.7 we know that with
probability at least 1 —n exp(—n#26™) — Cnexp (—cn€m+4) there are unit norm eigenvectors u

and f of L% and A, with corresponding eigenvalues A\; and );, such that
lwr = fill L2,y < Cb,
so that in particular

1
{w, F2guyl 21— Ce 2 5,

when ¢ is small enough. Also, from Theorem 3.11 we know that with probability at least
1 — Cnexp (—cne™™) we have

1£°F = onBpfll2(ua) < Ce

The result now follows.
O

4.2. Undirected k-NN graph. After defining appropriate interpolation and discretization
maps, and establishing their relevant properties, we will be able to follow the exact same proof
as the one we presented in the e-graph case. For this reason we focus on establishing Proposition
4.4 and 4.5 below and skip the rest of the details.

In what follows, for simplicity we restrict our analysis to the kernel 7 given by

n(t):{l t<1

0 t>1,

as it already captures the main differences between the k-NN and e graph settings. Only minor,
although slightly more cumbersome, modifications are needed to consider the general case. Let
1 be defined as (4.4). Notice that in this case we have

(4.18) W(t) < n(t), V> 0.

On

For a function r : M — (0,00), and for a function f € L?(M) we define

A f(x / Ky (@, 9) f(y)du(y),

as in Section 4.1 where the only dlfference is that now the bandwidth r is allowed to change in
space. The normalization constant continues to be of the form

/ K, (z,y)du(y).

It is important to notice that in the definition of A, f, the function r is evaluated at y (and not
at ) so as to have an expression for the gradient of A, f which does not depend on derivatives
of r (which we may even take it to be discontinuous).

Remark 4.3. In what follows we set € to be the function defined as in (3.19). Notice that from

the fact that 0 < ppmin < p < Pmar We see that e(z) and (%)I/m are of the same order for every
r € M. Also, since k has been assumed to be much smaller than n, then ¢(z)2, which is of the
same order as (k/n)?™, is much smaller than e(z). We will use €,,4; to denote the maximum

of €. In particular,
c () < Emin < Emaz < C <> .
n n

Proposition 4.4 (Inequality for Dirichlet energies). Let k, 5~, and 6 be fired numbers satisfying

Assumptions 2.3. Then, with probability greater than 1 — Cn exp(—CnHZSm) we have:
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(1) For any f € L*(u),

_ Y nim
lm(Pf)S(HC(i) + 0 ()" + CO0D1ayu)

(2) For any u € L*(uy,),

~ k 1/m ~ 1/m
oy Dy_am(Tu) < (1+C <n> +C5 (%) + CO)by(u).

Proposition 4.5 (Discretization and interpolation maps are almost isometries). Suppose 0, 5
and k satisfy Assumptions 2.3. Then, with probability at least 1 — Cnexp(—Cnf26™) we have:

(1) For every f € L*(p),
1712 — 1PF30y| < C31 7200y Dz () + OO + D) 1

(2) For every u € L*(uy),

- B\ Y/m -
Mw;ww—|ﬂu%mﬁéc<n> ol 2 V/BCet) + C(6 + 82,

In order to show the above propositions we will first need to introduce some non-local energies
E, and E, (we will use the same notation for simplicity as in the e-graph case) defined in terms
of the spatially varying length-scale r : M — (0,00) by

_ dm(@9)\ (@ =L)D" vl (e0d Vo 2
Briy= [ [ () U V@) dol(a). £ € 2o

S du(@y)\ (@) = FO)* v 2
Bif)i= [ [ n(BaE0) I Vol (e Volu(o). 1 € 12),

where p,, is the density from Proposition 2.12. Notice that the L> bound for the difference
between p and p,, implies

(4.19) (1—CO+NEf) <E(f) <A+ CO+NEAf), Vfe L),

These inequalities are analogous to the ones in (4.7).
The following three lemmas will be the main tools for proving Propositions 4.4 and 4.5.

Lemma 4.6. Suppose that k, 5 and 0 satisfy Assumptions 2.3, and let € : M — (0,00) be as
in (2.14). Then, with probability at least 1 — Cnexp(—Cnf?6™) we have for alli=1,....n

(4.20) e(x;) — C~'(s$nax + 0 mas + Ocmaz) < er(zi) < e(x;) + 5(5%(” + 0 maz + Ocmaz)-
Proof. We prove the upper bound. The lower bound is proved similarly.

Let pn be the density from Proposition 2.12, which exists with probability at least 1 —
Cnexp(—n#26™). First of all for x € M and 0 < 71 < 2 small enough define

A(.Z‘, 1, ’72) = BM(.T, '72) \ BM('I.771)
Then, we see that
Cr (e — ) < Fin(A(z,m,72)) < Cor" M2 —m)

where C1, Cy do not depend on x nor v1,y2 as long as these numbers are small enough.
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Pick v, = e(z) + C(e(x)2 + & + ) for a large enough constant C that will be chosen soon.
We also let 71 = e(x). Then,

\%

Fin (Bpa (21, 72)) > /B o PO @)+ (A, 72)

> (

> (1— Ce(x))(1 — C(6+6)(1 — CKs(xi)m“)ﬁ + fin(A(zi,71,72))

> % — Cle(@s) + 0+ 0)e(@s)™ + in(Alwi, 11, 72)

> % — Cle(zi) + 0 + 0)e(z:)™ + Cre(w)™ H(Cl(e(@i)? + de(x) + fe(x3))).

We pick C precisely so that the above is greater than k/n. Finally, we see that

pin(Bam (i, 72 + 6)) = fin (f_l(BM(fvi,w + ~))) > fin(Bm(wi,v2)) > k/n,

from where it now follows that e;(z;) < 72 + 0.
U

Lemma 4.7. Let r : M — (0,00) be an arbitrary function which is bounded away from zero
and for which Tmay s sufficiently small. Then, for any f € L*(u) we have

Er(f) S (1 + Crmax)(l + /Br)2m+40'77D172/m(f)'

Where in the above B, is defined as

(4.21) B, = sup r(z) —r(y)
IvyEM’dM (x,y) <Tmaz T'min

As we will later see, in our setting we will work with r for which rp,4., 6, < 1, so that
Lemma 4.7 implies that E,.(f) is smaller than a quantity that up to leading order is equal to

onD1_2/m(f)-

Proof. By density of smooth functions in H'(p) it is enough to prove the result for f smooth.

In what follows we will use the geodesic flow ®; : TM — T'M, which maps a point (z,v) €
M x Ty M in M’s tangent bundle into the point ®;(x,v) = (exp,(tv),dexp,(v)) (i.e. flow x for
t seconds along the geodesic emanating from it with initial velocity v). We will use £ = (z,v) to
represent a generic point in the tangent bundle and abuse notation slightly to write things like
9(&) = g(z), when g is a real valued function on M. We will also use df (i.e. the differential of
f) which is the 1-form that when acting on a tangent vector v returns the directional derivative
of f in the direction v, and will write things like df (£) to denote the directional derivative of f
at the point x in the direction v.

With this notation in hand, and following the proof of Lemma 3.3 in [7], we obtain for every

zeM

1
~ f@lfdvo t(z,v))[*dtdo.
[ = f@RaYol < | [ wrcwgepa

B(0,r(x))CTe M
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m+2 2/m—1

and integrating over x we get:

Dividing by r(z)™"*p(x)

(4.22)

— f(2)]2
//vl /BM (v (1)) r(wL];‘ET?LJ—&)-Qp(i()Q/)L_I d Vol (y)d Volp(z)
|df (P4 (y,v))[?

1
< (14 6,)" (1 + Cromag / / / dtdvd Vol ap (z
(LB Lo o onencrn Jo 7@ 0))m 2 p(@n, o)) (=)

_ m ' |df (2:(6))]?
— (1 + 67") +2(1 + C’I“max)/o /T T(q)t(g))erQp(q)t(g))wm*ldVC)lTM(g)dt’

where for the first inequality we have used the definition of £, and the fact that for every y with
dp(x,Y) < Tmae We have

2/m—1 . 2/m—1

<P(y>> _ <1 . P@)P(l’)) <14 Cr

p(x) p(x)

Finally, in the last line we use Volra to denote the volume form on T'M, and
B, :={(z,v) €eTM : x €M, wveBy,0,r(x)) CT,M}.

Now let ¢t € (0,1) and let (z,v) € B,. Define & := exp,(—tv) and ¥ := dexp,(—v). It is
straightforward to see that

(I)t(:z‘a _17) = (IE?U)'
Moreover,
1=0llz = l[dexp,(=v)llz = [[-vllz < r(z) = r(@) + (r(z) - 7(z)) < 7#(2),
where
7(Z) == (1 + ap)r(T).
We have shown that if (z,v) € B,, then for every t € (0,1) (x,v) € ®;(B;). That is,
B, C @ (B;) .
From this we deduce that for all ¢ € (0,1) we have
|df (24(6))]? |df (®:(6))?
d Vol
/BT r(@:(6))72p(2 ()21 7 TiiE) < [pt(&-) r(®¢(£))"2p(2¢(8))
In turn, the right hand side is equal to
|df (24(6))]?
., sy Vo

which follows from the well known fact that ®; preserves Volpa (i.e. it pushes forward Volpay
into itself ). Integrating over ¢ and using (4.22) we deduce that

57 Volra(€)

E.(f) < (14821 + Crigg) /M T(x)m+2;($)2/m_l (/Bm(w(x)) ]df(x,@]%y) d Vol ().

Finally, a simple computation shows that

/ \df (, v)dv = / (V£(x), 0} 2dv = 0|V £ (2)]2 ()™,
Bm/(0,7(y)) Bm (0,7(y))
and so
m+2 #(z) m 2 1-2/m
B(f) € (14 )21+ Craoley [ (553) 194(@)Pp(a) = d Vol (a)

S (1 + /87‘)2m+4(1 + Crmax)o'nDl—Q/m(f)'
This concludes the proof.
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Lemma 4.8. Let r : M — (0,00) be an arbitrary function which is bounded away from zero
and for which rmaz and B, (as defined in (4.21)) are sufficiently small. Then, for any f € L*(u)
we have

UUD1—2/m(ATf) ( + Cﬁ2m+4 + Crmar) (f)’
where the length-scale 7 in E;(f) is of the form

P(z) = (1 + Br)r(x).

Proof. We first notice that for a fixed function f € L?(u), the gradient of the function A, f can
be written as

VA f(2) = 77} (@) Ar () + Az (),

where

_ /A ., VEA @) = S()d Vo),

x):=V(1 1 x K x — ’ z))d Vo
and the I"egiOIl A(x) is defined as

Alz) ={ye M : [z —y| <r(y).}

First |Aj(x)| = (A1(x), w) for some unit vector w € T, M. Therefore,

[Ar(2)] = [{(Ar(2), w)]

! dM(x,y) — f(x))expt w e}
)Unrm(y)n( 5I) (7(0) ~ ) e (), ) Voloa()

'/A o rm2(v ( ’Z)|)> (V) (v, w) Jz(v)dv

< gnrm+2(v)n(r‘f’)> [Pl )l o ()

where p(v) = f(exp,(v))—f(z), A:={v € T M : |z—exp,(v)| < r(v)} and with a slight abuse
of notation we write r(v) = r(exp,(v)) and also 7(v) = 7(exp,(v)). Notice that by definition of
7 we have

7o :=7(0) > r(v)

and so

A< a5 [ e ('0) )|, w)| Ja (v)do.

B(0,70) 90T

By the Cauchy-Schwartz inequality,

(1 ‘—flﬁ(j%fzﬁ = (an%”JrQ)Q </B(o,fﬂo)|gp(v)’2JI(U)277 <|:0‘) dv> (/B(Oﬁ‘o)mwyn <‘:)’> d’“)
:m@(w ()P a(0)% (' ‘) )

where, in the last step, we used radial symmetry to conclude that

/ (v,w>2n (‘P’) dv = ?6’”2/ U177(|’U|)d’u = 7"6'”2077.
B(0,70) To B(0,1)
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We obtain,
A ()] 1+ C(rmaz(1 + Br 2 v
DL s < DGR B [ oo (1) sopas
(1+5) TnTg B(0,0)

_ 1+C(rma$(1+ﬁT))2/ 77(dM(:c,y)
M

oy ()2 P(x)

)mw—mm%www>

Integrating this inequality with respect to p'~2/™(z)d Volp(z) and using the Lipschitz conti-
nuity of p, we obtain

(4.23)
HAlH%Q(M,pl_Q/m Vol ) <1+ Br)2m+4 (1 + C(rmasz(1 + 57'))2)

! dle,y)\ 1) = f@)
' 0777 /.M /,/\/1 g < 7(x) > i«(x)erzp(x)g/m,ldVOlM (y)d Vol (z)

=ﬂ+&WMHH%WmAHﬁm5;&U)

Regarding A, first note that by Lemma 5.1 in [7] we have
(4.24) (14 Crinae) ™ S 7(@) < (14 Cringg)

and also
|v(7_1)| < Craz

Therefore,
| As(2)|? < IV(Tl)(x)\QT(:L’)/ f(y) = F(@) P Ky (2, y)d Vol (y)
M

2 1 dM(ZI?,y) — f(2)12d Vo
< e [ oo (B 17(5) — )P Vo)

where the first inequality follows from Cauchy-Schwartz inequality and in the second one we
used

1
P(s) < —n(s), Vs>D0.
In
Integrating the estimate for |Ay(x)|? with respect to p'=2/™(x)d Vol p(z) while using the Lips-
chitz continuity of p we obtain

”A2H12(M,p1*2/m Vol ) <CO(l+ Tmaw)zrﬁwxEr(f) <C(1+ BT)erQ(l + Tmaw)QTf‘nafo"(f)-

By combining the above with (4.23) and (4.24) estimates and the lower bound for 7 we obtain
the desired inequality. O

We will apply Lemma 4.8 with r for which 7,4, 8, < 1. In particular E;(f) (where 7 is
to the first order equal to r) is greater than a quantity that up to leading order is equal to
oy Di_2/m(f). This is the reverse inequality to the one in Lemma 4.7.

Proof of Proposition 4.4. To prove the first inequality, let us start by recalling that i (z;, ;) =
max{eg(z;),ex(x;)} where ¢, is defined as in (2.7). Recall also that for arbitrary u € L%(uy)
we can write

bi(u) == % (nim)lw/m%n (W) (u(ws) — u(z;))*.
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Using the co-OT map T between iy and p, we can apply the change of variables formula to
rewrite by (u) as

(oo T(x) — T(y)| o
bo(u) = L P*u(x) — P*u diy, (y)diy, (x
o(u) / / (max{gk <x>>,ek<T<y>>}>' (2) — P*u(y)dfin (y)dfin ()

’T@) — T(y)L Pu(z) — P*u(y)|®di di, ().
/ /Mp 1+2/m€( (y))m+277 (maX{ak(T(x)),ek(T(y))})| (z) ()" dpn (y)dpin ()

where for the last line we have used the definition of ¢ in (2.14). From Lemma 4.6 we know that
ex(T(x)) < e(T(x)) + Ce2, 0 + Cemazd + Cemazt-
Moreover, using the smoothness of p and the definition of ¢ for z,y with |z —y| < €4, We have
5(T$) < 5(T?J) + C(ehnan + gemax)~

Thus, if |T(x) - T(y)| < re(T(2), T(y)), we have [T(z) = T(y)] < (Ty) + C(e20y + dmar) and
also

|z —y| < dm(z,y) < E(T?/) + C(gznax + ggmal‘ + Clepmaz) + 20 =: r(y).
It follows that

T@) =T\ 5o e pvi2am (o
(v </ /M p(T 1+2/m5( (y))m+2’7< (3) ) [P u(z) — P*u(y)| dfin (y)dfin(z)
< (14 C0) (1 + C(20p + 0 + Chemaz))

1 T@) =T\ 5 -
' /M /M p(y)Q/m—lr(y)m+277 ( ) ) |P*u(x) — P*u(y)|*d Vol p(y)d Vol p ()

+ 0))E,(P*u).

= (1 + Cg)(l + C(Emax +

Emin

Let f € L2(1) and let w:= Pf in the above estimate to obtain

+0))E (P*Pf) < (14 C8)(1+C(emaz +

Emin Emin

be(Pf) < (14 C8)(1+C(emaz + +0)Er(f),

where in the last line we have used Jensen’s inequality to relate E,(P*Pf) and E,(f). On the
other hand, from Lemma 4.7 we have

E(f) < (14 Crpaz) (1 + Br)2m+4‘7nD1—2/m(f)'
However for the function r defined above the quantity 5, satisfies

BT S Cgmama

SO

bk(ﬁf) < (1 + C<€ma;r + e + 0))0'7]D172/m(f)7

proving in this way the desired inequality thanks to Remark 4.3.
The second inequality is proved very similarly using the lower bound in Lemma 4.8, which
allows us to show that

(4.25) E.(P*u) < (1+ Cleman + + 0))br(u), Yue L (i),

Emin
for r of the form r(y

) =¢€ly ) €2 — (6 — Chepmae. Lemma 4.8 in turn allows us to bound
onDy_ Q/m(Iu) with E,.(P P*u

(up to leading order).
(]
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Proof of Proposition 4.5. The first part follows directly from 1) in Proposition 4.1 since

Dy(f) < CDy_g/m(f),

given that we have assumed that p is bounded and also bounded away from zero.
For the second part, notice that for every f € L?(u) by Jensen’s inequality we have

5@ 107 = (s [ o (B (1) stepptavoiu))

() y r(y)
< [ () G - F@)tdvolu(
<o [ oo () ) - 5@ o Vo)
<0 [ o () (10 - @)Ppti)a VoL

where the last inequality follows from (4.18). Multiplying by p(z) and integrating over all
r € M we get

(4.26) 1ALf = fllZ2q < Criman e (£),

where we have used again the fact that p is bounded and bounded away from zero. Taking r
to be B

r(y) :==e(y) —26
we continue as in the second part of the proof of (4.2) to obtain

cosPu— Prull12,)

IZull z2gan) — lull 2| < 1A

S <1 + Hp—pn‘oo> . ”Ag_Qgﬁ*u _ ﬁ*uHLZ(#)

Pmin

< (1 N Hp—P\oo) e[ E._ys(P*)

Pmin

S Cgmaa: V bk(U),

where for the third inequality we have used (4.26), and for the last one we have used (4.25).
Also, from (4.26)

1Tull 2y = AP ull 25, < ClIP ull 2 Cllullz2(

Bn) = Hn)>

and hence N
1ZulZa sy — 22| < Coman 2 v/ox 0.

Finally, we use (4.11) to compare Hqu%Q(ﬁn) and ||iu||i2(u).
(]

With Proposition 4.4 and 4.5 in hand, the proofs of Theorems 2.5 and 2.9 are exactly as in
the e-setting and so we skip the details.

5. CONVERGENCE OF EIGENVECTORS IN T'L? AND CONVERGENCE OF GRAPH LAPLACIAN
EMBEDDINGS

To establish Theorem 2.10 it will be convenient to recall the definition of the T'L? space
presented in [27]. Here we consider R*-valued functions.
We define the set
TL*(M;RY) := {(v,H) : v € P(M), H e L*(y;R")},
and the metric
~ \2 ~
(ar(6 ). G 1)) o= min [ dePare + [ @) = ) Pdr(a).
X

mel(v,7) RLxRL
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In the above P(M) denotes the space of Borel probability measures on M, and for v € P(M),

L?(y;RY) denotes the RF-valued L? functions with respect to 7. I'(7,7) denotes the set of
couplings or transport plans between v and 7. Notice that if we remove the second term on the
right hand side of the definition of dp;2 we get,

W3,(7,7) = min_ / Ao, y)2dn(z, y)
7€l (v,Y) J Mx M

which is the square of the 2-Wasserstein distance between v and 7 (using the intrinsic geometry
of M).

For our purposes, the key property of the T'L?-metric is that it gives an upper bound for the
Wasserstein distance between induced embeddings.

Lemma 5.1. Let (v,H), (7, H) € TL2(M;RE). Then for all © € T'(v,7) we have
WalHpr B) < [ |H(@) - F)Pdn(e.),
REXRE

where Wy is the 2-Wasserstein distance (w.r.t. to the Fuclidean metric) between probability
measures on R, and W22 its square. In particular, it follows that

Wo(Hyp, Hi) < dpp2 (v, H), (3, H)).

Proof. To see this let m € I'(,7) and define
= (H x H)ym
where H x H is the map
HxH: (x,y) € M x M —> (i,§) = (H(z), H(y)) € R* x R".

It is straightforward to see that @ € I'(Hyy, ﬁjﬁ) From the change of variables formula we see
that

Wi ) < [ i) = [ () - ) Pdr(e)

which implies the desired result.
O

Proof of Theorem 2.10. Let m* be an optimal transport plan between g and p,, that is, 7* is
such that

W3 (Fyp, Fogpin) = / dp(z,y)2dr* (z, y).
MxM

From Lemma 5.1 we know that

L
W2(Fys, Fogpin) < /M IF@) = B i () = /M () = ) P z.v)
X =1 X

Using the regularity of the eigenfunctions f; we can bound the above with

22/ () — fily)Pdr* (@, y +2CZ/ y)2dr* (2, )

/vl><M

<2 ZHUZ — fill 2y + 2CLW3 (11, pin)-
=1

Combining with the results from Theorem 2.7 we get the desired inequality.
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FIGURE 1. Observed rates of convergence from numerical experiments on the 2-
dimensional sphere. We tested the first 8 non-trival eigenvalue/eigenvector pairs,
and averaged the errors over the two corresponding eigenspaces. The convergence
rates for the eigenvalues and eigenvectors (in L?) appear to be between second
and third order in € and (k/n)Y/™ in (a) and (b), respectively.

6. NUMERICAL EXPERIMENTS

To test the convergence rates in our main results, we ran some numerical experiments on
the two dimensional sphere.! The density is thus p = 1/((m + 1)a,+1). The experiments used
n =212 up to n = 2'7 = 131072 points independently and uniformly distributed on the sphere,
with the errors averaged over 100 trials. For the k-NN graph Laplacian, see (2.9), we set

4
k = nm+a,

as required in (1.2) for our main convergence rates on k-NN graphs. For the e-graphs we chose
£ to be the minimum distance to the k'™ nearest neighbor. This value for € has the same scaling
as the lower bound for our convergence rates for e-ball graph Laplacians given in (1.1). We
used a characteristic function kernel n = 1y 1}, which is to say we used an unweighted graph.
In this case o, = a,, /(M + 2).

We tested the convergence of the first 8 non-trivial eigenfunctions of the Laplace-Beltrami
operator, which in this case are the spherical harmonics, given unnormalized by vi(z) = 1,
V() = Tg, v3(7) = w3, v4(w) = 22 — 23, v5() = T172, v6(T) = 7173, V7(T) = w73, and vg(z) =
3m§ — 1, with corresponding eigenvalues Ay = Ag = A3 =2 and Ay = A5 = A\g = Ay = A\g = 6.
We compared the absolute difference between the graph and continuum eigenvalues, and the
L? norm of the difference between the spherical harmonics and graph Laplacian eigenvectors
over the graph. The eigenvector error was computed by restricting the spherical harmonics to
the graph, using a QR decomposition to find orthonormal bases for the subspaces spanned by
{v1,v2,v3} and {vy4, v5, ve, v7,vs}, and then projecting the graph Laplacian eigenvectors to the
corresponding subspaces and computing the L? norm of the residual. We then averaged the
errors over each eigenspace to simplify the presentation

Figure 1 shows the experimental convergence rates. A loglog regression reports experimental
convergence rates of O(e%1), O(24), O(e%?), and O(e?8) for the ¢ graph in Figure 1(a), and

0 ((k/n)1'7/m>, 0 ((k/n)3'2/m), 0 ((k/n)?’-l/m), and O ((k/n)3'1/m> for the k-NN graph in

Figure 1(b). These convergence rates are better than the linear convergence rates given in

IThe code for the experiments is available online at https: //github.com/jwcalder/kNNSpectralRates.
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our main results. We expect the uniform density on the sphere is a highly special case, and
convergence rates may be significantly worse in general.

7. CONCLUSION

In this paper we have obtained new results on the spectral convergence of graph Laplacian
operators built from random data towards weighted Laplace-Beltrami operators on smooth
compact manifolds without boundary. Our results contribute to the growing manifold learning

literature in several regards. First, we improve existing spectral convergence rates for Laplacians

log(n) 1/(m+4)

based on e-graphs in the regime (T < € < 1, showing that the spectral convergence

rate scales like € with very high probability. Second, we analyze Laplacians based on k-NN
graphs, a setting where neither pointwise convergence rates nor spectral rates existed in the
literature.

Some directions that we believe are worth studying in the future and that stem from this

1/m
work include: 1) the improvement of the convergence rates in the regime (M) <L e<

n
log(n) 1/(m+4) . . . .
(T where our proof techniques fail to work; 2) the analysis of graph Laplacians

under less restrictive assumptions on the probability distribution underlying the data set. In
this direction it is of interest to extend the analysis to more general geometric settings (not
just compact, smooth manifolds without boundary) and to more general densities (for example,
relaxing the lower bound assumption).

APPENDIX A. PROOF OF PROPOSITION 2.12

Proof. First we notice that for small enough but macroscopic (i.e. fixed) » > 0 we can find a
partition of M (up to overlaps of Volyq measure zero) into closed sets Vi,...,Vp (L depends
on r) for which:

e For every [ = 1,..., L, there is a bi-Lipschitz homeomorphism ®; : V; — B(0,7/2) C
R™ with bi-Lipschitz constant less than 18.
Such partition can be constructed using a covering of M with balls of radius r. The centers
of the balls can then be used to construct a Voronoi tessellation of M, inducing in this way
the sets V;. This construction is presented in detail in Propositions 2 and 3 in [22]. Since the
regions V; are bi-Lipschitz homeomorphic to B(0,7/2), we can also construct a bi-Lipschitz
homeomorphism
O,V — [0,r]"
with bi-Lipschitz constant less than C' (which only depends on m).
T

Let 6 < 7 and let us consider a partition of [0,1]™ into a collection of (m-dimensional)

rectangles @ with diameter less than 6 and with aspect ratio no larger than 2. We construct
subsets @ of M by letting

Q:=2'(Q)
for some [ = 1,...,L and some @ From the properties of the maps ®; it follows that the
collection of cells @ is a partition of M (the different cells are disjoint up to sets of Voluy
measure zero) and satisfy:
(1) diam(Q) < C5.
(2) 0™ < CVolm(Q) < Cu(Q).
We can then let p, : M — be the piecewise constant density defined by

() = 1 (Q)

- Volu(Q)’
42
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It is clear that p, is indeed a density and moreover, for every x € (Q we have

|p(z) — pn(2)] <

@)
Volu(@) | Volu(@Q)

[t - p(x>>dVo1M<y>\

In particular,

_ C ,
1o = PnllLeo(u) < 5 S | (Q) — 1(Q)| + C Lip(p)d.

From Chernoff’s bound one can get for all § small enough,

nh?
P (in(Q) > (14 0)u(@) < exp (- "42))
o O™
= exp 3
where in the last line we have used the fact that
Pmin Vol pm (Q) < ,U(Q)
and that B
Cé™ < Volum(Q).
Likewise we can obtain
Cnb25m
P(un(Q) < (1—0)u(Q)) <exp | — 3 ,
and so
Cnb?5m
P (110(@Q) — Q)] = (@) < 2exp | 2

Taking a union bound, we deduce that

P (14(Q) — (@) > 0Volu(Q) ¥Q) < 1= exp (~Cnt®5™).

and as long as 6 > ﬁ we can replace L/0™ above with n.
n

[
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