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Abstract. In this paper we improve the spectral convergence rates for graph-based approx-
imations of weighted Laplace-Beltrami operators constructed from random data. We utilize
regularity of the continuum eigenfunctions and strong pointwise consistency results to prove
that spectral convergence rates are the same as the pointwise consistency rates for graph Lapla-
cians. In particular, for an optimal choice of the graph connectivity ε, our results show that the
eigenvalues and eigenvectors of the graph Laplacian converge to those of a weighted Laplace-
Beltrami operator at a rate of O(n−1/(m+4)), up to log factors, where m is the manifold di-
mension and n is the number of vertices in the graph. Our approach is general and allows
us to analyze a large variety of graph constructions that include ε-graphs and k-NN graphs.
We also present the results of numerical experiments analyzing convergence rates on the two
dimensional sphere.

1. Introduction

Our work is motivated by applications in machine learning, statistics and artificial intelligence.
There, the goal is to learn structure from a given data set X = {x1, . . . , xn}. To do this several
authors have proposed the use of graphs to endow data sets with some geometric structure,
and have utilized graph Laplacians to understand how information propagates on the graph
representing the data. Graph Laplacians and their spectra form the basis of algorithms for
supervised learning [1, 4, 48, 56], clustering [41, 51] and dimensionality reduction [2, 16]. The
works [43, 49, 53] discuss Laplacian regularization in the context of non-parametric regression.
Bayesian approaches to learning where graph Laplacians are used to define covariance matrices
for Gaussian priors have been proposed in [5, 36,57].

To better understand algorithms based on graph Laplacians, it has proven useful to study
the large sample size asymptotics of graph Laplacians when these capture the closeness of data
points in Euclidean space, as is the case in constructions such as ε-graphs or k-NN graphs. In
this limit, we pass from discrete graph Laplacians to continuum Laplace-Beltrami operators,
or weighted versions thereof, and in particular graph Laplacians are seen as specific discretiza-
tions of continuum operators. By analyzing the passage to the limit one effectively studies
the consistency of algorithms that utilize said operators. In doing so, one gathers information
about allowed choice of parameters, and gets insights about computational stability of algo-
rithms (e.g. [24, 34, 35]). Naturally, in order for the “passage to the continuum” to imply any
sort of consistency for a particular machine learning algorithm, it is important to study the
convergence in an appropriate sense.

Early work on consistency of graph Laplacians focused on pointwise consistency results for
ε-graphs (see, for example, [3, 30, 32, 33, 45, 50]). There, as well as hereinafter, the data is
assumed to be an i.i.d. sample of size n from a ground truth measure µ supported on an
m-dimensional submanifold M embedded in a high dimensional Euclidean space Rd (i.e., the
manifold assumption [14]) and pairs of points that are within distance ε of each other are given
high weights. Pointwise consistency results show that as n→ ∞ and the connectivity parameter
ε → 0 (at a slow enough rate), the graph Laplacian applied to a fixed smooth test function
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converges to a continuum operator, such as a weighted Laplace-Beltrami operator applied to the
test function. Recent work is moving beyond pointwise consistency and studying the sequence
of solutions to graph-based learning problems and their continuum limits, using tools like Γ-
convergence [11, 18, 28, 47], tools from PDE theory [8, 9, 11, 19, 25, 54] including the maximum
principle and viscosity solutions, and more recently random walk and Martingale methods [12].
Regarding spectral convergence of graph Laplacians, the regime n → ∞ and ε constant was
studied in [52], and in [46] which analyzes connection Laplacians. Works that have studied
regimes where ε is allowed to decay to zero include [27], [44], [7], and [22].

The starting point for our work is the paper [22] which used ideas from [7] in order to obtain
what to the best of our knowledge are the state of the art results on spectral convergence of
ε-graph Laplacians. These results can be summarized as follows. With very high probability
the error of approximation of eigenvalues of a continuum elliptic differential operator by the
eigenvalues of their graph Laplacian counterpart scales like

ε+
log(n)pm

n1/mε
,

where pm = 1/m form ≥ 3, p2 = 3/4, and ε is the length scale for the graph construction. These
results suggested that the best rate of convergence is achieved when ε is chosen to scale like√︂

log(n)pm

n1/m , in which case the convergence rate for eigenvalues is O(n−1/2m), up to log factors.

For eigenvectors, the error of approximation in the L2 norm was shown to scale like the square
root of the convergence rate of eigenvalues, so O(n−1/4m) up to log factors. In this paper, we
improve in several regards the results presented in [22]. Our contributions to the analysis of
spectral convergence of graph Laplacians constructed from ε-graphs are summarized as follows:

(1) In the ε-graph setting, we show that the eigenvalues of the graph Laplacian converge
(with rates), provided that ε scales like

log(n)1/m

n1/m
≪ ε≪ 1.

This result is valid for all m ≥ 1. This improves the results in [22] by removing an
additional logarithmic term. In a sense, the lower bound on the allowed values for ε
for the convergence to hold is an optimal requirement due to the connectivity threshold
results for random geometric graphs [42].

(2) In the ε-graph case, when ε scales like

(1.1) C

(︃
log(n)

n

)︃ 1
m+4

≤ ε≪ 1,

we show that the rate of convergence of eigenvalues coincides with the pointwise con-
vergence rates of the graph Laplacian (e.g [32]), and in particular with high probability

scale linearly in the connectivity length-scale ε. If we choose ε = C
(︂
log(n)

n

)︂1/(m+4)
, then

we obtain convergence rates of O(n−1/(m+4)), up to log factors, which is sharper than

the O(n−1/2m) convergence rate from [22] when m ≥ 5.
(3) We establish convergence rates for eigenfunctions under L2-type distances that will be

made explicit later on. In particular, in the same regime for ε given in (1.1), we establish
that the rate of convergence of eigenvectors scales linearly in ε, matching the convergence
rate of eigenvalues as well as the pointwise convergence rates. Thus, choosing again

ε = C
(︂
log(n)

n

)︂1/(m+4)
, we obtain convergence rates for eigenvectors of O(n−1/(m+4)),

which is far sharper than the O(n−1/4m) convergence rates from [22].

A second main contribution of our work is to provide spectral consistency results for graph
Laplacians constructed from k-NN graphs. Our work is the first one to obtain any rates of
convergence in such a setting. Moreover, in proving the spectral convergence we also obtain
rates for pointwise convergence which to the best of our knowledge are also new in the literature.
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There are very few works in the literature that we are aware of that have rigorously addressed
consistency for graph Laplacians associated to k-NN graphs. In [50] pointwise convergence is
analyzed (without providing any rates). In [21] asymptotic spectral convergence is discussed,
but no rates are provided. In [19], pointwise consistency with rates is established for the game-
theoretic p-Laplacian on k-NN graphs. Posterior work to the first version of this paper, like
that in [15], have considered more general normalizations for k-NN graphs in order to induce
different ways in which data density affects the behavior of data analysis algorithms.

In practical applications, k-NN graphs are almost always preferred over ε-graphs, due to their
far better sparsity and connectivity properties (see, e.g., [10, 19] for semi-supervised learning,
and [55] for spectral clustering). Since the k-nearest neighbor relation is not symmetric, k-NN
graphs are normally symmetrized in order to ensure the graph Laplacian is self-adjoint and the
spectrum real-valued. On a symmetrized k-NN graph, the local neighborhood is no longer a
Euclidean or geodesic ball, and is in fact not even symmetric. This raises technical difficulties
in obtaining pointwise consistency results with rates, and makes the analysis far more involved
than it is for ε-graphs.

Our contributions in this setting are as follows:

(1) We provide spectral convergence rates for graph Laplacians when the graph is a k-NN
graph, provided k scales like

log(n) ≪ k ≪ n.

This result is valid for all m ≥ 1. Moreover, we show that the rates of convergence
coincide with the pointwise convergence rates (see Theorem 3.7 below) when k scales
like

(1.2) C log(n)
m

m+4n
4

m+4 log(n)
m

m+4 ≤ k ≪ n.

(2) We establish convergence rates for eigenvectors under different topologies of interest
that will be discussed later on. Moreover, in the regime

C log(n)
m

m+4n
4

m+4 log(n)
m

m+4 ≤ k ≪ n,

the convergence rate for eigenvectors coincides with the convergence rates of eigenvalues
and also the pointwise convergence rates from Theorem 3.7.

It is worth mentioning that all our estimates hold with high probability for finite (although
possibly large) n. These results imply a quantitative improvement to a large body of work that
has built on previous spectral convergence results. For example the works [22,23,26] get directly
benefited from our new estimates.

There are two essential steps in our analysis that allow us to improve in several regards the
rates presented in [22] for the ε-graph case. In the first step, we use a simple modification of the
construction of discretization and interpolation maps introduced in [7] (a construction that was
later used in [22], though cast in the language of optimal transport), in order to prove spectral
convergence (with rates) for a wider range of scalings of ε valid for all dimensions m ≥ 2. A
more detailed outline of the construction of these maps and a discussion on what needs to be
adjusted from [22] is discussed in Section 2.4 below.

The second step in our analysis makes use of a simple argument for comparing eigenvalues of
different self-adjoint operators. To illustrate the idea, let A,B : H → H be linear operators on
a Hilbert space H, with A self-adjoint. Let u be an eigenfunction of A with eigenvalue λu, and
let w be an eigenfunction of B with eigenvalue λw. We may assume ∥u∥H = ∥w∥H = 1. Since
A is self-adjoint

λu⟨u,w⟩H = ⟨Au,w⟩H = ⟨u,Aw⟩H = λw⟨u,w⟩H + ⟨u, (A−B)w⟩H ,
and thus

|λu − λw| ≤
∥Aw −Bw∥H

|⟨u,w⟩H | .
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This inequality allows us to convert pointwise estimates on ∥Aw−Bw∥H into estimates on the
spectrum, provided ⟨u,w⟩H is bounded away from zero. For graph Laplacians, A should, say,
represent the graph Laplacian, while B represents the continuum (weighted) Laplace-Beltrami
operator (or, more accurately, its restriction to the graph). The key ingredients in our proof are
good pointwise estimates, which rely essentially on the regularity of the continuum eigenfunc-
tions, and the a priori eigenfunction convergence rate from the first step of our analysis, which
ensures ⟨u,w⟩H is bounded away from zero. The bottom line is that our a priori (non-optimal)
spectral convergence rates can be bootstrapped to make them coincide with the pointwise con-
sistency rates, provided we are willing to shrink the allowed asymptotic scaling for ε slightly.
The consistency of eigenfunctions will be a consequence of the a priori convergence rate for
eigenvalues. This is made explicit by following some of the steps in the proof of the classical
Davis-Kahan theorem.

Regarding the results for k-NN graphs, we first notice that these types of graphs can be
thought of intuitively as ε-graphs where one allows ε to vary in space. Given the inhomogeneity
of the natural length scale ε (and which intuitively is influenced by data density), the first part
of our analysis must rely on the definition of new discretization and interpolation maps that
are tailored to the inhomogeneous length-scale setting. After a careful analysis, we are able to
provide a priori spectral convergence rates analogous to the a priori rates obtained for ε-graphs.
These non-optimal rates can then be bootstrapped to improve them just as in the ε-graph
case, using the pointwise consistency results that we derive in Theorem 3.7. We note that the
pointwise consistency results for graph Laplacians on k-NN graphs do not follow directly from
viewing the graph as an ε-graph with ε varying in space. Indeed, looking forward to the proof of
Theorem 3.7, the local neighborhood on a mutual (or exclusive) k-NN graph is asymptotically
non-symmetric, due to non-uniformity of the data distribution, and so pointwise consistency for
k-NN graph Laplacians requires a far more careful analysis than for ε-graphs, where the local
neighborhoods are balls.

1.1. Outline. The rest of the paper is organized as follows. In Section 2 we give the precise set-
up used throughout the paper, state our assumptions, and present our main results. Specifically,
Section 2.1 contains the precise definitions of the graph constructions that we study. In Section
2.2 we state our main results regarding convergence of eigenvalues for both ε-graphs as well as
k-NN graphs, and in Section 2.3 we present the results regarding convergence of eigenvectors. In
Section 2.4 we provide an outline of our proofs. In Section 3 we present the pointwise consistency
results of graph Laplacians which will be needed later on. In Section 4 we present the proofs
of our main results. More specifically, in Section 4.1 we present the analysis for the ε-graph
case, and in Section 4.2 for k-NN graphs. In Section 5 we discuss other modes of convergence
for eigenvectors, and in particular the TL2-convergence which implies Wasserstein convergence
of Laplacian embeddings. In Section 6 we present the results of numerical experiments for
convergence rates for k-NN and ε-graph Laplacian spectra to the spherical harmonics on the
two dimensional sphere, and we conclude in Section 7.

2. Set-up and main results

Let M be a compact, connected, orientable, smooth m-dimensional manifold embedded in
Rd. We give to M the Riemannian structure induced by the ambient space Rd. With respect
to the induced metric tensor, we let VolM be M’s volume form and we let µ be a probability
measure supported on M with density (with respect to the volume form) ρ : M → (0,∞) which
we assume is bounded, and bounded away from zero, i.e.

0 < ρmin ≤ ρ ≤ ρmax <∞,

and is at least C2,ϑ(M), which here should be interpreted as saying that ρ, expressed in normal
coordinates, has second derivatives that are ϑ-Holder continuous. All the previous assumptions
on ρ are not rare in theoretical works on graph-based learning. They form a concrete set
of assumptions where tangible connections between machine learning algorithms (like spectral
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clustering) and PDEs can be established. Relaxing these assumptions, for example the lower
bound on ρ, is a compelling research direction that we do not pursue in this paper.

Let X = {x1, . . . , xn} be a set of i.i.d. samples from µ, and let µn denote the associated
empirical measure, i.e.

µn :=
1

n

n∑︂
i=1

δxi .

In what follows we will use the notation L2(µ) to denote the space of L2-functions with
respect to the measure µ, and by L2(µn) the space of functions u : X → R. We endow L2(µ)
with the inner product

⟨f, f̃⟩L2(µ) =

∫︂
M
f(x)f̃(x)dµ(x), f, f̃ ∈ L2(µ),

and L2(µn) with the inner product

⟨u, ˜︁u⟩L2(µn) :=
1

n

n∑︂
i=1

u(xi)˜︁u(xi), u, ˜︁u ∈ L2(µn).

2.1. Graph constructions. In this section we define two different graph constructions on X
with the purpose of leveraging the geometry of the manifold M.

2.1.1. ε-graphs. Let ε > 0. We construct a weighted graph Gε = (X,wε) as follows. First, we
put an edge between xi and xj and between xj and xi (and write xi ∼ xj) provided that

|xi − xj | ≤ ε,

where in the above, |xi − xj | is the Euclidean distance between the points xi, xj . We let
E = {(i, j) ∈ {1, . . . , n}2 : xi ∼ xj} be the set of such edges. We may endow edges with
weights that depend inversely on the distance between the vertices connected by them. For
that purpose, let η : [0,∞) → [0,∞) be a non-increasing function with support on the interval
[0, 1] and whose restriction to [0, 1] is Lipschitz continuous. For convenience we assume that
η(1/2) > 0. We introduce the constant

(2.1) ση :=

∫︂
Rm

|y1|2η(|y|)dy,

where y1 represents the first coordinate of the vector y ∈ Rm. Notice that a simple computation
using radial coordinates shows that when η(t) = 1[0,1](t) then ση = αm

m+2 , where αm is the volume
of the m-dimensional Euclidean unit ball.

To every given edge (i, j) ∈ E we assign the weight wε
xixj

where

(2.2) wε
xy = η

(︃ |x− y|
ε

)︃
.

and we can consider the weighted graph Gε(X,wε). In fact, note that if the points xi, xj are
not connected by an edge in E then wε

xixj
= 0.

Having introduced the graph Gε, we define an associated graph Laplacian operator Lε which
for a given u ∈ L2(µn) is defined as

(2.3) Lεu(x) =
1

nεm+2

n∑︂
j=1

wε
xjx(u(x)− u(xj)).

Note that in principle x need not be a vertex of the graph to make sense of the above expression,
but unless otherwise stated, in the sequel Lε will be thought of as an operator Lε : L2(µn) →
L2(µn).

It is well known in the literature (e.g. [51]) that Lε is a positive semi-definite self-adjoint
operator with respect to the inner product ⟨·, ·⟩L2(µn). In particular, we can list its eigenvalues
(repeated according to multiplicity) as

0 = λε1 ≤ λε2 ≤ · · · ≤ λεn,
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λε1 always being equal to zero. Also, it is possible to find an orthonormal basis of eigenvectors
for L2(µn). Moreover, a graph Dirichlet energy associated to Lε defined by

(2.4) bε(u) :=
1

nεm+2

∑︂
i,j

wε
xixj

(u(xi)− u(xj))
2 = 2⟨Lεu, u⟩L2(µn), u ∈ L2(µn).

can be used to define the eigenvalues of Lε variationally. Namely, the Courant-Fisher minmax
principle says that

(2.5) λεl =
1

2
min
S∈Sl

max
u∈S\{0}

bε(u)

∥u∥2
L2(µn)

where in the above Sl denotes the set of all linear subspaces of L2(µn) of dimension l.
In this paper we will restrict our attention to the definition of graph Laplacian in (2.3)

(known in the literature as unnormalized Laplacian), but we note that there are several other
normalizations that are of high interest in machine learning (e.g. [51]), and we expect we can
carry out a similar analysis for other normalizations.

2.1.2. Undirected k-NN graph. A different graph construction on X proceeds not by fixing a
length-scale ε but rather by specifying for each point in X a set of nearest neighbors.

Definition 2.1. Let k ∈ N. We define a relation ∼k on X ×X by declaring

xi ∼k xj ,

if xj is among the k nearest neighbors (in the Euclidean distance sense) of xi.

In this section we symmetrize the relation ∼k and place an edge between xi and xj if xi ∼k xj
or xj ∼k xi. This is often called the symmetric k-nearest neighbor (or k-NN) graph [39]. While
the graph described above is unweighted, i.e., η = 1[0,1], we will use a weighted construction
given below in (2.9). Another popular construction is the mutual k-NN graph, where we connect
xi to xj if xi ∼k xj and xj ∼k xi. While in the sequel we formulate our results for symmetric
k-NN graphs, they apply with minor modifications to mutual k-NN graphs as well.

To construct the k-NN graph Laplacian, let

(2.6) Nε(x) =
∑︂

j : 0<|xj−x|≤ε

1

be the number of random samples in a punctured Euclidean ε-neighborhood of x. Given 1 ≤
k ≤ n− 1 define

(2.7) εk(x) := min{ε > 0 : Nε(x) ≥ k}.
The value εk(x) is the Euclidean distance from x to the kth nearest neighbor of x from the
samples x1, . . . , xn. Thus, xi ∼k xj if and only if |xi − xj | ≤ εk(xi). Finally, we define

(2.8) rk(x, y) := max{εk(x), εk(y)}.
Notice that |xi − xj | ≤ rk(xi, xj) if and only if xi and xj are connected by an edge in the
symmetric k-NN graph. We would obtain the mutual k-NN graph by setting rk(x, y) =
min{εk(x), εk(y)}.

The undirected k-NN graph Laplacian of an element u ∈ L2(µn) is defined by

(2.9) Lku(x) =
1

n

(︂nαm

k

)︂1+2/m
n∑︂

j=1

w
rk(xj ,x)
xjx (u(x)− u(xj)),

where w
rk(xj ,x)
xjx has the same meaning as in (2.2). As in the ε-graph case, we will assume for

the most part that x is one of the elements in X and hence Lk is interpreted as an operator
from L2(µn) into L

2(µn). We list the eigenvalues (repeated according to multiplicity) of Lk as

0 = λk1 ≤ λk2 ≤ · · · ≤ λkn,
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and define an associated graph Dirichlet energy by

(2.10) bk(u) :=
1

n2

(︂nαm

k

)︂1+2/m∑︂
i,j

w
rk(xi,xj)
xixj (u(xi)−u(xj))2 = 2⟨Lku, u⟩L2(µn), u ∈ L2(µn).

This functional can be used to define the eigenvalues of Lk via the variational formula

(2.11) λkl =
1

2
min
S∈Sl

max
u∈S\{0}

bk(u)

∥u∥2
L2(µn)

.

Remark 2.2. Notice that the rescaling factor
(︁
nαm
k

)︁1+2/m
in (2.9) is equal to 1/rm+2 where r

is the radius of an m-dimensional Euclidean ball with volume k/n. This is the same type of
rescaling factor that appears in the definition of the ε-graph Laplacian Lε in (2.3).

2.2. Convergence of eigenvalues.

2.2.1. ε-graph. In our first main result we establish error bounds between the eigenvalues λεl of
the graph Laplacian Lε, and the eigenvalues λl of a differential operator ∆ρ that for smooth
functions f : M → R is defined as

(2.12) ∆ρf := − 1

2ρ
div(ρ2∇f).

In the above div stands for the divergence operator on M, and ∇ for the gradient in M. It
turns out that ∆ρ is a positive semi definite operator with a nice point spectrum so that in
particular its eigenvalues can be listed (repeated according to multiplicity) in increasing order
as

0 ≤ λ1 ≤ λ2 ≤ . . .

In addition, each eigenvalue has finite multiplicity, the sequence of eigenvalues grows to infin-
ity, and it is possible to find an orthonormal basis for L2(µ) consisting of eigenfunctions, i.e.
functions f that satisfy the equation ∆ρf = λf .

The eigenvalues of ∆ρ can be described variationally in terms of the Dirichlet energy

D2(f) :=

{︄∫︁
M|∇f(x)|2ρ2(x)dVolM(x), if f ∈ H1(µ)

+∞, otherwise,

where in the above H1(µ) is the space of functions with a weak gradient in L2(µ). Indeed,

λl =
1

2
min
S∈Sl

max
f∈S\{0}

D2(f)

∥f∥2
L2(µ)

(2.13)

where in the above Sl is the set of linear subspaces of L2(µ) of dimension l. The minimum is
reached when S is taken to be the span of the first l eigenfunctions of ∆ρ. We also notice that
when f is regular enough (in particular if f ∈ H2(µ)) then D2(f) coincides with 2⟨∆ρf, f⟩L2(µ)

thanks to the integration by parts formula.
Throughout the paper we will state our probabilistic estimates in terms of parameters ε (the

graph connectivity), n (the number of data points), and two parameters θ, ˜︁δ that describe the
error of discrete-to-continuum approximation. At this stage we offer a simple description of

the meaning of the parameters ˜︁δ and θ. We construct a probability distribution with density˜︁ρn mediating between the empirical measure µn and the ground-truth distribution µ. This

density is a piecewise constant function defined over regions in M of diameter ∼ ˜︁δ, and the

parameter ˜︁δ will describe how close this intermediate measure is from the empirical measure
µn in a suitable optimal transport sense. Since we will also have to guarantee that ˜︁ρn is close
enough to the original ρ in a suitable sense, we will not be able to select a very small value of˜︁δ to get the approximation to ρ with very high probability. The parameter θ will allows us to
control the probability that the constructed ˜︁ρn satisfies the desired properties: ˜︁ρn is close to
µn, and at the same time it is close to the original ρ in a uniform sense; see Proposition 2.12
for more details. The introduction of this intermediate measure substitutes the direct discrete
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to continuum comparison that other papers in the literature have considered to study similar
problems. This modification is what allows for less restrictive assumptions on ε, just as in [13].
The following are technical “smallness” assumptions on our parameters that guarantee that we
have entered the regime where the statements of our theorems are meaningful.

Assumption 2.3. In the ε-graph setting, for θ, ˜︁δ and ε we assume

(1) ε is small enough and in particular satisfies

(2.14) 2ε < min{1, i0,K−1/2, R/2} =: 2εM.

where i0,K,R are geometric quantities defined in Section 3.1.

(2) ˜︁δ ≤ 1
4ε.

(3) ˜︁δ is larger than 1
n1/m .

(4) C(θ + ˜︁δ) ≤ ρmin

2 , where C is a constant that depends only on dimension m, ρ, and
on geometric quantities of the manifold M, such as the injectivity radius, sectional
curvature, or reach.

In the k-NN setting, for θ, ˜︁δ and k we assume

(1) (k/n)1/m is small enough and in particular satisfies

2(k/n)1/m < Cρmin{1, i0,K−1/2, R/2} =: 2εM.

where Cρ is a constant that depends on the density ρ.

(2) ˜︁δ ≤ cρ(k/n)
1/m.

(3) ˜︁δ is larger than 1
n1/m .

(4) C(θ + ˜︁δ) ≤ ρmin

2 , where C is a constant that depends only on dimension m, ρ, and
on geometric quantities of the manifold M, such as the injectivity radius, sectional
curvature, or reach.

We are ready to state our first main result.

Theorem 2.4 (Rate of convergence for eigenvalues). Suppose that M, µ satisfy the assumptions

from Section 2. Suppose that the quantities ˜︁δ, θ, ε satisfy Assumptions 2.3. Then:

(1) For every l ∈ N, there is a constant cl such that if√︁
λlε+ C(θ + ˜︁δ) ≤ cl,

then with probability at least 1− Cn exp(−Cnθ2˜︁δm),

|λεl − σηλl| ≤ C

(︄
ε(
√︁
λl + 1) +

˜︁δ
ε
+ θ

)︄
λl.

(2) Moreover, for every l ∈ N there is a constant cl such that if(︄
ε
√︁
λl +

˜︁δ
ε
+ ε+ θ

)︄
λl ≤ cl

then, with probability greater than 1− 2Cn exp
(︁
−cnεm+4

)︁
−Cn exp(−cnθ2˜︁δm) we have

|λεl − σηλl| ≤ Cε.

Let us pause for a moment and discuss the content of Theorem 2.4. A consequence of the

first part of the theorem is that as long as ε ≫
(︂
log(n)

n

)︂1/m
, then it is possible to pick ˜︁δ and θ

according to θ =
√︂

(α+1) log(n)

Cn˜︁δm for some large enough α in such a way that as n grows, both θ

and ˜︁δ converge to zero, and with probability one

|λεl − σηλl| ≤ C(˜︁δ + θ) → 0.
8



That is, we can make the error of approximation of eigenvalues converge to zero as n → ∞
provided that ε≫

(︂
log(n)

n

)︂1/m
. This result is valid for all m ≥ 1, removing in this way an extra

logarithmic factor that was present in the results from [22] when the dimension was m = 2;
notice also that the results in [22] are stated in the case m ≥ 2 only, but as we show throughout
our paper there is no reason to exclude the case m = 1 from the convergence results. Of
course, the first part of the theorem gives more than just asymptotic convergence and we do
get rates. We would like to note that the removal of this logarithmic factor has been done
recently in [40] and [13] for other, related, variational problems on graphs. Here we remove
the extra logarithmic factors while obtaining rates of convergence. Notice, however, that our
estimates would predict that the rates of convergence become quite slow as we get close to the

scaling
(︂
log(n)

n

)︂1/m
, which is the connectivity threshold of the graph. The rates of convergence

degrade as we approach the connectivity threshold because the graph is irregular on the smallest
length scale of nearest neighbors. However, we expect that on a larger macroscopic scale, the
irregularities will average out, and it may be possible to extend the linear O(ε) rate to the range(︂
log(n)

n

)︂1/m
≪ ε≪

(︂
log(n)

n

)︂1/(m+4)
. We expect this to require deeper tools and techniques from

the theory of stochastic homogenization, and leave this to future work.

The second part of the theorem in particular implies that if ε is larger than
(︂
log(n)

n

)︂ 1
m+4

, then

with high probability the rate of convergence of eigenvalues and eigenvectors of Lε towards those
of ∆ρ is linear in ε. In particular, for any p ≥ 1 we can make the choice

ε = cp

(︃
log(n)

n

)︃ 1
m+4

for a constant cp to obtain that the eigenvalue convergence rate

|λεℓ − σηλl| ≤ Ccp

(︃
log(n)

n

)︃ 1
m+4

,

holds with probabilty at least 1−cn−p. A similar comment holds for Theorem 2.7 (2). We believe
that for eigenvectors the linear convergence rate is the best possible for a generic manifoldM and
kernel η. In numerical analysis of PDEs, one normally sees second order O(ε2) convergence rates
for the spectrum of the Laplacian on a uniform grid in Euclidean space, due to using symmetric
stencils for the Laplacian (see, e.g., [38]), where first order error terms exactly cancel out, and
the lack of discretization errors due to the curvature of the manifold. In our manifold setting,
the curvature of the manifold arises in the first order error terms and prevents the scheme from
attaining second order accuracy. We also note that the numerical scheme provided by the graph
Laplacian (2.3) is not a symmetric stencil (i.e., the neighbors of x are not of the form x + v
and x − v), and so the first order terms cancel out only on average, after random fluctuations

are accounted for, which necessitates the larger length scale ε ≫
(︂
log(n)

n

)︂1/(m+2)
for pointwise

consistency. In the flat Euclidean setting, it may be possible to improve convergence rates to

O(ε2) with a more severe length scale restriction ε ≫
(︂
log(n)

n

)︂1/(m+6)
. Regarding convergence

rates for eigenvalues, we actually believe that they may be faster than the convergence rates for
eigenfunctions. This is because eigenvalues may be defined by computing the Dirichlet energy
of a normalized eigenvector of the graph Laplacian, and thus is computed by taking a double
sum which in principle may homogenize better. This is by no means a proof and only reveals a
simple intuition.

Finally, we would like to remark that we can trace the dependence of all the constants
appearing in Theorem 2.4 on the different parameters of the problem, but we have decided not
to state them explicitly to immensely facilitate our presentation.
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2.2.2. k-NN graph. In the k-NN graph case we show that the eigenvalues of Lk converge towards
the eigenvalues of the operator ∆NN

ρ defined for smooth functions f : M → R according to

(2.15) ∆NN
ρ f := − 1

2ρ
div(ρ1−2/m∇f).

This operator has similar spectral properties as ∆ρ. In particular, if we list its eigenvalues as

0 ≤ λ1 ≤ λ2 ≤ . . . ,

they can be written as

λl =
1

2
min
S∈Sl

max
f∈S\{0}

D1−2/m(f)

∥f∥2
L2(µ)

where now the associated Dirichlet energy D1−2/m takes the form

(2.16) D1−2/m(f) :=

{︄∫︁
M|∇f(x)|2ρ1−2/m(x)dVolM(x) if f ∈ H1(µ)

+∞ otherwise.

Following a remark in [21], it is possible to show that the spectrum of Lk converges as n→ ∞
towards the spectrum of ∆NN

ρ provided that k scales like

(log(n))mpm ≪ k ≪ n.

No rates are provided in [27] as the convergence is deduced using the notion of Γ-convergence.
Besides enlarging the set of admissible values of k for which we can prove the spectral conver-
gence, we establish the following convergence rates. They are analogous to the ones stated in
Theorem 2.4 for ε-graphs.

Theorem 2.5 (Rate of convergence for eigenvalues). Suppose that M, µ satisfy the assumptions

from Section 2. Suppose that the quantities ˜︁δ, θ, k satisfy Assumptions 2.3. Then:

(1) For every l ∈ N, there is a constant cl such that if√︁
λl(k/n)

1/m + C(θ + ˜︁δ) ≤ cl,

then, with probability at least 1− Cn exp(−Cnθ2˜︁δm), we have

|λkl − σηλl| ≤ +C

(︄(︃
k

n

)︃1/m

(
√︁
λl + 1) + ˜︁δ (︂n

k

)︂1/m
+ θ

)︄
λl.

(2) Moreover, for every l ∈ N there is a constant cl such that if(︄(︃
k

n

)︃1/m√︁
λl + ˜︁δ (︂n

k

)︂1/m
+ θ

)︄
λl ≤ cl

then, with probability greater than 1 − Cn exp
(︁
−c(k/n)4/mk

)︁
− Cn exp(−Cnθ2˜︁δm) we

have
|λkl − σηλl| ≤ C(k/n)1/m.

Let us note that, as in the case of the ε-graph, we can simplify the statement of part (2). For
any p ≥ 1 we can make the choice

k = cp log(n)
m

m+4n
4

m+4

for a constant cp to obtain that the eigenvalue convergence rate

|λkℓ − σηλl| ≤ Ccp

(︃
log(n)

n

)︃ 1
m+4

,

holds with probabilty at least 1− cn−p. A similar commment holds for the convergence rate in
Theorem 2.9 (2).
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Remark 2.6. Theorems 2.4 and 2.5 have a similar form that becomes more evident when in
Theorem 2.4 we replace λεl by λkl , λl (of (∆ρ) by λl (of ∆

NN
ρ ), and ε by (k/n)1/m to recover a

statement similar to that of Theorem 2.5. Notice that (k/n)1/m is the natural counterpart of
ε. Notice, on the other hand, that despite the similarities in these two settings, k-NN graphs
adjust to the data density in a different way than their ε-graph counterparts, and in particular,
the limiting operators in each case are different. Other works, posterior to the first version
of this paper, like that in [15], have considered more general normalizations for k-NN graphs
in order to induce different ways in which data density affects the behavior of data analysis
algorithms.

2.3. Convergence of eigenvectors. We also establish convergence rates for the eigenvectors
of Lε towards eigenfunctions of ∆ρ, as well as convergence rates of eigenvectors of Lk towards
eigenfunctions of ∆NN

ρ . Naturally, we first need to specify the sense in which the convergence is

to take place. To describe this, let us first notice that the eigenfunctions of both ∆ρ and ∆NN
ρ

are continuous functions, so that pointwise evaluation of eigenfunctions makes perfect sense. In
particular, we can restrict a given eigenfunction f to X and the quantity ∥u − f∥2L2(µn)

would

be well defined for every u ∈ L2(µn). Furthermore, if f solves the elliptic equation

∆ρf = λf

for some λ > 0, then, by the regularity theory of elliptic operators [29] (which can be lifted
from the Euclidean setting to the curved manifold setting given the assumptions that we made
on M at the beginning of Section 2) and the regularity assumption on the density ρ ∈ C2(M),
it follows that f is at least a C3(M) function. That is, its first, second and third derivatives
are continuous, and given the compactness of M also bounded. The same regularity holds
for eigenfunctions of ∆NN

ρ . Said regularity will be needed in order to apply the pointwise
consistency results from Theorem 3.3 (for the ε-graph case) and Theorem 3.7 (for the k-NN
case) to a given eigenfunction f .

We have the following convergence result for ε-graphs.

Theorem 2.7 (Rate of convergence for eigenvectors). Suppose that M, µ satisfy the assump-

tions from Section 2. Suppose that the quantities ˜︁δ, θ, ε satisfy Assumptions 2.3. Then:

(1) For every l ∈ N there is a constant cl such that if(︄
ε
√︁
λl +

˜︁δ
ε
+ ε+ θ

)︄
λl ≤ cl,

then with probability at least 1−Cn exp(−Cnθ2˜︁δm), for every ul normalized eigenvector
of Lε with eigenvalue λεl , there is a normalized eigenfunction fl of ∆ρ with eigenvalue
λl such that

∥ul − fl∥L2(µn) ≤
(︄
Cl

(︄˜︁δ
ε
+ ε+ θ

)︄)︄1/2

+ Cl
˜︁δ.

(2) For every l ∈ N there is a constant cl such that if(︄
ε
√︁
λl +

˜︁δ
ε
+ ε+ θ

)︄
λl ≤ cl,

then with probability at least 1− Cn exp(−Cnθ2˜︁δm)− Cn exp
(︁
−Cnεm+4

)︁
, for every ul

normalized eigenvector of Lε with eigenvalue λεl , there is a normalized eigenfunction fl
of ∆ρ with eigenvalue λl such that

∥ul − fl∥L2(µn) ≤ Clε.
11



Remark 2.8. The constant Cl in Theorem 2.7 (ii) depends on the C3 norm of all normalized
eigenfunctions fl of ∆ρ with eigenvalue λl, since our proof uses the pointwise consistency of
graph Laplacians. The constant Cl is also inversely proportional to the spectral gap γl defined
as

γl = min{|λl − λj | : λl ̸= λj}.
A similar remark holds for the analogous result for k-nearest neighbor graphs given in Theorem
2.9.

As in Theorem 2.4, the main difference between the error estimates presented in Theorem 2.7
is the regimes of ε for which they are meaningful. In general we may use energy arguments as
in [7] to obtain convergence rates that scale like the square root of the rates of convergence for

eigenvalues. On the other hand, in the regime ε ≫ log(n)

n1/m+4 we can show that eigenfunctions of
the graph Laplacian converge to eigenfunctions of ∆ρ linearly in the connectivity length-scale
ε, coinciding in this way with the rates for eigenvalues and also with the rates of pointwise
convergence (see Theorem 3.3).

The analogous estimates for k-NN graphs are the following.

Theorem 2.9 (Rate of convergence for eigenvectors). Suppose that M, µ satisfy the assump-

tions from Section 2. Suppose that the quantities ˜︁δ, θ, k satisfy Assumptions 2.3. Then:

(1) For every l ∈ N there is a constant cl such that if

((k/n)1/m
√︁
λl + ˜︁δ(n/k)1/m + θ)λl ≤ cl,

then with probability at least 1−Cn exp(−Cnθ2˜︁δm), for every ul normalized eigenvector
of Lk with eigenvalue λkl , there is a normalized eigenfunction fl of ∆

NN
ρ with eigenvalue

λl such that

∥ul − fl∥L2(µn) ≤
(︂
Cl

(︂˜︁δ(n/k)1/m + (k/n)1/m + θ
)︂)︂1/2

+ Cl
˜︁δ.

(2) For every l ∈ N there is a constant cl such that if

((k/n)1/m
√︁
λl + ˜︁δ(n/k)1/m + θ)λl ≤ cl,

then with probability at least 1−Cn exp(−Cnθ2˜︁δm)−Cn exp
(︁
−c(k/n)4/mk

)︁
, for every

ul normalized eigenvector of Lk with eigenvalue λkl , there is a normalized eigenfunction

fl of ∆
NN
ρ with eigenvalue λl such that

∥ul − fl∥L2(µn) ≤ Cl(k/n)
1/m.

There are other ways to study the convergence of eigenvectors of graph Laplacians. As we
will see in Section 5, Theorems 2.7 and 2.9, and the regularity of eigenfunctions of ∆ρ and
∆NN

ρ imply the convergence of eigenvectors in the so called TL2-sense (see [22]). This notion
of convergence makes explicit a way to compare different spectral embeddings that form the
basis of algorithms like spectral clustering [51]. To be more precise let L ∈ N. With the first L
eigenvectors u1, . . . , uL of Lε (or Lk) one can construct an embedding of the data set

Fn : {x1, . . . , xn} → RL

Fn(xi) =

⎛⎜⎝u1(xi)...
uL(xi)

⎞⎟⎠ .

The resulting set of points can be represented by the measure Fn♯µn , i.e., the push-forward of
the original empirical measure µn by the graph Laplacian embedding Fn. A natural question to
ask in this setting is: how far apart is Fn♯µn from the measure F♯µ, where F is the continuum
Laplacian embedding:

F : M → RL

12



F (x) =

⎛⎜⎝f1(x)...
fL(x)

⎞⎟⎠ ,

constructed from eigenfunctions f1, . . . , fL of the continuum operator ∆ρ (or ∆
NN
ρ )? We answer

this question in terms of the Wasserstein distance W2 between Fn♯µn and F♯µ, which we recall
is defined by

(2.17) W2(F♯µ, F♯nµn) := min
π∈Γ(F♯µ,Fn♯µn)

∫︂
RL×RL

|x− y|2dπ(x, y),

where Γ(F♯µ, Fn♯µn) denotes the set of couplings or transport plans between F♯µ and Fn♯µn.
This way of comparing the spectral embeddings was proposed in [23].

Corollary 2.10. Suppose that M, µ satisfy the assumptions from Section 2.

(1) (ε-setting) Suppose that the quantities ˜︁δ, θ, ε are small enough as in 2 in Theorem 2.7.

Then, with probability at least 1− Cn exp(−Cnθ2˜︁δm)− Cn exp
(︁
−Cnεm+4

)︁
, we have

W2(F♯µ, Fn♯µn) ≤ Cε+ CW2(µ, µn),

where Fn is the graph Laplacian embedding constructed from the first L eigenvectors of
Lε, and F is the Laplacian embedding constructed using the eigenfunctions f1, . . . , fL of
∆ρ from Theorem 2.7.

(2) Suppose that the quantities ˜︁δ, θ, (k/n)1/m are small enough as in 2 in Theorem 2.9.

Then, with probability at least 1−Cn exp(−Cnθ2˜︁δm)−Cn exp
(︁
−C(k/n)4/mk

)︁
, we have

W2(F♯µ, Fn♯µn) ≤ C(k/n)1/m + CW2(µ, µn),

where Fn is the graph Laplacian embedding constructed from the first L eigenvectors of
Lk, and F is the Laplacian embedding constructed using the eigenfunctions f1, . . . , fL
of ∆NN

ρ from Theorem 2.9.

Remark 2.11. Probabilistic bounds for

W 2
2 (µ, µn) = min

π∈Γ(γ,˜︁γ)
∫︂
M×M

dM(x, y)2dπ(x, y)

can be easily derived using a localization argument (to deal with the curved manifold) and the
concentration inequalities estimating the Wasserstein distance between empirical measures and
their ground truth counterparts in the Euclidean setting (see [20] and a more recent treatment
with improved constants and better scalability with respect to dimension in [37]). The localiza-
tion argument is used simply to partition the manifold M into a fixed number of regions that
are bi-Lipschitz homeomorphic to a bounded domain in Rm. One can then lift the concentration
results in Euclidean space Rm to the manifold. In particular, W2(µ, µn) scales like

1
n1/m .

2.4. Outline of proofs and discussion. The proofs of our main theorems follow the same
structure in both the ε-graph and k-NN settings. For this reason we outline our proofs only in
the ε-graph setting and then simply state the modifications needed in order to cover the k-NN
case.

Our first step is to establish some a priori (and non-optimal) rates of convergence for eigen-
values of Lε towards eigenvalues of ∆ρ. In principle, we could cite the results already proved
in [22], but we have decided to prove our own a priori results, so that we have the opportunity to
present a simpler approach that works for a larger set of values of ε than those covered in [22].

To discuss our construction, it is worth first reviewing the one in [7], which is a main influence
for the construction in our work and the work in [22]. There the main idea is to construct maps

P : L2(µ) → L2(µn), I : L2(µn) → L2(µ)
13



that are almost isometries when restricted to functions of low Dirichlet energy (in discrete and
continuum settings), and for which one has estimates of the form

bε(Pf) ≤ (1 + e)σηD2(f), ∀f ∈ L2(µ),

and

(2.18) σηD2(Iu) ≤ (1 + e)bε(u), ∀u ∈ L2(µn),

where e is thought of as a small error term. When combined with the variational identities (2.5)
and (2.13), these inequalities produce error bounds for the difference between eigenvalues of Lε

and ∆ρ: one can upper bound λεl with λl + Ce choosing S in (2.13) to be the image under P
of the span of the first l eigenvectors of ∆ρ, and likewise, one can upper bound λl by λ

ε
l + Ce

choosing S in (2.5) to be the image under I of the span of the first l eigenvectors of Lε. Now,
the maps P and I introduced in [7] are based on an ∞-optimal transport map between µ and
µn. That is, they use a map T : M → {x1, . . . , xn} that pushes forward the measure µ into the
empirical measure µn, and does so in such a way that it minimizes the quantity

δ := sup
x∈M

dM(x, T (x)),

over all possible such transport maps. T can be used to generate a tessellation U1, . . . , Un of M
(here Ui := T−1({xi})) , with the property that all cells Ui have µ-measure equal to 1/n and
diameter bounded by 2δ. The maps P and I are then defined according to

(Pf)(xi) := n ·
∫︂
Ui

f(x)ρ(x)dx, f ∈ L2(µ).

and
Iu := Λε−2δP

∗u, u ∈ L2(µn).

where P ∗ is the adjoint of P (i.e. composition with T ) and Λε−2δ is a convolution operator with
respect to a very carefully chosen kernel (chosen conveniently to guarantee the energy inequality
(2.18)) with bandwidth ε− 2δ. Notice that in order to get convergence rates for the spectrum
it is crucial that the leading term on the right hand side of (2.18) is bε(u) (with no constants
in front). In this construction it is also important to have ε > 2δ. Now, as proved in [22], the
scaling of δ = d∞(µ, µn) in terms of n is

(2.19) δ ∼ C

{︄
log(n)3/4

n1/2 m = 2
log(n)1/m

n1/m m ≥ 3,

which means that in dimension m = 2, ε is forced to be larger than log(n)3/4

n1/2 . The extra
logarithmic factor with respect to the connectivity threshold has been shown to be unnecessary
in order to establish consistency of closely related problems as illustrated in [13] and [40]. Here
we also remove the extra logarithmic factor, offering also quantitative rates of convergence; our
analysis also covers the case m = 1 which was not explicitly included in some of the previous
works in the literature. For that purpose, we use modified discretization and interpolation

maps ˜︁P , ˜︁I constructed as before, but based on a map ˜︁T pushing forward a conveniently chosen
measure µ̃n with density ˜︁ρn (uniformly close to ρ) into the empirical measure µn. The idea is
that ˜︁µn can be chosen to be closer to µn in the ∞-OT sense than µ itself. More precisely we
have the following proposition which is proved in the Appendix.

Proposition 2.12. Suppose that M, µ satisfy the assumptions from Section 2. Suppose that the

quantities ˜︁δ, θ, ε satisfy Assumptions 2.3. Then, with probability greater than 1−n exp(−Cnθ2˜︁δm),
there exists a probability measure ˜︁µn with density function ˜︁ρn : M → R such that

min
T♯˜︁µn=µn

sup
x∈M

dM(x, T (x)) ≤ ˜︁δ,
and such that

∥ρ− ˜︁ρn∥L∞(µ) ≤ C
(︂
θ + ˜︁δ)︂ .
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We will use ˜︁T to denote an optimal transport map.

Remark 2.13. Suppose that in Proposition 2.12 we take θ :=
√︂

(α+1) log(n)

Cn˜︁δm for some α > 1.

Then it follows that with probability at least 1− 1
nα there exists a measure ˜︁µn such that

min
T♯˜︁µn=µn

sup
x∈M

dM(x, T (x)) ≤ ˜︁δ
and

∥ρ− ˜︁ρn∥L∞(µ) ≤ C

(︄√︄
(α+ 1) log(n)

Cn˜︁δm + ˜︁δ)︄ .
In particular, if ˜︁δ is set to scale like log(n)1/m

n1/m ≪ ˜︁δ ≪ 1, we can make ∥ρ− ˜︁ρn∥L∞(µ) arbitrarily
small.

After we derive some properties of the new maps ˜︁P and ˜︁I we will be able to prove the first
part of Theorem 2.4, as well as the first part of Theorem 2.7 following the proof scheme in [22].
We will also be able to prove the second part of Theorem 2.9. For this we follow some of
the steps in the proof of the Davis-Kahan theorem. We will need to use pointwise consistency
for the graph Laplacian together with our a priori estimates for the error of approximation of
eigenvalues in order to isolate eigenvalues of ∆ρ and match them with eigenvalues of Lε. We
notice that the pointwise consistency for ε-graphs has been established in previous works [32].
For completeness, we give a rather simple proof of consistency in Section 3.3. To apply the
pointwise consistency we require regularity of the continuum eigenfunctions (see the discussion
at the beginning of Section 2.3), which is an ingredient that has not been utilized in previous
works on spectral convergence.

Finally, to improve the rates of convergence for eigenvalues (i.e. to obtain the second part
of Theorem 2.4) we will use the error rates for the convergence of eigenvectors as follows. Let
us fix l ∈ N and let u be a normalized eigenvector of Lε with corresponding eigenvalue λεl . We
know a priori that we can find f ∈ L2(µ) a normalized eigenfunction of ∆ρ with eigenvalue λl,
that is close to u, so that in particular

(2.20) ⟨u, f⟩L2(µn) ≥ c > 0,

where c is independent of ε, or n; in the above formula we interpret f as the restriction of
f : M → R to X (a well defined operation given the continuity of eigenfunctions of ∆ρ). We
will then arrive to an inequality of the form

|λεl − σηλl| =
|⟨u,Lεf − ση∆ρf⟩|L2(µn)

|⟨u, f⟩|L2(µn)
≤ 1

c
∥(Lε − ση∆ρ)f∥L2(µn).

The above computations show that in order to estimate |λεl −λl| it suffices to use the pointwise
consistency of graph Laplacians applied to the function f .

For the most part, the proof strategy for Theorems 2.5 and 2.9 is similar to the one described
before. However, there are two important modifications we need to make. First, the pointwise
estimates for Lkf(xi) − ση∆

NN
ρ f(xi) require new technical computations which are presented

in detail in Section 3.4. These results are new in the literature. Second, regarding the relevant

a priori estimates, we must first construct a new interpolation map ˜︁I as now the connectivity

length-scale changes in space. Once the main properties of the new map ˜︁I have been established
our desired results will follow in the exact same way as in the ε-graph case.

We suspect that our eigenvector and eigenvalue rate of O
(︁
n−1/(m+4)

)︁
is close to optimal.

In the general manifold setting, we suspect O(n−1/m) to be the optimal convergence rate for
eigenvectors, since this represents the resolution of the point cloud (i.e., the typical inter-point
distance). It would be interesting to establish lower bounds for all convergence rates in this
paper. We point out that some parts of our proof for the eigenvalue convergence rate can
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produce lower bounds. For example, in the ε-graph setting, we look forward to (4.17) in the
eigenvalue convergence rate proof, which yields

|λεl − σηλl| ≥ Cl sup
f∈S(∆ρ,λl)
u∈S(Lε,λε

l )

|⟨u,Lεf − ση∆ρf⟩L2(µn)|

with probability at least 1−2 exp (−cn), where S(∆ρ, λ) is the set of unit norm eigenfunctions of
∆ρ with eigenvalue λ, and S(Lε, λ) is the corresponding set for Lε. Obtaining lower bounds on
the right hand side would prove lower bounds on the eigenvalue convergence rate. This appears
to be a hard problem that will involve tools from the field of stochastic homogenization, since
the pointwise consistency errors may average out against u to something smaller than the upper
bound given by the application of Cauchy-Schwartz that we made above. We plan to explore
lower bounds in a future work.

3. Pointwise consistency of graph Laplacians

In this section we prove pointwise consistency with a linear rate for our two constructions of
the graph Laplacian. The ε-graph Laplacian is considered in Section 3.3, while the undirected
k-NN Laplacian is considered in Section 3.4. For the ε-graph Laplacian, the linear rate was
established earlier in [32]; we give a simpler proof for completeness. Consistency for k-NN graph
Laplacians was studied in [50], but the methods used were unable to establish any convergence
rates.

Before giving the pointwise consistency proofs, we review some differential geometry in Sec-
tion 3.1, and concentration of measure in Section 3.2.

3.1. Differential geometry. We first briefly review some basic results from differential ge-
ometry. We refer the reader to [17] for more details. We write BM(x, r) ⊂ M to denote the
geodesic ball in M of radius r centered at x, while we use B(x, r) to denote Euclidean balls in
Rm or in Rd depending on context. For each x ∈ M, expx : TxM → M is the Riemannian
exponential map. Let K be an upper bound on the absolute values of the sectional curva-
tures, let R be the reach of M, and let i0 be a lower bound on the injectivity radius of M.
For any 0 < r < min{i0,K−1/2}, expx : B(0, r) → M is a diffeomorphism between the ball
B(0, r) ⊂ TxM and the geodesic ball BM(x, r) ⊂ M. Let us denote the Jacobian of expx at
v ∈ B(0, r) ⊂ TxM by Jx(v). By the Rauch Comparison Theorem

(3.1) (1 + CK|v|2)−1 ≤ Jx(v) ≤ 1 + CK|v|2.
It follows that

(3.2) |VolM(BM(x, r))− αmr
m| ≤ CKrm+2.

We also recall [22, Proposition 2]

(3.3) |x− y| ≤ dM(x, y) ≤ |x− y|+ 8

R2
|x− y|3,

provided |x− y| ≤ R/2. In the above dM denotes the geodesic distance on M.
Throughout this section we always assume n and ε satisfy Assumptions 2.3. We use C, c > 0

to denote arbitrary constants that depend only on dimension m, ρ, and on the geometric
properties of the manifold M, such as the injectivity radius or sectional curvature. We always
have 0 < c < 1 and C ≥ 1.

3.2. Concentration of measure. We now state a simple concentration inequality, which fol-
lows from Bernstein’s inequality [6], that is particularly convenient for analysis of graph Lapla-
cians.

Lemma 3.1. Suppose that M, µ satisfy the assumptions from Section 2 and let x1, . . . , xn be
samples from µ. Let ψ : M → R be bounded and Borel measurable. For x ∈ M define

Ψ =
∑︂

|xi−x|≤ε

ψ(xi).
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Then for any ε2 ≤ δ ≤ 1

(3.4) P (|Ψ− a| ≥ Cρmax∥ψ∥∞δnεm) ≤ 2 exp
(︁
−cρmaxδ

2nεm
)︁
,

where ∥ψ∥∞ = ∥ψ∥L∞(BM(x,2ε)) and

(3.5) a = n

∫︂
BM(x,ε)

ψ(y)ρ(y) dV olM(y).

Remark 3.2. It is important to point out that a ̸= E[Ψ], since the definition of Ψ uses the metric
in the ambient space, while in the definition of a we integrate over geodesic balls. We also point
out that the restriction δ ≥ ε2 allows us to ignore any effects of the curvature of the manifold.

Proof. The argument is similar to [8, Lemma 1], but we include the proof for completeness. Let
Zi = 1{|xi−x|≤ε}ψ(xi). The Bernstein inequality applied to

∑︁n
i=1 Zi yields

(3.6) P (|Ψ− E[Ψ]| ≥ nt) ≤ 2 exp

(︄
− nt2

2(σ2 + 1
3bt)

)︄
for any t > 0, where σ2 = Var(Zi), b > 0 satisfies |Zi − E[Zi]| ≤ b almost surely, and

E[Ψ] = n

∫︂
B(x,ε)∩M

ψ(y)ρ(y) dV olM(y).

By (3.3) we have

(3.7) BM(x, ε) ⊂ B(x, ε) ∩M ⊂ BM(x, ε+ 8ε3/R2) ⊂ BM(x, 2ε)

provided 8ε3/R2 ≤ ε, which is guaranteed by the Assumptions 2.3. Let us write ∥ψ∥∞ =
∥ψ∥L∞(BM(x,2ε)). Then by (3.7) and (3.2) we have

|E[Ψ]− a| ≤ Cρmax∥ψ∥∞nV olM(BM(x, ε+ 8ε3/R2) \BM(x, ε))(3.8)

≤ Cρmax∥ψ∥∞nεm+2,

for ε sufficiently small. We also have by (3.7) that

(3.9) σ2 ≤ E[Z2
i ] =

∫︂
B(x,ε)∩M

ψ(y)2ρ(y) dV ol(y) ≤ Cρmax∥ψ∥2∞εm,

and

(3.10) |Zi − E[Zi]| ≤ |Zi|+ |E[Zi]| ≤ |Zi|+ E[|Zi|] ≤ 2∥ψ∥∞,
so we can take b = 2∥ψ∥∞. We now set t = ρmax∥ψ∥∞εmδ in (3.6), for δ > 0, and combine this
with (3.8) and (3.9) to obtain

P
(︁
|Ψ− E[Ψ]| ≥ Cρmax∥ψ∥∞(δ + ε2)nεm

)︁
≤ 2 exp

(︃
−cρmaxδ

2nεm

1 + δ

)︃
for constants C, c > 0 depending only on M. Restriting ε2 ≤ δ ≤ 1 completes the proof. □

3.3. ε-graph. We now turn to proving pointwise consistency of the ε-graph Laplacian. Our
main result is the following uniform consistency estimate.

Theorem 3.3 (Consistency for ε-graph). Let f ∈ C3(M). Then for ε ≤ δ ≤ ε−1 we have

(3.11) P

[︃
max
1≤i≤n

|Lεf(xi)− ση∆ρf(xi)| ≥ Cδ

]︃
≤ 2n exp

(︁
−cδ2nεm+2

)︁
,

where C depends on ∥f∥C3(BM(xi,ε)) and [f ]1;BM(xi,2ε), where [f ]1;BM(xi,2ε) is the Lipschitz con-
stant of the function f when restricted to the ball BM(xi, 2ε).
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The proof of Theorem 3.3 is split into two lemmas, Lemma 3.4 and Lemma 3.5. Lemma 3.4
controls the fluctuations between the graph Laplacian and the nonlocal operator

(3.12) Lε
nlf(x) =

1

εm+2

∫︂
BM(x,ε)

η

(︃ |x− y|
ε

)︃
(f(x)− f(y))ρ(y) dV olM(y).

Lemma 3.5 establishes consistency of the nonlocal operator Lε
nl to ∆ρ as ε→ 0.

Lemma 3.4. Let f ∈ C1(M). Then for x ∈ M and ε ≤ δ ≤ ε−1

(3.13) P
[︁
|Lεf(x)− Lε

nlf(x)| ≥ C[f ]1;BM(x,2ε)δ
]︁
≤ 2 exp

(︁
−cδ2nεm+2

)︁
.

Proof. The proof is a direct application of Lemma 3.1 with

ψ(y) =
1

nεm+2
η

(︃ |y − x|
ε

)︃
(f(x)− f(y)),

and a = Lε
nlf(x). We simply need to compute

∥ψ∥L∞(BM(x,2ε)) ≤
C[f ]1;BM(x,2ε)

nεm+1
. □

Lemma 3.5. For f ∈ C3(M) and x ∈ M
(3.14) |Lε

nlf(x)− ση∆ρf(x)| ≤ C(1 + ∥f∥C3(BM(x,ε)))ε.

Proof. Let us define the intrinsic version of Lε
nl to be

(3.15) Li,ε
nl f(x) :=

1

εm+2

∫︂
BM(x,ε)

η

(︃
dM(x, y)

ε

)︃
(f(x)− f(y))ρ(y) dV olM(y).

Since η is Lipschitz, it follows from (3.3) that

(3.16) |Li,ε
nl f(x)− Lε

nlf(x)| ≤ C[f ]1;BM(x,ε)ε.

Let w(v) = f(expx(v)) and p(v) = ρ(expx(v)); that is w and p are the functions f and ρ
expressed in normal Riemannian coordinates. Then we have

Li,ε
nl f(x) = − 1

εm+2

∫︂
B(0,ε)⊂TxM

η

(︃ |v|
ε

)︃
(w(v)− w(0))p(v)Jx(v) dv

= − 1

ε2

∫︂
B(0,1)

η (|v|) (w(εv)− w(0))p(εv)Jx(εv) dv.

Using the Taylor expansions Jx(εv) = 1 +O(ε2), p(εv) = p(0) +∇p(0) · vε+O(ε2), and

w(εv)− w(0) = ∇w(0) · vε+ 1

2
v · ∇2w(0)vε2 +O(∥w∥C3(B(0,ε))ε

3),

a standard computation yields

Li,ε
nl f(x) = −ση

(︃
∇w(0) · ∇p(0) + p(0)

2
∆Mw(0)

)︃
+O(c3ε) = −ση

2p
div(p2∇w)

⃓⃓
v=0

+O(c3ε),

where
c3 = 1 + ∥w∥C3(B(0,ε)).

The proof is completed by recalling (3.16) and noting that −ση

2pdiv(p
2∇w)

⃓⃓
v=0

= ση∆ρf(x). □

Remark 3.6. In the previous proof we have implicitly used the fact that the norms ∥w∥C3(B(0,ε))

and ∥f∥C3(BM(x,ε)) are equivalent. This can be justified as follows. Writing the covariant

derivatives ∇1f , ∇2f and ∇3f in normal coordinates around a point (see Section 2 in [31]), and
using standard expansions for the Christoffel symbols and metric tensor in these coordinates,
it is not difficult to see that:

(1− Cε)∥w∥C3(B(0,ε)) ≤ ∥f∥C3(BM(x,ε)) ≤ (1 + Cε)∥w∥C3(B(0,ε)),

from where the equivalence of the norms follows.
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We now give the proof of Theorem 3.3.

Proof of Theorem 3.3. Combining Lemmas 3.4 and 3.5 we have

(3.17) P [|Lεf(x)− ση∆ρf(x)| ≥ Cδ] ≤ 2 exp
(︁
−cδ2nεm+2

)︁
for any x ∈ M and ε ≤ δ ≤ ε−1. Conditioning on xi and using the law of conditional probability
yields

P [|Lεf(xi)− ση∆ρf(xi)| ≥ Cδ] ≤ 2 exp
(︁
−cδ2nεm+2

)︁
for any 1 ≤ i ≤ n. The proof is completed by union bounding over x1, . . . , xn. □

3.4. Undirected kNN graph Laplacian. We now turn to the case of the undirected k-NN
graph Laplacian Lk. The consistency proof here is more involved, since the neighbors in the
symmetrized k-NN relation do not fall in a ball (even on average), due to the variability of the
distribution ρ. The additional neighbors added in the symmetrization are in fact important for
consistency of the undirected k-NN graph Laplacian, and when ρ is not constant the additional
points are not symmetrically distributed about x. This must be accounted for in the consis-
tency results, and introduces an additional drift term in the limiting weighted Laplace-Beltrami
operator. The form of the continuum operator ∆NN

ρ was established in [50], where the authors
proved consistency without a convergence rate.

Our main result in this section is the following uniform consistency estimate.

Theorem 3.7 (Consistency for undirected k-NN Laplacian). Let f ∈ C3(M). For 1 ≤ k ≤
cnεmM and C(k/n)1/m ≤ δ ≤ (k/n)−1/m we have

(3.18) P

(︃
max
1≤i≤n

|Lkf(xi)− ση∆
NN
ρ f(xi)| ≥ Cδ

)︃
≤ Cn exp

(︂
−cδ2(k/n)2/mk

)︂
,

where C depends on ∥f∥C3(M).

The proof of Theorem 3.7 follow from Lemmas 3.10 and 3.11 below. Before presenting the
lemmas and proofs, we must introduce some notation. We recall rk(x, y) = max{εk(x), εk(y)},
as defined in (2.8). For x ∈ M define ε(x) by

(3.19) k = αmρ(x)nε(x)
m,

and set

(3.20) r(x, y) := max{ε(x), ε(y)}.

Lemma 3.8. Let x ∈ M and suppose that ε < εM. Then for ε2 ≤ δ ≤ 1

(3.21) P [|Nε(x)− αmρ(x)nε
m| ≥ Cδnεm] ≤ 2 exp

(︁
−cδ2nεm

)︁
.

Proof. Applying Lemma 3.1 with ψ ≡ 1 yields

P

[︄⃓⃓⃓⃓
⃓Nε(x)− n

∫︂
BM(x,ε)

ρ(y) dV olM(y)

⃓⃓⃓⃓
⃓ ≥ Cδnεm

]︄
≤ 2 exp

(︁
−cδ2nεm

)︁
.

By Taylor expansion we have

n

∫︂
BM(x,ε)

ρ(y) dV olM(y) = αmρ(x)nε
m +O(nεm+2).

Noting that ε2 ≤ δ completes the proof. □

Lemma 3.9. For x ∈ M, 1 ≤ k ≤ cnεmM and C(k/n)2/m ≤ δ ≤ 1 we have

(3.22) P [|αmρ(x)nεk(x)
m − k| ≥ Cδk] ≤ 4 exp

(︁
−cδ2k

)︁
.
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Proof. Let C ′ be the constant from Lemma 3.8 and define ε by

αmρ(x)nε
m = k(1 + C ′α−1

m ρ(x)−1δ).

Then we have

P (αmρ(x)nεk(x)
m > k(1 + Cδ)) = P (εk(x) > ε)

≤ P (Nε(x) < k)

≤ P
(︁
Nε(x)− αmρ(x)nε

m < −C ′α−1
m ρ(x)−1kδ

)︁
≤ P

(︁
|Nε(x)− αmρ(x)nε

m| ≥ C ′δnεm
)︁
.

Since c(k/n)1/m ≤ ε ≤ C(k/n)1/m the restriction ε < εM from Lemma 3.8 is satisfied when
k ≤ cnεmM. Therefore, we can invoke Lemma 3.8 to find that

P (nαmρ(x)εk(x)
m > k(1 + Cδ)) ≤ 2 exp

(︁
−cδ2k

)︁
.

for ε2 ≤ δ ≤ 1. This establishes one direction of (3.22); the proof of the other is similar. □

We set εmax = maxx∈M ε(x), and define the nonlocal operator

(3.23) Lk
nlf(x) =

(︂nαm

k

)︂1+2/m
∫︂
BM(x,εmax)

η

(︃ |x− y|
r(x, y)

)︃
(f(x)− f(y))ρ(y) dVolM(y).

Our first lemma shows that the nonlocal operator Lk
nl describes the average behavior of the

unweighted k-nearest neighbor graph Laplacian Lk.

Lemma 3.10. Let f ∈ C1(M). Then for x ∈ M and C(k/n)1/m ≤ δ ≤ (k/n)−1/m

(3.24) P
[︂
|Lkf(x)− Lk

nlf(x)| ≥ C[f ]1;BM(x,2εmax)δ
]︂
≤ C exp

(︂
−cδ2(k/n)2/mk

)︂
.

Proof. Define

(3.25) A = {j : |x− xj | ≤ rk(xj , x)} ,
and

(3.26) A(s) = {j : |x− xj | ≤ r(xj , x)(1 + s)} .
By Lemma 3.9, there exists ˜︁C > 0 such that

(3.27) P(|εk(x)m − ε(x)m| ≥ ˜︁Cδε(x)m) ≤ 6 exp(−cδ2k)
and

P

[︃
max
1≤j≤n

|εk(xj)m − ε(xj)
m| ≥ ˜︁Cδε(xj)m]︃ ≤ 6n exp(−cδ2k)

for C(k/n)2/m ≤ δ ≤ 1. Fix such a δ > 0 and assume that

(3.28) |εk(x)m − ε(x)m| ≤ ˜︁Cδε(x)m
and

(3.29) max
1≤j≤n

|εk(xj)m − ε(xj)
m| ≤ ˜︁Cδε(xj)m.

Then it follows that

rk(xj , x)
m = max {εk(xj)m, εk(x)m} ≤ (1 + ˜︁Cδ)max {ε(xj)m, ε(x)m} = (1 + ˜︁Cδ)r(xj , x)m.

Since (1 + ˜︁Cδ)1/m ≤ 1 + ˜︁Cδ we obtain

rk(xj , x) ≤ (1 + ˜︁Cδ)r(xj , x),
and so A ⊂ A( ˜︁Cδ). A similar argument shows that A(− ˜︁Cδ) ⊂ A.

We define

Lf(x) =
1

n

(︂nαm

k

)︂1+2/m ∑︂
j∈A(0)

w
r(xj ,x)
xjx (f(x)− f(xj)),
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and note, using A(− ˜︁Cδ) ⊂ A ⊂ A( ˜︁Cδ), that
|Lf(x)− Lkf(x)| ≤ C

nε(x)m+2

[︄ ∑︂
j∈A( ˜︁Cδ)\A(− ˜︁Cδ)

|f(xj)− f(x)|

+
∑︂

j∈A(− ˜︁Cδ)

|wr(xj ,x)
xj ,x − w

rk(xj ,x)
xjx ||f(xj)− f(x)|

]︄
.

By the Chernoff bounds we have

P
(︂
#A( ˜︁Cδ)−#A(− ˜︁Cδ) ≥ Cδnε(x)m

)︂
≤ 2 exp(−cδ2k),

for 0 ≤ δ ≤ 1, and by (3.28) and (2.14) we have

max
j∈A(−Cδ)

|wr(xj ,x)
xjx − w

rk(xj ,x)
xjx | ≤ Cδ.

Setting δ = (k/n)1/mt we have

(3.30) P(|Lf(x)− Lkf(x)| ≥ C[f ]1;BM(x,2εmax)t) ≤ C exp(−ct2(k/n)2/mk)

for C(k/n)1/m ≤ t ≤ (k/n)−1/m. The proof is completed by invoking Lemma 3.1 to obtain

P(|Lk,s
nl f(x)− Lf(x)| ≥ C[f ]1;BM(x,2εmax)t) ≤ 2 exp

(︂
−ct2(k/n)2/mk

)︂
for C(k/n)1/m ≤ t ≤ (k/n)−1/m, and combining with (3.30). □

We now establish consistency of the nonlocal operator Lk
nl with the weighted Laplacian ∆NN

ρ .

Lemma 3.11. There exists c > 0 depending on ρ, so that for f ∈ C3(M), x ∈ M, and k ≤ cn,
we have

(3.31) |Lk
nlf(x)− ση∆

NN
ρ f(x)| ≤ C(1 + ∥f∥C3(BM(x,εmax)))ε(x).

Proof. Throughout the proof we write ε = ε(x), and note that

c

(︃
k

n

)︃1/m

≤ ε ≤ εmax ≤ C

(︃
k

n

)︃1/m

.

We first define the intrinsic version of Lk,s
nl , given by

(3.32) Lf(x) :=
(︂nαm

k

)︂1+2/m
∫︂
BM(x,εmax)

η

(︃
dM(x, y)

r(x, y)

)︃
(f(x)− f(y))ρ(y) dV olM(y).

Since η is Lipschitz it follows from (3.3) that

(3.33) |Lf(x)− Lk
nlf(x)| ≤ C[f ]1;BM(x,εmax)(k/n)

1/m ≤ C[f ]1;BM(x,εmax)ε.

Let w(v) = f(expx(v)) and p(v) = ρ(expx(v)). Then we have

Lf(x) = −
(︂nαm

k

)︂1+2/m
∫︂
B(0,εmax)⊂TxM

η

(︃ |v|
r(x, expx(v))

)︃
(w(v)− w(0))p(v)Jx(v) dv.

Let us set s(v) = (ρ(expx(v))/ρ(x))
1/m = (p(v)/p(0))1/m, so that

r(x, expx(v)) = ε max{1, s(v)−1} =
ε(x)

min{1, s(v)} .

Then making a change of variables v′ = v/ε, and renaming v′ as v, yields

(3.34) Lf(x) = −
(︂nαm

k

)︂2/m ∫︂
B(0,C)

η (|v|min{1, s(εv)}) (w(εv)− w(0))
p(εv)

p(0)
Jx(εv) dv,
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where C = ε−1εmax. We now use the Taylor expansions Jx(εv) = 1 + O(ε2), p(εv) = p(0) +
∇p(0) · vε+O(ε2),

w(εv)− w(0) = ∇w(0) · vε+ 1

2
v · ∇2w(0)vε2 +O(∥w∥C3(B(0,εmax))ε

3),

and

s(εv) = 1 +
1

m
∇ log p(0) · vε+O(ε2),

to obtain

Lf(x) = −
(︂nαm

k

)︂2/m ∫︂
B
η
(︁
|v|(1 + ε

m [∇ log p(0) · v]−)
)︁
(∇w(0) · vε+ 1

2
v · ∇2w(0)vε2)

(1 +∇ log p(0) · vε) dv +O(ε),

where a− = min{0, a} and

B = {v ∈ Rm : |v|(1 + ε
m [∇ log p(0) · v]−) ≤ 1}.

We now make the change of variables

z = Φ(v) := v(1 + ε
m [∇ log p(0) · v]−).

For sufficiently small ε > 0, Φ is invertible and

v = Φ−1(z) = z(1− ε
m [∇ log p(0) · z]− +O(ε2)).

Note that for v with ∇ log p(0) · v > 0, we have DΦ(v) = I and det(DΦ(v)) = 1. For v with
∇ log p(0) · v < 0 we have

DΦ(v) = I +
ε

m
((∇ log p(0) · v)I +∇ log p(0)⊗ v) .

Using the Taylor expansion det(I + εX) = 1 + εTr(X) +O(ε2) we have

det(DΦ(v)) = 1 +
ε

m
((∇ log p(0) · v)m+ (∇ log p(0) · v)) +O(ε2)

= 1 + ε(1 + 1
m)(∇ log p(0) · v) +O(ε2).

Thus, for all v we have

|det(DΦ(v))|−1 = 1− ε(1 + 1
m)[∇ log p(0) · v]− +O(ε2),

and so

dv = (1− ε(1 + 1
m)[∇ log p(0) · v]− +O(ε2))dz.
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Therefore

Lf(x)

= −
(︂nαm

k

)︂2/m ∫︂
B(0,1)

η (|z|)
(︃
∇w(0) · zε− ε2

m
[∇ log p(0) · z]−∇w(0) · z +

1

2
x · ∇2w(0)xε2

)︃
(1 + ε∇ log p(0) · z)

(︁
1− ε(1 + 1

m)[∇ log p(0) · z]−
)︁
dz +O(ε)

= −
(︂nαm

k

)︂2/m ∫︂
B(0,1)

η (|z|)
(︃
∇w(0) · zε− ε2

m
[∇ log p(0) · z]−∇w(0) · z +

1

2
x · ∇2w(0)xε2

)︃
(︁
1− ε(1 + 1

m)[∇ log p(0) · z]− + ε∇ log p(0) · z
)︁
dz +O(ε)

= −p(0)−2/m

∫︂
B(0,1)

η (|z|)
(︂
(∇ log p(0) · z)(∇w(0) · z) + 1

2
x · ∇2w(0)x

− (1 + 2
m)[∇ log p(0) · z]−(∇w(0) · z)

)︂
dz +O(ε)

= −σηp(0)−2/m(∇ log p(0) · ∇w(0) + 1
2∆w(0))

− p(0)−2/m(1 + 2
m)

∫︂
B(0,1)

η (|z|) [∇ log p(0) · z]−(∇w(0) · z) dz⏞ ⏟⏟ ⏞
I

+O(ε).

In the final integral above, let A be an orthogonal transformation so that

A∇ log p(0) = |∇ log p(0)|em
and make the change of variables y = Az to deduce

I = |∇ log p(0)|
∫︂
B(0,1)

η (|y|)min{ym, 0}(A∇w(0) · y) dy

= |∇ log p(0)|
m∑︂
i=1

[A∇w(0)]i
∫︂
B(0,1)

η (|y|)min{ym, 0}yi dy

= |∇ log p(0)|[A∇w(0)]m
∫︂
B(0,1)

η (|y|)min{ym, 0}ym dy

=
1

2
|∇ log p(0)|[A∇w(0)]m

∫︂
B(0,1)

η (|y|) y2m dy

=
ση
2
|∇ log p(0)|[A∇w(0)]m

=
ση
2
∇ log p(0) · ∇w(0).

This gives

Lf(x) = −ση
2
p(0)−2/m(∆w(0) + (1− 2

m)∇ log p(0) · ∇w(0)) +O(ε)

= −ση
2

1

p(0)
div(p1−2/m∇w) +O(ε) = ση∆

NN
ρ f +O(ε),

which completes the proof. □

We now give the proof of Theorem 3.7.

Proof of Theorem 3.7. We proceed as in the proof of Theorem 3.3. Combining Lemmas 3.10
and 3.11 we have

P
(︂
|Lkf(x)− ση∆

NN
ρ f(x)| ≥ Cδ

)︂
≤ Cn exp

(︂
−cδ2(k/n)2/mk

)︂
,

for any x ∈ M, 1 ≤ k ≤ cnεmM, and C(k/n)1/m ≤ δ ≤ (k/n)−1/m. We complete the proof by
conditioning on xi, using the law of conditional probability, and applying a union bound. □
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4. Proofs of main results

Here we prove all of our main results. The structure of the proofs is exactly the same for the
ε-graph and the k-NN settings.

4.1. ε-graph. Let ε, ˜︁δ, θ be positive numbers satisfying Assumptions 2.3. Associated to these
numbers we consider the density ˜︁ρn from Proposition 2.12 (which exists with probability greater

than 1− n exp(−Cnθ2δ̃2)) and we let ˜︁T be an ∞-OT map between ˜︁µn and µn. Let ˜︁U1, . . . , ˜︁Un

be defined by ˜︁Ui := ˜︁T−1
n ({xi}).

We can then define the contractive discretization map ˜︁P : L2(µ) → L2(µn) by

(4.1) ( ˜︁Pf)(xi) := n ·
∫︂
˜︁Ui

f(x)˜︁ρn(x)dx, f ∈ L2(µ),

and the extension map ˜︁P ∗ : L2(µn) → L2(˜︁µn) by
(4.2) ( ˜︁P ∗u)(x) :=

n∑︂
i=1

u(xi)1˜︁Ui
(x), u ∈ L2(µn).

We note that ˜︁P ∗u can be written as ˜︁P ∗u = u ◦ ˜︁T . We then define the interpolation map˜︁I : L2(µn) → Lip(M)

(4.3) ˜︁Iu := Λ
ε−2˜︁δP ∗u

where Λ
ε−2˜︁δ is a convolution operator using the kernel Kr(·, ·) (defined below) with bandwidth

ε− 2˜︁δ. To define the kernel Kr we let ψ : [0,∞) → [0,∞) be given by

(4.4) ψ(t) :=
1

ση

∫︂ ∞

t
η(s)sds,

and set

Kr(x, y) :=
1

rm
ψ

(︃
dM(x, y)

r

)︃
,

The operator Λr then takes the form

Λrf(x) :=
1

τ(x)

∫︂
M
Kr(x, y)f(y)dµ(y),

where in the above τ(x) is a normalization factor given by

τ(x) :=

∫︂
M
Kr(x, y)dµ(y),

and serves as normalization constant. Note that in the above we integrate with respect to the
density ρ and not with respect to ˜︁ρn. This is because ˜︁ρn is discontinuous, and for some of the
estimates that we will use later on, we need to integrate with respect to a smoother density.

In order to prove the first part of Theorem 2.4 we use the following two propositions. These
two results contain the fundamental a priori estimates that we use in the sequel.

Proposition 4.1 (Inequality for Dirichlet energies). Let ε, ˜︁δ, and θ be fixed but small enough

numbers satisfying Assumptions 2.3. Then, with probability greater than 1−Cn exp(−Cnθ2˜︁δm)
we have:

(1) For any f ∈ L2(µ),

bε( ˜︁Pf) ≤ (︄1 + C

(︄˜︁δ
ε
+ ε+ θ

)︄)︄
σηD2(f),
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(2) For any u ∈ L2(µn),

σηD2(˜︁Iu) ≤ (︄1 + C

(︄˜︁δ
ε
+ ε+ θ

)︄)︄
bε(u),

Proposition 4.2 (Discretization and interpolation maps are almost isometries). Let ε, ˜︁δ, and
θ be fixed but small enough numbers satisfying Assumptions 2.3. Then, with probability at least

1− Cn exp(−Cnθ2˜︁δm) we have:

(1) For every f ∈ L2(µ),⃓⃓⃓
∥f∥2L2(µ) − ∥ ˜︁Pf∥2L2(µn)

⃓⃓⃓
≤ C˜︁δ∥f∥L2(µ)

√︁
D2(f) + C(θ + ˜︁δ)∥f∥2L2(µ).

(2) For every u ∈ L2(µn),⃓⃓⃓
∥u∥2L2(µn)

− ∥˜︁Iu∥2L2(µ)

⃓⃓⃓
≤ Cε∥u∥L2(µn)

√︁
bε(u) + C(θ + ˜︁δ)∥u∥2L2(µn)

.

Before proving these two propositions it will be convenient to introduce two intermediate
(non-local) Dirichlet energies of interest and establish a connection between them. First, we
define the non-local energy
(4.5)˜︁Er(f) :=

∫︂
M

∫︂
M

1

rm+2
η

(︃
dM(x, y)

r

)︃
(f(x)−f(y))2˜︁ρn(x)˜︁ρn(y)dVolM(x)dVolM(y), f ∈ L2(M, µ),

and the closely related
(4.6)

Er(f) :=

∫︂
M

∫︂
M

1

rm+2
η

(︃
dM(x, y)

r

)︃
(f(x)−f(y))2ρ(x)ρ(y)dVolM(x)dVolM(y), f ∈ L2(M, µ).

Notice that the only difference between ˜︁Er and Er is the density we integrate with respect to.
Moreover, for the density ˜︁ρn from Proposition 2.12 we have

(4.7) (1− C(θ + ˜︁δ))Er(f) ≤ ˜︁Er(f) ≤ (1 + C(θ + ˜︁δ))Er(f), ∀f ∈ L2(µ),

for some constant C, which follows from the fact that

ρ(x) ≤ ˜︁ρn(x) + ∥ρ− ˜︁ρn∥L∞(µ) ≤ ˜︁ρn(x) + C(θ + ˜︁δ)
ρmin

˜︁ρn(x)
and

˜︁ρn(x) ≤ ρ(x) + ∥ρ− ˜︁ρn∥L∞(µ) ≤ ρ(x) +
C(θ + ˜︁δ)
ρmin

ρ(x).

We are now ready to prove Proposition 4.1 and Proposition 4.2.

Proof of Proposition 4.1. First, we can use Lemma 5 in [22] to conclude that for all r > 0 small
enough and all f ∈ L2(µ),

Er(f) ≤ (1 + Cρr + CmKr2)σηD2(f),

and Lemma 9 in [22] to get

σηD2(Λrf) ≤ (1 + Cr + CmKr2) · (1 + C(1 + 1/ση)mKr
2)Er(f).

We can then use 2.12 to obtain

(4.8) ˜︁Er(f) ≤ (1 + Cr + CmKr2)(1 + C(θ + ˜︁δ))σηD2(f),

as well as

(4.9) σηD2(Λrf) ≤ (1 + Cr + CmKr2) · (1 + C(1 + 1/ση)mKr
2)(1 + C(θ + ˜︁δ)) ˜︁Er(f).
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On the other hand, if we replace P, P ∗, δ, Tn and ρ with ˜︁P , ˜︁P ∗, ˜︁δ, ˜︁Tn and ˜︁ρn, (where recall ˜︁δ
is an upper bound for the ∞-OT distance between ˜︁µn and µn), we can copy word for word the
proofs in Lemmas 13 and 14 in [22] to deduce

bε( ˜︁Pf) ≤ (︄1 + C
˜︁δ
ε

)︄ ˜︁E
ε+2˜︁δ(f)

as well as

(4.10) ˜︁E
ε−2˜︁δ( ˜︁P ∗u) ≤

(︄
1 + C

˜︁δ
ε

)︄
bε(u)

for every f ∈ L2(µ) and u ∈ L2(µn). Putting together the above estimates with (4.8) and (4.9)

with r = ε− 2˜︁δ, and using the smallness Assumptions (2.3) on ε, ˜︁δ and θ, we obtain the desired
inequalities. □

Proof of Proposition 4.2. The proof follows the same ideas used when proving the analogous
results in [22]. The setting is slightly different because the discretization and interpolation
maps have changed.

To prove the first assertion, we start by noticing that

∥f∥2L2(µ) =

∫︂
M

(f(x))2
ρ(x)− ˜︁ρn(x)

ρ(x)
ρ(x)dVolM(x) + ∥f∥2L2(˜︁µn)

.

The first term on the right hand side is in absolute value less than

∥ρ− ˜︁ρn∥L∞(µ)

ρmin
∥f∥2L2(µ),

and so

(4.11)
⃓⃓⃓
∥f∥2L2(˜︁µn)

− ∥f∥2L2(µ)

⃓⃓⃓
≤ C(θ + ˜︁δ)∥f∥2L2(µ).

Notice also that by definition of ˜︁P ∗ we have

∥ ˜︁P ∗ ˜︁Pf∥2L2(˜︁µn)
= ∥ ˜︁Pf∥2L2(µn)

.

It follows that,⃓⃓⃓
∥ ˜︁Pf∥2L2(µn)

− ∥f∥2L2(µ)

⃓⃓⃓
≤
⃓⃓⃓
∥ ˜︁P ∗ ˜︁Pf∥2L2(˜︁µn)

− ∥f∥2L2(˜︁µn)

⃓⃓⃓
+
⃓⃓⃓
∥f∥2L2(˜︁µn)

− ∥f∥2L2(µ)

⃓⃓⃓
≤ C∥f∥L2(µ)

⃓⃓⃓
∥ ˜︁P ∗ ˜︁Pf∥L2(˜︁µn) − ∥f∥L2(˜︁µn)

⃓⃓⃓
+ C(θ + ˜︁δ)∥f∥2L2(µ)

≤ C∥f∥L2(µ)∥ ˜︁P ∗ ˜︁Pf − f∥L2(˜︁µn) + C(θ + ˜︁δ)∥f∥2L2(µ).

On the other hand,

∥ ˜︁P ∗ ˜︁Pf − f∥2L2(˜︁µn)
=

n∑︂
i=1

∫︂
˜︁Ui

(︂ ˜︁P ∗ ˜︁Pf(x)− f(x)
)︂2 ˜︁ρn(x)dVolM(x)

=

n∑︂
i=1

∫︂
˜︁Ui

(︂ ˜︁Pf(xi)− f(x)
)︂2 ˜︁ρn(x)dVolM(x)

=

n∑︂
i=1

∫︂
˜︁Ui

(︃
n

∫︂
˜︁Ui

f(y)˜︁ρn(y)dVolM(y)− f(x)

)︃2 ˜︁ρn(x)dVolM(x)

=
n∑︂

i=1

∫︂
˜︁Ui

(︃
n

∫︂
˜︁Ui

(f(y)− f(x))˜︁ρn(y)dVolM(y)

)︃2 ˜︁ρn(x)dVolM(x)

≤ n
n∑︂

i=1

∫︂
˜︁Ui

∫︂
˜︁Ui

(f(y)− f(x))2˜︁ρn(x)˜︁ρn(y)dVolM(y)dVolM(x).
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Let us now show that the last term in the above chain of inequalities can be controlled by

C˜︁δ2E
2˜︁δ(f), where actually C is a constant that only depends on dimension. For this purpose

we use an idea described in Lemma 3.4 in [7] to estimate each of the terms

n

∫︂
˜︁Ui

∫︂
˜︁Ui

(f(y)− f(x))2˜︁ρn(x)˜︁ρn(y)dVolM(y)dVolM(x).

For fixed x, y ∈ ˜︁Ui let W := M∩B(x, 2˜︁δ)∩B(y, 2˜︁δ), where B(x, 2˜︁δ) is the Euclidean ball of

radius 2˜︁δ centered at x. For every z ∈W we have

|f(x)− f(y)|2 ≤ 2|f(x)− f(z)|2 + 2|f(y)− f(z)|2,

and in particular

|f(x)− f(y)|2 ≤ 2
1

VolM(W )

∫︂
W

|f(x)− f(z)|2dVolM(z) + 2
1

VolM(W )

∫︂
W

|f(y)− f(z)|2dVolM(z)

≤ 2

VolM(W )

∫︂
M
η

(︃ |x− z|
2˜︁δ

)︃
|f(x)− f(z)|2dVolM(z)

+
2

VolM(W )

∫︂
M
η

(︃ |y − z|
2˜︁δ

)︃
|f(y)− f(z)|2dVolM(z)

≤ C˜︁δm
∫︂
M
η

(︃ |x− z|
2˜︁δ

)︃
|f(x)− f(z)|2dVolM(z) +

C˜︁δm
∫︂
M
η

(︃ |y − z|
2˜︁δ

)︃
|f(y)− f(z)|2dVolM(z).

Integrating with respect to x and y in both sides of the inequality we get

n

∫︂
˜︁Ui

∫︂
˜︁Ui

|f(x)− f(y)|2˜︁ρn(x)˜︁ρn(y)dVolM(x)dVolM(y)

≤ 2C˜︁δm
∫︂
˜︁Ui

∫︂
M
η

(︃ |x− z|
2˜︁δ

)︃
|f(x)− f(z)|2˜︁ρn(x)˜︁ρn(z)dVolM(x)dVolM(z).

Summing over all i = 1, . . . , n we deduce from the above expression that

∥ ˜︁P ∗ ˜︁Pf − f∥2L2(˜︁µn)
≤ C˜︁δ2 ˜︁E

2˜︁δ(f) ≤ C˜︁δ2D2(f),

where for the last inequality we have used the same arguments as in the proof of Proposition
4.1.

To show the second assertion we notice that from ∥u∥L2(µn) = ∥ ˜︁P ∗u∥L2(˜︁µn) and the triangle
inequality we get⃓⃓⃓

∥˜︁Iu∥L2(˜︁µn) − ∥u∥L2(µn)

⃓⃓⃓
≤ ∥Λ

ε−2˜︁δ ˜︁P ∗u− ˜︁P ∗u∥L2(˜︁µn)

≤
(︃
1 +

∥ρ− ˜︁ρn∥∞
ρmin

)︃
· ∥Λ

ε−2˜︁δ ˜︁P ∗u− ˜︁P ∗u∥L2(µ)

≤
(︃
1 +

∥ρ− ˜︁ρn∥∞
ρmin

)︃
· Cε

√︂
E

ε−2˜︁δ( ˜︁P ∗u)

≤ Cε
√︁
bε(u),

where for the third inequality we have used Lemma 8 in [22] (notice that our definition of Er

has an extra factor of r−2 when compared to the definition in [22]), and for the last one we have
used Lemma 4.7 and (4.10). Also, notice that

∥˜︁Iu∥L2(˜︁µn) = ∥Λr
˜︁P ∗u∥L2(˜︁µn) ≤ C∥ ˜︁P ∗u∥L2(˜︁µn) = C∥u∥L2(µn),

where the inequality follows from Lemma 8 in [22] and the fact that by introducing a multi-
plicative constant we can change integrals with respect to ρ with integrals with respect to ˜︁ρn
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and vice-versa (according to Proposition (2.12)). Therefore,⃓⃓⃓
∥˜︁Iu∥2L2(˜︁µn)

− ∥u∥2L2(µn)

⃓⃓⃓
≤
⃓⃓⃓
∥˜︁Iu∥L2(˜︁µn) − ∥u∥L2(µn)

⃓⃓⃓ (︂
∥˜︁Iu∥L2(˜︁µn) + ∥u∥L2(µn)

)︂
≤
⃓⃓⃓
∥˜︁Iu∥L2(˜︁µn) − ∥u∥L2(µn)

⃓⃓⃓ (︂
∥˜︁Iu∥L2(˜︁µn) + ∥u∥L2(µn)

)︂
≤ Cε

√︁
bε(u)∥u∥L2(µn).

Finally, we use (4.11) to compare ∥˜︁Iu∥2L2(˜︁µn)
and ∥˜︁Iu∥2L2(µ).

□

With Proposition 4.1 and 4.2 in hand the proof of the first part of Theorem 2.4 now follows
from standard arguments.

Proof of 1) in Theorem 2.4. Let f1, . . . , fl be an orthonormal set (in L2(µ)) of eigenfunctions
of ∆ρ corresponding to its first l eigenvalues. For i = 1, . . . , l let

vi := ˜︁Pfi.
Applying the first part of Proposition 4.2 to functions f of the form:

f := fi − fj

we can get the bound,

|⟨fi, fj⟩L2(µ) − ⟨vi, vj⟩L2(µn)| ≤ C
√︁
λl˜︁δ + C(θ + ˜︁δ) ≤ 1

2l
,

where the last inequality is valid thanks to our smallness assumption for ˜︁δ and θ. Since
⟨fi, fj⟩L2(µ) = δij , the above inequality implies that the vectors v1, . . . , vl are linearly inde-
pendent, and so the subspace S := Span{v1, . . . , vl} has dimension l. We can use (2.5) to
conclude that

λεl ≤
1

2
max
v∈S

∥v∥L2(µn)=1

bε(v).

Now, each element v of S is of the form

v =

l∑︂
i=1

ai ˜︁Pfi,
for some coefficients ai, so that

v = ˜︁P ( l∑︂
i=1

aifi) =: ˜︁P (f),
and in particular,

1

2
D2(f) = ⟨∆ρf, f⟩L2(µ) ≤ λl∥f∥2L2(µ).

By Proposition 4.1 we know that,

1

2
bε(v) =

1

2
bε( ˜︁Pf) ≤ (1+C

˜︁δ
ε
+Cε+Cθ+C˜︁δ)ση

2
D(f) ≤ (1+C

˜︁δ
ε
+Cε+Cθ+C˜︁δ)σηλl∥f∥2L2(µ).

If ∥v∥L2(µn) = 1, Proposition 4.2 implies

∥f∥2L2(µ) ≤ 1 + C˜︁δ√︁λl + C(θ + ˜︁δ).
Thus,

λεl ≤ σηλl + C(˜︁δ√︁λl + ˜︁δ
ε
+ ε+ θ)λl.

This establishes the upper bound for λεl in terms of λl.
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To obtain the lower bound, we let u1, . . . , ul be an orthonormal set of eigenvectors of Lε

corresponding to its first l eigenvalues. We define functions fi ∈ L2(µ), according to

fi := ˜︁Iui, i = 1, . . . , l.

Thanks to the smallness assumption of the parameters ˜︁δ, ε, θ, we see that S := span{f1, . . . , fl}
has dimension l. Just as in the proof of the upper bound we can use the second parts of
Propositions 4.1 and 4.2 to conclude that

σηλl ≤ λεl + C

(︄
ε
√︂
λεl +

˜︁δ
ε
+ ε+ θ

)︄
λεl .

However, using the upper bound for λεl , we can replace all the appearances of λεl in the above
error terms with λl, and obtain the desired inequality.

□

We can now prove Theorem 2.7. We start with its second part.

Proof of 2) in Theorem 2.7. A given eigenvalue λ > 0 of ∆ρ is equal to λi+1, . . . , λi+k for some
i and some k, where k is the multiplicity of λ. Associated to λ we define the gap γλ according
to:

(4.12) γλ :=
1

2
min{|λ− λi|, |λ− λi+k+1|}.

Now, for every N ∈ N, we can pick ε, θ and ˜︁δ to be small enough so that for every l = 1, . . . , N
we have

C

(︄
ε
√︁
λl +

˜︁δ
ε
+ ε+ θ

)︄
λl ≤ γλl

.

In particular, for such choice of parameters and according to Theorem 2.4, with probability

greater than 1− Cn exp(−nθ2˜︁δm) we have

(4.13) |λεl − σηλl| ≤ γλl
, ∀l = 1, . . . , N.

Let λ be one of λ1, . . . , λN . By making N slightly larger if necessary, we can assume that
i+ k ≤ N (where i and k are as defined earlier for λ). Let S be a subspace of L2(µn) spanned
by eigenvectors of Lε with corresponding eigenvalues λεi+1, . . . , λ

ε
i+k and let us denote by PS

the orthogonal projection onto S, and by P⊥
S the orthogonal projection onto the orthogonal

complement of S. We know that an arbitrary unit norm eigenfunction f of ∆ρ with eigenvalue
λ is at least C3(M), and since ∆ρu = λu, we obviously have that ∆ρu is also C3(M). Restricting
f and ∆ρf to the point cloud X, we can view both of these functions as elements in L2(µn),
and we can also see that

P⊥
S ∆ρf = λP⊥

S f = λ
∑︂

j ̸=i+1,...,i+k

⟨f, ψε
j ⟩L2(µn)ψ

ε
j

where ψε
1, . . . , ψ

ε
n is an orthonormal basis of eigenvectors of Lε with corresponding eigenvalues

λε1, . . . , λ
ε
n. Likewise, we can compute Lεf (again thinking of f as its restriction to X) and see

that
P⊥
S Lεf =

∑︂
j ̸=i+1,...,i+k

λεj⟨f, ψε
j ⟩L2(µn)ψ

ε
j .

Subtracting these two expressions and using the orthogonality of the ψε
j we obtain

min{|λεi − λ|, |λεi+k+1 − λ|}∥P⊥
S f∥L2(µn) ≤ ∥P⊥

S (Lεf −∆ρf)∥L2(µn) ≤ ∥Lεf −∆ρf∥L2(µn).

However, from (4.13) we have

γλ ≤ min{|λεi − λ|, |λεi+k+1 − λ|},
and so

∥P⊥
S f∥L2(µn) ≤

1

γλ
∥Lεf −∆ρf∥L2(µn).
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Naturally, since P⊥
S f = f − PSf we obtain

(4.14) ∥f − PSf∥L2(µn) ≤
1

γλ
∥Lεf −∆ρf∥L2(µn).

On the other hand, from the pointwise consistency results from Theorem 3.3 it follows that if
f1, . . . , fk is an orthonormal basis for the eigenspace of eigenfunctions of ∆ρ with eigenvalue λ,
then with probability greater than 1− 2kn exp

(︁
−cnεm+4

)︁
we have

∥Lεfj −∆ρfj∥L2(µn) ≤ Cε, ∀j = 1, . . . , k.

Combining the above with (4.14) we conclude that with probability greater than 1−Cn exp(−nθ2˜︁δm)−
2kn exp

(︁
−cnεm+4

)︁
we can find an orthonormal set v1, . . . , vk spanning S such that

∥fj − vj∥L2(µn) ≤ Cε, ∀j = 1, . . . , k.

In turn this implies that if u1, . . . , uk is a family of orthonormal eigenfunctions of Lε with
corresponding eigenvalues λεi+1, . . . , λ

ε
i+k, then there exists an orthonormal set f̃1, . . . , f̃k of

eigenfunctions of ∆ρ with eigenvalue λ such that

∥ui − f̃ i∥L2(µn) ≤ Cε.

This implies the desired result. □

Proof of 1) in Theorem 2.7. In general it will not be meaningful to use the pointwise consistency
results from Theorem 3.3 because ε here can be smaller than what the probabilistic estimates
in Theorem 3.3 allow it to be. Thus, we use an energy estimate based on Propositions 4.1 and
4.2 just as in [22]. Since this argument has been shown in detail in [22], here we only present
the proof for the first non-trivial eigenvectors.

The first non-trivial eigenvalue λ of ∆ρ is equal to λ2, . . . , λk+1 where k is its multiplicity.

Let f be an eigenfunction of ∆ρ with eigenvalue λ and let u be equal to u = ˜︁Pf where ˜︁P is
as in (4.1). Consider now the span of a set of orthonormal eigenvectors of Lε with eigenvalues
λε2, . . . , λ

ε
k+1, and denote this linear subspace by S.

We see from Proposition 4.1 that

(︄
1 + C

(︄˜︁δ
ε
+ ε+ θ

)︄)︄
σηλ2 =

(︄
1 + C

(︄˜︁δ
ε
+ ε+ θ

)︄)︄
σηD2(f) ≥ bε(u) = ⟨Lεu, u⟩L2(µn)

≥ λε2∥PSu∥2L2(µn)
+ λεk+2∥u− PSu∥2L2(µn)

.

= λε2(∥u∥2L2(µn)
− ∥u− PSu∥2L2(µn)

) + λεk+2∥u− PSu∥2L2(µn)
.

(4.15)

Using the estimates from the first part of Theorem 2.4 and Proposition 4.2 we have that as long

as ˜︁δ and θ are small enough, then with probability greater than 1− Cn exp
(︂
−cnθ2˜︁δm)︂,

|σηλ2 − λε2| ≤ C

(︄˜︁δ
ε
+ ε+ θ

)︄
≤ γλ

2

|σηλk+2 − λεk+2| ≤ C

(︄˜︁δ
ε
+ ε+ θ

)︄
≤ γλ

2

and

|1− ∥u∥2L2(µn)
| ≤ C(θ + ˜︁δ),

where C is some constant that may depend on λ and where γλ is the spectral gap defined in
(4.12). Combining the above inequalities with (4.15) we conclude that

∥u− PSu∥L2(µn) ≤
(︄
C

γλ

(︄˜︁δ
ε
+ ε+ θ

)︄)︄1/2

.
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Now, by definition

u(xi)− f(xi) = ˜︁Pf(xi)− f(xi) = n

∫︂
˜︁Ui

(f(x)− f(xi))˜︁ρn(x)dVolM(x).

We notice that the last term is in absolute value less than

∥∇f∥L∞(µ)
˜︁δ,

and that ∥∇f∥L∞(µ) is finite because f is actually C3(M). In particular,

∥f − u∥L2(µn) ≤ CM˜︁δ,
Therefore,

∥f − PS
˜︁Pf∥L2(µn) ≤

(︄
C

γλ

(︄˜︁δ
ε
+ ε+ θ

)︄)︄1/2

+ CM,λ
˜︁δ.

From this it is straightforward to see that if f1, . . . , fk form an orthonormal basis for the
eigenspace of eigenfunctions of ∆ρ with eigenvalue λ, then we can find an orthonormal set
v1, . . . , vk spanning S such that

∥fj − vj∥L2(µn) ≤
(︄
C

γλ

(︄˜︁δ
ε
+ ε+ θ

)︄)︄1/2

+ CM,λ
˜︁δ, ∀j = 1, . . . , k.

In turn this implies that if u1, . . . , uk is a family of orthonormal eigenfunctions of Lε with

corresponding eigenvalues λε2, . . . , λ
ε
k+1, then there exists an orthonormal set ˜︁f1, . . . , ˜︁fk of eigen-

functions of ∆ρ with eigenvalue λ such that

∥uj − ˜︁fj∥L2(µn) ≤
(︄
C

γλ

(︄˜︁δ
ε
+ ε+ θ

)︄)︄1/2

+ CM,λ
˜︁δ, ∀j = 1, . . . , k.

This implies the desired result.
□

We are ready to prove 2) in Theorem 2.4.

Proof of 2) in Theorem 2.4. First notice that if λ > 0 is an eigenvalue of ∆ρ and λε > 0 is an
eigenvalue of the graph Laplacian Lε, then,

(4.16) |σηλ− λε| ≤ inf
f∈S(∆ρ,λ)
u∈S(Lε,λε)

∥Lεf − ση∆ρf∥L2(µn)

|⟨u, f⟩L2(µn)|

where in the above S(∆ρ, λ) is the set of unit norm eigenfunctions of ∆ρ with eigenvalue λ, and
S(Lε, λε) is the set of eigenvectors of Lε with eigenvalue λε. To see this, let f ∈ S(∆ρ, λ) and
u ∈ S(Lε, λε). Then, we can restrict f and ∆ρf to the point cloud and get

λε⟨u, f⟩L2(µn) = ⟨Lεu, f⟩L2(µn)

= ⟨u,Lεf⟩L2(µn)

= ⟨u,Lεf − σηλf + σηλf⟩L2(µn)

= σηλ⟨u, f⟩L2(µn) + ⟨u,Lεf − ση∆ρf⟩L2(µn).

Rearranging the terms we obtain

(4.17) λε − σηλ =
⟨u,Lεf − ση∆ρf⟩L2(µn)

⟨u, f⟩L2(µn)
,

provided ⟨u, f⟩L2(µn) ̸= 0. Applying the Cauchy-Schwarz inequality we obtain

|λε − σηλ| ≤
∥Lεf − ση∆ρf∥L2(µn)

|⟨u, f⟩L2(µn)|
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Take λ = λl and λε = λεl in the above formula. From Theorem 2.7 we know that with

probability at least 1−n exp(−nθ2˜︁δm)−Cn exp
(︁
−cnεm+4

)︁
there are unit norm eigenvectors u

and f of Lε and ∆ρ with corresponding eigenvalues λεl and λl, such that

∥ul − fl∥L2(µn) ≤ Cε,

so that in particular

|⟨u, f⟩L2(µn)| ≥ 1− Cε ≥ 1

2
,

when ε is small enough. Also, from Theorem 3.11 we know that with probability at least
1− Cn exp

(︁
−cnεm+4

)︁
we have

∥Lεf − ση∆ρf∥L2(µn) ≤ Cε.

The result now follows.
□

4.2. Undirected k-NN graph. After defining appropriate interpolation and discretization
maps, and establishing their relevant properties, we will be able to follow the exact same proof
as the one we presented in the ε-graph case. For this reason we focus on establishing Proposition
4.4 and 4.5 below and skip the rest of the details.

In what follows, for simplicity we restrict our analysis to the kernel η given by

η(t) =

{︄
1 t < 1

0 t > 1,

as it already captures the main differences between the k-NN and ε graph settings. Only minor,
although slightly more cumbersome, modifications are needed to consider the general case. Let
ψ be defined as (4.4). Notice that in this case we have

(4.18) ψ(t) ≤ 1

ση
η(t), ∀t > 0.

For a function r : M → (0,∞), and for a function f ∈ L2(M) we define

Λrf(x) :=
1

τ(x)

∫︂
M
Kr(y)(x, y)f(y)dµ(y),

as in Section 4.1 where the only difference is that now the bandwidth r is allowed to change in
space. The normalization constant continues to be of the form

τ(x) :=

∫︂
M
Kr(y)(x, y)dµ(y).

It is important to notice that in the definition of Λrf , the function r is evaluated at y (and not
at x) so as to have an expression for the gradient of Λrf which does not depend on derivatives
of r (which we may even take it to be discontinuous).

Remark 4.3. In what follows we set ε to be the function defined as in (3.19). Notice that from

the fact that 0 < ρmin ≤ ρ ≤ ρmax we see that ε(x) and
(︁
k
n

)︁1/m
are of the same order for every

x ∈ M. Also, since k has been assumed to be much smaller than n, then ε(x)2, which is of the

same order as (k/n)2/m, is much smaller than ε(x). We will use εmax to denote the maximum
of ε. In particular,

c

(︃
k

n

)︃1/m

≤ εmin ≤ εmax ≤ C

(︃
k

n

)︃1/m

.

Proposition 4.4 (Inequality for Dirichlet energies). Let k, ˜︁δ, and θ be fixed numbers satisfying

Assumptions 2.3. Then, with probability greater than 1− Cn exp(−Cnθ2˜︁δm) we have:
32



(1) For any f ∈ L2(µ),

bk( ˜︁Pf) ≤ (1 + C

(︃
k

n

)︃1/m

+ C˜︁δ (︂n
k

)︂1/m
+ Cθ)σηD1−2/m(f)

(2) For any u ∈ L2(µn),

σηD1−2/m(˜︁Iu) ≤ (1 + C

(︃
k

n

)︃1/m

+ C˜︁δ (︂n
k

)︂1/m
+ Cθ)bk(u).

Proposition 4.5 (Discretization and interpolation maps are almost isometries). Suppose θ, ˜︁δ
and k satisfy Assumptions 2.3. Then, with probability at least 1− Cn exp(−Cnθ2˜︁δm) we have:

(1) For every f ∈ L2(µ),⃓⃓⃓
∥f∥2L2(µ) − ∥ ˜︁Pf∥2L2(µn)

⃓⃓⃓
≤ C˜︁δ∥f∥L2(µ)

√︂
D1−2/m(f) + C(θ + ˜︁δ)∥f∥2L2(µ).

(2) For every u ∈ L2(µn),⃓⃓⃓
∥u∥2L2(µn)

− ∥˜︁Iu∥2L2(µ)

⃓⃓⃓
≤ C

(︃
k

n

)︃1/m

∥u∥L2(µ)

√︁
bk(u) + C(θ + ˜︁δ)∥u∥2L2(µn)

.

In order to show the above propositions we will first need to introduce some non-local energies

Er and ˜︁Er (we will use the same notation for simplicity as in the ε-graph case) defined in terms
of the spatially varying length-scale r : M → (0,∞) by

Er(f) :=

∫︂
M

∫︂
M
η

(︃
dM(x, y)

r(y)

)︃
(f(x)− f(y))2

r(y)m+2ρ(y)2/m−1
dVolM(x)dVolM(y), f ∈ L2(µ)

˜︁Er(f) :=

∫︂
M

∫︂
M
η

(︃
dM(x, y)

r(y)

)︃
(f(x)− f(y))2

r(y)m+2˜︁ρn(y)2/m−1
dVolM(x)dVolM(y), f ∈ L2(µ),

where ˜︁ρn is the density from Proposition 2.12. Notice that the L∞ bound for the difference
between ρ and ˜︁ρn implies

(4.19) (1− C(θ + ˜︁δ))Er(f) ≤ ˜︁Er(f) ≤ (1 + C(θ + ˜︁δ))Er(f), ∀f ∈ L2(µ),

These inequalities are analogous to the ones in (4.7).
The following three lemmas will be the main tools for proving Propositions 4.4 and 4.5.

Lemma 4.6. Suppose that k, ˜︁δ and θ satisfy Assumptions 2.3, and let ε : M → (0,∞) be as

in (2.14). Then, with probability at least 1− Cn exp(−Cnθ2˜︁δm) we have for all i = 1, . . . , n

(4.20) ε(xi)− ˜︁C(ε2max +
˜︁δεmax + θεmax) ≤ εk(xi) ≤ ε(xi) + ˜︁C(ε2max +

˜︁δεmax + θεmax).

Proof. We prove the upper bound. The lower bound is proved similarly.
Let ˜︁ρn be the density from Proposition 2.12, which exists with probability at least 1 −

Cn exp(−nθ2˜︁δm). First of all for x ∈ M and 0 < γ1 < γ2 small enough define

A(x, γ1, γ2) := BM(x, γ2) \BM(x, γ1).

Then, we see that

C1γ
m−1
1 (γ2 − γ1) ≤ ˜︁µn(A(x, γ1, γ2)) ≤ C2γ

m−1
1 (γ2 − γ1)

where C1, C2 do not depend on x nor γ1, γ2 as long as these numbers are small enough.
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Pick γ2 = ε(x) + ˜︁C(ε(x)2 + ˜︁δ + θ) for a large enough constant ˜︁C that will be chosen soon.
We also let γ1 = ε(x). Then,

˜︁µn (BM(xi, γ2)) ≥
∫︂
BM(xi,ε(xi))

˜︁ρn(x)dVolM(x) + ˜︁µn(A(xi, γ1, γ2))
≥ (1− Cε(xi))(1− C(θ + δ))ρ(xi)VolM(BM(xi, ε(xi))) + ˜︁µn(A(xi, γ1, γ2))
≥ (1− Cε(xi))(1− C(θ + δ))(1− CKε(xi)

m+2)ρ(xi)αm(ε(xi))
m + ˜︁µn(A(xi, γ1, γ2))

≥ (1− Cε(xi))(1− C(θ + δ))(1− CKε(xi)
m+2)

k

n
+ ˜︁µn(A(xi, γ1, γ2))

≥ k

n
− C(ε(xi) + ˜︁δ + θ)ε(xi)

m + ˜︁µn(A(xi, γ1, γ2))
≥ k

n
− C(ε(xi) + ˜︁δ + θ)ε(xi)

m + C1ε(xi)
m−1( ˜︁C(ε(xi)2 + ˜︁δε(xi) + θε(xi))).

We pick ˜︁C precisely so that the above is greater than k/n. Finally, we see that

µn(BM(xi, γ2 + ˜︁δ)) = ˜︁µn (︂˜︁T−1(BM(xi, γ2 + ˜︁δ)))︂ ≥ ˜︁µn(BM(xi, γ2)) ≥ k/n,

from where it now follows that εk(xi) ≤ γ2 + ˜︁δ.
□

Lemma 4.7. Let r : M → (0,∞) be an arbitrary function which is bounded away from zero
and for which rmax is sufficiently small. Then, for any f ∈ L2(µ) we have

Er(f) ≤ (1 + Crmax)(1 + βr)
2m+4σηD1−2/m(f).

Where in the above βr is defined as

(4.21) βr := sup
x,y∈M,dM(x,y)≤rmax

r(x)− r(y)

rmin

As we will later see, in our setting we will work with r for which rmax, βr ≪ 1, so that
Lemma 4.7 implies that Er(f) is smaller than a quantity that up to leading order is equal to
σηD1−2/m(f).

Proof. By density of smooth functions in H1(µ) it is enough to prove the result for f smooth.
In what follows we will use the geodesic flow Φt : TM → TM, which maps a point (x, v) ∈

M×TxM in M’s tangent bundle into the point Φt(x, v) = (expx(tv), d expx(v)) (i.e. flow x for
t seconds along the geodesic emanating from it with initial velocity v). We will use ξ = (x, v) to
represent a generic point in the tangent bundle and abuse notation slightly to write things like
g(ξ) = g(x), when g is a real valued function on M. We will also use df (i.e. the differential of
f) which is the 1-form that when acting on a tangent vector v returns the directional derivative
of f in the direction v, and will write things like df(ξ) to denote the directional derivative of f
at the point x in the direction v.

With this notation in hand, and following the proof of Lemma 3.3 in [7], we obtain for every
x ∈ M ∫︂

BM(x,r(x))
|f(y)− f(x)|2dVolM(y) ≤

∫︂
B(0,r(x))⊆TxM

∫︂ 1

0
|df(Φt(x, v))|2dtdv.
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Dividing by r(x)m+2ρ(x)2/m−1 and integrating over x we get:

∫︂
M

∫︂
BM(y,r(y))

|f(y)− f(x)|2
r(x)m+2ρ(x)2/m−1

dVolM(y)dVolM(x)

≤ (1 + βr)
m+2(1 + Crmax)

∫︂
M

∫︂
Bm(0,r(x))⊆TxM

∫︂ 1

0

|df(Φt(y, v))|2
r(Φt(x, v))m+2ρ(Φt(x, v))2/m−1

dtdvdVolM(x)

= (1 + βr)
m+2(1 + Crmax)

∫︂ 1

0

∫︂
Br

|df(Φt(ξ))|2
r(Φt(ξ))m+2ρ(Φt(ξ))2/m−1

dVolTM(ξ)dt,

(4.22)

where for the first inequality we have used the definition of βr and the fact that for every y with
dM(x, y) ≤ rmax we have(︃

ρ(y)

ρ(x)

)︃2/m−1

=

(︃
1 +

ρ(y)− ρ(x)

ρ(x)

)︃2/m−1

≤ 1 + Crmax.

Finally, in the last line we use VolTM to denote the volume form on TM, and

Br := {(x, v) ∈ TM : x ∈ M, v ∈ Bm(0, r(x)) ⊆ TxM}.
Now let t ∈ (0, 1) and let (x, v) ∈ Br. Define x̃ := expx(−tv) and ṽ := d expx(−v). It is

straightforward to see that

Φt(x̃,−ṽ) = (x, v).

Moreover,

∥−ṽ∥x̃ = ∥d expx(−v)∥x̃ = ∥−v∥x ≤ r(x) = r(x̃) + (r(x)− r̃(x)) ≤ r̂(x̃),

where

r̂(x̃) := (1 + αr)r(x̃).

We have shown that if (x, v) ∈ Br, then for every t ∈ (0, 1) (x, v) ∈ Φt (Br̂). That is,

Br ⊆ Φt (Br̂) .

From this we deduce that for all t ∈ (0, 1) we have∫︂
Br

|df(Φt(ξ))|2
r(Φt(ξ))m+2ρ(Φt(ξ))2/m−1

dVolTM(ξ) ≤
∫︂
Φt(Br̂)

|df(Φt(ξ))|2
r(Φt(ξ))m+2ρ(Φt(ξ))2/m−1

dVolTM(ξ)

In turn, the right hand side is equal to∫︂
Br̂

|df(Φt(ξ))|2
r(ξ)m+2ρ(ξ)2/m−1

dVolTM(ξ)

which follows from the well known fact that Φt preserves VolTM (i.e. it pushes forward VolTM
into itself ). Integrating over t and using (4.22) we deduce that

Er(f) ≤ (1 + βr)
m+2(1 + Crmax)

∫︂
M

1

r(x)m+2ρ(x)2/m−1

(︄∫︂
Bm(0,r̂(x))

|df(x, v)|2dv
)︄
dVolM(x).

Finally, a simple computation shows that∫︂
Bm(0,r̂(y))

|df(x, v)|2dv =

∫︂
Bm(0,r̂(y))

|⟨∇f(x), v⟩|2dv = ση|∇f(x)|2r̂(x)m+2,

and so

Er(f) ≤ (1 + βr)
m+2(1 + Crmax)ση

∫︂
M

(︃
r̂(x)

r(x)

)︃m+2

|∇f(x)|2ρ(x)1−2/mdVolM(x)

≤ (1 + βr)
2m+4(1 + Crmax)σηD1−2/m(f).

This concludes the proof.
□
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Lemma 4.8. Let r : M → (0,∞) be an arbitrary function which is bounded away from zero
and for which rmax and βr (as defined in (4.21)) are sufficiently small. Then, for any f ∈ L2(µ)
we have

σηD1−2/m(Λrf) ≤ (1 + Cβ2m+4
r + Cr2max)Er̂(f),

where the length-scale r̂ in Er̂(f) is of the form

r̂(x) = (1 + βr)r(x).

Proof. We first notice that for a fixed function f ∈ L2(µ), the gradient of the function Λrf can
be written as

∇Λrf(x) = τ−1(x)A1(x) +A2(x),

where

A1(x) :=

∫︂
A(x)

∇Kr(·, y)(x)(f(y)− f(x))dVolM(y),

A2(x) := ∇(τ−1)(x)

∫︂
A(x)

Kr(y)(x, y)(f(y)− f(x))dVolM(y),

and the region A(x) is defined as

A(x) := {y ∈ M : |x− y| ≤ r(y).}

First |A1(x)| = ⟨A1(x), w⟩ for some unit vector w ∈ TxM. Therefore,

|A1(x)| = |⟨A1(x), w⟩|

=

⃓⃓⃓⃓
⃓
∫︂
A(x)

1

σηrm+2(y)
η

(︃
dM(x, y)

r(y)

)︃
(f(y)− f(x))⟨exp−1

x (y), w⟩dVolM(y)

⃓⃓⃓⃓
⃓

=

⃓⃓⃓⃓∫︂
A

1

σηrm+2(v)
η

(︃ |v|
r(v)

)︃
φ(v)⟨v, w⟩Jx(v)dv

⃓⃓⃓⃓
≤
∫︂
A

1

σηrm+2(v)
η

(︃ |v|
r(v)

)︃
|φ(v)||⟨v, w⟩|Jx(v)dv

where φ(v) := f(expx(v))−f(x), A := {v ∈ TxM : |x−expx(v)| ≤ r(v)} and with a slight abuse
of notation we write r(v) = r(expx(v)) and also r̂(v) = r̂(expx(v)). Notice that by definition of
r̂ we have

r̂0 := r̂(0) ≥ r(v)

and so

|A1(x)| ≤ (1 + βr)
m+2

∫︂
B(0,r̂0)

1

ση r̂
m+2
0

η

(︃ |v|
r̂0

)︃
|φ(v)||⟨v, w⟩|Jx(v)dv.

By the Cauchy-Schwartz inequality,

|A1(x)|2
(1 + βr)

2m+4 ≤
(︃

1

ση r̂
m+2
0

)︃2
(︄∫︂

B(0,r̂0)
|φ(v)|2Jx(v)2η

(︃ |v|
r̂0

)︃
dv

)︄(︄∫︂
B(0,r̂0)

⟨v, w⟩2η
(︃ |v|
r̂0

)︃
dv

)︄

=
1

ση r̂0
m+2

(︄∫︂
B(0,r̂0)

|φ(v)|2Jx(v)2η
(︃ |v|
r̂0

)︃
dv

)︄
where, in the last step, we used radial symmetry to conclude that∫︂

B(0,r̂0)
⟨v, w⟩2η

(︃ |v|
r̂0

)︃
dv = r̂m+2

0

∫︂
B(0,1)

v21η(|v|)dv = r̂m+2
0 ση.
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We obtain,

|A1(x)|2
(1 + βr)

2m+4 ≤ 1 + C(rmax(1 + βr))
2

ση r̂
m+2
0

∫︂
B(0,r̂0)

|φ(v)|2η
(︃ |v|
r̂0

)︃
Jx(v)dv

=
1 + C(rmax(1 + βr))

2

ση r̂(x)m+2

∫︂
M
η

(︃
dM(x, y)

r̂(x)

)︃
(f(y)− f(x))2dVolM(y)

Integrating this inequality with respect to ρ1−2/m(x)dVolM(x) and using the Lipschitz conti-
nuity of ρ, we obtain

∥A1∥2L2(M,ρ1−2/m VolM)
≤ (1 + βr)

2m+4 (1 + C(rmax(1 + βr))
2)

· 1

ση

∫︂
M

∫︂
M
η

(︃
dM(x, y)

r̂(x)

)︃ |f(y)− f(x)|2
r̂(x)m+2ρ(x)2/m−1

dVolM(y)dVolM(x)

= (1 + βr)
2m+4 (1 + C(rmax(1 + βr))

2)
1

ση
Er̂(f).

(4.23)

Regarding A2, first note that by Lemma 5.1 in [7] we have

(4.24) (1 + Cr2max)
−1 ≤ τ(x) ≤ (1 + Cr2max)

and also

|∇(τ−1)| ≤ Crmax

Therefore,

|A2(x)|2 ≤ |∇(τ−1)(x)|2τ(x)
∫︂
M
|f(y)− f(x)|2Kr(y)(x, y)dVolM(y)

≤ r2max

∫︂
M

1

r(y)m
η

(︃
dM(x, y)

r(y)

)︃
|f(y)− f(x)|2dVolM(y),

where the first inequality follows from Cauchy-Schwartz inequality and in the second one we
used

ψ(s) ≤ 1

ση
η(s), ∀s > 0.

Integrating the estimate for |A2(x)|2 with respect to ρ1−2/m(x)dVolM(x) while using the Lips-
chitz continuity of ρ we obtain

∥A2∥2L2(M,p1−2/m VolM)
≤ C(1 + rmax)

2r4maxEr(f) ≤ C(1 + βr)
m+2(1 + rmax)

2r4maxEr̂(f).

By combining the above with (4.23) and (4.24) estimates and the lower bound for τ we obtain
the desired inequality. □

We will apply Lemma 4.8 with r for which rmax, βr ≪ 1. In particular Er̂(f) (where r̂ is
to the first order equal to r) is greater than a quantity that up to leading order is equal to
σηD1−2/m(f). This is the reverse inequality to the one in Lemma 4.7.

Proof of Proposition 4.4. To prove the first inequality, let us start by recalling that rk(xi, xj) =
max{εk(xi), εk(xj)} where εk is defined as in (2.7). Recall also that for arbitrary u ∈ L2(µn)
we can write

bk(u) :=
1

n2

(︂nαm

k

)︂1+2/m∑︂
i,j

η

(︃ |xi − xj |
rk(xi, xj)

)︃
(u(xi)− u(xj))

2.
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Using the ∞-OT map ˜︁T between ˜︁µn and µn we can apply the change of variables formula to
rewrite bk(u) as

bk(u) =
(︂nαm

k

)︂1+2/m
∫︂
M

∫︂
M
η

(︄
| ˜︁T (x)− ˜︁T (y)|

max{εk( ˜︁T (x)), εk( ˜︁T (y))}
)︄
| ˜︁P ∗u(x)− ˜︁P ∗u(y)|2d˜︁µn(y)d˜︁µn(x)

=

∫︂
M

∫︂
M

1

ρ( ˜︁T (y))1+2/mε( ˜︁T (y))m+2
η

(︄
| ˜︁T (x)− ˜︁T (y)|

max{εk( ˜︁T (x)), εk( ˜︁T (y))}
)︄
| ˜︁P ∗u(x)− ˜︁P ∗u(y)|2d˜︁µn(y)d˜︁µn(x).

where for the last line we have used the definition of ε in (2.14). From Lemma 4.6 we know that

εk( ˜︁T (x)) ≤ ε( ˜︁T (x)) + Cε2max + Cεmax
˜︁δ + Cεmaxθ.

Moreover, using the smoothness of ρ and the definition of ε for x, y with |x− y| ≤ εmax we have

ε( ˜︁Tx) ≤ ε( ˜︁Ty) + C(ε2max +
˜︁δεmax).

Thus, if | ˜︁T (x)− ˜︁T (y)| ≤ rk( ˜︁T (x), ˜︁T (y)), we have | ˜︁T (x)− ˜︁T (y)| ≤ ε( ˜︁Ty) +C(ε2max +
˜︁δεmax) and

also

|x− y| ≤ dM(x, y) ≤ ε( ˜︁Ty) + C(ε2max +
˜︁δεmax + Cθεmax) + 2˜︁δ =: r(y).

It follows that

bk(u) ≤
∫︂
M

∫︂
M

1

ρ( ˜︁T (y))1+2/mε( ˜︁T (y))m+2
η

(︄
| ˜︁T (x)− ˜︁T (y)|

r(y)

)︄
| ˜︁P ∗u(x)− ˜︁P ∗u(y)|2d˜︁µn(y)d˜︁µn(x)

≤ (1 + C˜︁δ)(1 + C(ε2max +
˜︁δ + Cθεmax))

·
∫︂
M

∫︂
M

1

ρ(y)2/m−1r(y)m+2
η

(︄
| ˜︁T (x)− ˜︁T (y)|

r(y)

)︄
| ˜︁P ∗u(x)− ˜︁P ∗u(y)|2dVolM(y)dVolM(x)

= (1 + C˜︁δ)(1 + C(εmax +
˜︁δ

εmin
+ θ))Er( ˜︁P ∗u).

Let f ∈ L2(µ) and let u := ˜︁Pf in the above estimate to obtain

bk( ˜︁Pf) ≤ (1+C˜︁δ)(1+C(εmax+
˜︁δ

εmin
+θ))Er( ˜︁P ∗ ˜︁Pf) ≤ (1+C˜︁δ)(1+C(εmax+

˜︁δ
εmin

+θ))Er(f),

where in the last line we have used Jensen’s inequality to relate Er( ˜︁P ∗ ˜︁Pf) and Er(f). On the
other hand, from Lemma 4.7 we have

Er(f) ≤ (1 + Crmax)(1 + βr)
2m+4σηD1−2/m(f).

However for the function r defined above the quantity βr satisfies

βr ≤ Cεmax,

so

bk( ˜︁Pf) ≤ (1 + C(εmax +
˜︁δ

εmin
+ θ))σηD1−2/m(f),

proving in this way the desired inequality thanks to Remark 4.3.
The second inequality is proved very similarly using the lower bound in Lemma 4.8, which

allows us to show that

(4.25) Er( ˜︁P ∗u) ≤ (1 + C(εmax +
˜︁δ

εmin
+ θ))bk(u), ∀u ∈ L2(µn),

for r of the form r(y) = ε(y)− Cε2max − C˜︁δ − Cθεmax. Lemma 4.8 in turn allows us to bound

σηD1−2/m(˜︁Iu) with Er( ˜︁P ∗u) (up to leading order).
□
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Proof of Proposition 4.5. The first part follows directly from 1) in Proposition 4.1 since

D2(f) ≤ CD1−2/m(f),

given that we have assumed that ρ is bounded and also bounded away from zero.
For the second part, notice that for every f ∈ L2(µ) by Jensen’s inequality we have

(Λrf(x)− f(x))2 =

(︃
1

τ(x)

∫︂
M

1

r(y)m
ψ

(︃ |x− y|
r(y)

)︃
(f(y)− f(x))ρ(y)dVolM(y)

)︃2

≤ 1

τ(x)

∫︂
M

1

r(y)m
ψ

(︃ |x− y|
r(y)

)︃
(f(y)− f(x))2ρ(y)dVolM(y)

≤ C

∫︂
M

1

r(y)m
ψ

(︃ |x− y|
r(y)

)︃
(f(y)− f(x))2ρ(y)dVolM(y)

≤ C

∫︂
M

1

r(y)m
η

(︃ |x− y|
r(y)

)︃
(f(y)− f(x))2ρ(y)dVolM(y)

where the last inequality follows from (4.18). Multiplying by ρ(x) and integrating over all
x ∈ M we get

(4.26) ∥Λrf − f∥2L2(µ) ≤ Cr2maxEr(f),

where we have used again the fact that ρ is bounded and bounded away from zero. Taking r
to be

r(y) := ε(y)− 2˜︁δ
we continue as in the second part of the proof of (4.2) to obtain⃓⃓⃓

∥˜︁Iu∥L2(˜︁µn) − ∥u∥L2(µn)

⃓⃓⃓
≤ ∥Λ

ε−2˜︁δ ˜︁P ∗u− ˜︁P ∗u∥L2(˜︁µn)

≤
(︃
1 +

∥ρ− ˜︁ρn∥∞
ρmin

)︃
· ∥Λ

ε−2˜︁δ ˜︁P ∗u− ˜︁P ∗u∥L2(µ)

≤
(︃
1 +

∥ρ− ˜︁ρn∥∞
ρmin

)︃
· Cεmax

√︂
E

ε−2˜︁δ( ˜︁P ∗u)

≤ Cεmax

√︁
bk(u),

where for the third inequality we have used (4.26), and for the last one we have used (4.25).
Also, from (4.26)

∥˜︁Iu∥L2(˜︁µn) = ∥Λr
˜︁P ∗u∥L2(˜︁µn) ≤ C∥ ˜︁P ∗u∥L2(˜︁µn) = C∥u∥L2(µn),

and hence ⃓⃓⃓
∥˜︁Iu∥2L2(˜︁µn)

− ∥u∥2L2(µn)

⃓⃓⃓
≤ Cεmax∥u∥L2(µn)

√︁
bk(u).

Finally, we use (4.11) to compare ∥˜︁Iu∥2L2(˜︁µn)
and ∥˜︁Iu∥2L2(µ).

□

With Proposition 4.4 and 4.5 in hand, the proofs of Theorems 2.5 and 2.9 are exactly as in
the ε-setting and so we skip the details.

5. Convergence of eigenvectors in TL2 and convergence of graph Laplacian
embeddings

To establish Theorem 2.10 it will be convenient to recall the definition of the TL2 space
presented in [27]. Here we consider RL-valued functions.

We define the set

TL2(M;RL) :=
{︁
(γ,H) : γ ∈ P(M), H ∈ L2(γ;RL)

}︁
,

and the metric(︂
dTL2((γ,H), (˜︁γ, ˜︁H))

)︂2
:= min

π∈Γ(γ,˜︁γ)
∫︂
M×M

dM(x, y)2dπ(x, y) +

∫︂
RL×RL

|H(x)− ˜︁H(y)|2dπ(x, y).
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In the above P(M) denotes the space of Borel probability measures on M, and for γ ∈ P(M),
L2(γ;RL) denotes the RL-valued L2 functions with respect to γ. Γ(γ, ˜︁γ) denotes the set of
couplings or transport plans between γ and ˜︁γ. Notice that if we remove the second term on the
right hand side of the definition of dTL2 we get,

W 2
M(γ, ˜︁γ) := min

π∈Γ(γ,˜︁γ)
∫︂
M×M

dM(x, y)2dπ(x, y)

which is the square of the 2-Wasserstein distance between γ and ˜︁γ (using the intrinsic geometry
of M).

For our purposes, the key property of the TL2-metric is that it gives an upper bound for the
Wasserstein distance between induced embeddings.

Lemma 5.1. Let (γ,H), (˜︁γ, ˜︁H) ∈ TL2(M;RL). Then for all π ∈ Γ(γ, ˜︁γ) we have

W2(H♯γ, ˜︁H♯˜︁γ) ≤ ∫︂
RL×RL

|H(x)− ˜︁H(y)|2dπ(x, y),

where W2 is the 2-Wasserstein distance (w.r.t. to the Euclidean metric) between probability
measures on RL, and W 2

2 its square. In particular, it follows that

W2(H♯µ, ˜︁H♯˜︁γ) ≤ dTL2((γ,H), (˜︁γ, ˜︁H)).

Proof. To see this let π ∈ Γ(γ, ˜︁γ) and define

π̂ := (H × ˜︁H)♯π,

where H × ˜︁H is the map

H × ˜︁H : (x, y) ∈ M×M ↦−→ (x̂, ŷ) = (H(x), ˜︁H(y)) ∈ RL ×RL.

It is straightforward to see that π̂ ∈ Γ(H♯γ, ˜︁H♯˜︁γ). From the change of variables formula we see
that

W 2
2 (H♯γ, ˜︁H♯˜︁γ) ≤ ∫︂

RL×RL

|x̂− ŷ|2dπ̂(x̂, ŷ) =
∫︂
M×M

|H(x)− ˜︁H(y)|2dπ(x, y),

which implies the desired result.
□

Proof of Theorem 2.10. Let π∗ be an optimal transport plan between µ and µn, that is, π∗ is
such that

W 2
2 (F♯µ, Fn♯µn) =

∫︂
M×M

dM(x, y)2dπ∗(x, y).

From Lemma 5.1 we know that

W 2
2 (F♯µ, ˜︁Fn♯µn) ≤

∫︂
M×M

|F (x)− Fn(y)|2dπ∗(x, y) =
L∑︂
l=1

∫︂
M×M

|ul(x)− fl(y)|2dπ∗(x, y).

Using the regularity of the eigenfunctions fl we can bound the above with

2

L∑︂
l=1

∫︂
M×M

|ul(x)− fl(y)|2dπ∗(x, y) + 2C
L∑︂
l=1

∫︂
M×M

dM(x, y)2dπ∗(x, y)

≤ 2

L∑︂
l=1

∥ul − fl∥2L2(µn)
+ 2CLW 2

2 (µ, µn).

Combining with the results from Theorem 2.7 we get the desired inequality.
□
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(b) k-NN graph

Figure 1. Observed rates of convergence from numerical experiments on the 2-
dimensional sphere. We tested the first 8 non-trival eigenvalue/eigenvector pairs,
and averaged the errors over the two corresponding eigenspaces. The convergence
rates for the eigenvalues and eigenvectors (in L2) appear to be between second

and third order in ε and (k/n)1/m in (a) and (b), respectively.

6. Numerical Experiments

To test the convergence rates in our main results, we ran some numerical experiments on
the two dimensional sphere.1 The density is thus ρ = 1/((m+ 1)αm+1). The experiments used
n = 212 up to n = 217 = 131072 points independently and uniformly distributed on the sphere,
with the errors averaged over 100 trials. For the k-NN graph Laplacian, see (2.9), we set

k = n
4

m+4 ,

as required in (1.2) for our main convergence rates on k-NN graphs. For the ε-graphs we chose
ε to be the minimum distance to the kth nearest neighbor. This value for ε has the same scaling
as the lower bound for our convergence rates for ε-ball graph Laplacians given in (1.1). We
used a characteristic function kernel η = 1[0,1], which is to say we used an unweighted graph.
In this case ση = αm/(m+ 2).

We tested the convergence of the first 8 non-trivial eigenfunctions of the Laplace-Beltrami
operator, which in this case are the spherical harmonics, given unnormalized by v1(x) = x1,
v2(x) = x2, v3(x) = x3, v4(x) = x21−x22, v5(x) = x1x2, v6(x) = x1x3, v7(x) = x2x3, and v8(x) =
3x23 − 1, with corresponding eigenvalues λ1 = λ2 = λ3 = 2 and λ4 = λ5 = λ6 = λ7 = λ8 = 6.
We compared the absolute difference between the graph and continuum eigenvalues, and the
L2 norm of the difference between the spherical harmonics and graph Laplacian eigenvectors
over the graph. The eigenvector error was computed by restricting the spherical harmonics to
the graph, using a QR decomposition to find orthonormal bases for the subspaces spanned by
{v1, v2, v3} and {v4, v5, v6, v7, v8}, and then projecting the graph Laplacian eigenvectors to the
corresponding subspaces and computing the L2 norm of the residual. We then averaged the
errors over each eigenspace to simplify the presentation

Figure 1 shows the experimental convergence rates. A loglog regression reports experimental
convergence rates of O(ε3.1), O(ε2.4), O(ε2.8), and O(ε2.8) for the ε graph in Figure 1(a), and

O
(︂
(k/n)1.7/m

)︂
, O

(︂
(k/n)3.2/m

)︂
, O

(︂
(k/n)3.1/m

)︂
, and O

(︂
(k/n)3.1/m

)︂
for the k-NN graph in

Figure 1(b). These convergence rates are better than the linear convergence rates given in

1The code for the experiments is available online at https://github.com/jwcalder/kNNSpectralRates.
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our main results. We expect the uniform density on the sphere is a highly special case, and
convergence rates may be significantly worse in general.

7. Conclusion

In this paper we have obtained new results on the spectral convergence of graph Laplacian
operators built from random data towards weighted Laplace-Beltrami operators on smooth
compact manifolds without boundary. Our results contribute to the growing manifold learning
literature in several regards. First, we improve existing spectral convergence rates for Laplacians

based on ε-graphs in the regime
(︂
log(n)

n

)︂1/(m+4)
≪ ε≪ 1, showing that the spectral convergence

rate scales like ε with very high probability. Second, we analyze Laplacians based on k-NN
graphs, a setting where neither pointwise convergence rates nor spectral rates existed in the
literature.

Some directions that we believe are worth studying in the future and that stem from this

work include: 1) the improvement of the convergence rates in the regime
(︂
log(n)

n

)︂1/m
≪ ε ≤(︂

log(n)
n

)︂1/(m+4)
where our proof techniques fail to work; 2) the analysis of graph Laplacians

under less restrictive assumptions on the probability distribution underlying the data set. In
this direction it is of interest to extend the analysis to more general geometric settings (not
just compact, smooth manifolds without boundary) and to more general densities (for example,
relaxing the lower bound assumption).

Appendix A. Proof of Proposition 2.12

Proof. First we notice that for small enough but macroscopic (i.e. fixed) r > 0 we can find a
partition of M (up to overlaps of VolM measure zero) into closed sets V1, . . . , VL (L depends
on r) for which:

• For every l = 1, . . . , L, there is a bi-Lipschitz homeomorphism Φl : Vl −→ B(0, r/2) ⊆
Rm with bi-Lipschitz constant less than 18.

Such partition can be constructed using a covering of M with balls of radius r. The centers
of the balls can then be used to construct a Voronoi tessellation of M, inducing in this way
the sets Vi. This construction is presented in detail in Propositions 2 and 3 in [22]. Since the
regions Vi are bi-Lipschitz homeomorphic to B(0, r/2), we can also construct a bi-Lipschitz
homeomorphism

Φl : Vl −→ [0, r]m

with bi-Lipschitz constant less than C (which only depends on m).

Let ˜︁δ < r
4 and let us consider a partition of [0, 1]m into a collection of (m-dimensional)

rectangles ˜︁Q with diameter less than ˜︁δ and with aspect ratio no larger than 2. We construct
subsets Q of M by letting

Q := Φ−1
l ( ˜︁Q)

for some l = 1, . . . , L and some ˜︁Q. From the properties of the maps Φl it follows that the
collection of cells Q is a partition of M (the different cells are disjoint up to sets of VolM
measure zero) and satisfy:

(1) diam(Q) ≤ C˜︁δ.
(2) ˜︁δm ≤ C VolM(Q) ≤ Cµ (Q).

We can then let ˜︁ρn : M → be the piecewise constant density defined by

˜︁ρn(x) = µn(Q)

VolM(Q)
, x ∈ Q.
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It is clear that ˜︁ρn is indeed a density and moreover, for every x ∈ Q we have

|ρ(x)− ˜︁ρn(x)| ≤ ⃓⃓⃓⃓µn(Q)− µ(Q)

VolM(Q)

⃓⃓⃓⃓
+

1

VolM(Q)

⃓⃓⃓⃓∫︂
Q
(ρ(y)− ρ(x))dVolM(y)

⃓⃓⃓⃓
In particular,

∥ρ− ˜︁ρn∥L∞(µ) ≤
C˜︁δm sup

Q
|µn(Q)− µ(Q)|+ C Lip(ρ)˜︁δ.

From Chernoff’s bound one can get for all θ small enough,

P (µn(Q) ≥ (1 + θ)µ(Q)) ≤ exp

(︃
−nθ

2µ(Q)

3

)︃
≤ exp

(︄
−Cnθ

2˜︁δm
3

)︄
where in the last line we have used the fact that

ρminVolM(Q) ≤ µ(Q)

and that
C˜︁δm ≤ VolM(Q).

Likewise we can obtain

P (µn(Q) ≤ (1− θ)µ(Q)) ≤ exp

(︄
−Cnθ

2˜︁δm
3

)︄
,

and so

P (|µn(Q)− µ(Q)| ≥ θµ(Q)) ≤ 2 exp

(︄
−Cnθ

2˜︁δm
3

)︄
.

Taking a union bound, we deduce that

P (|µ(Q)− µn(Q)| ≥ θVolM(Q) ∀Q) ≤ L

θm
exp

(︂
−Cnθ2˜︁δm)︂ .

and as long as θ ≥ 1
n1/m we can replace L/θm above with n.

□
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