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Abstract—In this paper, we present a new channel coding
technique, namely sparse matrix codes (SMC), for URLLC
applications with the goal of achieving higher reliability, and
low decoding complexity. The main idea behind SMC is to
map the message bits to a structured sparse matrix which is
then multiplied by a spreading matrix and transmitted over
the communication channel over time-or frequency resources.
At the decoder, we recover the message from the channel output
using a low-decoding complexity algorithm which is derived by
leveraging and adapting tools from 2D compressed sensing. We
perform various experiments to compare our approach with
sparse vector code (SVC) and Polar codes for block error
rate (BLER). From our experiments, we show that for a fixed
code rate and reliability requirement (BLER), SMC operates at
shorter blocklengths compared to Polar codes and SVC.

I. INTRODUCTION

The goal of ultra-reliable and low latency communications
(URLLC) is to support applications with low-latency (sub ms)
and high-reliability requirements (order of 0.9999) [1], [2].
While LDPC, Polar, and convolutional codes are widely used
and deployed in contemporary communication systems, they
do not necessarily meet all the constraints required by URLLC
[3]. In this paper, we thus focus on two enablers for URLLC:
(i) low-complexity coding schemes to minimize latency, (ii)
utilization of time, spatial, and frequency diversity techniques
to enhance reliability [4].

A recent interesting work [5] proposed Sparse Vector Cod-
ing (SVC), in which message bits are encoded to a sparse
vector and the locations of the non-zero entries represent
the message. This sparse vector is spread into multiple re-
sources allocated in time or frequency using a spreading se-
quence/matrix. At the receiver, the decoding operation involves
the identification of the nonzero locations in the received
signal. Therefore, compressed sensing recovery algorithms
such as orthogonal matching pursuit (OMP) [6], and multi-
path matching pursuit (MMP) [7] can be leveraged to design
low complexity decoding techniques. For low-rate regimes, it
was shown in [5] that SVC outperforms polar codes in terms
of block error rate (BLER). In another line of works [8], [9],
Barron and Joseph propose Sparse Regression Codes (SPARC)
for efficient communication over additive white Gaussian noise
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channels. The main idea behind SPARC is mapping the mes-
sages to sparse vectors, such that each vector can be segmented
into multiple sections of equal lengths. Furthermore, every
section must satisfy the constraint of having exactly one non-
zero entry. Then, the codeword transmitted is the linear combi-
nation of columns of the spreading (or design) matrix. A wide
variety of decoders that are asymptotically capacity-achieving
have been proposed for SPARC in [10]-[13]. Moreover, the
decoding objective in SPARC, also motivated by principles of
compressed sensing (e.g., LASSO [14]), draws parallels with
the proposed methodologies used in SVC.

To provide further capacity gains and enhance reliability,
one can exploit spatial diversity using multiple-input multiple-
output (MIMO). Advantages offered when SVC is used in
MIMO systems have been studied in [15], in which the
authors demonstrate better decoding reliability with an
increase in the number of transmission antennas. In this
paper, we explore a generalization of SVC by mapping the
message bits to a structured sparse matrix. This in turn
provides more flexibility for both encoding/decoding as well
as for exploiting other resources for diversity (such as MIMO).

Main Contributions: We introduce sparse matrix codes
(SMC), a novel coding technique in which every message
is mapped uniquely to a sparse matrix with a fixed number
of non-zero rows and columns. Furthermore, we derive a
low-complexity decoding algorithm for SMC. The key aspect
of this decoding algorithm is that the non-zero rows and
columns in the sparse matrix can be recovered in-parallel.
From our experimental results, we show that SMC operates
at shorter blocklengths compared to Polar codes and SVC [5]
for a fixed code-rate and reliability. Our second contribution
involves the exploration of MIMO with SMC for enhancing
reliability by utilizing spatial diversity.

Notations: Vectors and matrices are notated in bold lowercase
and bold uppercase symbols, respectively. |-] denotes the
floor operation. || - || denotes the /s norm. 0 denotes all-zero
column vector. The message vector m is assumed to be a row
vector. det(X) denotes the determinant of X. x; denotes the
i column of X, unless stated explicitly. [z] denotes the set
{1,2,---,z}; and [z]\[y] denotes the set of all elements in
[z] not in [y]. (M, N)-MIMO system refers to M antennas at
the transmitter and N antennas at the receiver.
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Fig. 1: (a) End-to-End block diagram for communication using sparse codes (vector/matrix) [5], (b) Example sparse matrix

for parameters N; =6, No =9, K1 =2, Ky = 3.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a single-user communication system as illustrated
in Fig. 1(a). The codebook at the transmitter is designed as
follows: each message vector m € CM*1 is mapped to a
structured sparse matrix S € CNM1*N2 je, S = fi(m), for
some integers M, Ny, N, where fi(-) denotes the sparse
matrix mapping. We restrict S to be a sparse matrix with
K non-zero rows and K, non-zero columns. The input to
the communication channel X is then designed as X =
f2(S) = AS, where X € CI*N2 where, A € CF*M g
a spreading matrix used to spread S into multiple time or
frequency resources. The entries of A are sampled from either
a Gaussian or Bernoulli distribution. From the compressed
sensing literature [6], it has been shown that the columns
of A are orthogonal with high probability, and this property
allows us to design efficient decoding approaches inspired
by the compressed sensing recovery algorithms. The receiver
receives the channel output Y corrupted with additive white
Gaussian noise Z € C* V2 Specifically, the receiver receives
Y = Hf2(S) + Z, where Y € CL*N2, H € CE*L s the
channel matrix, which is an identity matrix when there is
no fading; and in presence of fading the entries of H are
assumed to be i.i.d across time and sampled from Rayleigh
distribution with an identity covariance matrix. For sparse
matrix codes (SMC), the block-length (p) and the code-rate
() are as follows:

s, () (2) |

LN,

P y = (D)
The goal of the receiver is to estimate m using the channel
output. The receiver comprises of support detection block g1 (-)
which outputs S (an estimate of S) from Y. Our goal is to
design a low-complexity decoder g; for SMC. Subsequently,
we obtain 1m (an estimate of m) by sparse de-mapping, such
that th = go(S). The performance of any code is characterized
by its rate and reliability (measured by the block error rate,

Pr(iir # m)).

ITI. SPARSE MATRIX CODES

In this section, we present the encoding and decoding algo-
rithms for SMC.
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Fig. 2: (a) Row support (A) and column support (p) vector
for sparse matrix codes depicted in Fig. 1(b); (b) Algorithm
to generate the codebook by mapping every message m to a
unique structured sparse matrix S.

A. Sparse Mapping

We now describe the sparse mapping function fi(-) that
maps each message m to a structured sparse matrix S. For
SMC with parameters Ny, Ky, No, Ko; we can encode
|log, ((gi) (gz))] bits of information. We denote the row-
and column-support of S by A and p, respectively. Here, A
is a column vector and p is a row vector. Furthermore, we
notate the set of indices of non-zero entries in XA and p by C
and R, respectively.

We first initialize X by assigning exactly K entries to 1,
and the remaining N; — K entries to 0. Likewise, p is
initialized by assigning K, entries to 1, and the remaining
Ny — K entries to 0. The sparse mapping algorithm generates
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the sparse matrices by iterating through all possible A and p.
That is, for each bit shift in X\, we iterate through all possible
p. The cardinality of the set of all possible g given Ny, Ko
is (). We repeat this until the sum of bit-shift operations in
both A and g equals mygyo) (the value of m in base-10). This
yields A, p of the sparse matrix S that corresponds to message
m. The sparse mapping algorithm for SMC for parameters
Ny =6, K1 =2, Ny =9, Ky = 3 is illustrated in Fig. 2(b).

B. Sparse Matrix Recovery

We now derive the recovery algorithm for SMC to recover m
from the channel output Y = [y y2 -+ - YN, |- We first express
the channel output Y as a function of the columns in S and Z
denoted by s; and z;, respectively; where ¢ = {1,2,--- , No}.

psn, t2zn,] (2

HA. Consider the set of indices of non-zero
rows R = {ry,79, -+ ,7k,} and the set of indices of non-
zero columns C = {¢y,¢o, -+, ¢k, }. Then, we have s; = A,
Vi € C, and s; = 0, Vi € [No]\C. The channel output Y in
(2) transforms to:

= [ps1+21 Psatza -

where, ¢ =

> itz jec
Yj = § i€R 3)
Z; otherwise

AR
Our proposed recovery algorithm leverages the form of chan-
nel output expressed in (3) to recover the non-zero rows
and columns of S. The recovery algorithm comprises of: 1)
Initialization, 2) Column recovery, 3) Row recovery; and we
next describe these steps.

1) Initialization: We obtain the initial estimates of R, C using
the fact that the columns of ¢ are orthogonal to each other
with high probability (this follows from the fact that columns
of A are orthogonal to each other with high probability). Then,
on multiplying every column in Y with the columns of ¢
normalized, we obtain Sin(i,7) = &: ' y;/|/¢4/% such that,

$i "
1+||¢’.||2zj7 i€eR,jeC
Sini (4,7) = &, ’ “)
7., otherwise
llpall>™

where, 4, 7 are the indices of the columns in ¢ and Y,
respectlvely Sml(z j) denotes the entry corresponding to the
" row and j% column of matrix Siy € CM* N2 (4) shows
that the indices in Slnl w1th large Values correspond to the
sparse entries in S. From Sml, we obtain A and [ (also C and
), which are the estimates of A and ., respectively.
2) Column recovery: We now use maximum likelihood esti-
mation to update our initial estimate C. In other words, we
choose C (an estimate of C) that maximizes the probability of
the channel output Y. That is,

€ = arg max P(Y|C) Q)
¢

The channel noise z; in (3) is L-dimensional Gaussian dis-
tributed as z; ~ N(0,X), and is i.i.d across time. Here, X

denotes the covariance matrix. Likewise, Vj € CZ we have
¢sj + 1z ~ N (@A, X). Therefore, one can obtain C when we
maximize P(Y|C) which is written as follows,

)11

e 3 Fi—oN) T yi—¢X)

J/2m)Ldet ()

icC
H e~ T=
\/W

On further simplifying (6), and substituting in (5), C can be
obtained by solving the following:

(©)

arg maxlogP(Y|C) =
c

argmm2< zlyi—yizlyi> @)

el

where, ¥; = yi — qbX That is, we can obtain ¢ by simply
picking K of the N2 columns in Y which yields lower values
of the term §,' X7'§; — y; | X~ ly;, for i € [N3]. The most
interesting aspect of (7) is its low decoding-complexity which
is utmost O(N, log N,). We next use € to update R which is
the estimate of R.

3) Row recovery: For recovering R, one can in principle
leverage any sparse vector recovery algorithm using one of
the following two approaches:

a) Aggregate Decoding: In this approach, we directly apply
sparse vector recovery on y, which is the concatenation of

columns in Y corresponding to C = {¢é1,és, -+, ¢k, }, such
that,
Yey
Ye.o
Ya = : &)
Yex,

b) Reduced Variance Decoding: Sparse vector recovery is
applied on y,,, which is the average across entries of columns
in Y whose indices correspond to the set C. That is,

Yo = 7 =Y ©

jel

This method provides better reliability due to the power
gain of the combined symbols as demonstrated for SVC in
[5]. Some of the known approaches for vector recovery are
orthogonal matching pursuit (OMP) [6], multi-path matching
pursuit (MMP) [7], Compressive sampling (CoSaMP) [16],
Basis pursuit [16], Tterative hard thresholding (IHT) [17].

Remark 1. Impact of the sequence of steps in Algorithm 1:
Since we can get the initial estimates [i, Xin Step 1, we can
also perform row-recovery in step 2 and column recovery in
step 3. We study the impact of ordering of row-and column-
recovery in Algorithm 1 on decoding performance in Section
Iv.

Authorized licensed use limited to: The University of Arizona. Download@i&n June 28,2022 at 16:56:10 UTC from IEEE Xplore. Restrictions apply.



2022 56th Annual Conference on Information Sciences and Systems (CISS)

Remark 2. Choice of row-recovery approach: The reduced
variance decoding offers two advantages over aggregate de-
coding because: (i) it has a lower decoding complexity; (ii)
Ya has a lower noise variance. In Section IV we discuss the
impact of choice of the row-recovery approach on the overall
performance of our proposed approach.

Remark 3. We note that the initialization step in Algorithm 1
is computationally cheap and is independent of the number of
non-zero rows and columns in S. However, the performance of
this step relies heavily on the coherence' of the matrix ¢ being
small and is therefore not the most effective way of row-and
column-recovery for SMC.

Algorithm 1 Sparse Matrix Recovery.

Input to the algorithm: Y, 5b Ni, No, Ky, Ky
1. Initialization (generate Sy, an initial estimate S)

for i = 1 to number of columns in ¢ do
for 7 = 1 to number of columns in Y do

Compute:
& o By
Sini(Zu?) - ||¢||;
end for
end for

Threshold entries in Siy; to detem}ine initial fz, X
2, Column recovery Determine C by solving:

arg min E (j’/iTEljli - yiTﬁlyi>
@ —
=l

3. Row recovery Apply vector recovery algorithm on either
of the following: (a) ya, (b) Vav.

Enhancing reliability using MIMO for URLLC: We consider a
(M, M9)-MIMO system with A/, antennas at the transmitter
and M, antennas at the receiver as shown in Fig. 3. We have
channel input designed as X = f»(S), where S € CN1* V2,
X € CMiLxN2 The channel output Y € CM2LxNao gt the
receiver is:

Y1 H1 Xl Zl
Y2 H2 X2 Z2
. = . |+ (10)
YL Hp| [ XL VA3
=Y —H -x -z

where, Vi € [L], X5 € CMi*M and Y; € CMexNz,
Z; € CM2xN2 g the additive noise at the receiver, and
H; € CM2*M ig the channel matrix. We directly apply
Algorithm 1 to recover the row and column supports of S.

In the next section, we present a comprehensive set of exper-
iments to study how the performance (i.e., decoding success)

1 ; s [{ps,05)|
Coherence of matrix ¢ is defined as r?;?;(i\\ EnE|

of SMC scales with an increase in transmitting as well as
receiving antennas.
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Fig. 3: SMC in (M;,M5)-MIMO system for URLLC.

IV. EXPERIMENTS
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Fig. 4: Performance comparison of SMC with Polar and SVC.
Shorter block-lengths are used for SMC compared to Polar and
SMC in both (a), (b), but at the same rate. In plot (a) we set
Peve = 1024, ppolee = 1024 and pgpe = 800. In (b) we set
Peve = 128, ppotar = 256 and pgme = 104.

A. Performance comparison with other codes

To show the advantages offered by the proposed sparse matrix
codes (SMC), we first compare with polar codes. In Fig. 4(a),
we use the code rate v = 0.01 across all codes. The block-
lengths for SVC, and Polar codes are pgy. = 1024, and ppojar =
1024, respectively. For SMC, the block-length is pgne = 800.
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The parameters of SMC are set to Ny =72, K1 =1, Ny =4,
Ky = 2; and for SVC the length of the sparse vector N = 72
with K = 2. The performance of SVC is evaluated for 2
repetitions. For polar codes, we set information block-length
to 11.

We use multi-path matching pursuit (MMP) [7] with reduced-
variance approach for row-recovery in SMC. For SVC, we
directly apply multi-path matching pursuit algorithm to recover
the sparse entries from the channel output. As seen from Fig.
4(a), SMC gives similar performance to Polar codes at a
given rate but at shorter block-lengths. In addition, SMC
outperforms SVC in terms of block error rate across all SNRs.
In the second result presented in Fig. 4(b), we set pgye = 104,
Ppolar = 256, and pg,. = 128. The code rate v ~ 0.10 for
both the codes. The parameters of SMC are set to N1 = 512,
Ky =1, Ny =4, Ky = 2. For SVC, we consider N = 16
and K = 8. For polar codes, the information length is 12
with CRC length 16. From these experiments, we note that
the SMC operates at much shorter block-lengths.

Remark 4. From the experimental results, we note that the
performance of SMC is better than Polar codes for smaller
SNR, particularly with shorter block-lengths but at the same
code-rate. SMC outperforms SVC with 2 repetitions (used to
get better power gain of the combined symbol [5] at half the
code-rate). Furthermore, we note that SMC can be viewed as

— S\

m—— SMC (column decoding in step 2)

m— SMC (row decoding in step 2)

102

T 6 5 < - (dB)e 2 El 0
(a) SMC with row-recovery performed first and
column-recovery performed first vs SVC

art Title o
— ROW 17075 (columin decoding in step 2)
Row errors (row decoding in step 2)

s Column errors (column decoding in step 2)
Colunm errors (row decoding in step 2)
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-7 -6 -5 -4 =3 59 21 )
wErranc _SCNEﬁmEaB) S —— 4

(b) Row-recovery and column-recovery etrors in
SMC with column-and row-recovery vs SNR.

Fig. 5: Impact of performing row-recovery first vs column
recovery first (i.e. in step 2 of Algorithm 1).

a principled method to combining repetition coding (i.e., along
the non-zero columns) with SVC without compromising on the
code-rate significantly.

Next, we study the impact of: (i) ordering of steps in Al-
gorithm 1, (ii) different row-recovery approaches, on the
performance of the recovery algorithms for SMC.

B. Performance analysis of Algorithm 1

For the scope of analysis of performance of SMC we set
N1 = 8, K1 = 4, NQ = 4, K2 = 2. We use SVC with
N = 15, K = 9. In addition, for SVC we use 2 repetitions
to obtain enhanced power gains as demonstrated in [5]. The
block-lengths of SMC, SVC are pgne = 120, pgye = 180,
respectively. The code rate v = 0.0667 for both the codes.
We use the MMP algorithm [7] for the row-recovery in SMC
and vector recovery in SVC. As seen from Fig. 5(a), we note
that Algorithm 1 yields a lower block error rate when column
recovery is performed in step 2. In addition, for this approach
the row-errors and column-errors are lower as seen in Fig.
5(b).

In Fig. 6(a), we use the same parameters of SMC as Fig.
5. We observe that the performance of Algorithm 1 is better
when a reduced variance row recovery approach is applied.

10°
m— Reduced variance decoding

m— Aggregate decoding

102

I .
7 -6 -5 4 3 -2 Sk 0
SR (dB)

(a) Reduced-variance decoding vs Aggregate de-
coding

.

——t—+———1

—— NMMP

m—— CoSAMP .S
— OMP IHT

. .
~F -6 -5 -4 3 2 L o
SNR (dB)

(b) Performance of MMP [7], OMP [6], CoOSAMP
[16], and IHT [17] for row-recovery.

Fig. 6: Impact of choice of row-recovery approach on decoding
performance.
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In Fig. 6(b), we note that the performance of the recovery
algorithm is similar when MMP [7] or CoSAMP [16], and
this outperforms the block error rate obtained using OMP [6]
or IHT [17]. However, there is more flexibility with MMP in
terms of decoding (i.e., selection of child nodes) [7] .

C. Enhancing Reliability using MIMO

— SISO
w— (3,3) — MIMO
— (10, 10) — MIMO

10? :
7 6 5 4 3 2 1 0

Fig. 7: Leveraging spatial diversity with MIMO to enhance
reliability of SMC.

We consider (M, M>)-MIMO system on Rayleigh fading
channel. We vary both the transmitting antennas A/; and the
receiving antennas Mo, We consider SMC with N; = 8§,
Ky =4, Ny = 4, K, = 2 with code rate v = 0.0667
and block-length pgn. = 120. As demonstrated in Fig. 7, we
note that spatial diversity using multiple antennas at both the
transmitter and receiver helps enhance the reliability compared
to the single-input single-output (SISO) setting.

V. DISCUSSIONS AND FUTURE DIRECTIONS

We propose a novel coding technique in SMC that provides
a gain in channel utilization per message at a fixed rate
and reliability requirement. To the best of our knowledge,
this is the first work exploring the use of sparse matrices
for transmission in the scope of URLLC. We also show
the applicability of our approach in the MIMO setting and
demonstrated enhancements in reliability obtained using
multiple antennas at both transmitter and the receiver. There
are several directions for future work, and some of them are
listed next.
One can explore adaptations of SMC to enhance its rate.
The message can be encoded in both position and symbols
in the sparse matrix similar to the work in [18] for SVC.
We know that incorporating the advantages of modulation
techniques to enhance reliability has been studied in [19].
One can easily adopt the same for SMC to get better decoding
reliability. Furthermore, the use of deep-learning techniques
to perform row-and column-recovery remains to be explored.
The efficacy of deep learning techniques has already been
demonstrated in [20] for SVC.
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