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ABSTRACT

We present a novel method for classification of Synthetic Aperture Radar (SAR) data by combining ideas from
graph-based learning and neural network methods within an active learning framework. Graph-based methods
in machine learning are based on a similarity graph constructed from the data. When the data consists of raw
images composed of scenes, extraneous information can make the classification task more difficult. In recent
years, neural network methods have been shown to provide a promising framework for extracting patterns from
SAR images. These methods, however, require ample training data to avoid overfitting. At the same time, such
training data are often unavailable for applications of interest, such as automatic target recognition (ATR) and
SAR data. We use a Convolutional Neural Network Variational Autoencoder (CNNVAE) to embed SAR data
into a feature space, and then construct a similarity graph from the embedded data and apply graph-based semi-
supervised learning techniques. The CNNVAE feature embedding and graph construction requires no labeled
data, which reduces overfitting and improves the generalization performance of graph learning at low label rates.
Furthermore, the method easily incorporates a human-in-the-loop for active learning in the data-labeling process.
We present promising results and compare them to other standard machine learning methods on the Moving and
Stationary Target Acquisition and Recognition (MSTAR) dataset for ATR with small amounts of labeled data.

Keywords: Active Learning, Synthetic Aperture Radar, Graph-Based Learning

1. INTRODUCTION

Synthetic Aperture Radar (SAR) utilizes the movement of an antenna over a distance from the target to capture
finer resolution images than standard radar. There are both phase and amplitude components of the signal
that in combination can provide more detailed information about the objects in the scene. Automatic target
recognition (ATR) of SAR data seeks to classify the objects of interest in such SAR images. Hand-labeling images
by human eye is an impractical and time-consuming task for large datasets. This makes SAR very amenable to
automated machine learning methods.

Supervised machine learning algorithms, such as deep learning, rely on an abundance of labeled data to learn
from. In many applications, labeling data can be quite costly, while unlabeled data is ubiquitous and easy to
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obtain. Semi-supervised learning (SSL) methods use both labeled and unlabeled data in the learning task and
aim to achieve good quality results with far less labeled data than fully supervised methods. A common way
to use the unlabeled data is through the construction of a similarity graph, which effectively leverages relations
between unlabeled datapoints for dimension reduction and classification tasks. The similarity graph structure
can be exploited with standard graph-based SSL techniques, such as label propagation,1 also called Laplace
learning, which propagates labels smoothly over the graph via a diffusion process involving the graph Laplacian.

A successful application of graph-based learning to image classification hinges on constructing a high-quality
graph that accurately encodes the similarities between datapoints, in this case SAR images, that are important
for the classification task at hand, while ignoring or suppressing differences between images that are due to
spurious noise or image acquisition artifacts. Since the raw pixel values are sensitive to noise, contrast, lighting,
or small shifts or rotations that commonly corrupt image data, it is important to apply a feature transformation
to the images before constructing a graph. Standard feature transformations include the Scale Invariant Feature
Transformation (SIFT),2 the scattering transform,3 or a pre-trained neural network.4 Several recent papers have
successfully used variational autoencoders (VAEs) for unsupervised feature extraction in hyperspectral imagery,5

SAR imagery,6,7 and for constructing similarity graphs in graph-based learning.8,9 VAE feature learning is an
unsupervised method that retains the power and flexibility of deep supervised learning, making it ideal for
problems with limited amounts of data.

In addition to constructing a high quality graph and considering the amount of labeled data available to a
classifier, the choice of training (labeled) points can significantly affect classifier performance. Active learning10

is a branch of machine learning that judiciously selects a limited number of unlabeled datapoints to query for
labels, with the aim of maximally improving the underlying SSL classifier’s performance. In applications like
ATR in SAR imagery, the chosen active learning query points are labeled by an oracle, or human in the loop,
such as a domain expert. These query points are selected by optimizing an acquisition function over the discrete
set of datapoints available in the unlabeled pool of data. Active learning can greatly increase the performance
of classifiers at very low label rates, and minimize the cost of labeling data with a human-in-the-loop.

In this work we present a novel pipeline for combining graph-based semi-supervised learning and VAE-based
feature extraction methods within an active learning framework to improve ATR in SAR imagery data. In
particular, we use a convolutional variational autoencoder (CNNVAE) to learn feature representations of SAR
images. The feature representations are used to embed the SAR images into a feature space where Euclidean
similarities are more meaningful for constructing a similarity graph. The CNNVAE feature embedding is com-
pletely unsupervised (i.e., requires no labeled data), so the method is compatible with active learning at low label
rates. We then focus on the pool-based active learning paradigm, wherein we iterate between (1) computation
of a SSL classifier given the current labeled data and (2) selection and subsequent labeling of unlabeled query
points identified by an acquisition function. We compare our method with various acquisition functions against
other standard machine learning methods on the Moving and Stationary Target Acquisition and Recognition
(MSTAR) dataset for ATR with small amounts of labeled data. Our main results show that our active learning
method for SAR data can outperform state of the art SAR classification methods while using only a fraction of
the labeled data used in existing approaches.

The rest of the paper is organized as follows. In Section 1.1 we overview previous approaches to ATR in SAR
imagery. In Section 2 we give the mathematical formulations of graph-based learning and active learning on
graphs. In Section 3 we describe our end to end pipeline for constructing graphs with the CNNVAE embedding
and applying active learning, while in Section 4 we present our results on the MSTAR dataset. Finally we
conclude in Section 5.

1.1 PREVIOUS WORK ON SAR DATA

The previous work on Automatic Target Recognition in SAR imagery is largely focused on the Moving and
Stationary Target Acquisition and Recognition (MSTAR) dataset,11 which is described in detail in Section 4.
The previous work can be split into pre-deep learning approaches that used hand-tuned features with some
basic machine learning methods, like support vector machines (SVM), and deep learning approaches that use
convolutional neural networks (CNN).



The pre-deep learning work dates back to the 1990s on using feature extraction with scattering models on
SAR imagery.12,13 Subsequently, researchers turned to basic machine learning techniques, including SVM,14

a combination of SVM and Adaboost,15 and other types of adaptive boosting.16 Other works have considered
filtering SAR imagery (with median filtering) for noise removal to aid in shadow detection.17 Finally, hand-tuned
covariance descriptor features were used to embed the MSTAR dataset into Euclidean space where SVM and
other classical machine learning techniques can be used for classification.18

Deep learning approaches are more recent in the literature. The main difficulty with applying deep learning
to SAR imagery, and specifically the MSTAR dataset, is that the dataset is quite small, containing less than 4000
grayscale images. Deep learning normally requires vast amounts of training data to work efficiently and avoid
overfitting. CNNs typically have a number of initial convolutional layers that are are used for feature extraction,
followed by a number of fully connected layers that map the features to class predictions. Due to the locality and
translation invariance of convolutional layers, the number of parameters per convolutional layer is quite small,
and it is often the case that the fully connected layers contribute the vast majority of parameters in a CNN.
This has led many researchers to propose modifications to the fully connected part of CNNs when training data
is limited.

An early technique involved augmenting a CNN with an initial sparse autoencoder layer that takes random
patches of SAR images as input, and reconstructs them under a sparsity constraint,7 presumably to remove
noise. The output of the sparse autoencoder was then fed into a CNN without any fully connected layers. The
All-Convolutional Networks (A-ConvNets) model was proposed in subsequent works,19,20 which aimed to reduce
the model complexity of CNNs by replacing the fully connected layers with convolutional layers in order to
prevent overfitting. Another approach adds additional regularization when training the CNN to prevent over-
fitting. Regularizations include max-norm regularization of convolutional kernels, special initialization methods
for network weights, and adapted learning rates for some priority classes.21 Another approach uses feature
extractors that are unsupervised, or only mildly supervised. The Euclidean Distance Restricted Autoencoder
method6 uses an autoencoder, in which the loss is modified to encourage training points from the same class to
have similar latent representations, to extract features from SAR imagery. The classification is then performed
on the autoencoder features with linear SVM. Other researchers have considered reducing model complexity by
simply using a standard CNN with as few parameters as possible.22

2. MATHEMATICAL FORMULATION

We now discuss the mathematical formulations of graph-based SSL and active learning that are used in this
paper.

2.1 GRAPH-BASED SEMI-SUPERVISED LEARNING

Consider an input set of d-dimensional feature vectors {x1,x2, . . . ,xn} =: X ⊂ Rd and a labeled set of indices
L ⊂ {1, 2, . . . , n} that identifies which inputs have observed labels {yj}j∈L. In ATR, the labels represent
classifications of the targets in the images, and so yj ∈ {1, 2, . . .K} represents the classification of input xi into
one of K classes. These labels can be represented by their corresponding one-hot encodings, ẽyj

∈ RK , where
ẽk is the kth standard basis vector in RK . Semi-supervised learning (SSL) is the task of inferring labels for the
unlabeled set U = {1, . . . , n} − L of data, given the known labels on L.

Graph-based methods for SSL leverage the geometric structure of a similarity graph imposed on the set of
feature vectors X of the inputs to infer the classification of the unlabeled data from the labeled data. We construct
a graph G(X ,W ) where the nodes represent the inputs X and the edges are represented by a similarity weight
matrix W ∈ Rn×n, with non-negative, symmetric weights Wij = Wji ≥ 0 that measure the similarity between
node vectors xi,xj . For example, a common similarity measure is the Gaussian kernelWij = exp(−∥xi−xj∥22/σ2)
with kernel width parameter σ > 0. The degree matrix D ∈ Rn×n of the graph is a diagonal matrix containing
the degrees of each node di =

∑︁n
j=1 Wij , along the diagonal.

Many graph-based methods for SSL utilize graph Laplacian matrices, such as the graph Laplacian matrix
L = D −W . Other graph Laplacian matrices are common, such as the symmetric normalized graph Laplacian



Figure 1. Flowchart for Active Learning Iterations.

Ln = I−D−1/2WD−1/2 and the random walk graph Laplacian Lr = I−D−1W . The matrices are positive semi-
definite operators with a non-trivial null space; if the graph is connected, then this null-space is one dimensional.
For a connected graph we order the eigenvalues of these matrices as 0 = λ1 < λ2 ≤ λ3 ≤ . . . ≤ λn with associated
real-valued eigenvectors v1, . . . ,vn ∈ Rn (See Ref. 23).

Various graph-based models have been proposed for inferring labels for the unlabeled data, wherein a graph
function u : X → RC provides information for inferring unknown labels from the labeled nodes (j ∈ L) according
the graph topology.1,8, 24 Laplace learning is a widely used method in graph-based semi-supervised learning,
originally proposed in Ref. 1, that seeks a graph harmonic function to extends the labels from the labeled nodes
to the unlabeled nodes. More recent methods have been developed that leverage the notion of a graph cut,
or graph total variation problem.25–28 For very large datasets and low label rates, Laplace learning can give
poor results, and several methods have been proposed that give more stable propgation of labels in this regime,
including p-Laplace methods for p > 2,29 reweighted Laplace learning,30,31 and Poisson learning.8 In our present
work, we will focus on applying Laplace learning once we have created an improved similarity graph via the
pipeline described in Section 3. Future work will focus on improving these techniques with more sophisticated
graph learning methods.

2.2 ACTIVE LEARNING

Active learning takes the next natural step from the semi-supervised learning problem by selecting currently
unlabeled points i ∈ U to then label via an oracle (i.e., human in the loop) to add to the labeled data and
thereby improve the underlying semi-supervised classifier. The active learning process described here iterates
between (1) solving for a graph-based semi-supervised classifier given the current labeled data (L, {yj}j∈L) and
(2) identify a query set Q ⊂ U of unlabeled points to then label and subsequently update the labeled data. The
query set Q is found by using a real-valued acquisition function A : U → R that quantifies how useful it would
be to label an individual unlabeled point xi, i ∈ U . We focus on sequential active learning, wherein the query
set contains only a single point at each iteration |Q| = 1, as opposed to batch active learning wherein multiple
points are selected at each iteration (i.e., |Q| > 1).

Active learning has been applied in various domains, and the associated active learning problem of identifying
which unlabeled points would be the “best” to label is an active area of research. Similar to other machine learning
domains like reinforcement learning, successful active learning requires a proper balance between exploration and
exploitation of the dataset.32 When few labeled data are available to the classifier, it is desirable for the acquisition
function to explore the extent of clustering structure of the dataset. Once the dataset domain has been properly
“explored”, then it is desired that the acquisition function selects datapoints that exploit the current classifier’s
decision boundaries to refine the exact boundaries between classes. Oftentimes, acquisition functions can be
viewed as either exploratory or exploitative, though it is desired that an acquisition function automatically
balance exploratory behavior first and then exploit.

Uncertainty sampling10 is a common acquisition function that chooses to label points of which the current
semi-supervised classifier is most uncertain. Variance reduction10,33,34 selects unlabeled points that would max-
imally reduce the variance in an associated Bayesian probabilistic model on the current classifier. Model change
methods32,35 use the amount by which the current classifier would change as a result of labeling an unlabeled
point to select query points. We apply these acquisition functions to the application of interest of ATR on SAR
data, and we describe them further in Section 4 where we present our results.



Figure 2. CNNVAE + Graph-Based SSL + Active Learning Pipeline. In the Data Preprocessing phase, we train a CN-
NVAE on the input SAR images and subsequently construct a similarity graph from the extracted latent representations.
In the Active Learning Process phase, we initially label some of the inputs and then proceed to iteratively (1) learn
graph-based classifiers and (2) identify and label previously unlabeled data.

3. GRAPH-BASED ACTIVE LEARNING PIPELINE

We now describe our novel data pipeline for applying graph-based active learning to SAR data. We utilize neural
network architectures called variational autoencoders36,37 to learn latent representations of the SAR images from
which we construct our similarity graph. Constructing similarity graphs from straightforward Euclidean distances
between raw images (including SAR images) fails to capture invariances (e.g., translations and rotations) in the
data and is susceptible to noise effects in the data collection process. We apply variational autoencoders with
the design of learning better latent representations of the SAR data for constructing the similarity graph which
we use to apply graph-based active learning. Our use of variational autoencoders to construct graphs for semi-
supervised learning is similar to previous work in graph-based learning,8 except that slightly different network
architectures are used in this work.

Variational Autoencoders36,37 (VAE) transform the input data to (usually) a lower-dimensional space via the
use of an “encoder” structure from which a “decoder” structure is designed to reconstruct the input data. The
encoder and decoder neural architectures we use involve convolutional layers, as is natural for input data with
spatial relationships like image data with translational and rotational invariances in the similarities. Hence, we
refer to our VAE architecture as a CNNVAE (Convolutional Neural Network Variational AutoEncoder).

Figure 2 shows our pipeline for processing the SAR data. We first train the CNNVAE to learn lower-
dimensional embeddings of the SAR imagery data, and then use the learned embeddings to construct a similarity
graph on the inputs. This similarity graph is then used for inferring the labels (classifications) of the unlabeled
data from the small amount of labeled data that we possess initially. We then apply graph-based active learning
acquisition functions in order to sequentially select unlabeled points for a human in the loop then label and add
to the labeled data.

3.1 GRAPH-BASED CLASSIFIERS

Once we have constructed a similarity graph from the CNNVAE representations of the SAR images, we then
apply Laplace learning1 to infer labels for the unlabeled data from a small set of initially labeled data. For our



experiments on the MSTAR dataset, we choose this initial set by selecting uniformly at random a single image
from each class. In applications, this reflects the reasonable assumption that we have at least one known example
of each possible class for our multi-class classification problem.

Laplace learning computes a graph harmonic function to extend the labels of the initial set to the rest of
the graph. That is, given the labeled set of indices L with labels {yj}j∈L, then with the corresponding one-hot
encodings {ẽyj

}j∈L, Laplace learning solves for a node function u : X → RC that satisfies{︄
u(xi)

T = 1
di

∑︁n
j=1 Wiju(xj)

T for i ̸∈ L
u(xj) = ẽyj

for j ∈ L.

The solution to this system of equations can be written in terms of the graph Laplacian L = D −W . Letting
LS,T denote the submatrix of L whose rows and columns are restricted to the indices in S ⊂ [n] and T ⊂ [n],
respectively. Without loss of generality, we may reorder the indices so that the first |L| nodes correspond to the
labeled nodes in L. Then, the solution u∗ can be written in matrix form

U∗ :=

⎛⎜⎜⎜⎝
u∗(x1)

T

u∗(x2)
T

...
u∗(xn)

T

⎞⎟⎟⎟⎠ =

(︃
Y

−LU,ULU,LY

)︃
,

where Y ∈ {0, 1}|L|×K is the matrix whose rows are the one-hot encodings of the corresponding labeled nodes.
By properties of graph harmonic functions, every entry of the solution U∗ is non-negative and one can identify
the resulting classifier as

y∗(i) := argmax
k=1,...,K

u∗(xi)k. (1)

Note that on the labeled nodes the classifier indeed recovers the proper classifications, i.e., y∗(j) = yj .

Furthermore, one can view the Laplace learning solution U∗ as the maximum a posteriori (MAP) estimator
of an associated Gaussian Random Field (GRF) over the set of nodes, where the node function on the unlabeled
set UU given the observed labels on L follows the conditional Gaussian distribution UU |UL = Y ∼ N (U∗

U , L
−1
U,U )

†.
This probabilistic perspective of Laplace learning forms the basis of various graph-based acquisition functions
for applying active learning with Laplace learning.38

The covariance matrix of the GRF associated with Laplace learning, C = L−1
U,U , provides a useful measure

of uncertainty in label inferences across the geometry of the graph, but is prohibitively costly to calculate for
larger datasets. One could consider a spectral truncation model for constructing a low-rank approximation
to this covariance matrix by using the first m < n eigenvalues and corresponding eigenvectors of the graph
Laplacian matrix L. However, the resulting covariance matrix is ill-conditioned for updating within active
learning iterations. As a result, we use a related graph-based model we term “Gaussian Regression” for obtaining
a low-rank covariance matrix that is computationally efficient and numerically stable for updating during the
active learning iterations. To be clear, we use Laplace learning for the underlying graph-based semi-supervised
classifier, but use the following model for estimating the variance and uncertainty over the unlabeled data an
acquisition function calculations in Section 3.2.

The Gaussian Regression39 (GR) graph-based model is the solution to the following optimization problem:

U∗
GR = argmin

U∈Rn×K

⟨U,LU⟩F +
1

γ2

∑︂
j∈L

∥u(j)− ẽyj
∥22,

with the hyperparameter γ > 0 and where ⟨·, ·⟩F denotes the Frobenius inner product between matrices of
compatible dimensions. The solution U∗

GR can be written in closed form:

U∗
GR =

1

γ2

(︃
L+

1

γ2
PTP

)︃−1

Y =:
1

γ2
CGRY,

†To clarify, we mean that the covariance of each column of UU shares the covariance matrix L−1
U,U



where the P ∈ R|L|×n is the projection matrix onto the labeled index set L. Futhermore, like Laplace learning,
the optimizer U∗

GR can be used to define a classifier as in Equation 1.

The GR model U∗ also can be identified with the MAP estimator of an associated GRF40 that follows
the Gaussian distribution U ∼ N (U∗

GR, CGR). Similar to the covariance matrix C = L−1
U,U of Laplace learning,

the GR covariance matrix CGR ∈ Rn×n is prohibitively costly to compute for use in active learning on larger
datasets. We use a low-rank approximation of CGR using the m < n smallest eigenvalues and their corresponding
eigenvectors of the graph Laplacian matrix L. Let

Λ := diag(λ1, λ2, . . . , λm), V := [v1,v2, . . . ,vm],

and we approximate the covariance matrix by32

CGR ≈ V

(︃
Λ +

1

γ2
V TPTPV

)︃−1

V T =: V ΣGRV
T . (2)

This low-rank approximation only requires the inversion of an m × m matrix, which size m < n the user is
allowed to choose and in practice can be chosen to be magnitudes of size smaller than the size of the dataset, n.

3.2 GRAPH-BASED ACQUISITION FUNCTIONS

We now discuss the graph-based acquisition functions A : U → R for applying in the active learning iterations
on the MSTAR dataset in Section 4. We apply Random Sampling, Uncertainty Sampling, VOpt, Model Change
(MC), and a novel acquisition function MCVOpt. Random sampling selects query points by sampling uniformly
at random from the unlabeled set at each iteration. Uncertainty Sampling10 selects query points that the current
graph-based classifier is the most uncertain about at each iteration, as quantified by the following measure of
uncertainty: Given the Laplace learning output u∗(xi) ∈ RK at the unlabeled node i ∈ U , calculate the margin
between the first and second largest elements of u∗(xi):

Margin(i) := y∗(i)−

(︄
argmax
k ̸=y∗(i)

u∗(xi)k

)︄
.

One can interpret a smaller margin to represent a node that has more uncertainty in the resulting classification
from Equation 1. There are various uncertainty measures one could apply for uncertainty sampling and our tests
showed similar results for each, although the margin calculation was the top performing. To fit into a unified
framework of maximizing acquisition functions to identify query points at each iteration, we therefore write the
Uncertainty Sampling acquisition function as

AU (i) = 1−Margin(i).

The VOpt33 acquisition function calculates the amount that the trace of the covariance matrix C = L−1
U,U

decreases as a result of adding an unlabeled point i ∈ U to the labeled set L. Owing to the computational
difficulties of using C or a spectral truncation to approximate C, we calculate VOpt using the low-rank approx-
imation of the GR covariance matrix in Equation 2 of Section 3.1. For an unlabeled point i ∈ U , the resulting
covariance matrix if i were to be added to the labeled set L can be written as:

C+k
GR ≈ V

(︃
Λ +

1

γ2
V TPTPV +

1

γ2
V Teie

T
i V

)︃−1

V T = V

(︃
Σ−1

GR +
1

γ2
V Teie

T
i V

)︃−1

V T .

This allows us to write

Tr

[︄
V

(︃
Σ−1

GR +
1

γ2
V Teie

T
i V

)︃−1

V T

]︄
= Tr

[︄(︃
Σ−1

GR +
1

γ2
V Teie

T
i V

)︃−1
]︄

= Tr [ΣGR]−
1

γ2 + eTi V ΣGRV Tei

⃦⃦
ΣGRV

Tei
⃦⃦2
2



Figure 3. Two example SAR images from MSTAR dataset. Pixels in SAR images are complex numbers represented in
polar coordinates. For each image, we show (from left to right), the magnitude image, the real part, and imaginary part,
of the SAR image.

by properties of the trace of a matrix, the orthonormality of the eigenvectors of the graph Laplacian‡, and the
Woodbury matrix identity. The first term of the final line of the above equation is a constant that is common
to the corresponding equation for each unlabeled index i. Therefore, our acquisition function for VOpt can be
written as

AV (i) :=
1

γ2 + eTi V ΣGRV Tei

⃦⃦
ΣGRV

Tei
⃦⃦2
2
, (3)

which only requires the storage of the m×m matrix ΣGR.

Model Change32,39 (MC) is a recently proposed graph-based acquisition function that quantifies the amount
by which the underlying graph-based model (e.g., U∗

GR) would change if an unlabeled point i were added to L
with the label y∗(i) predicted by the current model. Instead of recomputing the Laplace learning for every
possible combination of unlabeled point xi with pseudolabel y∗(i), we use the spectral truncation approximation
of the Gaussian Regression model to efficiently approximate this “model change” quantity. The MC acquisition
function can be written as

AMC(i) :=
∥u∗(xi)− ẽy∗(i)∥2
γ2 + eTi V ΣGRV Tei

⃦⃦
ΣGRV

Tei
⃦⃦
2
. (4)

Noting the similarity between Equations 3 and 4, we also consider a different acquisition that combines MC and
VOpt into the MCVOpt acquisition function:

AMCVOpt(i) :=
∥u∗(i)− ẽy∗(i)∥2

γ2 + eTi V ΣGRV Tei

⃦⃦
ΣGRV

Tei
⃦⃦2
2
.

We highlight the squaring of the 2-norm quantity that distinguishes this MCVOpt from the MC acquisition
function.

4. RESULTS

We now present our experimental results on the Moving and Stationary Target Acquisition and Recognition
(MSTAR) dataset.11 The source code to reproduce all our results is available online§. The graph-learning
algorithms were implemented with the GraphLearning Python package.41

4.1 DATASET DESCRIPTION

The Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset11 was collected by Sandia
National Laboratory in a project that was jointly sponsored by the Defense Advanced Research Projects Agency
(DARPA) and the Air Force Research Laboratory (AFRL) in 1998. For an overview tutorial of MSTAR, we refer
to.42 The dataset contains 6,874 images of 10 types of military vehicles (Armored Personnel Carrier: BMP-2,
BRDM-2, BTR-60, and BTR-70; Tank: T-62, T-72; Weapon System: 2S1; Air Defense Unit: ZSU-234; Truck:
ZIL-131; Bulldozer: D7). A Sandia X-band radar operating at 9.60GHz with a bandwidth of 0.591GHz was used
to collect the data; the range and cross range resolution were both 0.3047m. We follow a standard training and
testing split according to the angle at which the SAR data was collected; namely, the training data was obtained

‡resulting from the symmtry of L
§Source Code: https://github.com/jwcalder/MSTAR-Active-Learning
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at an angle of 15◦ while the testing data was obtained at 17◦. Given this pre-defined train and test split of the
data, we accordingly restrict the possible set of active learning query points at any iteration to belong to the
training set, and we only test the accuracy on the testing set.

4.2 PREPROCESSING

The original SAR images are of various sizes, and so the magnitude and phase images were all center-cropped to
88×88 pixels. A vast majority (> 99.8%) of the pixel values in the magnitude images are within the range [0, 1].
The pixels outside this range appear to be noise, and so we clipped the magnitude images to the range [0, 1]. We
then converted each magnitude and phase image-pair into a 3-channel image by taking the first channel to be
the magnitude image, and the second two channels to be the real and imaginary parts of the SAR image. More
precisely, if M is the magnitude image and P is the phase image, the 3-channel image is given by(︃

M,
1

2
(M cos(P ) + 1) ,

1

2
(M sin(P ) + 1)

)︃
.

This transformation ensures all image channels have pixel values in the range [0, 1], which is necessary for the
loss function in variational autoencoders. While we include the phase images, we experimented with using only
the magnitude images and found very similar results (an accuracy difference of less than 1%), indicating that the
phase images do not contribute a significant amount of information that is not already present in the magnitude
images. This finding agrees with previous work.22

4.3 CNN ARCHITECTURES

We trained both fully supervised CNNs and a CNN autoencoder on the 3-channel MSTAR data described in
Section 4.2. The fully supervised CNN architecture is quite standard. We used two convolutional layers, with 32
and 64 channels, respectively, with a 2× 2 max-pool after the first layer and a 4× 4 max-pool after the second.
We used ReLU activations in all networks. This results in 6400 convolutional features that are flattened and fed
into a fully connected neural network with two layers and 512 hidden units. We used dropout43 with rate 0.25
before the first fully connected layer, and dropout with rate 0.5 between the two fully connected layers, to help
prevent overfitting. We also used a batch normalization44 layer betweeeen the two fully connected layers. The
usual negative log liklihood classification loss was used, and the network was trained for 50 epochs.

The CNNVAE architecture is also quite standard, and follows closely the seminal work,37 with the fully
connected layers replaced by convolutional layers. In particular, we used 4 convolutional layers in the encoder,
with 8, 16, 32, and 64 channels, respectively. The last layer has a stride of 2 yielding 64 channels of 11×11 images
as output of the encoder. The decoder is symmetrically constructed, except with transposed convolutional layers.
The fully connected layers for learning representations had 128 hidden nodes and the latent dimension is 32.

4.4 GRAPH CONSTRUCTIONS

In order to apply graph-based learning, we follow previous work8 and build a k-nearest neighbor similarity graph
on the latent CNN and CNNVAE features. When we refer to the latent CNN features of either network, we
are referring to the output of the initial convolutional layers, once flattened into a vector. For the supervised
CNN, the latent CNN features have dimension 6400, while for the CNNVAE, the latent features have dimension
64 × 11 × 11 = 7744. We use an approximate k-nearest neighbor search¶ to efficiently perform the nearest
neighbor search in high dimensions. Instead of the usual Euclidean distance, we use the angular metric for the
k-nearest neighbor search, which is equivalent to normalization all the feature vector to unit norm and using the
Euclidean distance.

After performing a k-nearest neighbor search, we construct a self-tuning similarity graph with edge weights

wij = exp
(︁
−4|xi − xj |2/dk(xi)

2
)︁
,

where xi represents the latent CNN or CNNVAE features of the ith MSTAR image, and dk(xi) is the distance
in the latent feature space between xi and its kth nearest neighbor. We used k = 20 in all experiments and
symmetrized the weight matrix by replacing W with W +WT .

¶We use the Annoy Python package https://github.com/spotify/annoy.

https://github.com/spotify/annoy
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Figure 4. In (a) we show the test and train ATR accuracy over all 50 epochs of training the CNN using all the training data
(100%) as well as using just 10% of the training data. We clearly see overfitting, especially when only 10% of the training
data is used. In (b), we show a comparison of ATR accuracy on MSTAR for various machine learning algorithms. We
trained a CNN on increasing amounts of the training set’s data with corresponding ground-truth labels. At each amount
of labeled data, the CNN’s latent representations were extracted for the entire MSTAR dataset, and used to evaluate a
variety of machine learning algorithms. Applying Laplace learning at each level (CNN & Laplace) outperformed the other
chosen methods; CNN, linear SVM, and nearest neighbors (NN) with k = 5 neighbors. Furthermore, the accuracies for
Laplace learning using representations from the unsupervised CNNVAE are also plotted for comparison. In the regime
with small amounts of labeled data (less than 1000 labeled points), graph-based learning with the CNNVAE features
is clearly superior to all other methods, while for higher label rates, graph learning with the supervised CNN features
performed best. In particular, graph learning with CNN or CNNVAE features always outperformed a fully supervised
CNN classifier.

4.5 COMPARISON TO DEEP SUPERVISED LEARNING

We first present results on the efficacy of leveraging both the unsupervised CNNVAE representation learning for
improved graph construction and the graph-based semi-supervised learning classifier in our pipeline described in
Section 3 for this application of SAR imagery for ATR on the MSTAR dataset. We measure the utility of the
CNNVAE’s learned representations – which involved no label data – by comparing against the performance of
the representations from a supervised CNN trained on increasing amounts of labeled data from the predetermined
training set. For each percentage (5%, 10%, 15%, . . .) of labeled data selected uniformly at random without
replacement from the predetermined train set, we train a CNN and extract the corresponding latent features
for the entire MSTAR dataset. We train all CNNs for 50 epochs without early stopping. Figure 4(a) shows the
train and test accuracy over the training epochs using 10% and 100% of the training data. We see overfitting in
both cases, which is much more extreme in the former case. Looking ahead to Section 4.6, we can contrast the
fully supervised CNN with our active learning results that can obtain better than 99% accuracy with less than
10% of the training data.

After training the fully supervised CNN at different label rates, we then use these CNN representations to
evaluate a variety of machine learning algorithms: Support Vector Machine (SVM), nearest neighbors (NN) with
k = 5 neighbors, Laplace learning (where the graph is constructed from these latent features), and the original
CNN itself. For example, after training a CNN with N labeled points from the training set and the corresponding
latent representations of all 6,784 MSTAR images are extracted from this CNN, then each of the shown machine
learning classifiers are trained on those N labeled points (with the exception of Laplace learning which uses a
similarity graph defined on the whole dataset). The reported accuracies in Figure 4(b) are from evaluation on
the testing subset of the MSTAR dataset (i.e., those images obtained at an angle of 17◦). Applying Laplace
learning (CNN & Laplace, or the red circle curve) at each amount of labeled data clearly outperforms the other
chosen methods that use the CNN representations.



Figure 5. MSTAR Active Learning Results. With initially only one labeled point per class, 500 query points were chosen
sequentially according to the shown acquisition functions. MC, MCVOPT, and VOPT used γ = 0.5 and cutoff of m = 300
eigenvalues for the spectral truncated Gaussian Regression computations. Accuracy evaluated according to the Laplace
learning classifier.

Furthermore, we plot – in the blue triangle curve – the accuracies for Laplace learning using the unsupervised
CNNVAE representations for comparison. Figure 4(b) clearly shows that for all levels of labeled data, the graph-
based methods achieve superior performance. In the regime with smaller amounts of labeled data (less than
1000 labeled points), the CNNVAE representations actually give a higher accuracy for Laplace learning than the
supervised CNN representations. This suggests that the unsupervised representations from the CNNVAE are
indeed useful for constructing the similarity graph at the outset of the data processing pipeline where little to
no labeled data is available.

From these encouraging results, we proceed in Section 4.6 to introduce active learning into the labeling process
to further improve our graph-based pipeline for ATR in the MSTAR dataset. We briefly note that active learning
is arguably most useful for applications in which there is limited available labeled data initially. The inclusion of
a “human in the loop” (or domain expert) in real-world applications has the greatest impact in the early stages
of the active learning process – the marginal gains in classifier performance by expending the effort to label data
is greater when there are few labeled data. Supervised representation learning with a CNN requires a modest
to large amount of labeled data in order to learn effective latent representations of the input data, whereas the
unsupervised CNNVAE training we propose is accomplished as a preprocessing step without requiring any labeled
data initially. In important applications, the plethora of unlabeled data that is easily produced can be used to
straightforwardly train the CNNVAE a single time; the active learning process then allows the practitioner to
efficiently choose small amounts of labeled data to yield significant improvements in classification performance
without the need for continued retraining of deep learning architectures.

4.6 MSTAR ACTIVE LEARNING RESULTS

We now present our results from applying our novel graph-based active learning pipeline to the ATR task on
the MSTAR dataset. As described in Section 3, we use a CNNVAE to learn a 32-dimensional embedding of the
original 88 x 88 images. We then construct a similarity graph from these lower dimensional embeddings, from
which we then iteratively select new query points to add to the labeled data; we use Laplace learning as the
underlying graph-based classifier for accuracy evaluation.



Given the similarity graph constructed according to the pipeline described in Section 3, we perform exper-
iments as follows. A single point per class (i.e., 10 in total) is selected uniformly at random to comprise an
initially labeled set. This set is then used as the start for choosing 500 query points for evaluating each acqui-
sition function in the active learning process. After each point is selected and added to the labeled data with
its corresponding ground-truth label, the resulting accuracy in the updated Laplace learning model’s classifier is
recorded. For each acquisition function’s set of active learning iterations, an accuracy curve is produced in Figure
5 by averaging the accuracies over all 10 iterations. These accuracy curves represent how useful the correspond-
ing acquisition functions queries were for improving the underlying classifier’s performance in the trials. We use
hyperparameter values of γ = 0.5 and m = 300 (spectral truncation cutoff) for the acquisition functions MC,
MC-VOPT, and VOPT which utilize the spectral truncated Gaussian Regression model for acquisition function
evaluation (Section 3.2).

Since we have ground truth for MSTAR, the active learning queries use this information to provide the new
labels. Each trial used a different random seed to produce the single, initially-labeled point per class. The green
dotted line depicts the accuracy for the state-of-the-art CNN method19,21,22 for ATR on the MSTAR dataset
that was trained on the entire training set (i.e., with 3,671 labeled points).

With just 300 points labeled during the active learning process, our graph-based semi-supervised classifier
achieves the state-of-the-art CNN classifier accuracy! That is, with less than 10% of the labeled data that
are used by modern CNN classifier architectures, we can achieve state-of-the-art classification accuracy on the
MSTAR dataset. This is convincing evidence that our proposed graph-based semi-supervised classification and
active learning pipeline is a data-efficient and accurate methodology for application to SAR imagery.

By comparing the relative shapes of these accuracy curves, one can measure the relative utility of the given
acquisition functions. It is desired that the acquisition function yields the greatest initial increases in accuracy
while also ending in the highest overall accuracy. From Figure 5, we observe that each of the shown graph-based
acquisition functions are superior to random sampling in the earlier stages of the active learning process. They
each provide similar initial increases in accuracy for roughly the first 200 choices. Thereafter, while the VOpt,
MC, and MCVOpt acquisition functions’ corresponding accuracy curves level off at an overall accuracy of around
95%, Uncertainty Sampling continues to steadily improve to an overall accuracy of just over 97%. These results
suggest that Uncertainty Sampling is the superior choice of acquisition function for graph-based active learning
on the MSTAR dataset.

5. CONCLUSION

We present a novel machine learning pipeline for active learning with graph-based classification applied to to
SAR imagery data. With tests of ATR in the MSTAR dataset, our method proves to be very useful in leveraging
small amounts of labeled data to classify the images. Further directions include testing on other SAR imagery
datasets as well as improving the graph construction with other unsupervised representation learning methods.
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