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A B S T R A C T

Experimental studies have shown that the active particles of electrodes undergo phase transformations during
ion-insertion, which are accompanied by diffusion induced stresses that result in fracture at the particle surface.
Only a few studies have considered the effect that the surface stress has on the diffusion-induced stress that
occurs in electrode materials that undergo elastic deformations during ion-insertion, while no studies have
accounted for the effect of surface stresses in the case when plastic deformation is also present. In addition,
there are only few comprehensive studies on the competing effect between the surface stress and the strain
gradient during ion diffusion. The present work sheds light on the effect that the particle size has on the
stresses generated due to the phase transformations that take place during ion-insertion by accounting for
the surface residual stress with strain gradient elasticity or strain gradient plasticity. Due to the presence of
surface stresses, the stress on the particle outer surface can be significantly reduced. In particular, when the
residual surface stress and the surface elastic modulus are both positive, the hoop stress at the outer surface
remains compressive, whereas tensile stresses are required for crack formation. This work, therefore, indicates
that surface modification could be an effective approach for improving the structural integrity of electrodes
during the lithiation process. The additional consideration of strain gradients further reduces the value of the
equivalent plastic strain for elasto-plastic electrode particles. These findings render prospective insights for
designing next-generation mechanically stable phase transforming electrode materials.
1. Introduction

Li-ion batteries (LIBs) have gained increasing interest and attention
from researchers worldwide over the past two decades. Intensive efforts
are devoted in developing electrodes with a superior performance such
as high energy and power densities, as well as long cycle life. One of
the critical challenges in advancing energy storage technology is the
mechanical degradation/fracture that occurs during normal operation
of a battery, which results from phase transformations and volume
changes that occur during charging/discharging. Fracture of the active
particles (particles that accept the Li-ions) can lead to capacity loss and
ultimately failure of the battery. Due to the constant exchange of ions,
it is anticipated that diffusion-induced stress (DIS) is one of the main
factors causing capacity fade in electrode materials. One of the promis-
ing means to address these challenges is to exploit nano-structured or
nano-sized materials, as experiments have shown that they allow for a
significant improvement in the rate capability, cycle life and mechan-
ical stability. For example, nanostructured LiFePO4 powders (cathode
material) can provide a specific capacity of 123 mAh/g and 157 mAh/g
at discharge rates of 10 C and 1 C with less than 0.08% fade per
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cycle, respectively [1]. In the case of anodes, the first nano-Si composite
materials obtained by mixing nanometer-scale (78 nm) pure Si powder
(anode active material) and carbon black exhibited over 1700 mAh/g
reversible capacity at the tenth cycle [2]. Si exhibits volume expansions
that are over 300% upon the formation of lithium alloys, which leads
to fracture. An interesting and intriguing phenomenon is that there
exists a critical size below which no pulverization or fracture occurs.
For nanospherical Si particles, in situ experiments showed that the
critical diameter is about 150 nm [3], while for Si thin film electrodes,
the critical thickness is reported to be 100−200 nm [4]. In-situ and
ex-situ experiments have shown that fracture occurs, upon the first
maximum Li-insertion, at the external surface of Si or Sn particles [5,6].
Numerous nano-Si based anodes have, therefore, been fabricated which
allow for capacities over 1000 mAh/g for over 100 cycles. In addition to
nanospheres [7–12] and nanowires [13–16], other nanostructures such
as nanotubes [17–19], nanopillars [20–22] and nanofilms [23,24] have
been employed and they have demonstrated a highly reversible lithium
storage and excellent high-rate capability.
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Although extensive electrochemical research has been carried out
for various nanomaterials, a fundamental and comprehensive under-
standing of the deformation and fracture mechanisms has yet to be
achieved. Early mechanics studies focused on using linear elasticity and
linear elastic fracture mechanics for modeling stress and crack propaga-
tion during maximum ion-insertion, without explicitly accounting for
Li-ion diffusion, and were able to provide preliminary design criteria
for mechanically stable anodes [25–28]. Generally speaking, small
electrode particles experience small DISs [29–32] because the smaller
the particle, the more uniform the Li concentration in the electrode
and consequently the smaller the concentration gradient inside the
electrode. When the size is down to the nanoscale, the properties of
these nanomaterials can be quite different since many experiments
suggest that size reduction at the nanoscale is often accompanied by
changes in strength, hardness, or ductility when compared to their
bulk counterparts [29,33–36], due to the high surface/bulk ratio of
nanomaterials. The local environment of atoms at a free surface is
remarkably different from that of atoms inside the bulk material. For
atoms near the free surface, there is a redistribution of electronic
charges close to the surface due to missing bonds. Thus, the surface
layers cannot have the same elastic properties as those in the bulk.
As a result, the energy associated with those atoms is also different,
which is often termed surface free energy. Since only a few layers of
atoms are near the surface in macroscopic materials, the ratio of the
volume occupied by those atoms to the total volume of the bulk is
extremely small and this part of the excess energy is often neglected.
When it is down to the nanoscale, however, this excess energy portion
becomes significant. Hence, it can be expected that surface energies and
the resulting surface stresses would have a significant impact on the
DISs of nanoscale active particles. In particular, when this surface effect
is taken into account, the stress status might be different from that
predicted from traditional continuum mechanics. In [30] the effects
of surface stresses were examined and it was found that when surface
mechanics are considered, a compressive stress develops on the surface
instead of traction-free conditions, thus helping prevent crack growth.
The DIS in spherical core–shell electrodes was also investigated in [37]
by including the effects of surface/interface stresses, and it was shown
that DISs were significantly reduced by the residual surface tension,
making the electrodes more resistant to brittle fracture.

The main cause of fracture in electrode materials are the high
stresses that develop due to lithium intercalation/deintercalation. Many
models have been developed to capture this DIS [12,30,31,38–46],
based on the early model of [47] where the transverse stresses devel-
oped in a thin plate during mass transfer were modeled in analogy to
thermal stresses. However, only a few models take into account the
effect of phase transformations during lithium insertion.

The stress evolution in electrode particles undergoing phase sepa-
ration has been elaborately studied in previous works [48–53]. When
the electrode underwent elastic deformation during lithium insertion,
it was found that the radial stress was always tensile, while the hoop
stress was tensile in the core region and compressive in the shell [50].
And these stress states were the opposite for the de-insertion pro-
cess [48]. For some high-capacity electrodes undergoing large volume
expansions during Li-insertion, plastic deformation can take place. Both
in-situ measurements [54] and molecular dynamic simulations [55]
of the stress evolution in Si anodes during lithiation/delithiation have
revealed that yielding and plastic flow occur. When plastic deformation
was assumed, the radial stress showed a transition from tension in the
initial stages to compression at the later stages, while the surface hoop
stress changed from compression to tension in the later stages [51–
53,55]. These models, however, did not capture the size effects which
have been observed by many experiments.

It was shown in [56] that the effect of the hydrostatic stress is
significant for electrodes undergoing elastic deformation during Li-
insertion at the micro-scale, while surface/interface stresses cannot be
2

neglected at the nano-scale. In [57] the size-dependent migration of
two-phase lithiation in a 40 nm spherical Si particle was studied. The
model incorporated effects of surface/interface elasticity and it was
found that larger radial compression was predicted in a smaller particle
while the hoop stress was independent of the particle size. As a result,
the phase interface velocity was slower in the smaller particle when
plasticity was considered. In addition to capturing the stress reversal
in the hoop stress [3], a strong size dependence of the J-integral near
the crack tip was found, which showed that smaller particles can avert
fracture. However, similar size effects within a plasticity framework
have not been captured.

The most appropriate continuum models that can be used for cap-
turing size effects are those of gradient elasticity [58–60] and gradient
plasticity [61–65]. The first applications of such theories for elec-
trode modeling was done in [66] where it was possible to capture
size-dependent miscibility gaps by coupling gradient elasticity with a
chemo-mechanical theory for phase transforming species under diffu-
sion. A similar gradient elasticity framework was used to determine
the critical size of silicon nanowires that would inhibit fracture [67],
by considering two-phase lithiation. It was shown that a larger in-
ternal length lead to less sharp interfaces and faster diffusion. It was
also shown that the DISs due to lithium insertion were pretty high,
implying that plasticity is likely to take place at the early stages of
lithiation [66]. Gradient elasticity has also been applied recently for
single phase lithiation [68] in order to study the effects of particle
size on DIS within a purely gradient elasticity framework. The main
finding was that the DIS became higher as the internal scale (length)
increased. Gradient damage mechanics were also successfully employed
to predict the interparticle spacing between active particles that would
limit damage, and predict that graphene was the most promising matrix
material to stabilize the volume expansion of Sn anodes, which was in
accordance with experiments [69].

It has to be noted that the majority of the effort, thus far, has
concentrated on capturing either surface effects or gradient elasticity
effects. A comprehensive study of both effects has yet to be achieved.
Also, as it has been aforementioned, plastic deformation may occur
for electrodes under dramatic volume variations, but has yet to be
accounted for. In this work, both the surface effects and gradient effects
(elastic and plastic) on DIS will be considered. Our model is applied
to Li-ion batteries, but it can be used for any type of ion-batteries,
including Na-ion batteries.

2. Modeling and simulation results

The charge and discharge of LIB electrodes is accompanied by
volume changes. The volume expansion depends on the storage mech-
anism. The lithiation of conventional cathode active materials is done
via intercalation and the volume changes are usually very small. For
instance, LiFePO4 shrinks approximately 7% after full delithiation [70,
71]. For anode materials, the lithiation is done either by alloying or
conversion mechanisms. Particularly, for Si, which can store over 4.4 Li
mols (per Si mol) upon maximum lithiation, its volume expansion can
be as high as 420%, and as a result, considerable mechanical stress is
built up during lithiation or delithiation. In order to model the DIS, for
both anodes and cathodes, suitable constitutive equations are needed.

Since cathodes undergo a lower volume change during lithiation
they are assumed to remain elastic during intercalation. Therefore,
small deformation based on linear elasticity theory can be applied.
Anodes, however, undergo larger volume changes and the resulting
internal stresses would exceed the yield criterion. As a result, plastic
deformation can occur and plastic models would be more appropriate
for anode materials.

In classical continuum mechanics, the constitutive relations do not
include any characteristic (internal) length. Therefore, classical theories
cannot predict the dependence of material behavior on the sample size.

To have a better understanding of the material properties at the micro
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and nano scale, realistic models must take size effects, surface and in-
terface effects into account. Non-local theories bridge the gap between
classical elasticity/plasticity theory and molecular dynamic simulation
since new constitutive models which take size effects into consideration
can be established under classical continuum mechanics frameworks.
These models can be obtained by the principle of virtual power/work.
Another important feature of these models is their intimate relationship
with the Ginzburg–Landau theory of phase transitions and, for fluids,
van der Waals’ theory. Many researchers extended these models to
other fields (gradient damage/diffusion, etc.). They are widely used in
materials science for modeling microstructure evolution/solidification,
damage/fracture etc. This approach is called the phase field approach,
as it uses a smeared interface instead of a discrete interface. The
internal length agrees with the actual intrinsic thickness of the phys-
ical interfaces. Both nonlocal continuum models and the phase field
models can eliminate singularities in the study of structural defects
(dislocations, disclinations) in elasticity with higher-order gradients.

Many electrode materials exhibit phase segregation into lithium-
rich (Li-rich) and lithium-poor (Li-poor) phases respectively during
lithium insertion and de-insertion. For these materials, a core–shell
model is often used to model the diffusion process. It is often as-
sumed that the phase boundary moves in the radial direction and
the expansion is isotropic. During Li+ insertion, the core and shell

ould consist of Li-rich and Li-poor phases, respectively. Traditional
harp interface models lead to discontinuous concentration and stress
rofiles, and the discontinuities appear at the interface. As a result,
he moving phase boundary needs to be tracked and specific boundary
onditions need to be applied at the phase interface. To model the sharp
hase boundary, an alternative approach is by using the Cahn–Hilliard
ype diffusion equation. The model can be derived via a variational
ormulation approach. It is worth noting that the models within a local
ontinuum framework inherently fail to address the strain softening
ehavior as they result in mesh-dependent results and give further
ise to zero energy dissipation in the limit of vanishingly small mesh
izes [72,73]. Therefore, many non-local continuum theories have been
roposed and developed, aiming in overcoming these difficulties [74–
7]. Herein strain-gradient theories, which are capable of overcoming
he issues due to strain softening, will be employed to capture the size
ffects [59,78]. The surface effects are captured by employing surface
lasticity theories [79,80].

.1. DISs under elastic deformation

For the case of pure elastic deformation of the electrode during ion
nsertion, the system (total) free energy is given by:

= ∫𝛺
𝜓𝑏𝑑𝑉 + ∫𝛤

𝜓𝑠𝑑𝑆 (1)

here 𝜓𝑏 is the bulk free energy density, i.e., free energy per unit
eference volume, and 𝜓𝑠 is the surface free energy density, i.e. free
nergy per unit reference area. The electric contributions to the energy
re not considered. By not including all terms into the free energy, the
roblem is simplified. The bulk free energy density is :

𝑏 = 𝜓𝑏 (𝜺,∇𝜺, 𝑐,∇𝑐) (2)

here 𝑐 denotes the local nominal concentration (the number of lithium
ons, in moles per unit volume) of the diffusing species, and ∇𝑐 is
he concentration gradient of the chemical species (Li-ions). The linear
train tensor is given by : 𝜺 = 1

2

[

∇𝒖 + (∇𝒖)𝑇
]

or 𝜀𝑖𝑗 = 1
2

(

𝜕𝑢𝑖
𝜕𝑥𝑗

+ 𝜕𝑢𝑗
𝜕𝑥𝑖

)

where 𝒖 is the displacement field. The infinitesimal strain tensor is
adopted, and it should satisfy the displacement compatible conditions.
The gradient of the strain field ∇𝜺 is a third order tensor, given by:
𝜀 = 𝜕𝜀𝑖𝑗 . It is reminded that 𝒖 is the displacement of the particle
3

𝑖𝑗,𝑘 𝜕𝑥𝑘
located at 𝑥 in the reference configuration (the initial stress-free con-
figuration). The bulk free energy density is comprised of two parts:

𝜓𝑏 = 𝜓𝑚 + 𝜓𝑐 (3)

The energy density due to mechanical deformation is:

𝜓𝑚 = 𝜓𝑚 (𝜺𝑒,∇𝜺𝑒) = 𝜓𝑒 (𝜺𝑒) + 𝜓𝑔 (∇𝜺𝑒) (4)

ssume that the deformation is small so that the binary solid can be
onsidered as being linearly elastic, the elastic strain energy density
s 𝜓𝑒 (𝜺) = 1

2 𝜺
𝑒 ∶ C ∶ 𝜺𝑒, and the elastic strain tensor is 𝜺𝑒 = 𝜺−𝜺𝑐 .

𝑐 is the chemically induced strain tensor and is locally different due
o different local concentrations. For a homogeneous and isotropic
aterial, hydrostatic dilatation is assumed and it is given by 𝜺𝑐 =
(

𝑐∗ − 𝑐∗0
)

𝟏 where 𝟏 is a third-order identity tensor, C is a fourth-order
lasticity tensor, given by 𝐶𝑖𝑗𝑘𝑙(𝑐) = 𝜆(𝑐)𝛿𝑖𝑗𝛿𝑘𝑙+𝛬(𝑐)

(

𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘
)

with
(𝑐) and 𝛬(𝑐) being concentration-dependent Lamé constants, and 𝛿𝑖𝑗
s the Kronecker delta. 𝑐∗0 is a reference concentration, usually set as
. 𝛼 is the dilatation coefficient (analogous to the thermal expansion
oefficient), and is given by:

= 1
3
𝛯𝑐max (5)

where 𝛯 is the partial molar volume of lithium ions and 𝑐max is the max-
imum concentration in the Li/electrode system (i.e. at the fully lithiated
state), 𝑐0 is the initial concentration, 𝑐∗ is the normalized/relative
concentration, 𝑐∗ = 𝑐

𝑐max
. The normalized concentration is used to

characterize the relative saturation level of Li in an electrode (‘‘0’’
means no ions and ‘‘1’’ means maximum Li-ion insertion). The energy
contribution due to the strain gradient is given by:

𝜓𝑔 (∇𝜺𝑒) =
𝑙𝜀2

2
∇𝜺𝑒 ∶ C ∶ ∇𝜺𝑒 (6)

where 𝑙𝜀 is the internal length scale.
The energy contribution due to the concentration gradient on the

diffuse interfaces cannot be neglected. The chemical energy density is
given by:

𝜓𝑐 = 𝜓𝑐 (𝑐,∇𝑐) = 𝜓𝑐ℎ + 𝜓𝑐𝑔 (7)

where 𝜓𝑐ℎ is the homogeneous chemical free energy density (free
nergy density of a homogeneous system of uniform concentration).
he chemical contribution to the stored energy is assumed to have the
orm:
𝑐ℎ = 𝜓𝑐ℎ (𝑐) = 𝑅𝑇 𝑐max

[

𝑐∗ ln 𝑐∗ +
(

1 − 𝑐∗
)

ln
(

1 − 𝑐∗
)

+ 𝜒𝑐∗
(

1 − 𝑐∗
)]

+ 𝜇0𝑐 (8)

ere 𝑅 is the gas constant (8.314 J/K/mol), 𝑇 is the absolute tempera-
ure, 𝑅𝑇 denotes the specific molar energy (the energy per mole), 𝜇0 is
reference value of the chemical potential of the diffusing species (set

s 0 since it will not affect the diffusion behavior), and 𝜒 is the constant
artial molar volume. The contributions due to the sharp concentration
radient are usually neglected. Note that 𝜇0𝑐 corresponds to the internal
nergy due to the presence of lithium ions in their stable sites, not
nteracting with each other. The interface between the lithium-rich and
ithium-poor Li-rich and Li-poor volumes is related to misfits in the
rystal structure. Therefore, a penalty term involving a norm of the
radient of the phase-field is added into the free energy of the system
s:
𝑐𝑔 = 𝜅

2
|∇𝑐|2 (9)

here 𝜅 is the gradient energy coefficient [81,82]. The surface free
nergy is dependent on the surface concentration 𝑐𝑠 and the total
urface strain 𝜀𝑠. Based on surface elasticity theory, the following
urface free energy is adopted:

𝑠 = 𝛾 + 𝜏𝑠 ∶
(

𝜺𝑠 − 𝜺0
)

+ 1 (

𝜺𝑠 − 𝜺0
)

∶ C𝑠 ∶
(

𝜺𝑠 − 𝜺0
)

(10)
0 2
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Here variables with a superscript ‘‘s’’ are associated with the surface.
𝜀0 is the surface eigen-strain and 𝜀𝑠 − 𝜀0 gives the surface elastic strain,
𝜏𝑠 is the surface residual stress, C𝑠 is the surface elastic stiffness tensor,
and 𝛾0 represents the undeformed surface energy. The surface strain is
defined as:

𝜺𝑠 = 1
2

[

∇𝑠𝒖 +
(

∇𝑠𝒖
)𝑇

]

(11)

𝑠 𝒖 = ∇𝒖 ⋅ P is the surface gradient of displacement, P = 𝑰 − 𝑛 ⊗ 𝒏 is
the tangential projection tensor, 𝑰 is the second-order identity tensor,
⊗ represents a dyad, and 𝒏 is a unit vector normal to the surface
the projection tensor of an arbitrary point on a surface). The surface
radient in index form is: ∇𝑠𝒖 = 𝐷𝑗𝑢𝑖 =

𝜕𝑢𝑖
𝜕𝑥𝑘

(

𝛿𝑘𝑗 − 𝑛𝑗𝑛𝑘
)

. The surface
compositional (eigen-)strain can be written as:

𝜺0 = 𝛼𝑠
(

𝑐𝑠
∗ − 𝑐𝑠0∗

)

𝑰 (12)

here 𝑐𝑠∗ is the normalized surface concentration, 𝑐𝑠0∗ is the reference
urface concentration (usually set as 0), and 𝛼𝑠 is the compositional

strain coefficient of the surface. For the sake of simplicity, 𝛼𝑠 is taken
he same as the dilatation coefficient 𝛼 in the bulk.

The energy supply due to mass transport at the current time 𝑡 is
iven by:

= ∫

𝑡

0 ∫𝛺
𝜕𝑐
𝜕𝑡
𝜇𝑑𝑡𝑑𝑉 + ∫

𝑡

0 ∫𝜕𝛺𝑖
𝑱 ⋅ 𝒏𝑖𝜇𝑑𝑡𝑑𝑆 (13)

here 𝑱 is the Li-ion flux, 𝛺 is the volume of the electrode (only one
article is considered), 𝜇 is the chemical potential of lithium ions, 𝜕𝛺𝑖 is
he boundary for the lithium ion flux, and 𝒏𝑖 is the unit normal vector of
𝛺𝑖. dV and dS in the integral terms represent the volume and surface
ntegral, respectively. The gradient of the chemical potential is the
hemical driving force for diffusion, i.e., the gradient of the diffusional
otential of Li 𝜇 serves as the driving force for Li diffusion:

= −𝑴∇𝜇 (14)

here 𝑴 is the mobility tensor, which is generally a function of Li
oncentration 𝑐. For isotropic materials, it is assumed to have the form:

𝑴 = 𝑐∗
(

1 − 𝑐∗
)

𝑀𝟏 (15)

here 𝑀 is the solute mobility and is independent of time. The diffu-
ivity coefficient 𝐷 is given by: 𝐷 =𝑀𝑅𝑇 .

The work done by external loads is given by:

= ∫𝛺
𝒃 ⋅ 𝒖𝑑𝑉 + ∫𝜕𝛺𝑡

𝒕 ⋅ 𝒖𝑑𝑆 + ∫𝛤
𝒑 ⋅ 𝒖𝑑𝑠 + ∫

𝑡

0 ∫𝜕𝛺𝑖
𝑖𝜇𝑑𝑡𝑑𝑆 (16)

where 𝒃 is the body force density in the material, 𝒕 is the surface force
er unit area, often referred to as traction, 𝒑 is the external force density
long the curve 𝛤 per unit length in the material configuration, 𝑖 is
he concentration flux across 𝜕𝛺𝑖, and 𝜕𝛺𝑡 is the boundary for the
urface traction. ds in the integral term represents the line integral.
he regularized total potential energy for the given body 𝛺 subject to
oundary conditions is given by:

= 𝛹 − 𝑃 −𝑊 (17)

he principle of virtual power reads as [83,84]:

𝛱̇ = ∫𝛺
(𝝈𝑐 ∶ 𝛿𝜺̇)𝑑𝑉 + ∫𝜕𝛺𝑠

(𝝈𝑠 ∶ 𝛿𝜺̇𝑠)𝑑𝑆 + ∫𝜕𝛺𝜏
(𝝉 ∶ 𝛿∇𝜺̇)𝑑𝑆

−∫𝛺
𝜕𝑐
𝜕𝑡
𝛿𝜇𝑑𝑉 + ∫𝛺

𝑱 ⋅ 𝛿∇𝜇𝑑𝑉

−∫𝛺
𝒃 ⋅ 𝛿𝒖̇𝑑𝑉 − ∫𝜕𝛺𝑡

𝒕 ⋅ 𝛿𝒖̇𝑑𝑆

−∫𝛤
𝒑 ⋅ 𝛿𝒖̇𝑑𝑠 − ∫𝜕𝛺𝑖

𝑖𝛿𝜇𝑑𝑆

(18)

where 𝜕𝛺𝑠 and 𝜕𝛺𝜏 are the boundaries for the surface stress and the
higher order stress respectively. 𝛿𝛱̇ = 0 must hold for all admissible
variations. Integrating by parts and applying Green’s theorem, results
4

in the following governing equations and boundary conditions for the
coupled system:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝒕 = (𝝈𝑐 − ∇ ⋅ 𝝉) ⋅ 𝒏𝑡 −
(

∇𝑠 ⋅ 𝝈𝑠
)

+ (𝝈𝑠 ∶ K)𝒏𝑡 on 𝜕𝛺𝑡

∇ ⋅ ((𝝈𝑐 − ∇ ⋅ 𝝉))+𝒃 = 𝟎 in 𝛺∖𝜕𝛺𝑡

𝒖 = 𝒖̄ on 𝜕𝛺𝑢

𝑖 = 𝑱 ⋅ 𝒏𝑖 on 𝜕𝛺𝑖

𝜕𝑐
𝜕𝑡

+ ∇ ⋅ 𝑱 = 0 in 𝛺∖𝜕𝛺𝑖

𝜇 = 𝜇̄ on 𝜕𝛺𝜇

𝒑 = 𝝈𝑠 ⋅ 𝒏𝛤 on 𝛤

(19)

where 𝜕𝛺𝑢 and 𝜕𝛺𝜇 are boundaries for the displacement and chemical
potential, respectively. K is the curvature tensor (curvature tensor
of the surface), while 𝒏𝑡 and 𝒏𝜏 are the unit normal vectors of 𝜕𝛺𝑡

nd 𝜕𝛺𝜏, respectively. The displacement and the chemical potentials
emain constant values 𝒖̄ and 𝝁̄ across the boundaries. (In particular,
or a spherical electrode particle, it often means zero displacement and
ero ion flux at the center.) the state variables are:

𝑐 =
𝜕𝜓
𝜕𝜺

, 𝝉 =
𝜕𝜓
𝜕∇𝜺

, 𝝈𝑠 = 𝜕𝜓
𝜕𝜺𝑠

(20)

where 𝝈𝑐 is the classical stress tensor

𝝈𝑐 = 𝜕𝜓
𝜕𝜺

=
𝜕𝜓𝑒

𝜕𝜺
= C ∶ 𝜺𝑒 (21)

𝝉 is the higher order stress due to the strain gradient, and 𝝈𝑠 is the
surface stress tensor, given by:

𝝈𝑠 = 𝜕𝜓
𝜕𝜺𝑠

=
𝜕𝛾
𝜕𝜺𝑠

= 𝝉𝑠 + C𝑠 ∶
(

𝜺𝑠 − 𝜺0
)

(22)

For isotropic materials, the surface stress is

𝝈𝑠 = 𝝉0𝟏 + C𝑠 ∶ 𝜺𝑠 = 𝝉0𝟏 + 𝜆𝑠tr (𝜺𝑠) 1 + 2𝛬𝑠𝜺𝑠 (23)

where 𝜏0 is a constant surface stress that is strain-independent
(deformation-independent residual surface stress), 𝜆𝑠 and 𝛬𝑠 are surface
Lamé constants. For isotropic spherical particles deforming uniformly,
the surface stress may be written as:

𝜎𝑠𝜃𝜃 = 𝜏0 +𝐾𝑠𝜀𝑠𝜃𝜃 (24)

where 𝐾𝑠 is the surface modulus, 𝜀𝑠𝜃𝜃 is the hoop surface strain compo-
nent, 𝜏0 is the residual surface tension/compression under unrestrained
conditions and 𝐾𝑠 = 2

(

𝜆𝑠 + 𝛬𝑠
)

. The chemical potential is defined via
the variational derivative of the total free energy with respect to the
ion concentration, i.e,

𝜇 =
𝛿𝜓
𝛿𝑐

=
𝜕𝜓
𝜕𝑐

− ∇ ⋅
(

𝜕𝜓
𝜕∇𝑐

)

(25)

It should be noted that the diffusive model is adopted for the ion diffu-
sion process. Unlike sharp interface models, for electrode materials that
undergo phase transformations, the concentration profile obtained from
the phase field model is continuous across the body. For sharp interface
models, there is a concentration jump at the phase interface. There-
fore, additional boundary conditions are needed. The discontinuous
concentration profile also leads to a discontinuous chemical potential.
Consequently, additional state variables (surface concentration and sur-
face chemical potential) and boundary conditions are needed for those
sharp interface models. The phase field model reduces the complexity
of the formulation.

To avoid numerical difficulties caused by the logarithmic terms and
ensure numerical efficiency, polynomial approximations are usually
adopted in most studies [85–88]. In this work, the following polynomial
approximation is used:

𝜓𝑝𝑜𝑙𝑦
(

𝑐∗
)

= 𝑎0
(

𝑐∗ − 1
2

)4
+ 𝑎1

(

𝑐∗ − 1
2

)2
+ 𝑎2 (26)

with 𝑎0, 𝑎1, 𝑎2 being appropriate fit parameters. By definition, Eq. (26)
is a convex function and symmetric around 𝑐∗ = 1 . The equilibrium
2
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concentrations are denoted by 𝑐𝑟∗ and 𝑐𝑝∗, and the subscripts ‘‘r’’
and ‘‘p’’ represent the Li-rich and Li-poor phases respectively. The
physical meaning is that 𝑐𝑟∗ and 𝑐𝑝∗ correspond to the local minima of
the chemical free energy density under stress-free conditions. For the
sake of simplicity, constant mobility instead of degenerated mobility
(i.e., 𝑴 = 𝑀𝟏) is employed. In the current study, 𝜒 = 4.45 and the
equilibrium concentrations are 𝑐𝑟∗ = 0.99 and 𝑐𝑝∗ = 0.01. As a result,
the fit parameters are: 𝑎0 = 7.67, 𝑎1 = −3.64, 𝑎2 = 0.42 [89].

To solve for the diffusion, suppose the electrode is under gal-
vanostatic operation. The particle is charged galvanostatically, with a
uniform lithium flux through its free surface

𝑀
𝜕𝜇
𝜕𝑟

|

|

|

𝑟=𝜌 = 𝑖 on 𝜕𝛺𝑖 (27)

Here 𝑖 is the applied current density (per unit area) on the ion flux
boundary 𝜕𝛺𝑖, 𝐹 is Faraday’s constant (96 485 sA/mol), 𝑧 is the valence
number of a Li-ion (𝑧 = 1, the charge per one ion lithium), and 𝜌 is
the radius of the active particle. The variational boundary condition is
given by:

𝜅∇𝑐 ⋅ 𝒏𝑐 = 0 on 𝜕𝛺 (28)

with 𝒏𝑐 being the outward unit normal to the outer boundary 𝜕𝛺. It
should be noted that this boundary condition comes from the varia-
tional derivation. It will not appear in the weak formulation directly.
The weak form of the diffusion equation is given as:

∫𝛺
𝜕𝑐∗

𝜕𝑡
𝑣𝑑𝑉 = ∫𝜕𝛺𝑖

𝑖𝑣𝑑𝑆 − ∫𝛺
𝑀∇𝜇∇𝑣𝑑𝑉

∫𝛺
𝜇𝑤𝑑𝑉 = ∫𝛺

𝑅𝑇
[

4𝑎0
(

𝑐∗ − 1
2

)3
+ 2𝑎1

(

𝑐∗ − 1
2

)

]

𝑤𝑑𝑉

−∫𝛺
𝜅𝑐max∇𝑐∗∇𝑤𝑑𝑉

(29)

where 𝑣 and 𝑤 are arbitrary test functions.
In the present study, the aim is to study the size effect and surface

effect. The potential changes due to the stress field are neglected.
The formulation here does not seek to address the DIS variations due
to material softening. In this regard, concentration-independent Lamé
constants are assumed. The weak form of the governing (mechanical
equilibrium) equation is given as:

−∫

𝜌

0
𝛿𝑢

(

𝜕𝜎𝑒𝑟𝑟
𝜕𝑟

+
2
(

𝜎𝑒𝑟𝑟 − 𝜎
𝑒
𝜃𝜃
)

𝑟

)

𝑟2𝑑𝑟

= 2𝜌𝜎𝑠𝜃𝜃 (𝛿𝑢) |𝑟=𝜌 + ∫

𝜌

0

(

𝜎𝑐𝑟𝑟
𝜕 (𝛿𝑢)
𝜕𝑟

+ 2𝜎𝑐𝜃𝜃
𝛿𝑢
𝑟

)

𝑟2𝑑𝑟

+∫

𝜌

0
𝑙𝜀
2

(

𝜕𝜎𝑐𝑟𝑟
𝜕𝑟

+
2
(

𝜎𝑐𝑟𝑟 − 𝜎
𝑐
𝜃𝜃
)

𝑟

)

(

𝜕2 (𝛿𝑢)
𝜕𝑟2

𝑟2 + 2𝑟
𝜕 (𝛿𝑢)
𝜕𝑟

− 2 (𝛿𝑢)
)

𝑑𝑟

(30)

where superscripts ‘‘c’’ and ‘‘e’’ denote, respectively, the component
within the classical continuum mechanics framework (without strain
gradient effects) and the effective component when the strain gradient
effect is taken into consideration. The details are given in Appendix A.
For a spherical particle, the constitutive relations for the stresses (𝜎𝑐𝑟𝑟
and 𝜎𝑐𝜃𝜃) can be written as:

𝜎𝑟𝑐𝑟 =
𝐸

(1 + 𝜐) (1 − 2𝜐)

[

(1 − 𝜐) 𝑑𝑢
𝑑𝑟

+ 2𝜐 𝑢
𝑟
− (1 + 𝜐) 𝛼𝑐∗

]

𝜎𝜃𝑐𝜃 = 𝐸
(1 + 𝜐) (1 − 2𝜐)

[ 𝑢
𝑟
+ 𝜐 𝑑𝑢

𝑑𝑟
− (1 + 𝜐) 𝛼𝑐∗

]

⎫

⎪

⎬

⎪

⎭

(31)

here 𝐸 is the Young’s modulus, 𝜐 is Poisson’s ratio, 𝑢 is the ra-
ial displacement, and 𝛼 is the expansion coefficient of the spherical
article.

By solving the diffusion equation, the concentration can be ob-
ained. Then substituting the constitutive equations into the weak form,
he radial displacement can be solved. The numerical implementa-
ion details are given in Appendix B. In the simulation, dimension-
ess/normalized variables are used as shown in Table 1, where 𝑡0 =

𝜌2

𝐷
is the characteristic time.
5

Table 1
Normalized/dimensionless variables.

Name Symbol Normalized variable

Normalized gradient coefficient 𝜅∗ 𝜅cmax∕
(

𝑅𝑇𝜌2
)

Normalized mobility 𝑀∗ 𝑀𝑅𝑇 𝑡0∕𝜌2

Normalized time 𝑡∗ 𝑡∕𝑡0
Normalized radial distance 𝑟∗ 𝑟∕𝜌
Normalized stress components 𝜎𝑖𝑗 ∗ 𝜎𝑖𝑗∕𝐸
Normalized chemical potential 𝜇∗ 𝜇∕ (𝑅𝑇 )
Normalized ion flux 𝑖∗ 𝑖𝜌∕

(

𝑧𝐹𝐷𝑐max
)

Normalized partial molar volume 𝛯∗ 𝛯𝐸∕ (𝑅𝑇 )

2.1.1. Parametric study of surface elasticity for elastic solids
One major difficulty when it comes to surface elasticity is the choice

of the surface Lamé constants. Depending on the material, the surface
elastic constants can be either positive or negative. This is due to the
fact that a surface cannot exist on its own. It is the surface energy
plus bulk energy that ensures its overall stability, i.e., the total energy
needs to satisfy the positive definiteness condition [90]. The ability
of the surface modulus to be negative has been shown via atomistic
simulations [91]. Surface moduli are positive/negative if the interface
is less/more compliant than the bulk, respectively [92]. To study the
effects of these parameters, the DISs of a spherical LiFePO4 particle

ith a 10 nm (𝜌 = 10 nm) radius are analyzed. Since LiFePO4 is
brittle material, it can be assumed that it undergoes only elastic

eformation, during the first lithiation process. Furthermore, no plastic
eformation has been observed after the first cycle of LiFePO4. The
nterface thickness between the unlithiated core and lithiated shell is
ssumed to be 5 nm [93]. The parameters used are are as follows: E
124.5 GPa, 𝜐 = 0.25, 𝑀∗ = 1, 𝑖∗ = 1, 𝜅∗ = 0.0625, 𝛯 = 2.9 × 10−6
3/mol, 𝑐max = 2.29×104 mol∕m3, T = 300 K, 𝛥𝑡 = 0.0005, 𝛼 = 0.0221,
= 10−14 m2/s [94].
As can be seen from Fig. 1(c), the concentration profiles are similar

t different time steps due to neglecting chemo-mechanical coupling
nd material softening effects. I.e, the concentration profile is constant
n the core and shell but the magnitude changes, as it goes through a
ransition at the interface between the two regions, as seen in Fig. 1(c).
he interface moves inward as lithiation proceeds. For the DISs, the
onventional boundary condition for the radial stress is traction free at
he free surface, which corresponds to the case 𝜏0 = 0 and 𝐾𝑠 = 0.
n addition to the case for the conventional traction free boundary
ondition at the free surface, 6 different cases for 𝜏0 = ±1 N/m and
𝑠 = 0, ±5 N/m are investigated [30]. Both radial and hoop stresses
ave similar profiles as those in the conventional case (𝜏0 = 0 and
𝑠 = 0), and only differ in magnitudes. For instance, when the residual

urface stress is tensile (𝜏0 = 1 N/m), the radial and hoop stresses
ill be both in compression at the outer surface whereas when the

esidual surface stress (as shown in Fig. 1(a)–(b)) is compressive (𝜏0 =
−1 N/m), the radial and hoop stresses will be both in tension at the
free surface. When 𝜏0 is fixed, there is only a slightly difference, and
the DIS decreases a little bit as 𝐾𝑠 increases. To further understand the
effects of the residual surface stress 𝜏0 and surface modulus 𝐾𝑠 on the
radial stress during ion insertion, the constitutive relation (Eq. (24))
for surface stress–strain may be revisited. The surface stress consists of
two parts: the residual surface stress under unrestrained conditions and
the diffusion induced stress due to surface elasticity. From Eq. (12), the
maximum hoop surface strain occurs when full insertion is complete.
In this case, the maximum value of 𝜀𝑠𝜃𝜃 is equal to 𝛼𝑠 (𝛼). For active
materials undergoing relatively small volume variations, when 𝜏0 and
𝐾𝑠 are of the same order of magnitude, 𝐾𝑠𝜀𝑠𝜃𝜃 is much less than 𝜏0.
As a result, 𝜏0 predominates the surface stress over 𝐾𝑠. To have a
better picture of the influence of the surface modulus on the DISs, the
radial and hoop stress profiles for a spherical LiFePO4 particle with
radius 5 nm at the time step 2000 𝛥𝑡 is given in Figure E.9. All the
parameters are the same as in the 10 nm case except for the surface

0 𝑠
moduli (𝜏 = 2 N/m and 𝐾 = 0, ±10 N/m) and interface thickness
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Fig. 1. (a) Normalized radial stress, and (b) hoop stress profiles at 2000 𝛥𝑡 with different surface elasticity parameters (residual surface stress 𝜏0 and surface modulus 𝐾𝑠, with
units N/m) in a spherical LiFePO4 particle of radius 10 nm. (c) Radial distribution of normalized concentration at 1000 𝛥𝑡, 2000 𝛥𝑡 and 5000 𝛥𝑡 in the particle.
(2.5 nm). From the viewpoint that a tensile hoop stress is required for
crack formation and propagation, the results immediately suggest that
the residual surface tension may help avert crack growth during the
lithium insertion process. The reason is that residual surface tension can
convert the state of stress from tensile to compressive. As a result, the
tendency to fracture can be reduced. To a lesser extent, by increasing
the surface modulus, the radial and hoop stresses can decrease, making
them less tensile or more compressive. This can be done by surface
engineering of the particles.

2.1.2. DISs for elastic solids with surface elasticity only
To study the size effects, the DISs in spherical LiFePO4 particles

with different radii (𝜌 = 10, 20, 50, 100 nm) are studied. To make the
study less complicated, first we consider surface elasticity only, i.e., 𝑙𝜀 =
0. The parameters are the same as in the previous parametric study
except for 𝜅∗ = 0.0625, 0.015625, 0.0025, 0.000625, respectively, 𝜏0 =
1 N/m, and 𝐾𝑠 = 0. The concentration distribution can be obtained by
solving the weak form of Eq. (29). Then, the displacement field can
be obtained by solving the weak form of the mechanical equilibrium
Eq. (30). As a result, the stress evolution can be acquired by substituting
the displacement field into the constitutive Eq. (31). The stress profiles
and concentration distribution along the radial direction are plotted in
Fig. 2:

It is evident from Fig. 2 that the concentration distribution is a
step-like profile. Ion diffusion is ‘‘easier’’ in smaller particles, which in
turn have a smooth interface between the lithiated and non-lithiated
regions. Increasing, however, the particle radius results in a sharper
interface. The DISs also have similar profiles; for the radial and hoop
stresses, they remain constant in the core region (pristine part) and the
radial stress equals the hoop stress for the same particle. The smaller
the particle, the lower the stress it experiences. From the inner core
towards the outer surface, there is a smooth transition in the radial
stress from tensile to compressive while there is an abrupt change for
the hoop stress across the interfaces. It can be also observed that when
the radius is large enough, the boundary condition for the radial stress
at the outer surface degenerates to the conventional stress-free one. Due
to spherical symmetry, the hoop stress is equal to the radial stress in the
core region. It is obvious that size effects exist, since the hoop stress in
6

a 100 nm particle was 17.8% (0.0157) greater than that (0.01332) in a
10 nm particle. Brittle fracture is generally governed by the maximum
tensile principal stress. Due to spherical symmetry, the tensile principal
stress is equal to the radial/hoop stress in the core region. If the tensile
principal stress is greater than a critical value, a crack may begin to
nucleate. In this sense, particles with a smaller radius will have a more
robust mechanical performance.

2.1.3. DISs for elastic solids with coupled surface elasticity and gradient
elasticity

As can be seen from the above discussion, that size effects are
prominent when the particle size is at the nanoscale. At such scales,
the strain gradient cannot be neglected. The characteristic internal
length (𝑙𝜀) in gradient models is normally much smaller than the
macroscopic length scale. As a result it cannot be easily determined
and obtained and it is often assumed that (𝑙𝜀) is a material constant
that is related to the microstructure. It was estimated that for an
atomic lattice: 𝑙𝜀 = 0.25ℎ, where ℎ is the lattice constant [95]. The
lattice constant ℎ can range from 10−8 m for some crystal lattices
to 10−4 m for some granular materials [96]. Since the particles are
all at the nanoscale, the characteristic internal length is chosen to
be 2.5 nm. The other parameters are the same as in the case when
considering surface elasticity only. To gain a better understanding of
the influence of the strain gradient, a comparison between the two
cases (with/without considering strain gradient effects) is performed.
These two cases will be referred to as GradSEla (𝑙𝜀 = 2.5 nm) and SEla
(𝑙𝜀 = 0), respectively. It is emphasized that both of these cases consider
the surface elasticity terms, but GradSEla considers the gradient term as
well. For dimensional consistency the gradient term is multiplied by an
internal characteristic length (𝑙𝜀), and therefore setting it equal to zero
dispenses with the gradient effect. Eq. (30) can be solved incrementally
as shown in Appendix B. The stress profiles for particles with different
radii of 10, 20, 50 and 100 nm are plotted in Fig. 3.

It can be recognized that there is a visible difference in DISs for
smaller spherical LiFePO4 particles. An interesting finding is that when
strain gradient effects are considered, higher radial and hoop stresses
are predicted compared to the surface elasticity case only. Considering
that the DISs at the outer surface predicted with GradSEla might be
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Fig. 2. Normalized radial distribution of (a) Normalized concentration, (b) Radial stress, and (c) hoop stress profiles in spherical LiFePO4 particles with different radii (𝜌 = 10,
20, 50, 100 nm respectively) at 2000 𝛥𝑡.
Fig. 3. Normalized stress profiles of a spherical LiFePO4 particle with (a) 10 nm, (b) 20 nm, (c) 50 nm, and (d) 100 nm radius respectively when considering coupled surface
elasticity with gradient elasticity (GradSEla) and surface elasticity (SEla) only at 2000 𝛥𝑡. Solid line for SEla and dashed line for GradSEla.
quite different from those predicted with surface elasticity (SEla) only,

it is important to take strain gradient effects into account especially

for smaller particles. For larger particles (50 nm and 100 nm), the

difference in stresses predicted between the two models is negligible. It

should be clear from the considered examples that size effects are more

obvious when the internal length is comparable to the particle size.
7

2.2. DISs under plastic deformation

The model does not take kinematic hardening and viscous effects
into account, i.e. a quasi-static problem is solved. In the small defor-
mation framework, the total strain 𝜺 can be additively decomposed
into three parts: mechanical elastic strain 𝜺𝑒, chemically-induced elastic
strain 𝜺𝑐 and plastic strain 𝜺𝑝:

𝜺 = 𝜺𝑒 + 𝜺𝑐 + 𝜺𝑝 (32)
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For plasticity problems, it is better to use the rate form:

𝜺̇ = 𝜺𝑒 + 𝜺𝑐 + 𝜺𝑝 (33)

he lithiation-induced strain rate is:

̇𝑐 = 𝛼𝑐̇∗𝟏 (34)

represents the expansion coefficient that results from the electro-
hemical reaction. Hooke’s law is given by:

= C𝑒 ∶ 𝜺𝑒 = C𝑒 ∶ (𝜺 − 𝜀𝑐 − 𝜺𝑝) (35)

where C𝑒 is the elastic tensor C𝑒 = 𝜆𝛿𝑖𝑗𝛿𝑘𝑙 + 𝛬
(

𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘
)

, and 𝜆
and 𝛬 are Lamé constants. Hooke’s law in rate form is:

̇ = C𝑒 ∶ (𝜺̇ − 𝜺̇𝑝) +𝑵 𝑐̇ (36)

where 𝑵 is the coupling matrix accounting for deformations induced by
changes in the chemical composition. For a linear elastic and isotropic
material, it is given by:

𝑵 = −3𝛼𝐾𝟏 (37)

where 𝐾 =
(

𝜆 + 2
3𝛬

)

is the bulk modulus. For the sake of simplicity,
e consider von Mises J2 plasticity with isotropic hardening. The first

heory of plasticity which incorporated effects of gradients of plastic
train was that introduced by Aifantis [61]. Strain gradient theories
onsider the gradient of the plastic strain as an independent variable,
nd in doing so it is required to introduce a length scale parameter
similar as in gradient elasticity). The energy contribution due to plastic
eformation within the gradient framework is given by:

𝑝 (𝜁,∇𝜁 ) = 1
2
𝐻𝜁2 + 𝜎0𝑦𝜁 +

1
2
𝛽𝑙𝑝

2
|∇𝜁 |2 (38)

here 𝜁 is a strain-like internal variable (normally equivalent to the
lastic strain), 𝐻 is the linear isotropic hardening modulus, 𝛽 is the
ardening modulus related to the plastic strain gradient, 𝜎0𝑦 is the initial
ield stress and 𝑙𝑝 is the internal length scale. The weak form of the
overning equation can be given as:

∫𝛺𝑝
𝜕𝑓
𝜕𝝈

∶ C𝑒 ∶ 𝜺̇𝛿𝛾̇𝑑𝑉 − ∫𝛺𝑝

(

2𝛬 + 2
3
𝐻
)

𝛾̇𝛿𝛾̇𝑑𝑉

− ∫𝛺𝑝
2
3
𝛽𝑙𝑝

2∇𝛾̇ ⋅ (∇𝛿𝛾̇) 𝑑𝑉 = 0 (39)

where 𝑓 is the yield function, 𝛾̇ is the rate of the plastic multiplier, 𝛿𝛾̇
is an arbitrary test function, and 𝛺𝑝 is the plastic domain. Details are
given in Appendix C.

When plasticity is taken into consideration, the constitutive rela-
tions for a spherical particle can be given by:

𝜎𝑟𝑟 =
𝐸

(1 + 𝜐) (1 − 2𝜐)

[

(1 − 𝜐)
(𝑑𝑢
𝑑𝑟

− 𝜀𝑝𝑟𝑟 − 𝛼𝑐
∗
)

+ 2𝜐
( 𝑢
𝑟
− 𝜀𝑝𝜃𝜃 − 𝛼𝑐

∗
)]

𝜎𝜃𝜃 =
𝐸

(1 + 𝜐) (1 − 2𝜐)

[( 𝑢
𝑟
− 𝜀𝑝𝜃𝜃 − 𝛼𝑐

∗
)

+ 𝜐
(𝑑𝑢
𝑑𝑟

− 𝜀𝑝𝑟𝑟 − 𝛼𝑐
∗
)]

⎫

⎪

⎬

⎪

⎭

(40)

where 𝜀𝑝𝑟𝑟 and 𝜀𝑝𝜃𝜃 are the plastic strain components. And the deviatoric
parts are:

𝜎𝑟𝑟
′ = 2

3
(

𝜎𝑟𝑟 − 𝜎𝜃𝜃
)

, 𝜎𝜃𝜃
′ = 𝜎𝜙𝜙

′ = −1
3
(

𝜎𝑟𝑟 − 𝜎𝜃𝜃
)

(41)

The rates of the plastic strain components are given by:

𝜀̇𝑝𝑟 = 𝛾̇
𝜎𝑟𝑟′

‖𝒔‖
, 𝜀̇𝑝𝜃 = 𝛾̇

𝜎𝜃𝜃 ′

‖𝒔‖
(42)

For the associative flow rule,
𝜕𝑓
𝜕𝝈

= sign(𝜎𝑟𝑟′)
1
√

6
diag (2,−1,−1) (43)

𝜕𝑓
∶ C𝑒 ∶ 𝜺̇ = 4𝛬

√

( 𝜕𝑢̇ − 𝑢̇) sign(𝜎𝑟𝑟′) (44)
8

𝜕𝝈 6 𝜕𝑟 𝑟
The mechanical equilibrium equation can be solved in its variational
form as:

2𝜌𝜎𝑠𝜃𝜃 (𝛿𝑢)
|

|

|
𝑟=𝜌

+ ∫

𝜌

0

(

𝜎𝑟𝑟
𝜕 (𝛿𝑢)
𝜕𝑟

+ 2𝜎𝜃𝜃
𝛿𝑢
𝑟

)

𝑟2𝑑𝑟 = 0 (45)

The framework for surface elasticity in plasticity, is essentially the
same as in the elastic case presented previously. The finite element
solution procedures are given in Appendix D.

2.2.1. Parametric study of surface elasticity for elasto-plastic materials
Silicon is an attractive anode material for lithium ion batteries due

to being able to provide the highest known capacity upon lithiation.
Herein, therefore, a Si anode is analyzed. Cracks have been observed
by many experiments during the first lithiation process of spherical
Si/Sn electrode particles [3,6,10]. Plastic deformation, therefore, must
have occurred since the purely elastic model predicts a comprehensive
hoop stress on the outer surface, which prohibit crack propagation and
is believed to be the cause of experimentally observed cracks during
the lithiation process. Many experiments have verified that crystalline
Si (c-Si) undergoes phase separation during the lithiation process and
the thickness of the phase boundary, which separates the Li-rich and
Li-poor phases, was observed to be about 1 nm [10,11,97–100] in c-
Si electrodes. As explained earlier in Section 2.1.1, depending on the
material, the surface elastic constants can be either positive or negative.
To study the effects of these parameters, the DISs of a spherical particle
with 10 nm radius (𝜌 = 10 nm) are analyzed. As mentioned the
interface thickness is assumed to be 1 nm. The parameters for silicon
are taken according to the literature as follows: E = 90 GPa, 𝜐 = 0.24,
𝑀∗ = 1, 𝑖∗ = 1, 𝜎0y = 0.01𝐸, 𝐻0 = ±0.01𝐸, 𝜅∗ = 0.04, 𝛯 = 1.2 × 10−5

m3/mol, 𝑐max = 3.67 × 105 mol∕m3, T = 300 K, 𝛥𝑡 = 0.0005, 𝛼 =
0.6 [52]. As in Section 2.1.1, 6 different sets of surface elastic constants
(𝜏0 = ±1 N/m and 𝐾𝑠 = 0, ±5 N/m [30]) are investigated in addition
to the conventional case (𝜏0 = 0 and 𝐾𝑠 = 0). Since the chemo-
mechanical coupling effect is neglected, the concentration profiles at
1000𝛥𝑡, 2000𝛥𝑡 and 5000𝛥𝑡 are as shown in Fig. 4(a). The concentration
profiles at different time steps are very similar to each other. As
lithiation proceeds, the phase interface moves towards the center of
the particles. The radial distribution of the normalized radial stress is as
shown in Fig. 4(b). The conventional traction-free boundary condition
requires that the radial stress vanishes at the outer surface. This is the
case when 𝜏0 = 0 and 𝐾𝑠 = 0. However, depending on the values of
the surface elastic constants, the radial stress at the outer surface can
be either in compression (𝜏0 = ±1 N/m, 𝐾𝑠 = 5 N/m, or 𝜏0 = 1 N/m,
𝑠 = 0) or in tension (𝜏0 = ±1 N/m, 𝐾𝑠 = −5 N/m, or 𝜏0 = −1 N/m,
𝑠 = 0). The radial distribution of the normalized hoop stress is as

hown in Fig. 4(c). In most cases, the hoop stress at the outer surface
s tensile except when 𝜏0 = 1 N/m and 𝐾𝑠 = 5 N/m. It can be seen

that the hoop stress on the outer surface is maximum when the surface
elastic constants are negative (𝜏0 = −1 N/m and 𝐾𝑠 = −5 N/m) and
minimum when the surface elastic constants are positive (𝜏0 = 1 N/m
and 𝐾𝑠 = 5 N/m). The stresses for different surface elastic constants
have similar profiles. As for the radial distribution of the normalized
von Mises stress (Fig. 4(d)) and equivalent plastic strain (Fig. 4(e)),
they have the same profiles for different surface parameters. This means
the surface parameters can affect the stress state of the radial and
hoop stresses on the outer surface, but not the von Mises stress and
equivalent plastic strain distribution. To further understand the effects
of residual surface stress 𝜏0 and surface modulus 𝐾𝑠 on the hoop stress
during ion insertion, the constitutive relation (Eq. (24)) for the surface
stress–strain and the mechanical equilibrium condition (Eq. (A.7)) are
revisited. The surface stress comprises of two parts: the residual surface
stress under unrestrained conditions and the diffusion induced stress
due to surface elasticity. From Eq. (12), the maximum hoop surface
strain occurs when full insertion is complete. In this case, the maximum
value of 𝜀𝑠𝜃𝜃 is equal to 𝛼𝑠 (𝛼). For electrode materials undergoing huge

0 𝑠
volume changes, when 𝜏 and 𝐾 are of the same order of magnitude,
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𝑟

𝐾𝑠𝜀𝑠𝜃𝜃 is about the same order of 𝜏0. As a result, the surface stress
elies on both 𝜏0 and 𝐾𝑠. In our case, when 𝐾𝑠 = 0, ±5 N/m, 𝐾𝑠𝜀𝑠𝜃𝜃
s approximately 0, ±3 N/m respectively. That is the reason why some
ombinations of 𝜏0 and 𝐾𝑠 lead to a compressive radial stress and others
ead to a tensile radial stress at the surface. As for the hoop stress at the
urface, according to the mechanical equilibrium condition (Eq. (A.7)),
𝜃𝜃

|

|

|
𝑟=𝜌

= 𝜌
2
𝜕𝜎𝑟𝑟
𝜕𝑟

|

|

|
𝑟=𝜌

+ 𝜎𝑟𝑟
|

|

|
𝑟=𝜌

. This means that the hoop stress at the
urface does not only depend on the radial stress at the surface but
lso relies on the rate of change of the radial stress at the surface with
espect to its position. The latter corresponds to the slope of Fig. 4(b)
t the surface, which is always positive. This means that by tuning the
alues of 𝜏0 and 𝐾𝑠, the hoop stress at the surface can be reduced.
t is even possible to change the stress state of the hoop stress at the
urface from tension to compression. To have a better understanding of
he influence of the surface modulus on the DISs, the radial and hoop
tress profiles for a spherical Si particle with radius 5 nm at the time
tep 2000 𝛥𝑡 is given in Figure E.10. All the parameters are the same
s in the 10 nm case except for the surface moduli. The results suggest
hat when the residual surface stress and surface elastic constants are
ufficiently large, the hoop stress on the outer surface may become
ompressive, which can hinder crack growth during ion-insertion.

In [101], it was found that the structural stability of Si anodes can
e significantly enhanced by introducing a nanoporosity on the surface
f micropyramid patterned Si anodes. No fracture was observed in the
orous patterned pyramids under either high or low current densities,
owever, severe fracture occurred (without the surface porosity) at low
urrent densities. The model presented here can help explain this phe-
omenon. The surface elastic constants do not depend on the bulk size
ut are strongly dependent on the surface morphology and orientation,
hile the surface stress is closely related to the surface states [102].
his means that surface modification can be an effective approach to

mproving the mechanical stability of high-capacity electrodes. Our
ork herein, shows that, surface elasticity is appropriate to interpret

he results of [101].

.2.2. DISs for elasto-plastic materials with surface elasticity only
In this section, the DISs in spherical Si electrode particles with

ifferent radii are considered and surface effects are taken into con-
ideration. The parameters used in the simulation are the same as in
ection 2.2.1 except 𝜏0 = 1 N/m and 𝐾𝑠 = 0. Spherical silicon electrode
articles with radii of 10 nm, 20 nm, 50 nm and 100 nm are analyzed;
ccording to Table 1 the corresponding 𝜅∗ = 0.04, 0.01, 0.0025, 0.0004,
espectively. For the case where neither chemo-mechanical coupling
or material softening are considered, the concentration evolution is
hown in Fig. 5(a). Fig. 5(b)–(e) shows the DIS profiles and plastic
train distribution at 2000 𝛥𝑡 when only surface effects are taken into
ccount without the gradient of the plastic strain being considered.

At the initial stages, the Si electrode undergoes elastic deformation
nd the DIS profiles are similar to those in the elastic case. However,
ue to the large volume expansion during lithiation, yielding and plas-
ic deformation occurs. An interesting observation is that a stress state
ransition takes place after the onset of plasticity. The radial and hoop
tresses in the core region remain constant. In the elastic case (Fig. 2(b–
)), the core region is in tension while in the plastic case, it undergoes
ompression. The hoop stress at the outer surface, is in compression
or the elastic case (Fig. 2(c)), while for the plastic case (Fig. 5(b)), it
ransits from compression to tension, and therefore fracture will always
nitiate without the possibility of surface modification to prevent it,
s was in the previous GradSEla and SEla cases in Section 2.1.2 and
ection 2.1.3. It can be recognized that the radial stress at the outer
urface degenerates to the traction-free one when the particle size is
arge enough (greater than 50 nm). The von Mises stresses (Fig. 5(c))
radually increase from the core towards the shell, and as soon as they
xceed the yield stress, plastic deformation begins to take place. As a
esult, there is no plastic deformation taking place near the core region.
9

s lithiation progresses, the phase interface moves from the exterior
hell towards the center. The profiles for the von Mises stress and plastic
train are very similar, and the difference lies in their magnitude. The
maller particles undergo much lower stresses (Fig. 5(c) and plastic
eformation (Fig. 5(d) than the larger ones. Smaller particles also
xperience a relatively lower hoop stress at the outer surface. The size
ffect is prominent for smaller particles and the hoop stress at the outer
urface can be decreased greatly when the particle size decreases.

.2.3. DISs or elasto-plastic materials with coupled surface elasticity and
radient plasticity

As it was mentioned earlier, the strain gradient effects cannot be
eglected at the nanoscale. For plastic deformation, plastic strain is
ominant, and therefore the plastic strain gradient should be taken into
ccount. The characteristic length (𝑙𝑝) can be related to the plastic zone
ize (𝑟𝑝). From Irwin’s approximation, it can be given by:

𝑝 =
1
3𝜋

(

𝐾𝐼𝑐
𝜎0y

)2

(46)

where 𝐾𝐼𝑐 is the fracture toughness of the material. According to [103],
the characteristic length (𝑙𝑝) was chosen to be 0.03𝑟𝑝. It is assumed
that 𝐾𝐼𝑐 = 4.62 MPa

√

m [55] and 𝜎0y = 0.01𝐸 = 9 GPa, 𝑙𝑝 = 0.03𝑟𝑝 =
2 nm, while the other parameters were kept the same as in the previous
section for spherical Si particles. By solving the weak form of Eq. (C.16),
the plastic multiplier 𝛾 can be obtained. Then by solving Eq. (44), the
displacement field 𝒖 can be obtained, which when substituted into the
constitutive Eq. (40), allows to obtain the DISs. The cumulative plastic
strain is plotted by the incremental form of Eq. (C.10). The DISs and
plastic strain profiles are plotted in Fig. 6.

The radial stress (Fig. 6(a)) and equivalent plastic strain in the
spherical Si electrode particles (Fig. 6(d)) have similar distributions as
the case when only surface elasticity (Fig. 5(a) and (d)) was considered.
An interesting finding is that there are slight oscillations in both the
hoop stress (Fig. 6(b)) and von Mises stress (Fig. 6(c)) profiles. In
particular, for particles with 10 nm and 20 nm radii, the local maxima
of the hoop stress are located somewhere close to their outer surfaces
but not exactly on the outer surface. This is consistent with the fact
that experiments have shown that cracks initiate at the outer surface of
Si and Sn particles during complete Li-ion insertion [3,10]. To better
picture the differences, the DIS profiles of these two cases are depicted
in Fig. 7. The two cases (with/without plastic strain gradient effect) are
referred to as GradSPla (𝑙𝑝 = 2 nm) and SPla (𝑙𝑝 = 0) respectively. It is
noted that both cases consider surface elastic terms, and the model with
no gradient effects is deduced by setting the internal length parameter
(since it is multiplied with the plastic strain gradient) equal to zero.

As can be seen from the plots (Fig. 7), size effects are distinct for
smaller particles. An interesting observation is that higher radial and
hoop stresses are predicted when the plastic strain gradient was consid-
ered. For the von Mises stress, the coupled surface elasticity with strain
gradient model (GradSEla) predicted a lower von Mises stress than the
models with surface elasticity (SEla) only. Whereas the coupled surface
elasticity with plastic strain gradient models (GradSPla) predicted a
higher von Mises stress than the models using surface elasticity within
classical plasticity (SPla) only. As the particle size increased, the two
results (i.e, with and without gradient effect) became close to each
other. In both, the GradSPla and the SPla models, the maxima in the
hoop stress occurred near the surface. Since the tensile hoop stress
promotes mode-1 fracture, cracks are likely to initiate from the outer
surface. The DIS comparisons at 1000 𝛥𝑡 and 5000 𝛥𝑡 have similar
trends. For particles that undergo plastic deformation, another quantity
of interest is the equivalent plastic strain. The comparisons of the two
models (SPla vs. GradSPla) are plotted in Fig. 8.

It is obvious that the two models gave similar equivalent plastic
strain profiles, with gradient models predicting a slightly lower plastic
deformation. It is found that the core region remained elastic during
lithiation since the equivalent plastic strain was 0. This was attributed



International Journal of Mechanical Sciences 215 (2022) 106917B. Wang and K.E. Aifantis
Fig. 4. (a) Radial distribution of normalized concentration at 1000 𝛥𝑡, 2000 𝛥𝑡 and 5000 𝛥𝑡 in a spherical Si electrode of radius 10 nm. (b) Normalized radial stress, (c) normalized
hoop stress, (d) Normalized von Mises stress, and (e) equivalent plastic strain profiles at 2000 𝛥𝑡 with surface elasticity parameters (residual surface stress 𝜏0 and surface modulus
𝐾𝑠, with units N/m) in the electrode.
to the fact that the particle underwent phase segregation. As lithi-
ation proceeded, the phase boundary interface kept moving inward.
The outer part of the particle yielded first while the concentration
of the core remained unaltered. As a result, no plastic deformation
was anticipated for the core region. As the interface between the
lithiated/non-lithiated regions kept propagating, the equivalent plastic
strain accumulated, and more material deformed plastically. For both
cases (GradSPla and SPla), the distribution of the equivalent plastic
strain in larger particles near the interface was steeper since the con-
centration profile was sharper, while for the smaller particles it was
relatively smoother. The maximum equivalent plastic strains for the
GradSPla case at 5000 𝛥𝑡 are 2.03, 2.28, 2.49, and 2.56 respectively.
For ductile fracture, if we assume damage initiates once the equivalent
plastic strain exceeds a critical value, again we can see that smaller
particles have a better mechanical performance.

3. Conclusions

Many experiments have shown that electrode materials display
strong size effects when their dimensions are reduced down to the
nano-scale. Classical mechanics theories do not include a character-
istic length and cannot explain these size effects. Size effects can be
efficiently captured through gradient theories and theories that cap-
ture surface effects. Furthermore, for electrode particles undergoing
10
phase transformations, the stress/strains vary sharply across the thin
interface, and in such cases, the gradient effects are significant and
cannot be neglected.An additional aspect that needs to be accounted
for in modelling electrodes, are surface effects, since the surface area
to volume ratio increases as the bulk size decreases. In the present
work, both effects were considered by incorporating surface elasticity
in gradient models.

Due to the presence of surface effects, the stress on the outer surface
can be significantly reduced. In this work it was shown that the surface
modulus affects the stress state, and under some circumstances, it is
even possible to change the stress state from tension to compression.
For elastic electrode particles, when the residual surface stress is tensile,
the hoop stress at the outer surface is compressive. For elasto-plastic
electrodes, when the residual surface stress and the surface elastic
modulus are both positive, the hoop stress at the outer surface re-
mains compressive. Since a compressive hoop stress prevents cracks
from propagating, this suggests that surface modification could be an
effective approach to improving the structural integrity of electrodes
during the lithiation process. This is in agreement with experimental
results which show that inducing a porosity on the surface of electrode
particles drastically improves their mechanical integrity during cycling.
However, systematic experiments must be done in order to understand
how the surface morphology can affect the value of the surface mod-
ulus, and hence improve the mechanical stability based on the model

predictions.
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Fig. 5. Radial distribution of (a) normalized concentration, (b) normalized radial stress, (c) normalized hoop stress, (d) normalized von Mises stress and (e) equivalent plastic
strain profiles of spherical Si electrode particles with different radii (𝜌 = 10, 20, 50, 100 nm respectively) at 2000 𝛥𝑡 when considering surface effect only.
When strain gradient effects are considered, slightly higher radial
and hoop stresses are predicted for both elastic deformation and plastic
deformation. In the plastic case higher von Mises stresses but lower
equivalent plastic strains are predicted. It is shown that smaller parti-
cles have a better mechanical performance. It can therefore be seen
that to better understand the DISs in a nano particle, both surface
effects and gradient effects cannot be neglected. These findings render
prospective insights for designing next-generation mechanically stable
electrode materials that undergo phase transformations.
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Appendix A. Derivation of the weak form of the governing equa-
tion within strain gradient elasticity framework

Define the effective stress tensor as:

𝝈𝑒 = 𝝈𝑐 − ∇ ⋅ 𝝉 (A.1)

It can be expressed as:

𝝈𝑒 = 𝝈𝑐 − 𝑙𝜀2∇2𝝈𝑐 (A.2)

For isotropic and homogeneous materials under dilatational defor-
mation due to Li de-insertion, the constitutive relations for classical
mechanics can be expressed by:

𝜎𝑐 = 𝜆tr (𝜀) 𝟏 + 2𝛬𝜀 − (3𝜆 + 2𝛬) 𝛼𝑐∗𝟏 (A.3)

This is the non-gradient part of the stress. When no body force is
present, the mechanical equilibrium condition (balance of momentum
for the mechanical stress) is given by:

∇ ⋅ 𝝈𝑒 = 𝟎 (A.4)

Because of the symmetry of the spherical particle, all the shear stresses
are zero, indicating that 𝜎𝑐𝑟𝑟 and 𝜎𝑐𝜃𝜃 are principal stresses.

Considering a spherical particle during the lithiation process, the
non-gradient strain and stress tensors are given by 𝜺 = diag

(

𝜕𝑢
𝜕𝑟 ,

𝑢
𝑟 ,

𝑢
𝑟

)

and 𝝈𝑐 = diag
(

𝜎𝑐 , 𝜎𝑐 , 𝜎𝑐
)

where 𝑢 is the radial displacement, 𝜎𝑐 is the
𝑟𝑟 𝜃𝜃 𝜃𝜃 𝑟𝑟
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Fig. 6. Radial distribution of (a) normalized radial stress, (b) normalized hoop stress, (c) normalized von Mises stress and (d) equivalent plastic strain profiles of spherical Si
electrode particles with different radii (𝜌 = 5, 10, 20, 50, 100 nm respectively) at 2000 𝛥𝑡 when considering both surface effect and plastic strain gradient effect.
Fig. 7. Normalized stress profiles of a spherical Si particle with (a) 10 nm, (b) 20 nm, (c) 50 nm, and (d) 100 nm radius respectively when considering coupled surface elasticity
with gradient plasticity (GradSPla) and surface elasticity (SPla) only at 2000 𝛥𝑡. Solid for SPla and dash for GradSPla.
non-gradient radial stress and 𝜎𝑐𝜃𝜃 is the non-gradient hoop (tangential)
stress. The divergence of the effective stress tensor is:

∇ ⋅ 𝝈𝑒 =

[

𝜕𝜎𝑒𝑟𝑟
𝜕𝑟

+
2
(

𝜎𝑒𝑟𝑟 − 𝜎
𝑒
𝜃𝜃
)

𝑟
, 0, 0

]𝑇

(A.5)

The Laplacian of the non-gradient stress tensor is:

∇2𝝈𝑐 = diag
(

𝜕
(

𝜕𝜎𝑐𝑟𝑟 +
2
(

𝜎𝑐𝑟𝑟 − 𝜎
𝑐
𝜃𝜃
))

, 1
(

𝜕𝜎𝑐𝑟𝑟 +
2
(

𝜎𝑐𝑟𝑟 − 𝜎
𝑐
𝜃𝜃
))

,

12

𝜕𝑟 𝜕𝑟 𝑟 𝑟 𝜕𝑟 𝑟
1
𝑟

(

𝜕𝜎𝑐𝑟𝑟
𝜕𝑟

+
2
(

𝜎𝑐𝑟𝑟 − 𝜎
𝑐
𝜃𝜃
)

𝑟

))

(A.6)

The mechanical equilibrium equation now becomes:

𝜕𝜎𝑒𝑟𝑟 +
2
(

𝜎𝑒𝑟𝑟 − 𝜎
𝑒
𝜃𝜃
)

= 0 (A.7)

𝜕𝑟 𝑟
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Fig. 8. Radial distributions of equivalent plastic strain of a spherical particle with (a) 10 nm, (b) 20 nm, (c) 50 nm, and (d) 100 nm radius respectively when considering coupled
surface elasticity with gradient plasticity (GradSPla) and surface elasticity (SPla) only at different time stages (1000 𝛥𝑡, 2000 𝛥𝑡 and 5000 𝛥𝑡. Solid for SPla and dash for GradSPla.
The weak form of the mechanical equilibrium equations can be given
by:

∫

𝜌

0
𝛿𝑢

(

𝜕𝜎𝑒𝑟𝑟
𝜕𝑟

+
2
(

𝜎𝑒𝑟𝑟 − 𝜎
𝑒
𝜃𝜃
)

𝑟

)

𝑟2𝑑𝑟 = 0 (A.8)

where 𝛿𝑢 is a test function. The boundary conditions for this problem
are: zero radial displacement at the center of the sphere and the radial
stress must satisfy the mechanical equilibrium on the outer surface
of the spherical particle, i.e., 𝑢 |

|𝑟=0 = 0, 𝜎𝑒𝑟𝑟
|

|

|

𝑟=𝜌 = −
2𝜎𝑠𝜃𝜃
𝜌 . For large

particles, 2𝜎𝑠𝜃𝜃
𝜌 → 0, which is the conventional traction-free boundary

condition at the outer surface. The variationally consistent condition
for the higher order stress is given by:

𝑙𝜀
2

(

𝜕𝜎𝑐𝑟𝑟
𝜕𝑟

+
2
(

𝜎𝑐𝑟𝑟 − 𝜎
𝑐
𝜃𝜃
)

𝑟

)

|

|

|

𝑟=𝜌 = 0 (A.9)

Integrating the weak form of the mechanical equilibrium equation by
parts and applying boundary conditions, one can obtain:

−∫

𝜌

0
𝛿𝑢

(

𝜕𝜎𝑒𝑟𝑟
𝜕𝑟

+
2
(

𝜎𝑒𝑟𝑟 − 𝜎
𝑒
𝜃𝜃
)

𝑟

)

𝑟2𝑑𝑟

= 2𝜌𝜎𝑠𝜃𝜃 (𝛿𝑢) |𝑟=𝜌 + ∫

𝜌

0

(

𝜎𝑐𝑟𝑟
𝜕 (𝛿𝑢)
𝜕𝑟

+ 2𝜎𝑐𝜃𝜃
𝛿𝑢
𝑟

)

𝑟2𝑑𝑟

+∫

𝜌

0
𝑙𝜀
2

(

𝜕𝜎𝑐𝑟𝑟
𝜕𝑟

+
2
(

𝜎𝑐𝑟𝑟 − 𝜎
𝑐
𝜃𝜃
)

𝑟

)

(

𝜕2 (𝛿𝑢)
𝜕𝑟2

𝑟2 + 2𝑟
𝜕 (𝛿𝑢)
𝜕𝑟

− 2 (𝛿𝑢)
)

𝑑𝑟

(A.10)

Appendix B. Numerical implementation of the model for elastic
solids

In order to seek the solutions, the finite element method is used.
Due to spherical symmetry, the problem can be reduced to a one-
dimensional problem. The weak form cannot be solved directly. In-
stead, we have to discretize in both the temporal and spacial space.
Therefore, Eq. (29) can be rewritten as:

𝑐𝑛+1∗ − 𝑐𝑛∗ 𝑣𝑑𝑟 = − 𝑖𝑣𝑑𝑆 − 𝑀𝑐𝑛
∗ (1 − 𝑐𝑛∗

)

∇𝜇𝑛∇𝑣𝑑𝑟 (B.1)
13

∫𝛺 𝛥𝑡𝑛 ∫𝜕𝛺 ∫𝛺
∫𝛺
𝜇𝑛+1𝑤𝑑𝑉 = ∫𝛺

𝑅𝑇
[

4𝑎0
(

𝑐𝑛
∗ − 1

2

)3
+ 2𝑎1

(

𝑐𝑛
∗ − 1

2

)

]

𝑤𝑑𝑉

− ∫𝛺
𝜅𝑐max∇𝑐𝑛∗∇𝑤𝑑𝑉

(B.2)

where the subscripts 𝑛 + 1 and 𝑛 are the corresponding values at the
time step 𝑡𝑛+1 and 𝑡𝑛 respectively, with 𝛥𝑡𝑛 = 𝑡𝑛+1− 𝑡𝑛 being the 𝑛𝑡ℎ time
step. By substituting Eq. (31) into Eq. (A.10), we have the weak form
in terms of the displacement. By using this kind of mixed formulation,
the problem reduces to finding 𝑐𝑛+1∗ and 𝜇𝑛+1 given that 𝑐𝑛∗ and 𝜇𝑛 are
known. The built-in DOLFIN Newton solver in FEniCS [104] is used to
solve the nonlinear equations. As for the mechanical equilibrium equa-
tion, the built-in NonlinearVariationalSolver in FEniCS is employed.
The basic idea is to calculate the Gateaux derivative of the nonlinear
form 𝐹 (𝑢; 𝑞) = 0 (corresponding to Eq. (A.10)). Thus, the Jacobian and
the trial function will be automatically computed and solved. By solving
the diffusion equation (Eqs. (B.1) and (B.2)), the concentration and the
chemical potential can be obtained. Then the radial displacement can
be obtained by solving the weak form of the mechanical equilibrium
equation (Eq. (A.10)). The unknown field variables (𝑐∗, 𝜇, 𝑢) can be
solved by using this staggered scheme at every time step.

Appendix C. Derivation of the weak form of the governing equa-
tion within strain gradient plasticity framework

The effective yield stress 𝛴, can be defined as the variational
derivative of the total plastic energy with respect to the effective plastic
strain. The variation of the plastic energy is

𝛿𝛷𝑝 = ∫𝛺𝑝
𝛴𝛿𝜁𝑑𝛺𝑝 (C.1)

where 𝛺𝑝 is the plastic domain. The variation of the plastic energy
density is:

𝛿𝜁𝜓
𝑝 =

𝜕𝜓𝑝

𝜕𝜁
𝛿𝜁 +

𝜕𝜓𝑝

𝜕∇𝜁
∶ 𝛿∇𝜁 (C.2)

Therefore,

𝛿𝛷𝑝 = 𝛿 𝜓𝑝𝑑𝛺𝑝 =
𝜕𝜓𝑝

𝛿𝜁𝑑𝛺𝑝 +
𝜕𝜓𝑝

∶ 𝛿∇𝜁𝑑𝛺𝑝 (C.3)
∫𝛺𝑝 ∫𝛺𝑝 𝜕𝜁 ∫𝛺𝑝 𝜕∇𝜁
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Integrating by parts and applying Green’s theorem gives,

∫𝛺𝑝
𝜕𝜓𝑝

𝜕∇𝜁
∶ 𝛿∇𝜁𝑑𝛺 = ∫𝜕𝛺𝑝

(

𝜕𝜓𝑝

𝜕∇𝜁
⋅ 𝒏𝒑

)

𝛿𝜁𝑑𝑆 − ∫𝛺𝑝

(

∇ ⋅
𝜕𝜓𝑝

𝜕∇𝜁

)

𝛿𝜁𝑑𝛺

(C.4)

where 𝒏𝒑 is the outward normal of the elastic–plastic boundary 𝜕𝛺𝑝.
As a result,

𝛴
(

𝜁,∇2𝜁
)

= 𝛿𝜁𝛷
𝑝 = 𝜎0𝑦 +𝐻𝜁 − 𝛽𝑙𝑝

2∇2𝜁 (C.5)

Due to the randomness of 𝛿𝜁 , an additional boundary condition of
𝜕𝜓𝑝

𝜕∇𝜁 ⋅ 𝒏𝒑 = 𝟎 should be fulfilled on the entire boundary 𝜕𝛺𝑝. The classic
yield condition is employed here,

𝑓
(

𝜎, 𝑐, 𝜁 ,∇2𝜁
)

=
√

𝒔 ∶ 𝒔 −
√

2
3
𝛴 = ‖𝒔‖ −

√

2
3

(

𝜎0𝑦 +𝐻𝜁 − 𝛽𝑙𝑝
2∇2𝜁

)

(C.6)

where 𝒔 = 𝝈 − 𝜎ℎ𝟏 is the deviatoric part of the stress tensor 𝝈. The
plastic strain rate tensor is provided by a standard flow rule:

𝜺̇𝑝 = 𝛾̇
𝜕𝑔
𝜕𝝈

(C.7)

here 𝑔 is the plastic flow potential, and 𝛾̇ is the rate of the plastic
ultiplier. Since plastic deformation is an irreversible process, the
ultiplier must be non-negative. For the associative flow rule 𝑔 = 𝑓

nd 𝜕𝑔
𝜕𝝈 = 𝑓𝝈 = 𝜕𝑓

𝜕𝝈 = 𝒔
‖𝒔‖ = 𝒏. The Kuhn–Tucker condition must be

satisfied:
̇𝑓 ≤ 0, 𝛾̇ ≥ 0,𝛾̇ ̇𝑓 = 0 (C.8)

hen plasticity takes place, ̇𝑓 = 0, hence

̇𝑓 =
𝜕𝑓
𝜕𝝈

∶ 𝝈̇ +
𝜕𝑓
𝜕𝜁
𝜁̇ +

𝜕𝑓
𝜕∇2𝜁

∇2𝜁̇ +
𝜕𝑓
𝜕𝑐∗

𝑐̇∗ = 0 (C.9)

The last term accounts for chemical hardening/softening effects in-
duced by changes in the chemical composition. For the time being, the
chemical effect is neglected, i.e., 𝜕𝑓

𝜕𝑐∗ = 0. The effective plastic strain
rate can be expressed by:

𝜁̇ =
√

2
3
𝜺̇𝑝 ∶ 𝜺̇𝑝 =

√

2
3
𝛾̇ (C.10)

s a result,

∶ C𝑒 ∶ (𝜺̇ − 𝛾̇𝒏) − 2
3
𝐻𝛾̇ + 2

3
𝛽𝑙𝑝

2∇2𝛾̇ = 0 (C.11)

The weak form of the above can be written as:

∫𝛺𝑝
𝒏 ∶ C𝑒 ∶ (𝜺̇ − 𝒏̇) 𝛿𝛾̇𝑑𝑉 − ∫𝛺𝑝

2
3
𝐻𝛾̇𝛿𝛾̇𝑑𝑉 + ∫𝛺𝑝

2
3
𝛽𝑙𝑝

2∇2𝛾̇𝛿𝛾̇𝑑𝑉 = 0

(C.12)

By applying Green’s theorem,

∫𝛺𝑝
2
3
𝛽𝑙𝑝

2∇2𝛾̇𝛿𝛾̇𝑑𝑉 = −∫𝛺𝑝
2
3
𝛽𝑙𝑝

2∇𝛾̇ ⋅ (∇𝛿𝛾̇) 𝑑𝑉

+ ∫𝜕𝛺𝑝
2
3
𝛽𝑙𝑝

2 (∇𝛾̇ ⋅ 𝒏𝛾
)

𝛿𝛾̇𝑑𝑆 (C.13)

where 𝒏𝛾 is the outward unit normal to the elastic–plastic boundary
𝜕𝛺𝑝. The following boundary conditions should be satisfied:

𝛿𝛾̇ = 0 on 𝛤 𝑃𝐷 (C.14)

∇𝛾̇ ⋅ 𝒏𝛾 = 0 on 𝛤 𝑃𝑁 (C.15)

The Dirichlet elastic–plastic boundary 𝛤 𝑃𝐷 and Neumann elastic–plastic
boundary 𝛤 𝑃𝑁 should satisfy: 𝛤 𝑃𝐷 ∪ 𝛤 𝑃𝑁 = 𝜕𝛺𝑝, 𝛤 𝑃𝐷 ∩ 𝛤 𝑃𝑁 = ∅. Typically,
𝛾̇ = 0 is enforced on 𝛤 𝑃𝐷 . The final weak form can be given by:

∫𝛺𝑝
𝒏 ∶ C𝑒 ∶ 𝜺̇𝛿𝛾̇𝑑𝑉 − ∫𝛺𝑝

(

2𝛬 + 2
3
𝐻
)

𝛾̇𝛿𝛾̇𝑑𝑉

− 2 𝛽𝑙𝑝2∇𝛾̇ ⋅ (∇𝛿𝛾̇) 𝑑𝑉 = 0 (C.16)
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∫𝛺𝑝 3
Appendix D. Numerical implementation of the model for elasto-
plastic materials

The problem becomes to seek solutions of 𝑐𝑛+1∗, 𝜇𝑛+1, 𝑢𝑛+1, and 𝛾𝑛+1
at the time step 𝑡𝑛+1 given that 𝑐𝑛∗, 𝜇𝑛, 𝑢𝑛, and 𝛾𝑛 at the time step 𝑡𝑛 are
known. Since the diffusion equation is the same as in the elastic case,
𝑐𝑛+1∗ and 𝜇𝑛+1 can be solved by the same approach. In order to solve for
the increment of the consistency parameter, Eq. (44) can be discretized
as:

𝒏 ∶ C𝑒 ∶ 𝛥𝜺𝑛 =
4𝛬
√

6

(

𝜕𝛥𝑢𝑛
𝜕𝑟

−
𝛥𝑢𝑛
𝑟

)

sign(
(

𝜎𝑟
)

𝑛
′) (D.1)

As a result, Eq. (C.16) can be rewritten as:

∫

1

0

4𝛬
√

6

(

𝜕𝛥𝑢𝑛
𝜕𝑟

−
𝛥𝑢𝑛
𝑟

)

sign(
(

𝜎𝑟
)

𝑛
′)𝛿𝛾𝑑𝑟 − ∫

1

0

(

2𝛬 + 2
3
𝐻
)

𝛥𝛾𝑛𝛿𝛾𝑑𝑉

−∫

1

0

2
3
𝛽𝑙𝑝

2∇
𝑑
(

𝛥𝛾𝑛
)

𝑑𝑟
⋅
𝑑 (𝛿𝛾)
𝑑𝑟

𝑑𝑟 = 0

(D.2)

where

𝛥𝑢𝑛 = 𝑢𝑛+1 − 𝑢𝑛,
(

𝜎𝑟
)′
𝑛 =

2
3
[(

𝜎𝑟
)

𝑛 −
(

𝜎𝜃
)

𝑛
]

,
(

𝜎𝜃
)′
𝑛 = −1

3
[(

𝜎𝑟
)

𝑛 −
(

𝜎𝜃
)

𝑛
]

,
(

𝜎𝑒
)

𝑛 =
|

|

|

(

𝜎𝑟
)

𝑛 −
(

𝜎𝜃
)

𝑛
|

|

|

,

𝜎̄𝑛 = 𝜎0y +𝐻
(

𝜀̄𝑝
)

𝑛 ,

(

𝜀̄𝑝
)

𝑛 =
√

2
3
(𝜺𝑝)𝑛 ∶ (𝜺𝑝)𝑛,

‖𝒔‖𝑛 =
√

2
3
(

𝜎𝑒
)

𝑛 ,
(

𝛥𝜀𝑟
𝑝)
𝑛 = 𝛥𝛾𝑛

(

𝜎𝑟
)′
𝑛

‖𝒔‖𝑛
,
(

𝛥𝜀𝜃
𝑝)
𝑛 = 𝛥𝛾𝑛

(

𝜎𝜃
)′
𝑛

‖𝒔‖𝑛
.

As a result,

𝛾𝑛+1 = 𝛥𝛾𝑛 + 𝛾𝑛,
(

𝜀𝑟
𝑝)
𝑛+1 =

(

𝛥𝜀𝑟
𝑝)
𝑛 +

(

𝜀𝑟
𝑝)
𝑛 ,

(

𝜀𝜃
𝑝)
𝑛+1 =

(

𝛥𝜀𝜃
𝑝)
𝑛 +

(

𝜀𝜃
𝑝)
𝑛 ,

and the other quantities at time step 𝑡𝑛+1 can also be computed. The
mechanical equilibrium equation is essentially the same as for the
elastic case, and the same solver is used. Once the internal iterations
for solving the weak form of the mechanical equilibrium equation
(Eq. (A.10)) converge, one increment of the mechanical field can be ob-
tained by the forward Euler integration method. Thus, the mechanical
equilibrium equation can be solved, and the stress field can be obtained
incrementally.

Appendix E. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.ijmecsci.2021.106917.
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