
ANALYSIS AND ALGORITHMS FOR ℓp-BASED SEMI-SUPERVISED

LEARNING ON GRAPHS

MAURICIO FLORES, JEFF CALDER, GILAD LERMAN

Department of Mathematics, University of Minnesota

Abstract. This paper addresses theory and applications of ℓp-based Laplacian regularization in
semi-supervised learning. The graph p-Laplacian for p > 2 has been proposed recently as a replace-
ment for the standard (p = 2) graph Laplacian in semi-supervised learning problems with very few
labels, where Laplacian learning is degenerate.

In the first part of the paper we prove new discrete to continuum convergence results for p-
Laplace problems on k-nearest neighbor (k-NN) graphs, which are more commonly used in practice
than random geometric graphs. Our analysis shows that, on k-NN graphs, the p-Laplacian retains
information about the data distribution as p → ∞ and Lipschitz learning (p = ∞) is sensitive
to the data distribution. This situation can be contrasted with random geometric graphs, where
the p-Laplacian forgets the data distribution as p → ∞. We also present a general framework
for proving discrete to continuum convergence results in graph-based learning that only requires
pointwise consistency and monotonicity.

In the second part of the paper, we develop fast algorithms for solving the variational and
game-theoretic p-Laplace equations on weighted graphs for p > 2. We present several efficient
and scalable algorithms for both formulations, and present numerical results on synthetic data
indicating their convergence properties. Finally, we conduct extensive numerical experiments on the
MNIST, FashionMNIST and EMNIST datasets that illustrate the effectiveness of the p-Laplacian
formulation for semi-supervised learning with few labels. In particular, we find that Lipschitz
learning (p = ∞) performs well with very few labels on k-NN graphs, which experimentally validates
our theoretical findings that Lipschitz learning retains information about the data distribution (the
unlabeled data) on k-NN graphs.

1. Introduction

Data science problems, such as regression and classification, are pervasive in today’s world,
and the size of datasets is growing rapidly. In the supervised setting, data needs to be labeled,
requiring substantial effort (e.g. writing a transcript for speech recognition), or may require expert
input (deciding whether a brain scan is healthy or not). In contrast, unlabeled data can often
be acquired in large quantities with substantially less effort. Semi-supervised learning harnesses
the additional information present in unlabeled data to improve learning tasks. This can include
geometric or topological properties of unlabeled data, which can provide valuable information about
where to place decisions boundaries, for instance. This can be contrasted with fully supervised
algorithms, which only make use of labeled data. Fully supervised learning algorithms typically
learn parameterized functions and require an abundant amount of labeled data.

A common setting within semi-supervised learning is graph-based semi-supervised learning, which
is concerned with propagating label information on graphs. Here, we are given an undirected
weighted graph G = (X ,W), where X are the vertices and W = {wxy}x,y∈X are nonnegative edge
weights, which are chosen so that wxy ≈ 1 when x is similar to y, and wxy ≈ 0 when x and
y are dissimilar. Each vertex x in the observation set O ⊂ X is assigned a label g(x), where

E-mail address: mauricio.a.flores.math@gmail.com,jcalder@umn.edu,lerman@umn.edu.
Source Code: https://github.com/mauriciofloresML/Laplacian Lp Graph SSL.git
Funding: The authors gratefully acknowledge National Science Foundation grants 1713691, 1821266, 1830418,

and a University of Minnesota Grant in Aid Award.

1

https://github.com/mauriciofloresML/Laplacian_Lp_Graph_SSL.git

2 ANALYSIS AND ALGORITHMS FOR ℓP -BASED SEMI-SUPERVISED LEARNING ON GRAPHS

g : O → Rk. In a classification problem with k classes, the ith class is usually assigned the label
vector g(x) = ei, where ei is the ith standard basis vector in Rk, that is, the vector with all zeros
and a one in the ith coordinate (called a “one-hot” vector in machine learning). The task of graph-
based semi-supervised learning is to extend the labels from the observation set O to a label function
u : X → Rk on the whole graph in some meaningful way. In practice, the equations that are solved
for propagating labels are separable among the coordinates of Rk, and the problem reduces to
solving for k functions ui : X → R, one for each class i = 1, . . . , k, and setting u = (u1, . . . , uk)
(this is referred to as the “one-vs-rest” approach in machine learning). Thus, we can, without loss
of generality, focus on the scalar case k = 1 for algorithms and analysis in this paper.

Since the problem of extending labels is a priori an ill-posed problem (there are infinitely many
solutions), one usually makes the semi-supervised smoothness assumption, which asks that the
learned labeling function u : X → R should be smooth in dense regions of the graph [18]. The
smoothness assumption is often enforced by defining a functional (or regularizer) J(u) that measures
the smoothness of a labeling u : X → R, and then minimizing J(u) subject to either hard label
constraints u(x) = g(x) for x ∈ O, or a soft penalty constraint like the mean squared error in
the labels. Soft penalties are useful when the labels are corrupted by noise. In this paper, we are
concerned with learning problems with very few labels, in the range of one label per class, so a
basic assumption we make is that the labels are clean and are not corrupted by noise. Thus, the
hard constraint is natural to impose and nothing is gained by considering a soft constraint. In
fact, the soft-constraint is more likely to be ignored, when there are very few labels, unless the
penalty parameter is chosen sufficiently large so that the constraint is essentially a hard one. The
soft-constrained problem would be interesting to consider in the context of more moderate label
rates, where noisy labels can be better tolerated. All of the techniques we discuss in this paper
extend directly, with minor modifications, to problems with soft constraints.

One of the most widely used methods in semi-supervised learning is Laplacian regularization [62],
which uses the smoothness functional

(1.1) J2(u) :=
1

4

∑︂
x,y∈X

wxy(u(x)− u(y))2.

Minimizing J2 attempts to force similar data points in dense regions of the graph to have similar
labels. Minimizers of J2 are graph harmonic, and solve the graph 2-Laplace equation ∆G

2 u = 0,
where

(1.2) ∆G
2 u(x) :=

∑︂
y∈X

wxy(u(y)− u(x)).

In classification, the values of u are rounded to the nearest label. Laplacian regularization, and
ideas based upon it, are very widely used in machine learning [3, 31, 32, 54, 56–59, 61], and have
achieved great successes. However, it has been noted first in [43] and later in [21], that Laplacian
regularization becomes ill-posed (degenerate) in problems with very few labels. We say a graph-
based learning problem is ill-posed in the limit of infinite unlabeled data and finite labeled data if
the sequence of learned functions does not continuously attain the labeled (e.g., boundary) data
in the continuum limit. In this case, the learned function becomes nearly constant on the whole
graph, with sharp spikes near the labeled data. Thus, even with a hard constraint the labels are
almost entirely ignored. See Figure 1a for a depiction of this degeneracy. In the continuum, this is
merely reflecting the fact that the capacity of a point is zero in dimension d ≥ 2 [38].

To address this issue, El Alaoui et al. [21] proposed a class of ℓp-based Laplacian regularizers,
which use the smoothness functional

(1.3) Jp(u) :=
1

2p

∑︂
x,y∈X

wxy

⃓⃓
u(x)− u(y)

⃓⃓p
.

ANALYSIS AND ALGORITHMS FOR ℓp-BASED SEMI-SUPERVISED LEARNING ON GRAPHS 3

(a) p = 2 (b) p = 2.5 (c) p = 3 (d) p = 10

Figure 1. Numerical results for a toy learning problem with two labeled and 105

unlabeled data points on [0, 1]2. For p = 2 the surface is nearly constant, with spikes
near the labeled points, while as p becomes larger the surface becomes smoother.
The result for p = ∞ looks very similar to p = 10, and the result does not change
much for 10 ≤ p <∞.

Choosing p > 2 places a heavier penalty on large gradients |u(x) − u(y)|, which discourages the
solution from developing sharp spikes. We also note that choosing 1 ≤ p < 2, often p = 1,
encourages the gradient |u(x)− u(y)| to be sparse, and can be viewed as a relaxation of graph-cut
energies. This can yield good results for classification at moderate label rates (see, e.g., [35]), but
at very low label rates the issue with spikes is even more pronounced when p < 2, and the results
are similar to Laplace learning.

We note that minimizers of Jp satisfy the graph p-Laplace equation ∆G
p u = 0, where

(1.4) ∆G
p u(x) :=

∑︂
y∈X

wxy|u(x)− u(y)|p−2(u(y)− u(x)).

We call (1.4) the variational graph p-Laplacian. Figure 1 depicts ℓp-regularization for different
values of p. As p increases the learned function transitions more smoothly between labeled and
unlabeled points. From a continuum perspective, the energy Jp is related to the p-Dirichlet energy∫︁
Ω |∇u|p dx, and the Sobolev embedding W 1,p(Ω) ↪→ C0,1−d/p(Ω) allows isolated boundary points

when p > d, where d is the dimension.1 Indeed, by Morrey’s inequality [25] we have

(1.5) |u(x)− u(y)| ≤ C

(︃∫︂
Ω
|∇u|p dx

)︃1/p

|x− y|1−d/p

whenever p > d and |x−y| ≤ 1
2dist(x, ∂Ω). Morrey’s inequality implies that u is Hölder continuous,

and prevents spikes in Figure 1a from occurring. In particular, the continuum p-Dirichlet problem
(see (1.10)) with constraints at isolated points is well-posed (e.g., admits a unique solution attaining
the boundary data continuously) if and only if p > d.

The variational graph p-Laplacian (1.4) has appeared previously in machine learning [2, 6, 60],
but was first suggested for problems with few labels in [21] with p ≥ d + 1. Recently, it was
rigorously proven that ℓp-based regularization is ill-posed (its minimizer is degenerate) for p ≤ d,
and well-posed for p > d in the continuum limit of infinite unlabeled and finite labeled data [50].
This justifies the continuum heuristics described above.

Formally sending p → ∞ in (1.3) one obtains Lipschitz learning [36, 41], which corresponds to
the smoothness functional

(1.6) J∞(u) = max
x,y∈X

wxy|u(x)− u(y)|.

1Here, Ω ⊂ Rd is an open, bounded domain, and W 1,p(Ω) is the Sobolev space of functions u : Ω → R such that∫︁
Ω
up + |∇u|p dx < ∞.

4 ANALYSIS AND ALGORITHMS FOR ℓP -BASED SEMI-SUPERVISED LEARNING ON GRAPHS

We note that minimizers of (1.6) are not unique. To see why this is the case, note that if wxy|u(x)−
u(y)| < J∞(u), then we can change the values of u(x) and u(y) slightly, without changing the value
of J∞(u). So minimizers cannot be unique unless the maximum gradient is attained everywhere.
Among the non-unique minimizers, one generally looks for one whose gradient cannot be locally
improved (i.e., made smaller by adjusting some values of u(x)). More precisely, in [36] the authors
show that there is a unique minimizer whose gradient is smallest in the lexicographical order, called
the lex-minimizer. This turns out to be equivalent to the notion of absolutely minimal, which has
been used in the partial differential equation (PDE) and analysis community to select the unique
Lipschitz extension in the continuum [4].

Lex-minimizers of (1.6) satisfy the graph ∞-Laplace equation ∆G
∞u = 0 where

(1.7) ∆G
∞u(x) := min

y∈X
wxy(u(y)− u(x)) + max

y∈X
wxy(u(y)− u(x)).

To see why (1.7) is the correct form for the graph ∞-Laplacian, consider a graph p-harmonic
function u, which satisfies ∆G

p u(x) = 0, where ∆G
p is defined in (1.4). We split the terms in the

sum defining ∆G
p u(x) by their sign to obtain∑︂

u(y)>u(x)

wxy(u(y)− u(x))p−1 =
∑︂

u(x)>u(y)

wxy(u(x)− u(y))p−1.

Taking the pth root of both sides and sending p→ ∞ yields

max
y∼x

(u(y)− u(x)) = max
y∼x

(u(x)− u(y)),

where we write y ∼ x if wxy > 0. This can be simplified to

max
y∼x

(u(y)− u(x)) + min
y∼x

(u(y)− u(x)) = 0,

which is the graph ∞-Laplacian defined in (1.7) for an unweighted graph. To obtain the weighted
graph ∞-Laplacian (1.7) in the limit as p→ ∞, we simply replace wxy in (1.4) with wp

xy.
It was proven in [10] that Lipschitz learning is well-posed with arbitrarily few labels, and the

continuum limit on random geometric graphs is the continuum ∞-Laplace equation (see (1.11)).
Several papers (see, e.g., [10, 21]) have noted that the continuum ∞-Laplacian (1.11) does not
involve the data distribution, making it presumably unsuitable for semi-supervised learning, which
is supposed to use properties of the unlabeled data, often through its distribution. In [10], it was
shown how to re-weight the graph to introduce varying degrees of sensitivity to the data distribution
in Lipschitz learning.

In order to combine the well-posedness of Lipschitz learning with the distributional sensitivity
of Laplacian regularization, it is natural to augment the 2-Laplacian with a small ∞-Laplace term
and solve an equation of the form ∆G

2 u + ε∆G
∞u = 0. To this end, we define the game theoretic

p-Laplacian on the graph (the name will be explained shortly)

(1.8) LG
p u(x) =

1

dxp
∆G

2 u(x) + λ
(︂
1− 2

p

)︂
∆G

∞u(x),

where dx =
∑︁

y∈X wxy is the degree of vertex x, and λ > 0 is a constant. For semi-supervised

learning with the game-theoretic p-Laplacian we solve LG
p u = 0 subject to u = g on O (see Section

1.1 for precise definitions). The second author proved in [8] that the game theoretic p-Laplacian
is well-posed with very few labels for p > d, and argued for the use of this formulation as an
alternative regularization for semi-supervised learning on graphs. In the context of these results, λ
is chosen (explicitly) depending on the kernel used to define the weights wxy, in order to produce the
consistency results described below. Since having two parameters, p and λ, is redundant in practice,
we take λ = 1 in the numerical sections of the paper. Compared to the variational p-Laplacian,
the game-theoretic p-Laplacian appears better conditioned numerically when p is large, since it

ANALYSIS AND ALGORITHMS FOR ℓp-BASED SEMI-SUPERVISED LEARNING ON GRAPHS 5

does not require computing large powers of p. Another main difference is that the game-theoretic
p-Laplacian does not arise through an optimization problem, and so the methods for solving the
equation are somewhat different. We note that the game-theoretic graph p-Laplacian (and similar
models) have been used very recently for data clustering and learning problems [22–24,30], though
not in the context of very few labeled data points. A related definition of the game-theoretic p-
Laplacian on graphs was also studied in [42]. We also mention recent work [15,49] that approaches
the semi-supervised learning problem with few labels by re-weighting the graph so that the weights
wxy are large near labels.

Both the variational (1.4) and the game-theoretic (1.8) graph p-Laplace equations are consistent
in the continuum, on random geometric graphs, with the p-Laplace equation

(1.9) ∆pu := div(|∇u|p−2∇u) = 0.

It is important to point out that the weights 1/p and λ(1 − 2/p) in (1.8) are chosen precisely so
that LG

p is consistent with ∆p. The operator ∆p is called the p-Laplacian, and solutions of (1.9)
are called p-harmonic functions [40]. The p-Laplace equation arises as the necessary conditions
(Euler-Lagrange equation) for the p-Dirichlet problem

(1.10) min
u

∫︂
Ω
|∇u|p dx.

Note that we can expand the p-Laplacian to obtain

∆pu = |∇u|p−2(∆u+ (p− 2)∆∞u),

where ∆∞ is the ∞-Laplacian, given by

(1.11) ∆∞u :=
1

|∇u|2
d∑︂

i,j=1

uxixjuxiuxj .

Thus, any solution of ∆pu = 0 also satisfies

(1.12)
1

p
∆u+

(︂
1− 2

p

)︂
∆∞u = 0.

The left hand side in (1.12) is often called the game-theoretic or homogeneous p-Laplacian since it
arises in two player stochastic tug-of-war games [39, 47]. This justifies the definition (1.8) of the
game-theoretic graph p-Laplacian. We note that while the p-Laplace equation (1.9) is equivalent
to the game theoretic version (1.12) at the continuum level, these are different formulations at the
discrete level.

Given the recent interest in graph p-Laplacian models in machine learning, it is important to have
both strong theoretical results that are relevant in practice, and efficient and scalable algorithms
for solving the equations in real-world settings. Most of the literature on discrete to continuum
convergence in graph-based learning, such as the recent work on the p-Laplacian [8, 50], assumes
the graph is a random geometric graph. However, such graphs have poor sparsity properties2, and
practitioners almost always use some form of a k-nearest neighbor (k-NN) graph instead. Thus,
it is important to develop theory for the graph p-Laplacian on k-NN graphs in order to study the
graphs that are used in practice. It turns out, looking forward to Section 2, that the discrete to
continuum theory for the p-Laplacian on k-NN graphs is fundamentally different from the existing
theory on random geometric graphs, and this discrepancy accounts for the results of our numerical
experiments conducted later in the paper.

2As an example of the poor sparsity properties of random geometric graphs, consider the MNIST dataset, which
has 70, 000 images of handwritten digits. A k-nearest neighbor graph on MNIST with k = 3 neighbors is connected,
while the sparsest random geometric graph that is connected requires a bandwidth of ε = 8.5 and has on average 294
neighbors per image, which is roughly 100 times less sparse than the k-nearest neighbor graph. Graph connectivity
is one of the basic properties required by most graph-based learning algorithms.

6 ANALYSIS AND ALGORITHMS FOR ℓP -BASED SEMI-SUPERVISED LEARNING ON GRAPHS

From a computational perspective, there are relatively few works on fast algorithms for graph p-
Laplacians. Kyng et al., [36] developed an efficient algorithm for Lipschitz learning (p = ∞). Their
algorithm has a poor worst case complexity analysis (roughly quadratic complexity in the number
of data points), but seems to run very fast in practice. Oberman [45] considers the game-theoretic
formulation on regular grids in dimensions d = 2, 3, and developed a fast semi-implicit solution
method, as well as gradient-descent methods. One contribution of this paper is an adaptation
of Oberman’s semi-implicit method to the graph setting. Other works [22–24] use slow iterative
methods, such as Jacobi iteration or gradient descent. It was suggested in [21] to use Newton’s
method for the variational p-Laplacian, but the method was not investigated in any depth. The
energy Jp is smooth and convex, but not strongly convex when p > 2. Other works, such as [36],
suggest to use convex programming to solve the variational p-Laplacian.

1.1. Main results and contributions. Before summarizing the main contributions of our paper,
let us give precise definitions of the problems we study. We let G = (X ,W) be a connected graph
with vertices X and edge weights W = {wxy}x,y∈X . The subset of labeled vertices is denoted
O ⊂ X , and the label function is g : O → R. We denote the number of data points in O by m, and
the number of data points in X by n. The ℓp-based Laplacian regularized learning problem [21] is
given by

(1.13) min
u:X→R

Jp(u) subject to u(x) = g(x) for all x ∈ O,

where we extend the definition of Jp to be

(1.14) Jp(u) :=
1

2p

∑︂
x,y∈X

wxy

⃓⃓
u(x)− u(y)

⃓⃓p
+
∑︂
x∈X

f(x)u(x),

where f is a source function. The unique minimizer u : X → R of (1.13) satisfies the optimality
conditions

(1.15)

{︄
−∆G

p u(x) = f(x) if x ∈ X \ O
u(x) = g(x) if x ∈ O,

where ∆G
p is defined in (1.4). In machine learning applications we always take f ≡ 0 in (1.14) and

(1.15). However, it is useful to formulate the equation in more generality so that we can construct
exact solutions by choosing u(x) and computing f(x) = −∆G

p u(x) accordingly. This allows us to
evaluate and compare the convergence rates of different methods. We will refer to (1.13) as the
variational problem, and to (1.15) as the variational p-Laplace equation.

The game-theoretic graph p-Laplacian equation is given by

(1.16)

{︄
−LG

p u(x) = f(x) if x ∈ X \ O
u(x) = g(x) if x ∈ O,

where LG
p is the game-theoretic graph p-Laplacian defined in (1.8). We will refer to (1.16) as the

game-theoretic problem. As before, we are only concerned with f ≡ 0 in machine learning, but
it is convenient to proceed in generality. The Lipschitz learning problem corresponds to the
game-theoretic problem with p = ∞.

We now summarize the contributions of the paper.

1.1.1. Discrete to continuum on kNN graphs. In Section 2, we give a detailed analysis of discrete to
continuum convergence of graph-based algorithms on k-nearest neighbor graphs. We prove that the
continuum limit of the game-theoretic p-Laplacian on symmetrized k-NN graphs has a significantly
different form compared to random geometric graphs. In particular, we show that the continuum
operator has an additional drift term along the gradient of the data distribution that does not
vanish as p → ∞. The drift term arises through the symmetrization process in the k-NN graph

ANALYSIS AND ALGORITHMS FOR ℓp-BASED SEMI-SUPERVISED LEARNING ON GRAPHS 7

construction. This means the conventional wisdom that Lipschitz learning is not sensitive to the
data distribution (see, e.g., [10,21,50]) is a phenomenon specific to random geometric graphs, and
does not hold true for k-NN graphs, which highlights the need to perform analysis on different
graph constructions. This result is also borne out in our experimental results in Section 4, which
show that the p = ∞ graph Laplacian gives good results for semi-supervised learning with very few
labels, indicating sensitivity to the data distribution as predicted by our theoretical results.

We also prove a discrete to continuum convergence result for general elliptic learning algorithms
on graphs. The result is very general and only requires the equation to have a certain monotonicity
property (essentially ellipticity) that allows for the comparison principle to be used. The results
show that all elliptic semi-supervised learning algorithms are well-posed at label rates as low as
O(ε), where ε > 0 is the bandwidth of the graph (or average distance to the kth nearest neighbor
in a k-NN graph). This gives a baseline for comparing algorithms at low label rates, and indicates
that algorithms should only be claimed to be superior at low label rates if they are well-posed at
label rates significantly less than O(ε). For example, recent work [16] by the second author shows
that Laplacian regularization (p = 2) is well-posed at label rates as low as O(ε2), and previous
work [8, 50] showed that the p-Laplacian is well-posed for arbitrarily low label rates when p > d.
It is an open problem to determine the lowest label rates for which p-Laplacian regularization is
well-posed for 2 < p < d.

1.1.2. Efficient algorithms. We develop and study a range of algorithms for solving both the vari-
ational and game-theoretic p-Laplace equations, and identify the algorithms that are efficient and
scalable in each setting. In each case, we conduct numerical experiments on synthetic data to
measure execution time and its dependence on the intrinsic dimensionality of the graph,

For the variational p-Laplacian, we propose to use Newton’s method with homotopy on p. Other
solvers, such as iteratively reweighted least squares (IRLS) and a primal-dual method, were consid-
ered in [27]. The primal dual method is slower than Newton with homotopy, and IRLS converges
only for p < 3, though recent work has found ways to bypass this restriction [1].

For the game theoretic p-Laplacian, we study a gradient descent-like algorithm, a new Newton-
like method, and a semi-implicit method, which is an extension of Oberman’s method [45] to graphs.
The Newton-like method with homotopy on p, and the semi-implicit method converge faster than
gradient descent, but do not have provable convergence guarantees. The gradient descent-like
method is slower, though provably convergent (see Theorem 3.7).

All algorithms are presented and analyzed in Section 3, while the numerical experiments on
synthetic data are presented in Section 4

1.1.3. Experimental study. We conduct a thorough experimental study of p-Laplacian semi-supervised
learning on real data, including MNIST [37], Fashion MNIST [55], and Extended MNIST [19]. In
particular, we study classification problems with very few labels, and show that graph p-Laplacian
learning with p > 2 is superior to Laplacian regularization. Our results show that p-Laplacian
learning becomes more accurate when provided with more unlabeled data, which confirms the
semi-supervised learning paradigm. The experiments on real data are presented in Section 5.

1.1.4. Source code. The code for all numerical experiments is available online3, and the p-Laplacian
semi-supervised learning algorithm is implemented in the GraphLearning Python package [12].

2. Continuum limits on k-nearest neighbor graphs

Since random geometric graphs (also called ε-ball graphs) generally have poor sparsity, it is
common in practice to use k-nearest neighbor (k-NN) graphs, were each point is connected to its
k-nearest neighbors. However, there are very few discrete to continuum or consistency results for
graph Laplacians on k-NN graphs. The only results on k-NN graphs that we are aware of are

3https://github.com/mauriciofloresML/Laplacian Lp Graph SSL.git.

https://github.com/mauriciofloresML/Laplacian_Lp_Graph_SSL.git

8 ANALYSIS AND ALGORITHMS FOR ℓP -BASED SEMI-SUPERVISED LEARNING ON GRAPHS

pointwise consistency results (without rates) [51], Γ-convergence results for variational problems
[28], and spectral convergence rates [14].

We give here a detailed analysis of pointwise consistency and discrete to continuum convergence
for graph p-Laplace equations on various k-NN and ε-ball graphs (Sections 2.2, 2.3, and 2.4). After
a careful study, we find that previous observations about p-Laplacian regularization on ε-graphs
do not hold on k-NN graphs. In particular, previous work [8, 21, 50] has shown that p-Laplacian
regularization forgets the distribution of the unlabeled data as p→ ∞, which renders the algorithm
unsuitable for semi-supervised learning. We show in the following sections (see Remarks 2.6, 2.11,
and 2.15) that this observation is true only for ε-ball graphs, and the situation is completely different
for symmetrized k-NN graphs. For symmetrized k-NN graphs, even Lipschitz learning (p = ∞) is
sensitive to the distribution of unlabeled data.

We also give, in Section 2.5, a general framework for proving discrete to continuum convergence
results for elliptic equations on graphs. The main result, Theorem 2.23, gives a general discrete to
continuum convergence result for a wide class of elliptic equations on graphs, and shows that all
suitable semi-supervised learning algorithms are well-posed at label rates of O(ε) and higher. This
result indicates that algorithms for semi-supervised learning at low label rates should be judged by
their ability to operate below the O(ε) threshold, and theoretical results should aim to establish
this.

Let us remark that the pointwise consistency results in this section share some similarities, in
terms of proof techniques, to the results in [8] and [14]. In [8], the second author established
pointwise consistency, without any rate, for the game theoretic p-Laplacian on ε-ball graphs. In
Theorem 2.3 we extend this result to an O(ε) convergence rate. This is already well-known for p = 2
(see [33]), and since the p-Laplacian is a convex combination of the p = 2 and p = ∞ Laplacians,
we quote existing results for p = 2 (actually, we quote the p = 2 result for ε-ball graphs from [14]
in the proof of Theorem 2.3, since the form of the result from [14] is simpler to use).

For k-NN graphs, the only existing pointwise consistency results with rates are the p = 2 results
in the manifold setting established by the second author in [14]. The only other work we are aware
of on pointwise consistency for k-NN graphs is [51], which considers p = 2 and proves consistency
without any rates. In this section, we prove pointwise consistency with linear convergence rates
for the game-theoretic p-Laplacian on k-NN graphs, both symmetrized (Theorem 2.14) and non-
symmetrized (Theorem 2.10). The analogous results for p = 2 were established by the second
author in [14], and these results can be viewed as an extension of those to the p-Laplacian with
p > 2. Naturally, we make use of the p = 2 results from [16], since the game-theoretic p-Laplacian is
a convex combination of the p = 2 and p = ∞ graph Laplacians. For both k-NN and ε-ball graphs,

we prove linear rates of O(ε) (where ε =
(︁
k
n

)︁1/d
for k-NN graphs). For ε-ball graphs and p = 2, it

is well-known that sharper O(ε2) pointwise consistency rates are available (see, e.g., [11, Remark
5.26]). It would be interesting to investigate whether these sharper rates can be extended to k-NN
graphs.

For reference, we include here a table of notation used in this section.

Notation.

n: Number of vertices in the graph.

ε: Graph connectivity length scale for ε-ball graphs.

k: Number of neighbors in a k-NN graph.

ηε: Rescaled weight kernel ηε(t) = η
(︁
t
ε

)︁
.

Xn: Vertices of our graphs—an i.i.d. sample of size n with density ρ on Ω ⊂ Rd.

β: Bound on the density 0 < β ≤ ρ ≤ β−1.

r0: Unique maximum of r ↦→ rη(r).

ANALYSIS AND ALGORITHMS FOR ℓp-BASED SEMI-SUPERVISED LEARNING ON GRAPHS 9

dn,ε: Degrees on an ε-ball graph.

Nε(x): The number of points in the set Xn ∩B(x, ε).

εk(x): The distance from x to its kth nearest neighbor in Xn.

sk(x): Typical distance from x to its kth nearest neighbor (satisfies α(d)nsk(x)
dρ(x) = k).

εk(x, y): Symmetrization of εk(x), given by εk(x, y) = max{εk(x), εk(y)}.
sk(x, y): Symmetrization of sk(x), given by sk(x, y) = max{sk(x), sk(y)}.

Ln,ε: Unnormalized graph Laplacian on an ε-ball graph.

L
n,ε
rw : Random walk graph Laplacian on an ε-ball graph.

L
n,k
a,rw: Random walk graph Laplacian on a nonsymmetric k-NN graph.

L
n,k
s,rw: Random walk graph Laplacian on a symmetric k-NN graph.

L
n,ε
p : Game-theoretic graph p-Laplacian on an ε-ball graph.

L
n,k
a,p : Game-theoretic graph p-Laplacian on a nonsymmetric k-NN graph.

L
n,k
s,p : Game-theoretic graph p-Laplacian on a symmetric k-NN graph.

2.1. Graph construction. Some parts of the construction of the random graphs are common to
ε-ball graphs and k-NN graphs, and we review this now. Let X1, X2, . . . , Xn be a sequence of
i.i.d. random variables on an open connected domain Ω ⊂ Rd with a probability density ρ : Ω →
[0,∞). We assume the boundary ∂Ω is smooth, ρ ∈ C2(Ω) and there exists β > 0 such that

(2.1) β ≤ ρ(x) ≤ β−1 for all x ∈ Ω.

Let ∂rΩ = {x ∈ Ω : dist(x, ∂Ω) ≤ r} and Ωr = Ω \ ∂rΩ. The vertices of our graph are

(2.2) Xn := {X1, X2, . . . , Xn}.
Let η : [0,∞) → [0,∞) be smooth and nonincreasing such that η(t) ≥ 1 for 0 ≤ t ≤ 1

2 , and

η(t) = 0 for t > 1. For ε > 0 define ηε(t) = η
(︁
t
ε

)︁
and set ση =

∫︁
Rn |z1|2η(|z|) dz. Since the graph is

unchanged under scaling the weights by a constant, we may as well assume that

(2.3)

∫︂
B(0,1)

η(z) dz = 1.

Then, in particular,
∫︁
B(0,ε) ηε(z) dz = 1 as well. As in [8], we assume there exists r0 ∈ (0, 1) and

θ > 0 so that

(2.4) rη(r) + θ(r − r0)
2 ≤ r0η(r0) for all 0 ≤ r ≤ 1.

Remark 2.1. The condition (2.4) says that r ↦→ rη(r) has a unique maximum, at r = r0, and is
strongly concave near the maximum. Looking forward to the definition of the graph ∞-Laplacian
(e.g., (2.8)) and Lemma 2.4, the max and min over y ∈ Xn in (2.8) turn out to occur at a distance of
|x−y| ∼ εr0 from x, at least asymptotically as n→ ∞ and ε→ 0, and the quantitative assumption
(2.4) allows us to control this approximation error. If the maximum of r ↦→ rη(r) is not unique,
then the graph ∞-Laplacian may not be asymptotically consistent with the ∞-Laplace operator
∆∞.

It is possible to construct nonincreasing η where (2.4) is not satisfied. For example, consider the
kernel

η(r) =

⎧⎪⎨⎪⎩
2, if 0 ≤ r ≤ 1

2
1
r , if 1

2 ≤ r ≤ 3
4

0, if r ≥ 3
4 .

The maximum of r ↦→ rη(r) is attained on the interval [12 ,
3
4] where rη(r) = 1. We can mollify η to

obtain a smooth kernel wth the same property on the slightly smaller interval [12 + δ, 34 − δ] for any

10 ANALYSIS AND ALGORITHMS FOR ℓP -BASED SEMI-SUPERVISED LEARNING ON GRAPHS

δ > 0. We remark that the commonly used Gaussian kernel η(r) = e−
r2

2σ2 satisfies (2.4) (i.e., the

maximum of f(r) := rη(r) occurs at r = σ and f ′′(σ) = −2f(r)
σ < 0.

Remark 2.2. We note it is also common to make the manifold assumption, where X1, X2, . . . , Xn

are a sequence of i.i.d. random variables sampled from an m-dimensional manifold M embedded
in Rd, where m≪ d. We expect that the analysis here will carry over to the manifold setting with
additional technical details.

2.2. ε-ball graphs. The graph constructed with vertices Xn and edge weights wxy = ηε(|x − y|)
is called a random geometric graph, or sometimes an ε-ball graph, and is the most widely used
graph construction in theoretical analysis of graph-based learning algorithms. Here, we review
pointwise consistency for the p-Laplacian on ε-ball graphs. Much of the consistency theory was
established previously in [8], so this section is mostly review, with the additional observation that
the arguments in [8] establish pointwise consistency rates for the ∞-Laplacian.

We define the graph Laplacian on a random geometric graph by

(2.5) Ln,εu(x) =
2

σηnεd+2

∑︂
y∈Xn

ηε(|x− y|)(u(y)− u(x)).

We also define the degree

(2.6) dn,ε(x) =
∑︂
y∈Xn

ηε(|x− y|).

The random walk graph Laplacian is defined by

(2.7) Ln,ε
rwu(x) =

2

σηε2dn,ε(x)

∑︂
y∈Xn

ηε(|x− y|)(u(y)− u(x)).

The random walk Laplacian is the generator for a random walk on the graph with transition
probabilities ηε(|x− y|)/dn,ε(x) of transitioning from x to y. The graph ∞-Laplacian is defined by

(2.8) Ln,ε
∞ u(x) =

1

r20η(r0)ε
2

(︃
min
y∈Xn

{ηε(|x− y|)(u(y)− u(x))}+ max
y∈Xn

{ηε(|x− y|)(u(y)− u(x))}
)︃
,

and the game-theoretic graph p-Laplacian is defined by

(2.9) Ln,ε
p u(x) =

1

p
Ln,ε
rwu(x) +

(︂
1− 2

p

)︂
Ln,ε
∞ u(x).

In the continuum, Ln,ε
p is consistent with the weighted p-Laplace operator

(2.10) ∆pu =
1

p
ρ−2div(ρ2∇u) +

(︂
1− 2

p

)︂
∆∞u,

as is shown in the following theorem.

Theorem 2.3 (Consistency on ε-graphs). There exists C1, C2, C3 > 0 such that for any ε > 0 with
nεd ≥ 1 and any 0 < λ ≤ 1, the event that

(2.11) max
x∈Xn\∂εΩ

|Ln,ε
p u(x)−∆pu(x)| ≤ C1

(︂
∥u∥2C2(B(x,ε))|∇u(x)|

−1θ−1ε+ ∥u∥C3(B(x,ε))(λ+ ε)
)︂

holds for all u ∈ C3(Ω) has probability at least 1−C2n exp
(︁
−C3nε

3d/2λd/2
)︁
−C2n exp

(︁
−C3nε

d+2λ2
)︁
.

Proof. It was shown in [8, Theorem 5] that the event that

(2.12) max
x∈Xn\∂εΩ

|Ln,ε
rwu(x)− ρ−2div

(︁
ρ2∇u

)︁
(x)| ≤ C∥u∥C3(B(x,ε))(λ+ ε)

holds for all u ∈ C3(Ω) has probability at least 1−Cn exp
(︁
−cnεd+2λ2

)︁
for constants C, c > 0 and

any 0 < λ ≤ 1. This is a uniform (over functions u) version of pointwise consistency for the graph

ANALYSIS AND ALGORITHMS FOR ℓp-BASED SEMI-SUPERVISED LEARNING ON GRAPHS 11

Laplacian. The weaker nonuniform version dates back to results in [33, 34]. The proof follows by
combining (2.12) with Lemma 2.4 below. □

Lemma 2.4. There exists C1, C2, C3 > 0 such that for any ε > 0 with nεd ≥ 1, the event that

(2.13) max
x∈Xn\∂εΩ

|Ln,ε
∞ u(x)−∆∞u(x)| ≤ C1

(︂
∥u∥2C2(B(x,ε))|∇u(x)|

−1θ−1ε+ ∥u∥C3(B(x,ε))(λ+ ε)
)︂

holds for all u ∈ C3(Ω) has probability at least 1− C2n exp
(︁
−C3nε

3d/2λd/2
)︁
.

Before proving Lemma 2.4, we make a few remarks.

Remark 2.5. In fact, pointwise consistency of the graph∞-Laplacian (Lemma 2.4) requires∇u(x) ̸=
0, since the ∞-Laplacian is discontinuous (as a function of ∇u) at ∇u(x) = 0. We interpret the
right hand side of (2.13) to be ∞ if ∇u(x) = 0. The viscosity solution framework for proving
discrete to continuum convergence does not require consistency at points where ∇u(x) = 0, since
the viscosity sub- and supersolution conditions are not required to hold at such points (see, e.g., [8]).

Remark 2.6. We note that the continuum operator ∆p forgets about the distribution ρ as p→ ∞.
This was first observed in [21], and proved rigorously in [8, 50]. On the other hand, for semi-
supervised learning problems with very few labels, the theory in [8,21,50] suggests one should use
d < p < p + δ for some small δ > 0, so that the algorithm is well-posed with very few labels,
and still has maximal dependence on the data distribution ρ, which is essential for semi-supervised
learning. We show in Section 2.4 that this observation is completely dependent on the ε-ball graph
construction, and in particular, the story is very much different on k-NN graphs.

We now turn to the proof of Lemma 2.4. By [8, Theroem 6], we know that

(2.14) lim
n→∞
εn→0

Ln,εn
∞ u(x) = ∆∞u(x)

holds for all u ∈ C3(Ω) and x ∈ Ω with ∇u(x) ̸= 0 with probability one, provided εn → 0 so that

(2.15) lim
n→∞

nε
3d/2
n

log n
= ∞.

Lemma 2.4 strengthens this to pointwise consistency with a convergence rate. For this, we need
some additional notation. We define

(2.16) δn = sup
x∈Ω

dist(x,Xn).

We need a couple of preliminary results before proving Lemma 2.4. The first concerns the
approximation of the maximum value of a function over Ω with the maximum over the point cloud
Xn.

Proposition 2.7. Let ψ ∈ C2(Ω) and assume ψ attains its maximum value over Ω at some
x0 ∈ Ωδn. Then we have

(2.17)

⃓⃓⃓⃓
max
x∈Ω

ψ(x)− max
x∈Xn

ψ(x)

⃓⃓⃓⃓
≤ ∥∇2ψ∥L∞(Ω)δ

2
n.

Proof. Since ∇ψ(x0) = 0 and ψ is C2, for any x ∈ Xn we have

ψ(x0)− ψ(x) ≤ ∥∇2ψ∥L∞(Ω)|x0 − x|2,
and therefore

∥∇2ψ∥L∞(Ω)δ
2
n ≥ ∥∇2ψ∥L∞(Ω) min

x∈Xn

|x0 − x|2 ≥ ψ(x0)− max
x∈Xn

ψ(x). □

The second preliminary result we quote directly from [10, Proposition 4.2].

12 ANALYSIS AND ALGORITHMS FOR ℓP -BASED SEMI-SUPERVISED LEARNING ON GRAPHS

Proposition 2.8. For any p ∈ Rd with p ̸= 0 and A ∈ Rd×d, we have⃓⃓⃓⃓
max
|z|=r

{︃
p · z + 1

2
zTAz

}︃
− r|p| − 1

2
r2|p|−2pTAp

⃓⃓⃓⃓
≤ 2r3∥A∥2|p|−1.

We note that we prove a generalization of Proposition 2.8 in Section 2.4 when studying sym-
metrized k-NN graphs (see Proposition 2.20).

We now give the proof of Lemma 2.4.

Proof of Lemma 2.4. First, we claim that

(2.18) r20η(r0)L
n,ε
∞ u(x) = B+(x)−B−(x) +O

(︁
∥u∥C3(B(x,ε)(δ

2
nε

−3 + ε)
)︁
,

where

B±(x) = max
0≤r≤1

{︃
1

ε
rη(r)|∇u(x)| ± 1

2
r2η(r)∆∞u(x)

}︃
.

To see this, consider the max term in L
n,ε
∞ u(x),

M :=
1

ε2
min
y∈Xn

{ηε(|x− y|)(u(y)− u(x))} .

We use Proposition 2.7 to obtain

M =
1

ε2
max

y∈B(x,ε)
{ηε(|x− y|)(u(y)− u(x))}+O(δ2nε

−3)

=
1

ε2
max

z∈B(0,1)
{η(|z|)(u(x+ εz)− u(x))}+O(δ2nε

−3)

=
1

ε2
max

z∈B(0,1)

{︃
η(|z|)

(︃
ε∇u(x) · z + ε2

2
zT∇2u(x)z

)︃}︃
+O(δ2nε

−3 + ε)

= max
0≤r≤1

{︃
η(r)max

|z|=r

{︃
1

ε
∇u(x) · z + 1

2
zT∇2u(x)z

}︃}︃
+O(δ2nε

−3 + ε).

Applying Proposition 2.8 we have

M = max
0≤r≤1

{︃
1

ε
rη(r)|∇u(x)|+ 1

2
r2η(r)|∇u(x)|−2∇u(x)T∇2u(x)∇u(x)

}︃
+O(δ2nε

−3 + ε)

= B+(x) +O(δ2nε
−3 + ε),

since ∆∞u(x) = |∇u(x)|−2∇u(x)T∇2u(x)∇u(x). We can apply a similar argument to the min term
from L

n,ε
∞ u(x), and this establishes the claim (2.18).

Now, let r± ∈ [0, 1] such that

B±(x) =
1

ε
r±η(r±)|∇u(x)| ± 1

2
(r±)2η(r±)∆∞u(x).

By (2.4) we have

1

ε
r0η(r0)|∇u(x)| ±

1

2
r20η(r0)∆∞u(x) ≤ B±(x)

=
1

ε
r±η(r±)|∇u(x)| ± 1

2
(r±)2η(r±)∆∞u(x)

≤ 1

ε
|∇u(x)|

(︁
r0η(r0)− θ(r± − r0)

2
)︁
± 1

2
(r±)2η(r±)∆∞u(x).

Therefore
θ

ε
(r± − r0)

2|∇u(x)| ≤ 1

2

⃓⃓
r20η(r0)− (r±)2η(r±)

⃓⃓
|∆∞u(x)|.

ANALYSIS AND ALGORITHMS FOR ℓp-BASED SEMI-SUPERVISED LEARNING ON GRAPHS 13

Since r ↦→ r2η(r) is Lipschitz continuous we have

θ

ε
(r± − r0)

2|∇u(x)| ≤ C|∆∞u(x)||r± − r0|,

and we deduce that

|r± − r0| ≤ C∥u∥C2(B(x,ε))θ
−1|∇u(x)|−1ε.

Since

B−(x) ≥ 1

ε
r+η(r+)|∇u(x)| − 1

2
(r+)2η(r+)∆∞u(x)

we have

B+(x)−B−(x) ≤ (r+)2η(r+)∆∞u(x) ≤ r20η(r0)∆∞u(x) + C∥u∥2C2(B(x,ε))θ
−1|∇u(x)|−1ε.

Similarly, since

B+(x) ≥ 1

ε
r−η(r−)|∇u(x)|+ 1

2
(r−)2η(r−)∆∞u(x)

we have

B+(x)−B−(x) ≥ (r−)2η(r−)∆∞u(x) ≥ r20η(r0)∆∞u(x)− C∥u∥2C2(B(x,ε))θ
−1|∇u(x)|−1ε.

Combining this with (2.18) and Proposition 2.9 below completes the proof. □

Proposition 2.9. There exists C1, C2 > 0 such that for every t > 0 with ntd ≥ 1 we have
P(δn > t) ≤ C1n exp

(︁
−C2βnt

d
)︁
.

Proof. Let t > 0 with ntd ≥ 1. Since Ω has a smooth (and hence Lipschitz) boundary, for any
h > 0 we can find a covering of Ω by balls B(x1, h), B(x2, h), . . . , B(xM , h) so that |B(xi, h) ∩
Ω| ≥ C1h

d and M ≤ C2h
−d for some universal constants C1, C2 > 0. Since ρ ≥ β > 0, the

probability that B(xi, h) ∩Ω ∩Xn is empty is bounded by (1−C1βh
d)n ≤ exp(−C1βnh

d). Hence,
the event that B(xi, h)∩Ω∩Xn has at least one point for all i = 1, . . . ,M has probability at least
1−C2h

−d exp(−C1βnh
d). Since the balls B(xi, h) cover Ω, for each x ∈ Ω there exists xi such that

|x − xi| ≤ h. If B(xi, h) ∩ Ω ∩ Xn is nonempty, then there exists y ∈ Xn such that |x − y| ≤ 2h.
Thus, if δn > 2h then at least one of B(xi, h) ∩ Ω ∩ Xn is empty. Therefore

P(δn > 2h) ≤ C2h
−d exp(−C1βnh

d).

The proof is completed by setting h = t/2 and recalling h−d = 2dt−d ≤ 2dn. □

2.3. Nonsymmetric k-nearest neighbor graphs. We now consider the simplest k-nearest neigh-
bor graph. Let

(2.19) Nε(x) =
∑︂
y∈Xn

1B(x,ε)(y)

be the number of samples in an ε-neighborhood of x ∈ Ω. Here, B(x, ε) is the closed ball of radius
ε > 0 centered about x. For k ≤ n we define

(2.20) εk(x) = min{ε > 0 : Nε(x) ≥ k}.
The value of εk(x) for x ∈ Xn is the distance from x to its kth nearest neighbor in Xn. The
nonsymmetric k-nearest neighbor random walk graph Laplacian is then given by

(2.21) Ln,k
a,rwu(x) =

2

σηdn,εk(x)(x)

(︃
nα(d)

k

)︃2/d ∑︂
y∈Xn

ηεk(x)(|x− y|)(u(y)− u(x)).

We note that since εk(x) satisfies, on average, α(d)nεk(x)
dρ(x) ≈ k, the normalization in (2.21) is

equivalent, up to the factor ρ(x), with the normalization in the case of the ε-ball graph given in
(2.7).

14 ANALYSIS AND ALGORITHMS FOR ℓP -BASED SEMI-SUPERVISED LEARNING ON GRAPHS

The graph ∞-Laplacian is defined by

Ln,k
a,∞u(x) =

1

r20η(r0)

(︃
nα(d)

k

)︃2/d
(︄

min
y∈Xn

{︁
ηεk(x)(|x− y|)(u(y)− u(x))

}︁
(2.22)

+ max
y∈Xn

{︁
ηεk(x)(|x− y|)(u(y)− u(x))

}︁)︄
.

We now define the game-theoretic k-nearest neighbor graph p-Laplacian to be

(2.23) Ln,k
a,pu(x) =

1

p
Ln,k
a,rwu(x) +

(︂
1− 2

p

)︂
Ln,k
a,∞u(x).

The main result in this section is consistency for the nonsymmetric k-nearest neighbor graph
Laplacian.

Theorem 2.10 (Consistency on nonsymmetic k-NN graphs). There exists C1, C2, C3, c1, c2 > 0
such that for k ≤ c1n and 0 < λ ≤ 1/4, the event that

|Ln,k
a,pu(x)− ρ(x)−2/d∆pu(x)| ≤ C1

(︂
∥u∥2C2(Bk)

|∇u(x)|−1θ−1
(︁
k
n

)︁1/d
+ ∥u∥C3(Bk)

(︂
λ+

(︁
k
n

)︁1/d)︂)︂
,

holds for all u ∈ C3(Ω) and x ∈ Ωc2(k/n)1/d
∩ Xn, where Bk = B(x, c2(k/n)

1/d), has probability at

least

1− C2n
3 exp

(︂
−C3

(︁
k
n

)︁1/2
kλd/2

)︂
− C2n

3 exp
(︂
−C3

(︁
k
n

)︁2/d
kλ2
)︂
.

Remark 2.11. Notice that, up to the factor ρ−2/d, the nonsymmetric k-NN graph p-Laplacian is
consistent with the same operator ∆p as the ε-ball graph Laplacian. This is due to the ability to
treat the k-NN Laplacian as an ε-ball graph Laplacian with spatially varying ε, since there is no
symmetrization to be concerned with. The same observation as in Remark 2.6 holds here; that is,
the continuum operator ∆p forgets the distribution ρ as p→ ∞. We also remark that the rates in

Theorems 2.10 and 2.3 are essentially the same, since the quantity
(︁
k
n

)︁1/d
is the average distance

to the kth nearest neighbor (obtained by setting nεd ∼ k), and plays the same role as ε in Theorem
2.3.

We now turn to the proof of Theorem 2.10. To connect Ln,k
a,p to L

n,ε
p , we define

(2.24) sk(x) =

(︃
k

α(d)ρ(x)n

)︃1/d

.

The radius sk(x) satisfies α(d)nsk(x)
dρ(x) = k, so that the ball B(x, sk(x)) contains on average k

points from Xn. Then by algebraic manipulations we have

(2.25) Ln,k
a,pu(x) =

εk(x)
2

sk(x)2ρ(x)2/d
Ln,εk(x)
p u(x).

This identity allows us to view the nonsymmetric k-nearest neighbor graph Laplacian L
n,k
a,p as an

ε-ball graph Laplacian for spatially varying ε = ε(x), and consistency will follow by applying
Theorem 2.3 and a covering argument.

Before proving consistency, we recall some facts about Nε(x) and εk(x). These facts can be
found in [14], in the manifold setting, but we include the proofs here for the reader’s convenience,
as they are simpler in the Euclidean setting.

Proposition 2.12. For any 0 < t ≤ 1 and x ∈ Ωε we have

(2.26) P(|Nε(x)− np(x, ε)| ≥ np(x, ε)t) ≤ 2 exp
(︂
−3

8α(d)βnε
dt2
)︂
,

where p(x, ε) =
∫︁
B(x,ε) ρ(y) dy.

ANALYSIS AND ALGORITHMS FOR ℓp-BASED SEMI-SUPERVISED LEARNING ON GRAPHS 15

Proof. Note that Nε(x) is the sum of Bernoulli zero/one random variables with parameter p(x, ε) =∫︁
B(x,ε) ρ(x) dx. By the Chernoff bounds we have

P (|Nε(x)− np(x, ε)| ≥ np(x, ε)t) ≤ 2 exp

(︃
−3

8
np(x, ε)t2

)︃
for any 0 < t ≤ 1. The proof is completed by noting that p(x, ε) ≥ α(d)βεd. □

Lemma 2.13. There exists C1, C2, c1, c2 > 0 such that for any 0 < t ≤ 1/4, k ≤ c1n, and
x ∈ Ωc2(k/n)1/d

, we have

(2.27) P

(︄⃓⃓⃓⃓
εk(x)

sk(x)
− 1

⃓⃓⃓⃓
≥ t+ C1

(︃
k

n

)︃2/d
)︄

≤ 2 exp
(︁
−C2kt

2
)︁
.

Proof. For any ε > 0 we have
P(εk(x) ≥ ε) ≤ P(Nε(x) ≤ k).

Choose ε > 0 so that np(x, ε) = k(1 + t) for t > 0. Then we have

P (εk(x) ≥ ε) ≤ P(Nε(x) ≤ k)

= P (Nε(x)− np(x, ε) ≤ −kt)
≤ P

(︁
Nε(x)− np(x, ε) ≤ −1

2np(x, ε)t
)︁
,

provided t ≤ 1. By Proposition 2.12 we have

P (εk(x) ≥ ε) ≤ 2 exp
(︂
− 3

32α(d)βnε
dt2
)︂
,

for all 0 < t ≤ 1. We now note that

2 ≥ 1 + t =
n

k
p(x, ε) ≥ n

k
α(d)βεd,

and
1 ≤ 1 + t =

n

k
p(x, ε) ≤ n

k
α(d)β−1εd.

Therefore

(2.28)

(︃
β

α(d)

)︃
k

n
≤ εd ≤

(︃
2

α(d)β

)︃
k

n
.

For a more refined estimate, we have

(2.29) p(x, ε) =

∫︂
B(x,ε)

ρ(y) dy = α(d)ρ(x)εd +O(εd+2).

Therefore
k(1 + t) = np(x, ε) ≥ α(d)ρ(x)nεd(1− Cε2),

and so

εd ≤ k(1 + t)

α(d)ρ(x)n(1− Cε2)
=
sk(x)

d(1 + t)

1− Cε2
≤ sk(x)

d(1 + t)(1 + 4Cε2),

provided Cε2 ≤ 1
2 . Hence, due to (2.28), there exists c > 0 such that k ≤ cn implies Cε2 ≤ 1

2 and
so

εd ≤ sk(x)
d(1 + t+ 8Cε2).

It follows that there exists C1, C2 > 0 such that

P
(︃
εk(x)

sk(x)
≥ 1 + t+ C1

(︁
k
n

)︁2/d)︃ ≤ 2 exp
(︁
−C2kt

2
)︁
,

for any 0 < t ≤ 1. The proof for the estimate in the other direction is similar, but requires a
restriction t ≤ 1/4. □

16 ANALYSIS AND ALGORITHMS FOR ℓP -BASED SEMI-SUPERVISED LEARNING ON GRAPHS

Proof of Theorem 2.10. Fix 0 < a < b ≤ 1 with nad ≥ 1. Let C1, C2, C3 > 0 so that Theorem 2.3
holds and let x ∈ Ωb. For 0 < δ ≤ a/2 and 0 ≤ λ ≤ 1, let Aδ,λ denote the event that

|Ln,ε
p u(x)−∆pu(x)| ≤ C1

(︂
∥u∥2C2(B(x,ε))|∇u(x)|

−1θ−1ε+ ∥u∥C3(B(x,ε))(λ+ ε)
)︂

holds for all u ∈ C3(Ω) and all ε ∈ [a− δ, b+ δ]∩Zδ, where Zδ = δZ. By Theorem 2.3 and a union
bound we have

P(Aδ,λ) ≥ 1− C2nδ
−1 exp

(︂
−C3na

3d/2λd/2
)︂
− C2nδ

−1 exp
(︂
−C3na

d+2λ2
)︂
.

For ε > 0, let us denote by ⌊ε⌋δ the largest number belonging to the set Zδ := δZ that is less than
or equal to ε, and write ⌈ε⌉δ = ⌊ε⌋δ + δ. Noting that

|∂εηε(|x− y|)| = |x− y|ε−2ηε(|x− y|) ≤ C

ε
,

provided |x− y| ≤ ε, we can compute that

|∂εLn,ε
p u(x)| ≤

C∥u∥C1(B(x,ε)

ε2

holds for all u ∈ C3(Ω) and ε ∈ [a− δ, b+ δ] with probability at least 1− 2 exp
(︁
−cnad

)︁
for c > 0,

due to Proposition 2.12. Therefore, when Aδ,λ occurs and εk(x) ∈ [a, b] we have

|Ln,εk(x)
p u(x)−∆pu(x)| ≤ C1

(︂
∥u∥2C2(B(x,b+δ))|∇u(x)|

−1θ−1εk(x) + ∥u∥C3(B(x,b+δ))(λ+ εk(x))
)︂
,

provided we choose δ = a3. Using (2.25) we can write

|ρ(x)2/dLn,k
a,pu(x)−∆pu(x)| ≤

εk(x)
2

sk(x)2
|Ln,εk(x)

p u(x)−∆pu(x)|+
⃓⃓⃓⃓
εk(x)

2

sk(x)2
− 1

⃓⃓⃓⃓
|∆pu(x)|.

We now invoke Lemma 2.13, set a = c1(k/n)
1/d and b = c2(k/n)

1/d for constants 0 < c1 < c2,

and union bound over x ∈ Ωc2(k/n)1/d
∩ Xn. The proof is completed by noting that δ−1 ≤ Cn3/d ≤

Cn2. □

2.4. Symmetric k-nearest neighbor graphs. We now consider symmetrized k-nearest neighbor
graphs. Define

(2.30) εk(x, y) = max{εk(x), εk(y)}.

The symmetric k-nearest neighbor random walk graph Laplacian is then defined by

(2.31) Ln,k
s,rwu(x) =

2

σηd
n,k
s (x)

(︃
nα(d)

k

)︃2/d ∑︂
y∈Xn

ηεk(x,y)(|x− y|)(u(y)− u(x)),

where the degree dn,ks (x) is defined by

(2.32) dn,ks (x) =
∑︂
y∈Xn

ηεk(x,y)(|x− y|).

We can also define a symmetrized graph using εk(x, y) = min{εk(x), εk(y)}, which would produce
the mutual k-NN graph, or any other suitable symmetric combination of εk(x) and εk(y). We
expect the consistency results in this section to hold, with minor modifications, for many other
types of symmetrization.

ANALYSIS AND ALGORITHMS FOR ℓp-BASED SEMI-SUPERVISED LEARNING ON GRAPHS 17

The graph ∞-Laplacian on the symmetric k-nearest neighbor graph is defined by

Ln,k
s,∞u(x) =

1

r20η(r0)

(︃
nα(d)

k

)︃2/d
(︄

min
y∈Xn

{︁
ηεk(x,y)(|x− y|)(u(y)− u(x))

}︁
(2.33)

+ max
y∈Xn

{︁
ηεk(x,y)(|x− y|)(u(y)− u(x))

}︁)︄
,

and the graph p-Laplacian is defined by

(2.34) Ln,k
s,p u(x) =

1

p
Ln,k
s,rwu(x) +

(︂
1− 2

p

)︂
Ln,k
s,∞u(x).

The graph p-Laplacian on a symmetric k-NN graph is consistent in the continuum with the operator

(2.35) ∆s
pu = ρ−2/d

[︂
1
pρ

−(1+2/d)div
(︂
ρ1−2/d∇u

)︂
+ (1− 2

p)
(︁
∆∞u− 1

d∇ log ρ · ∇u
)︁]︂
,

as is shown in the following theorem.

Theorem 2.14 (Consistency on symmetric k-NN graphs). There exists C1, C2, C3, c1, c2 > 0 such
that for 0 < t ≤ 1/4 and k ≤ c1n, the event that⃓⃓⃓

Ln,k
s,p u(x)−∆s

pu(x)
⃓⃓⃓
≤ C1(1 + |∇u(x)|−1∥u∥2C2(B(x,ε)) + ∥u∥C3(B(x,ε)))(δnε

−2 + t+ ε)

holds for all x ∈ Xn ∩ Ωε, where ε = c2(k/n)
1/d, and for all u ∈ C3(Ω), has probability at least

1− C3n exp
(︂
−C2k

(︁
k
n

)︁2/d
t2
)︂
.

Proof. The proof simply combines Lemma 2.18 and Lemma 2.21, both of which are proved below.
□

Remark 2.15. It is important to point out the additional drift term −1
d∇ log ρ ·∇u in ∆s

p, compared
to ∆p. This term is due to the symmetrization of the k-nearest neighbor relation, and is a result
of the Taylor expansion(︃

ρ(y)

ρ(x)

)︃ 1
d

= 1 +
1

d
∇ log ρ(x) · (y − x) +O(|x− y|2),

which makes an appearance in the proof of Lemma 2.16 below. Since this term persists in the limit
as p → ∞, this shows that p-Laplacian learning for large p, and in particular, Lipschitz learning
(p = ∞) are sensitive to the distribution ρ of the unlabeled data provided the graph is constructed
as a symmetrized k-nearest neighbor graph, as is often done in practice. This should be contrasted
with the case of ε-ball graphs and nonsymmetric k-NN graphs, where the continuum operator ∆p

forgets the distribution ρ as p→ ∞.

We first record a result about εk(x, y), which was proved in [14], but not explicitly stated as a
lemma. We define a− = min{a, 0}.

Lemma 2.16. There exists C1, C2, c1, c2 > 0 such that for any 0 < t ≤ 1/4, k ≤ c1n and x ∈ Ωε,
the event that ⃓⃓⃓⃓

εk(x, y)

sk(x)

(︁
1 + 1

d [∇ log ρ(x) · (y − x)]−
)︁
− 1

⃓⃓⃓⃓
≤ t+ C1ε

2,

holds for all y ∈ Xn ∩B(x, ε), with ε = c2(k/n)
1/d, has probability at least 1− 2n exp

(︁
−C2kt

2
)︁
.

Proof. Let x ∈ Ωε. By Lemma 2.13 and a union bound, there exists C1, C2, c > 0 such that for any
0 < t ≤ 1/4 and k ≤ cn we have

(2.36) max
y∈{x}∪Xn∩Ωε

⃓⃓⃓⃓
εk(y)

sk(y)
− 1

⃓⃓⃓⃓
≤ t+ C1ε

2

18 ANALYSIS AND ALGORITHMS FOR ℓP -BASED SEMI-SUPERVISED LEARNING ON GRAPHS

holds with probability at least 1− 2n exp
(︁
−C2kt

2
)︁
, where ε = c2(k/n)

1/d. We assume for the rest
of the proof that (2.36) holds. For y ∈ Xn ∩B(x, ε) it follows from (2.36) that⃓⃓⃓⃓

εk(x, y)

sk(x, y)
− 1

⃓⃓⃓⃓
≤ t+ C1ε

2,

where sk(x, y) = max{sk(x), sk(y)}. Since |x− y| ≤ ε, we compute

sk(x, y) = sk(x)max

{︃
1,
sk(y)

sk(x)

}︃
=

sk(x)

min
{︂
1, ρ(y)

1/d

ρ(x)1/d

}︂
=

sk(x)

min
{︁
1, 1 + 1

d∇ log ρ(x) · (y − x) +O(ε2)
}︁

=
sk(x)

1 + 1
d [∇ log ρ(x) · (y − x)]− +O(ε2)

.

Therefore ⃓⃓⃓⃓
εk(x, y)

sk(x)

(︁
1 + 1

d [∇ log ρ(x) · (y − x)]−
)︁
− 1

⃓⃓⃓⃓
≤ t+ C1ε

2,

which completes the proof. □

Lemma 2.17. There exists C1, C2, C3, c > 0 such that for each x ∈ Ωε with ε = c(k/n)1/d

(2.37)

⃓⃓⃓⃓
α(d)

k
dn,ks (x)− 1

⃓⃓⃓⃓
≤ C1(t+ ε)

holds with probability at least 1− C2 exp
(︁
−C3kt

2
)︁
for any 0 < t ≤ 1/4.

Proof. By Lemma 2.16 there exists c > 0 so that for every x ∈ Ωε, where ε = c(k/n)1/d, we have

(2.38)

⃓⃓⃓⃓
sk(x)

εk(x, y)
− 1

⃓⃓⃓⃓
≤ C(t+ ε)

for all y ∈ Xn∩B(x, ε) with probability at least 1−2n exp
(︁
−C2kt

2
)︁
. Notice the drift term involving

∇ log ρ(x) · (y− x)− form Lemma 2.16 is absorbed into the O(ε) error term on the right hand side,
since |x− y| ≤ ε. Assuming (2.38) holds we have

dn,ks (x) =
∑︂
y∈Xn

η

(︃
|x− y|
εk(x, y)

)︃

=
∑︂
y∈Xn

η

(︃
|x− y|
sk(x)

(1 +O(t+ ε))

)︃

=
∑︂
y∈Xn

η

(︃
|x− y|
sk(x)

)︃
+O(NCsk(x)(x)(t+ ε)),

for C > 0, provided t ≤ 1 and ε ≤ 1. By Proposition 2.12 we have NCsk(x)(x) ≤ Ck with probability
at least 1− exp (−ck). Thus,

dn,ks (x) = dn,sk(x)(x) +O(k(t+ ε)).

By the Bernstein inequality (see, e.g., [8, Theorem 5]) we have that

dn,sk(x)(x) = ρ(x)nsk(x)
d +O(nsk(x)

dt) = α(d)−1k +O (kt) ,

with probability at least 1− 2 exp
(︁
−ckt2

)︁
. This completes the proof. □

ANALYSIS AND ALGORITHMS FOR ℓp-BASED SEMI-SUPERVISED LEARNING ON GRAPHS 19

We now prove pointwise consistency for the random walk graph Laplacian L
n,k
s,rw on a symmetric k-

nearest neighbor graph. The analogous result for the unnormalized graph Laplacian was established
in [14].

Lemma 2.18. There exists C1, C2, C3, c1, c2 > 0 such that for 0 < t ≤ 1/4 and k ≤ c1n, the event
that ⃓⃓⃓

Ln,k
s,rwu(x)− ρ(x)−1div

(︂
ρ1−2/d∇u

)︂
(x)
⃓⃓⃓
≤ C1(1 + ∥u∥C3(Bk))

(︂
t+

(︁
k
n

)︁1/d)︂
holds for all u ∈ C3(Ω) and x ∈ Ωc2(k/n)1/d

∩ Xn, where Bk = B(x, c2(k/n)
1/d), has probability at

least 1− C2n exp
(︂
−C3

(︁
k
n

)︁2/d
kt2
)︂
.

Proof. Let u ∈ C3(Ω) and x ∈ Ω. Let us define the unnormalized k-nearest neighbor graph
Laplacian

Lu(x) =
2

σηn

(︃
nα(d)

k

)︃1+2/d ∑︂
y∈Xn

ηεk(x,y)(|x− y|)(u(y)− u(x)).

Then by [14, Theorem 3.6] we have that⃓⃓⃓
Lu(x)− ρ(x)−1div

(︂
ρ1−2/d∇u

)︂
(x)
⃓⃓⃓
≤ C(1 + ∥u∥C3(B(x,ε)))(t+ ε)

holds for all x ∈ Ωε ∩ Xn with probability at least 1 − Cn exp
(︂
−c
(︁
k
n

)︁2/d
kt2
)︂

for 0 ≤ t ≤ 1/4,

k ≤ c2n, and ε = c2(k/n)
1/d with c1, c2 > 0. Noting that

Ln,k
s,rwu(x) =

k

α(d)dn,ks (x)
Lu(x)

and invoking Lemma 2.17 we have⃓⃓⃓
Ln,k
s,rwu(x)− ρ(x)−1div

(︂
ρ1−2/d∇u

)︂
(x)
⃓⃓⃓
≤ C(1 + ∥u∥C3(B(x,ε)))(t+ ε)

holds for all x ∈ Ωε ∩ Xn with probability at least 1− Cn exp
(︂
−c
(︁
k
n

)︁2/d
kt2
)︂
.

To prove uniformity over u ∈ C3(Ω), we fix x ∈ Ωε and u ∈ C3(Ω) and we first Taylor expand u
to find

u(y) = u(x) +∇u(x) · (y − x) +
1

2
(y − x)T∇2u(x)(y − x) +O(∥u∥C3(B(x,ε))ε

3)

for |x− y| ≤ ε. Therefore

(2.39) Ln,k
s,rwu(x) =

d∑︂
i=1

uxi(x)L
n,k
s,rwpi(x) +

1

2

d∑︂
i,j=1

uxixj (x)L
n,k
s,rw(pipj)(x) +O(∥u∥C3(B(x,ε))ε),

where pi(y) = yi − xi and the error term is controlled with probability at least 1 − C exp (−ck),
due to Lemma 2.17. By the argument above

|Ln,k
s,rwpi(x)− (1− 2

d)ρ(x)
−(1+2/d)ρxi(x)| ≤ C(t+ ε),

and

|Ln,k
s,rw(pipj)(x)− 2ρ(x)−2/dδij | ≤ C(t+ ε)

20 ANALYSIS AND ALGORITHMS FOR ℓP -BASED SEMI-SUPERVISED LEARNING ON GRAPHS

hold for all x ∈ Ωε ∩Xn with probability at least 1−Cn exp
(︂
−c
(︁
k
n

)︁2/d
kt2
)︂
, where δij = 1 if i = j

and δij = 0 otherwise. Substituting this into (2.39) we have

Ln,k
s,rwu(x) = (1− 2

d)ρ
−(1+2/d)

d∑︂
i=1

uxi(x)ρxi(x) + ρ(x)−2/d
d∑︂

i,j=1

uxixi(x)δij +O(∥u∥C3(B(x,ε))ε),

= ρ(x)−2/d
(︁
(1− 2

d)ρ(x)
−1∇ρ(x) · ∇u(x) + ∆u(x)

)︁
+O(∥u∥C3(B(x,ε))ε)

= ρ(x)−1div
(︂
ρ1−2/d∇u

)︂
(x) +O(∥u∥C3(B(x,ε))ε),

which completes the proof. □

We require the following simple proposition.

Proposition 2.19. Let ψ ∈ C1(Ω) and assume ψ attains its maximum value over Ω at some
x0 ∈ Ω. Then we have

(2.40)

⃓⃓⃓⃓
max
x∈Ω

ψ(x)− max
x∈Xn

ψ(x)

⃓⃓⃓⃓
≤ ∥∇ψ∥L∞(Ω)δn

Proof. For any x ∈ Xn we have

ψ(x0)− ψ(x) ≤ ∥∇ψ∥L∞(Ω)|x0 − x|,

and therefore

δn ≥ min
x∈Xn

|x0 − x| ≥ ∥∇ψ∥−1
L∞(Ω)(ψ(x0)− max

x∈Xn

ψ(x)),

where we recall δn was defined in (2.16). □

We define

(2.41) Hr,ε(v, p,X) = max
|z|=r

{︂
p · (z + [v · z]+εz) +

ε

2
zTXz

}︂
.

The following proposition can be viewed as an extension of Proposition 2.8, which applies when
v = 0. It is used to evaluate the max and min in the graph ∞-Laplacian, asymptotically after
Taylor expansions, in Lemma 2.21 below.

Proposition 2.20. For any ε, r > 0, p ∈ Rd with p ̸= 0 and X ∈ Rd×d we have⃓⃓⃓⃓
Hr,ε(v, p,X)− r|p| − [v · p]+r2ε−

r2ε

2|p|2
pTXp

⃓⃓⃓⃓
≤ 2|p|−1(|p||v|+ ∥X∥)2r3ε2.

Proof. Let zr such that |zr| = r and

Hr,ε(v, p,X) = (p · zr)(1 + [v · zr]+ε) +
ε

2
zTr Xzr.

Set wr = rp/|p|. Choosing z = wr yields

Hr,ε(v, p,X) ≥ r|p|(1 + [v · wr]+ε) +
ε

2
wT
r Xwr.

Note that for any unit vectors a, b we have

1− a · b = 1

2
(2− 2a · b) = 1

2
|a− b|2.

Therefore

r|p| − p · zr = r|p|
(︃
1− p

|p|
· zr
r

)︃
=
r|p|
2

⃓⃓⃓⃓
p

|p|
− zr

r

⃓⃓⃓⃓2
=

|p|
2r

|wr − zr|2 .

ANALYSIS AND ALGORITHMS FOR ℓp-BASED SEMI-SUPERVISED LEARNING ON GRAPHS 21

Combining this with the observations above we have

|p|
2r

|wr − zr|2 = r|p| − p · zr

≤
(︃
(p · zr)[v · zr]+ +

1

2
zTr Xzr − r|p|[v · wr]+ − 1

2
wT
r Xwr

)︃
ε

≤
(︃
r|p| ([v · zr]+ − [v · wr]+) +

1

2

(︁
zTr Xzr − wT

r Xwr

)︁)︃
ε

≤ (r|p||v||wr − zr|+ r∥X∥|wr − zr|) ε
= (|p||v|+ ∥X∥)|wr − zr|rε.

Therefore

|wr − zr| ≤ 2
(︁
|v|+ |p|−1∥X∥

)︁
r2ε = 2|p|−1 (|p||v|+ ∥X∥) r2ε,

and so

Hr,ε(v, p,X)−p · (wr + [v · wr]+εwr)−
ε

2
wT
r Xwr

= p · (zr + [v · zr]+εzr) +
ε

2
zTr Xzr − p · (wr + [v · wr]+εwr)−

ε

2
wT
r Xwr

= p · zr − p · wr + [v · zr]+(p · zr)ε− [v · wr]+(p · wr)ε+
1

2

(︁
zTr Xzr − wT

r Xwr

)︁
ε

≤ p · zr − r|p|+ r|p| ([v · zr]+ − [v · wr]+) ε+ ∥X∥|wr − zr|rε
≤ |p||v||wr − zr|rε+ ∥X∥|wr − zr|rε
= (|p||v|+ ∥X∥)|wr − zr|rε
≤ 2|p|−1(|p||v|+ ∥X∥)2r3ε2,

which completes the proof. □

Lemma 2.21. There exists constants C1, C2, c1, c2 > 0 such that for 0 < t ≤ 1 and k ≤ c1n, the
event that⃓⃓⃓
Ln,k
s,∞u(x)− ρ(x)−2/d

(︁
∆∞u(x)− 1

d∇ log ρ(x) · ∇u(x)
)︁⃓⃓⃓

≤ C1

⃓⃓⃓
(1 + |∇u(x)|−1∥u∥2C2(B(x,ε)) + ∥u∥C3(B(x,ε)))(δnε

−2 + t+ ε)
⃓⃓⃓

holds for all x ∈ Xn ∩ Ωε, where ε = c2(k/n)
1/d, and for all u ∈ C3(Ω), has probability at least

1− 2n exp
(︂
−C2k

(︁
k
n

)︁2/d
t2
)︂
.

Proof. By Lemma 2.16 we have

ηεk(x,y)(|x− y|) = η

(︃
|x− y|
εk(x, y)

)︃
= η

(︃
|x− y|(1− [v · (y − x)]+

sk(x)

)︃
+O(tε+ ε2),

for |x − y| ≤ εk(x, y), where v = −1
d∇ log ρ(x), with probability at least 1 − 2n exp

(︁
−C2kε

2t2
)︁
,

where 0 < t ≤ 1 and ε = c(k/n)1/d. Therefore, by Proposition 2.19 we have

max
y∈Xn

{︁
ηεk(x,y)(|x− y|)(u(y)− u(x))

}︁
= max

y∈Xn

{︃
η

(︃
|x− y|(1− [v · (y − x)]+)

sk(x)

)︃
(u(y)− u(x))

}︃
+O(∥u∥C1(B(x,ε))ε

2(t+ ε))

= max
y∈Ω

{︃
η

(︃
|x− y|(1− [v · (y − x)]+)

sk(x)

)︃
(u(y)− u(x))

}︃
+O

(︁
(1 + ∥u∥C1(B(x,ε)))(δn + ε2t+ ε3)

)︁

22 ANALYSIS AND ALGORITHMS FOR ℓP -BASED SEMI-SUPERVISED LEARNING ON GRAPHS

We now make a change of variables, setting

z = Φ(y) :=
1

sk(x)
(y − x)(1− [v · (y − x)]+).

For y sufficiently close to x, depending only on |v|, the mapping y ↦→ Φ(y) is invertible and

y = Φ−1(z) = x+ skz + [v · z]+s2kz +O(ε3).

where we write sk = sk(x) for simplicity, and note that sk = O(ε). Therefore, using Proposition
2.20 we have

max
y∈Xn

{︁
ηεk(x,y)(|x− y|)(u(y)− u(x))

}︁
= max

z∈B(0,1)

{︁
η(|z|)(u(x+ skz + [v · z]+s2kz)− u(x))

}︁
+O

(︁
(1 + ∥u∥C1(B(x,ε)))(δn + ε2t+ ε3)

)︁
= sk max

0≤r≤1

{︃
η(r)max

|z|=r

{︁
∇u(x) · (z + [v · z]+skz) + sk

2 z
T∇2u(x)z

}︁}︃
+O

(︁
(1 + ∥u∥C3(B(x,ε)))(δn + ε2t+ ε3)

)︁
= sk max

0≤r≤1

{︁
η(r)Hr,sk(v,∇u(x),∇

2u(x))
}︁
+O

(︁
(1 + ∥u∥C3(B(x,ε)))(δn + ε2t+ ε3)

)︁
= sk max

0≤r≤1

{︁
rη(r)|∇u(x)|+

(︁
[v · ∇u(x)]+ + 1

2∆∞u(x)
)︁
r2η(r)sk

}︁
+O

(︂
(1 + |∇u(x)|−1∥u∥2C2(B(x,ε)) + ∥u∥C3(B(x,ε)))(δn + ε2t+ ε3)

)︂
.

Let us set

B = max
0≤r≤1

{︁
rη(r)|∇u(x)|+

(︁
[v · ∇u(x)]+ + 1

2∆∞u(x)
)︁
r2η(r)sk

}︁
and let r1 ∈ [0, 1] so that

B = r1η(r1)|∇u(x)|+
(︁
[v · ∇u(x)]+ + 1

2∆∞u(x)
)︁
r21η(r1)sk.

By (2.4) we have

B ≥ r0η(r0)|∇u(x)|+
(︁
[v · ∇u(x)]+ + 1

2∆∞u(x)
)︁
r20η(r0)sk

≥ θ(r1 − r0)
2|∇u(x)|+ r1η(r1)|∇u(x)|+

(︁
[v · ∇u(x)]+ + 1

2∆∞u(x)
)︁
r20η(r0)sk.

It follows that

θ(r1 − r0)
2|∇u(x)| ≤

(︁
[v · ∇u(x)]+ + 1

2∆∞u(x)
)︁ (︁
r20η(r0)− r21η(r1)

)︁
sk

and so

|r1 − r0| ≤ Cθ−1
(︁
1 + |∇u(x)|−1|∆∞u(x)|

)︁
sk.

This yields

B = r0η(r0)|∇u(x)|+
(︁
[v · ∇u(x)]+ + 1

2∆∞u(x)
)︁
r20η(r0)sk

+O
(︂
(1 + |∇u(x)|−1)∥u∥2C2(B(x,ε))ε

2
)︂
.

Inserting this above we have

max
y∈Xn

{︁
ηεk(x,y)(|x− y|)(u(y)− u(x))

}︁
= r0η(r0)|∇u(x)|sk +

(︁
1
2∆∞u(x) + [v · ∇u(x)]+

)︁
r20η(r0)s

2
k

+O
(︂
(1 + |∇u(x)|−1∥u∥2C2(B(x,ε)) + ∥u∥C3(B(x,ε)))(δn + ε2t+ ε3)

)︂
.

ANALYSIS AND ALGORITHMS FOR ℓp-BASED SEMI-SUPERVISED LEARNING ON GRAPHS 23

We can apply the same argument as above to −u to obtain

min
y∈Xn

{︁
ηεk(x,y)(|x− y|)(u(y)− u(x))

}︁
= −r0η(r0)|∇u(x)|sk +

(︁
1
2∆∞u(x)− [−v · ∇u(x)]+

)︁
r20η(r0)s

2
k

+O
(︂
(1 + |∇u(x)|−1∥u∥2C2(B(x,ε)) + ∥u∥C3(B(x,ε)))(δn + ε2t+ ε3)

)︂
.

Therefore

Ln,k
s,∞u(x) = ρ(x)−2/d

(︁
∆∞u(x)− 1

d∇ log ρ(x) · ∇u(x)
)︁

+O
(︂
(1 + |∇u(x)|−1∥u∥2C2(B(x,ε)) + ∥u∥C3(B(x,ε)))(δn + ε2t+ ε3)

)︂
.

□

2.5. Discrete to continuum convergence. Many types of discrete to continuum convergence
results have been proven recently for various learning problems on graphs, using tools like Γ-
convergence [28,29,52], the maximum principle and viscosity solutions [8,10], and even Martingale
techniques [16]. The Γ-convergence results are variational in nature and do not apply to the game
theoretic p-Laplacian. The viscosity solution approach in [8] does not require a variational structure,
but used uniform equicontinuity of the sequence of learned functions to establish compactness.

We present here a very general technique for proving discrete to continuum convergence results in
a general setting that applies to all the symmetric and nonsymmetric operators discussed in Sections
2.2, 2.3 and 2.4, and any others that satisfy certain monotonicity properties. The framework only
requires the graph problem to have a maximum principle, and to be pointwise consistent with a
well-posed equation in the continuum. It is not necessary to prove that the sequence of functions is
equicontinuous, or that the solution of the continuum PDE is smooth. The framework is essentially
an adaptation of the Barles-Souganidis framework [5] to convergence of discrete problems on graphs.

Let Ω ⊂ Rd be an open and bounded domain. For each n ≥ 1, let Xn ⊂ Ω be a collection of n
points in Ω, and let L2(Xn) denote the space of functions u : Xn → R. Let

Fn : L2(Xn)× R×Xn → R
denote our graph operator, generalizing a graph Laplacian, and suppose un ∈ L2(Xn) is a solution
of the boundary value problem

(2.42)

{︄
Fn(un, un(x), x) = 0, if x ∈ Xn ∩ Ωεn

un(x) = g(x), if x ∈ Xn ∩ ∂εnΩ,

where g : Ω → R is a given continuous function, and εn > 0 represents the length scale on
which the graph is connected. For convenience, we recall that ∂rΩ = {x ∈ Ω : dist(x, ∂Ω) ≤ r}
and Ωr = Ω \ ∂rΩ. The graph equation (2.42) represents our generalization of a semi-supervised
learning problem on a graph with labels g on the set Xn ∩ ∂εnΩ. This is just one model for labeled
data, and others are possible (see [16] for other models).

We now lay out simple and general conditions on Xn, un and Fn that ensure un has a well-posed
continuum limit; that is, un converges uniformly to the solution of a continuum PDE. We say the
points Xn are space filling if

(2.43) lim
n→∞

sup
x∈Ω

dist(x,Xn) = 0.

We say Fn is monotone if for all u, v ∈ L2(Xn), t ∈ R and x ∈ Ω

(2.44) u ≤ v =⇒ Fn(u, t, x) ≥ Fn(v, t, x).

We say Fn is proper if for all u ∈ L2(Xn), s, t ∈ R, and x ∈ Ω

(2.45) s ≤ t =⇒ Fn(u, s, x) ≤ Fn(u, t, x).

24 ANALYSIS AND ALGORITHMS FOR ℓP -BASED SEMI-SUPERVISED LEARNING ON GRAPHS

We say the operators are consistent as n→ ∞ with the differential operator4

F : S(d)× Rd × R× Ω → R
if for every φ ∈ C∞(Rd) and every sequence of real numbers ξn → 0 we have

(2.46) lim
n→∞

max
x∈Xn∩Ωεn

⃓⃓
Fn(φ+ ξn, φ(x) + ξn, x)− F (∇2φ(x),∇φ(x), φ(x), x)

⃓⃓
= 0.

We note that the connectivity length scale εn of the graph is encoded into the consistency statement,
since we do not assume consistency near the boundary, where the ball B(x, εn) overlaps with ∂Ω.

Remark 2.22. In the context of Sections 2.2, 2.3 and 2.4, we would set Fn(u, u(x), x) = −Lu(x),
where L is any of the graph Laplacians in those sections. For example, if L is the unnormalized
graph Laplacian (1.2), then

Fn(u, t, x) =
∑︂
y∈Xn

wxy(t− u(y)).

The first argument of Fn encodes the dependence of Fn on the neighboring values u(y) for y ∈
Xn with y ̸= x, and the second argument t encodes the dependence on t = u(x). Since all
graph Laplacians are increasing functions of the difference u(y) − t, they are both monotone and
proper. The consistency results established in Sections 2.2, 2.3 and 2.4 show that (2.46) holds with
probability one for any choice of L from those sections, provided ε = εn → 0 sufficiently slowly. For
example, in Theorem 2.3, in order to make sure the results hold with high probability we require

nε3d/2 ≫ log(n) and nεd+2 ≫ log(n).

This can be rewritten as lower bounds on the length scale ε as follows

(2.47) ε≫
(︃
log(n)

n

)︃2/(3d)

and ε≫
(︃
log(n)

n

)︃1/(d+2)

.

We now follow the Barles-Souganidis framework [5] to prove that the sequence un converges
uniformly to the solution of the boundary value problem

(2.48)

{︄
F (∇2u,∇u, u, x) = 0, in Ω

u = g, on ∂Ω,

provided the equation (2.48) is well-posed in the viscosity sense with generalized Dirichlet condition
u = g on ∂Ω. We review the definition of viscosity solution and the generalized Dirichlet problem
in the appendix in Section A.

Theorem 2.23. Assume g is continuous, (2.48) enjoys strong uniqueness, Fn is monotone, proper,
and consistent with F , Xn is space filling, and εn → 0 as n→ ∞. Let un be a sequence of solutions
of (2.42) that are uniformly bounded. Then

(2.49) lim
n→∞

max
x∈Xn

|un(x)− u(x)| = 0,

where u ∈ C(Ω) is the unique viscosity solution of (2.48).

Remark 2.24. In Theorem 2.23, by uniformly bounded we mean that there exists C > 0 such that
maxx∈Xn |un(x)| ≤ C for all n ≥ 1. Bounds of this nature are generally proved using the discrete
maximum principle on the graph, and often rely on graph-connectivity. For a simple example,
consider

Fn(u, u(x), x) = un(x) + αn

∑︂
y∈Xn∩B(x,εn)

(un(x)− un(y))− 1.

4S(d) denotes the space of symmetric real-valued matrices of size d× d.

ANALYSIS AND ALGORITHMS FOR ℓp-BASED SEMI-SUPERVISED LEARNING ON GRAPHS 25

For an appropriate choice of normalization parameter αn, the equation Fn = 0 would be consistent
with the elliptic equation u −∆u = 1 in the continuum limit. To establish the uniform bound on
un, we use a maximum principle argument. Let x ∈ Xn be a point where un attains its maximum
value over Xn. If x ∈ ∂εnΩ, then un(x) ≤ g(x). If x ∈ Ωεn , then we use that un(x)− un(y) ≥ 0 for
any y ∈ Xn to obtain

0 = Fn(u, u(x), x) = un(x) + αn

∑︂
y∈Xn∩B(x,εn)

(un(x)− un(y))− 1 ≥ un(x)− 1.

Therefore un(x) ≤ 1 and we obtain the bound

max
x∈Xn

un(x) ≤ max{1, ∥g∥∞} =: C.

A bound on the minimum of un is obtained similarly.

Proof of Theorem 2.23. We define the weak upper and lower limits

u(x) = lim sup
n→∞

Ωn∋y→x

un(y) and u(x) = lim inf
n→∞

Ωn∋y→x

un(y).

Due to (2.43) and the assumption that un are uniformly bounded, we have −∞ < u(x) ≤ u(x) <∞
for all x ∈ Ω. Furthermore, it is straightforward to check (see, e.g., [9]) that u ∈ USC(Ω) and
u ∈ LSC(Ω), where USC(Ω) and LSC(Ω) denote the spaces of upper semicontinuous and lower
semicontinuous functions on Ω, respectively. We claim that u is a viscosity subsolution of (2.48)
and u is a viscosity supersolution. Once we establish this, it follows from strong uniqueness that
u ≤ u. Therefore u = u and (2.49) immediately follows.

We will show that u is a viscosity subsolution; the proof that u is a supersolution is similar. Let
x0 ∈ Ω and φ ∈ C∞(Rd) such u− φ has a local maximum at x0 with respect to Ω. Define

ψ(x) = φ(x) + C|x− x0|4 + u(x0)− φ(x0).

Then ψ(x0) = u(x0), and we can choose C > 0 large enough so that u − ψ has a strict global
maximum at x0 relative to Ω. It follows that there exists nk → ∞, Xnk

∋ xnk
→ x0 with

unk
(xnk

) → u(x0) such that unk
−ψ attains its maximum value over Xnk

at the point xnk
for each

k. Set ξk = unk
(xnk

)−ψ(xnk
) so that unk

≤ ψ+ ξk. Then since Fn is monotone (i.e., (2.44) holds)
we have

(2.50) Fnk
(ψ + ξk, ψ(xnk

) + ξk, xnk
) ≤ Fnk

(unk
, unk

(xnk
), xnk

) = 0.

We now have two cases.
1. If x0 ∈ Ω then xnk

∈ Xnk
∩ Ωεnk

for k sufficiently large, and since ξk → 0 as k → ∞ we can

combine consistency (i.e., (2.46)) with (2.50) to find that

F (∇2ψ(x0),∇ψ(x0), ψ(x0), x0) ≤ 0.

Since ∇2ψ(x0) = ∇2φ(x0), ∇ψ(x0) = ∇φ(x0) and ψ(x0) = u(x0) we have, as desired, the viscosity
subsolution condition

(2.51) F (∇2φ(x0),∇φ(x0), u(x0), x0) ≤ 0.

2. If x0 ∈ ∂Ω, then we can pass to a further subsequence, if necessary, so that either xnk
∈

Xnk
∩ Ωεnk

or xnk
∈ Xnk

∩ ∂εnk
Ω for all k. In the former case we again find that (2.51) holds.

In the latter case, we have unk
(xnk

) = g(xnk
) for all k, and since g is continuous we have that

u(x0) = g(x0). Thus, when x ∈ ∂Ω we have

min
{︁
F (∇2φ(x0),∇φ(x0), u(x0), x0), u(x0)− g(x0)

}︁
≤ 0,

which is the viscosity subsolution condition on the boundary. This completes the proof. □

26 ANALYSIS AND ALGORITHMS FOR ℓP -BASED SEMI-SUPERVISED LEARNING ON GRAPHS

Remark 2.25. In the context of semi-supervised learning, Theorem 2.23 shows that the discrete
graph problems are well-posed in the continuum with O(nεn) labeled data points, which is the
number of points in Xn ∩ ∂εnΩ, provided Xn are roughly evenly spread (e.g., an i.i.d. sequence
with Lebesgue density). This is a labeling rate of O(εn), which vanishes as n → ∞. However,
it may vanish very slowly, since pointwise consistency requires lower bounds on εn, as explained
in Remark 2.22 (see Eq. (2.47)). We emphasize that this is a general result that is independent
of the structure of the learning algorithm or of the continuum equation. For the game-theoretic
p-Laplacian with p > d, it was shown in [8] that the ε-ball game-theoretic p-Laplacian is well-posed
in the continuum with O(1) labels, which is a labeling rate of O(1/n). This is far smaller than
O(εn) due to (2.47). A similar result was proved for the variational p-Laplacian in [50], though
here there is a restriction on εn for well-posedness, even when p > d. In [16], it is shown that when
p = 2, Laplacian regularization is well-posed at the lower label rate of O(ε2n) using random walk
techniques. For the p-Laplacian with 2 ≤ p ≤ d, it is an open problem to determine the lowest
labeling rate at which the algorithm has a well-posed continuum limit. One would conjecture the
lowest rate is O(εpn).

3. Algorithms for p-Laplacian learning

We now present algorithms for p-Laplacian learning with both the game-theoretic and variational
p-Laplacians. Section 3.1 reviews how to apply Newton’s method to the variational p-Laplace equa-
tion, and discuss how to apply homotopy on p to accelerate convergence. Section 3.2 presents three
algorithms for solving the game-theoretic p-Laplacian on a graph: a gradient descent approach, a
Newton-like method, and a semi-implicit algorithm.

3.1. Newton’s Method for variational p-Laplacian. Since Jp is smooth and convex, it is
natural to use Newton’s method to minimize Jp. We give here the explicit details of the Newton
iteration for minimizing Jp. It is useful to first rewrite the function Jp(u) using vector notation.

Let X = {x1, . . . , xn+m} ⊂ Rd, where O = {xn+1, . . . , xn+m} is the observation set. We define
ui = u(xi) and set u = (u1, . . . , un) ∈ Rn. Similarly, set wij = wxixj , fi = f(xi), gi = g(xi+n),
f = (f1, . . . , fn) ∈ Rn, and g = (g1, . . . , gm) ∈ Rm. Then, subject to the constraints in (1.13), we
can write

(3.1) Jp(u) =
1

p

(︄
n∑︂

i=1

n∑︂
j=i+1

wij |ui − uj |p +
n∑︂

i=1

m∑︂
j=1

wi,j+n|ui − gj |p
)︄

+
n∑︂

i=1

fiui.

Newton’s method corresponds to the iteration

(3.2) uk+1 = uk −
[︂
∇2Jp(u

k)
]︂−1

∇Jp(uk).

For notational convenience, define aij(u) = wij |ui − uj |p−2 and bij(u) = wi,j+n|ui − gj |p−2, and

(3.3) di(u) =
n∑︂

j=1

aij(u) +
m∑︂
j=1

bij(u).

Then, we write A(u) =
(︁
aij(u)

)︁
ij

∈ Rn×n, B(u) =
(︁
bij(u)

)︁
ij

∈ Rn×m and D(u) = diag(di(u)) ∈
Rn×n. In this notation, we compute

∇Jp(u) = L(u)u−B(u)g + f and ∇2Jp(u) = (p− 1)L(u),

where L(u) := D(u)−A(u), and thus the Newton update is given by

(3.4) uk+1 =
p− 2

p− 1
uk +

1

p− 1
L(uk)−1

[︂
B(uk)g − f

]︂
.

ANALYSIS AND ALGORITHMS FOR ℓp-BASED SEMI-SUPERVISED LEARNING ON GRAPHS 27

The inversion of L(uk) is performed with an iterative method, such as the preconditioned conjugate
gradient. The matrix L(uk), being a graph-Laplacian, is always positive semi-definite. If the graph
is connected and u is nondegenerate, then it is also non-singular.

Proposition 3.1. If the graph on n nodes with weights (aij(u))
n
i,j=1 is connected, and bij(u) > 0

for some i, j, then L(u) is positive definite.

Proof. Since L(u) is positive semi-definite, we simply have to prove that L(u) is non-singular. The
proof follows a maximum principle argument. If L(u)x = 0, x = (x1, . . . , xn), then we have

(3.5)

n∑︂
j=1

aij(u)(xi − xj) + xi

m∑︂
j=1

bij(u) = 0

for all i = 1, . . . , n.
Let i be an index for which xi ≥ xj for all j; that is, the node where x attains its maximum over

the graph. We have two cases now.
Case 1. If

∑︁m
j=1 bij(u) = 0, then it follows from (3.5), and the fact that xi−xj ≥ 0 for all j, that

aij(u)(xi − xj) = 0 for all j = 1, . . . , n.

Thus, at any neighbor in the graph where aij(u) > 0 we have xi = xj .
Case 2. If

∑︁m
j=1 bij(u) > 0, then it follows from (3.5) that

xi

m∑︂
j=1

bij(u) ≤ 0,

and so xi ≤ 0.
Note the observations above hold for any node i where x attains its maximum value. We claim

that these observations imply that max1≤j≤n xj ≤ 0. To see this, choose an index i for which x
attains it maximum value, and let k ∈ {1, . . . , n} be a node for which

(3.6)

m∑︂
j=1

bkj(u) > 0,

which is guaranteed to exist by assumption. Since the graph with weights (aij(u))
n
i,j=1 is assumed

connected, we can construct a path i = i0, i1, . . . , iq = k between node i and k for which aiℓ,iℓ+1
(u) >

0 for ℓ = 0, . . . , q − 1. We can assume that

m∑︂
j=1

biℓ,j(u) = 0 for ℓ = 0, . . . , q − 1

or else we can redefine k as the earliest node along the path for which (3.6) holds. Thus, we can
apply Case 1 above along the path to show that xiℓ = xiℓ+1

for ℓ = 0, . . . , q − 1. Thus, xi = xk.
Then we apply Case 2 above, since (3.6) holds, to show that xi = xk ≤ 0, which proves the claim.

We have proved that if L(u)x = 0 then xi ≤ 0 for all i. Since the equation is linear, we also
have L(u)(−x) = 0 and so −xi ≤ 0 for all i. Thus, L(u)x = 0 implies x ≡ 0, and so L(u) is
nonsingular. □

Remark 3.2. The conditions in Proposition 3.1 hold when the original graph G = (X ,W) is con-
nected, and ui ̸= uj for all i ̸= j, and ui ̸= gj for some i, j with wi,j+n > 0. In other words, if all the
values {u1, . . . , un, g1, . . . , gm} are unique then L(u). We can get into trouble when u is constant,
or locally constant, since the conditions in the Proposition 3.1 fail to hold. In practice we find that
L(u) remains non-singular throughout the Newton iterations.

28 ANALYSIS AND ALGORITHMS FOR ℓP -BASED SEMI-SUPERVISED LEARNING ON GRAPHS

Remark 3.3. By the Newton-Kantorovich Theorem [46], Newton’s method is guaranteed to converge
provided the initial guess is sufficiently close to the true solution. Since Jp is convex, but not
strongly convex for p > 2, convergence may not be quadratic. In fact, according to [27], the
number of iterations required for Newton’s method to converge may scale at least linearly in some
cases.

Remark 3.4 (Homotopy on p). Let us mention that one can significantly speed up Newton’s method
with a good starting point u0, since most of the computational cost of Newton’s method comes
from approaching the solution, and once we reach the quadratic convergence region, only a few
steps are required for convergence. As a result, we can solve (1.13) efficiently with a homotopy
method in p. That is, we compute the solution for an increasing sequence of values of p, starting
at p = 2, and initializing Newton’s method each time from the solution from the previous value of
p. If the steps in p are small enough, this initialization falls in the quadratic convergence region
and only a handful of Newton iterations are required for each increment in p. This approach is
known in the literature as homotopy, and has been applied to a variety of problems in order to
improve performance on related problems. For example, see [26,53]. We illustrate the effectiveness
of Newton’s method with homotopy in Section 4.2.

3.2. Algorithms for the game theoretic formulation . We now consider algorithms for solving
the game theoretic problem (1.16). We shall discuss a gradient descent-type method in Section 3.2.1,
a Newton-like algorithm in Section 3.2.2, and a semi-implicit method in Section 3.2.3.

3.2.1. Gradient Descent Approach. We first consider a gradient descent-type approach to solving
(1.16), which is based on iterating

(3.7) uk+1(x) =

{︄
uk(x) + α

(︁
LG
p u

k(x) + f(x)
)︁
, if x ∈ X \ O,

g(x), if x ∈ O,

where α > 0 is the time step. We call this a gradient descent-type iteration, where LG
p u

k(x)+ f(x)
plays the role of a gradient, but it is important to point out it is not gradient descent, since the
game theoretic p-Laplacian does not arise from a variational principle. The most straightforward
stopping condition is to fix ε > 0 and iterate until

|LG
p u

k(x) + f(x)| ≤ ε

for all x ∈ X \ O. However, this stopping condition does not guarantee that uk is within ε of the
solution u of the p-Laplacian learning problem (1.16), since the stability of the operator LG

p depends
in complicated ways on the graph and choice of boundary nodes O. We present here a modification
of the gradient descent method that uses the comparison principle to inform the stopping condition.

Lemma 3.5 (Comparison principle). Assume wxy ≤ 1 for all x, y ∈ X . Let uk, vk : X → R satisfy

(3.8) uk+1(x) ≤ uk(x) + α
(︁
LG
p u

k(x) + f(x)
)︁

and

(3.9) vk+1(x) ≥ vk(x) + α
(︁
LG
p v

k(x) + f(x)
)︁

for all x ∈ X \ O and 0 ≤ k ≤ T − 1, where T ∈ N, and assume that u0 ≤ v0 and uk(x) ≤ vk(x)
for all x ∈ O and 1 ≤ k ≤ T . If α ≤ p/(2p− 3) then uk ≤ vk on X for all 0 ≤ k ≤ T .

Proof. Fix u, v : X → R and assume u(x) ≤ v(x) for all x ∈ X . Fix x ∈ X and let y1, y2 ∈ X such
that

min
y∈X

wxy(v(y)− v(x)) = wxy1(v(y1)− v(x))

and
max
y∈X

wxy(u(y)− u(x)) = wxy2(u(y2)− u(x)).

ANALYSIS AND ALGORITHMS FOR ℓp-BASED SEMI-SUPERVISED LEARNING ON GRAPHS 29

Since wxy ≤ 1 and α ≤ p/(2p− 3) we have that

1− α

p
− α

p
(p− 2)(wxy1 + wxy2) ≥ 0.

We can now compute

u(x) + αLG
p u(x) = u(x) +

α

dxp
∆G

2 u(x) + α
(︂
1− 2

p

)︂
∆G

∞u(x)

= u(x) +
α

dxp

∑︂
y∈X

wxy(u(y)− u(x))

+ α(1− 2
p)

{︃
min
y∈X

wxy(u(y)− u(x)) + max
y∈X

wxy(u(y)− u(x))

}︃
≤
(︃
1− α

p
− α

p
(p− 2)(wxy1 + wxy2)

)︃
u(x) +

α

p

1

dx

∑︂
y∈X

wxyu(y)

+
α

p
(p− 2)(wxy1u(y1) + wxy2u(y2))

≤
(︃
1− α

p
− α

p
(p− 2)(wxy1 + wxy2)

)︃
v(x) +

α

p

1

dx

∑︂
y∈X

wxyv(y)

+
α

p
(p− 2)(wxy1v(y1) + wxy2v(y2))

≤ v(x) +
α

dxp

∑︂
y∈X

wxy(v(y)− v(x))

+ α(1− 2
p)

{︃
min
y∈X

wxy(v(y)− v(x)) + max
y∈X

wxy(v(y)− v(x))

}︃
≤ v(x) + αLG

p v(x).

Thus, we have shown that when α ≤ p/(2p− 3) we have

u ≤ v =⇒ u+ αLG
p u ≤ v + αLG

p v.

The proof is completed by using (3.8) and (3.9) to write

uk+1(x)− vk+1(x) ≤ uk(x) + αLG
p u

k(x)− (vk(x) + αLG
p v

k(x)),

for x ∈ X \ O and using induction. □

We present our method in the case that f(x) = 0. We define

(3.10) u0(x) =

{︄
maxx∈O g(x), if x ∈ X \ O,
g(x), if x ∈ O,

and

(3.11) u0(x) =

{︄
minx∈O g(x), if x ∈ X \ O,
g(x), if x ∈ O,

and define uk(x) and uk(x) for k ≥ 1 by

(3.12) uk+1(x) = uk(x) + αLG
p u

k(x), and uk+1(x) = uk(x) + αLG
p u

k(x),

for x ∈ X \ O, and uk+1(x) = uk+1(x) = g(x) for x ∈ O.

30 ANALYSIS AND ALGORITHMS FOR ℓP -BASED SEMI-SUPERVISED LEARNING ON GRAPHS

Remark 3.6. The extension of this method to f ̸= 0 is not immediately obvious. It is important for
the convergence analysis in Theorem 3.7 below that u0 and u0 are super- and subsolutions of (1.16),
respectively. When f is nonzero, it is not clear how to construct such super- and subsolutions to
initialize the method. We leave the extension of the method to nonzero f to future work. We recall
that in semi-supervised learning we always take f = 0, so this extension is not needed for machine
learning applications (though it may be of interest in numerical analysis).

We prove below that this iteration scheme converges to the solution u∗ : X → R of (1.16) with
f = 0. We remark that the solution u∗ of (1.16) is unique when the graph is connected [8, 10].

Theorem 3.7 (Convergence). Assume wxy ≤ 1 for all x, y ∈ X , and assume the graph is connected.

Let u∗ be the solution of (1.16) with f = 0, and define uk(x) = 1
2(u

k(x)+uk(x)). If α ≤ p/(2p−3)
then for all k ≥ 1 and all x ∈ X we have

(3.13) |uk(x)− u∗(x)| ≤
1

2
|uk(x)− uk(x)|

and

(3.14) lim
k→∞

uk(x) = lim
k→∞

uk(x) = u∗(x).

Remark 3.8. Theorem 3.7 proves convergence of the gradient descent-type scheme, and gives us a
simple way to set the stopping condition. If we fix ε > 0 and iterate until

(3.15) |uk(x)− uk(x)| ≤ 2ε,

then Theorem 3.7 guarantees that uk(x) = 1
2(u

k(x) + uk(x)) satisfies |uk(x)− u∗(x)| ≤ ε.

Proof. By Lemma 3.5 we have

uk(x) ≤ u∗(x) ≤ uk(x)

for all k ≥ 0 and x ∈ X . It follows that

uk(x)− u∗(x) ≤
1

2
(uk(x) + uk(x))− uk(x) ≤

1

2
|uk(x)− uk(x)|,

and

u∗(x)− uk(x) ≤ uk(x)− 1

2
(uk(x) + uk(x)) ≤

1

2
|uk(x)− uk(x)|.

This establishes (3.13).
We now prove (3.14). We claim that LG

p u
k(x) ≤ 0 for all k ≥ 0 and x ∈ X \ O. The proof is by

induction. Since u0(y)− u0(x) ≤ 0 for all x ∈ X \ O and all y ∈ X , the case k = 0 is trivial. Now
assume LG

p u
k(x) ≤ 0 for all x ∈ X \ O. Fix x0 ∈ X \ O and define

w(x) =

{︄
uk(x0) + αLG

p u
k(x0), if x = x0,

uk(x), if x ̸= x0.

Then w ≤ uk and so

w(x0) + αLG
p w(x0) ≤ uk(x0) + αLG

p u
k(x0) = uk+1(x0),

as in the proof of Lemma 3.5. Since w(x0) = uk+1(x0) and w ≥ uk+1, we have

0 ≥ LG
p w(x0) ≥ LG

p u
k+1(x0),

which establishes the claim.
By a similar argument, we have that LG

p u
k(x) ≥ 0 for all k ≥ 0 and x ∈ X \ O. It follows that

uk+1 ≤ uk and uk+1 ≥ uk for all k ≥ 0. Therefore, there exists u, u : X → R such that

lim
k→∞

uk(x) = u(x) and lim
k→∞

uk(x) = u(x).

ANALYSIS AND ALGORITHMS FOR ℓp-BASED SEMI-SUPERVISED LEARNING ON GRAPHS 31

By continuity of LG
p we have that u and u both satisfy (1.16). Since the graph is connected,

solutions of (1.16) are unique, and hence u = u = u∗, which completes the proof. □

If we make a minor modification to the equation, then we can obtain a linear convergence rate.
Let ε > 0 and consider the iteration

(3.16) uk+1
ε (x) = ukε(x) + α(LG

p u
k
ε(x)− εukε(x)),

for x ∈ X \O, and uk+1(x) = g(x) for x ∈ O. We prove below that this iteration scheme converges
at a linear rate to the solution uε : X → R of

(3.17)

{︄
εuε − LG

p uε(x) = 0 if x ∈ X \ O
uε(x) = g(x) if x ∈ O.

When ε > 0, the solution uε of (3.17) is unique even when the graph is disconnected. We have the
following convergence theorem, which is an adaptation of the contraction argument from [44].

Theorem 3.9 (Convergence rate). Assume wxy ≤ 1 for all x, y ∈ X and α ≤ p/((2+ ε)p− 3). Let

u0 : X → R and define ukε by (3.16), and let uε be the solution of (3.17). Then for every k ≥ 0 we
have

(3.18) max
x∈X

|ukε(x)− uε(x)| ≤ (1− ε)k max
x∈X

|u0(x)− uε(x)|.

Remark 3.10. Letting u∗ solve (1.16) and uε solve (3.17), it follows from Theorem 3.9 that

max
x∈X

|ukε(x)− u∗(x)| ≤ C

[︃
max
x∈X

|uε(x)− u∗(x)|+ (1− ε)k
]︃
.

If we can quantify the error |uε − u∗|, then this would prove a convergence rate for the original
problem (1.16) with ε = 0. However, it seems that proving error estimates between (1.16) and
(3.17) would require some additional strong assumptions on properties of the graph.

Proof. Define

(3.19) Φε[u](x) =

{︄
u(x) + α(LG

p u(x)− εu(x)), if x ∈ X \ O,
g(x), if x ∈ O.

Then we have ukε = Φk
ε [u

0]. As in the proof of Lemma 3.5 we have

u ≤ v =⇒ Φ0[u] ≤ Φ0[v].

We also have
Φ0[u+ C] = Φ0[u] + C

for any constant C > 0. It follows that

Φ0[u]− Φ0[v] = Φ0[u−max
x∈X

(u− v)]− Φ0[v] + max
x∈X

(u− v) ≤ max
x∈X

(u− v).

Since

Φε[u] = (1− αε)

(︃
u+

α

1− αε
LG
p u

)︃
,

we have
Φε[u]− Φε[v] ≤ (1− ε)max

x∈X
(u− v)

provided
α

1− αε
≤ p

2p− 3
,

which is equivalent to

α ≤ p

(2 + ε)p− 3
.

32 ANALYSIS AND ALGORITHMS FOR ℓP -BASED SEMI-SUPERVISED LEARNING ON GRAPHS

It follows that Φε is a contraction in the norm ∥u∥∞ := maxx∈X |u(x)|, and so there exists a unique
fixed point uε : X → R such that Φε[uε] = uε and

∥ukε − uε∥∞ ≤ (1− ε)k∥u0 − uε∥∞
for any u : X → R. This completes the proof. □

3.2.2. A Newton-like Algorithm. We now consider a Newton-like method for solving (1.16). New-
ton’s method is based on iteratively solving a linearized version of the problem. In order to linearize
(1.16), we define yk+ and yk− by

(3.20)
yk+(x) ∈ argmax wxy(u

k(x)− uk(y))

yk−(x) ∈ argmin wxy(u
k(x)− uk(y)),

and define βkxy by

(3.21) βkxy = wxy

(︂
1 + dx(p− 2)

[︁
δy=yk+

+ δy=yk−

]︁)︂
.

We also define

(3.22) LG
p,ku(x) :=

1

dxp

∑︂
y

βkxy(u(y)− u(x)).

The Newton-like iteration computes uk+1 as the solution of

(3.23)

{︄
−LG

p,ku
k+1(x) = f(x) if x ∈ X \ O
u(x) = g(x) if x ∈ O.

We note that if yk+1
± = yk±(x) for all x, then f = −LG

p,ku
k+1 = −LG

p u
k+1. Hence, we obtain

convergence to the exact solution as soon as the locations of the min and max in (3.20) are correct.
Thus, the algorithm can converge to the exact solution in a finite number of iterations. It seems
rather difficult to construct a convergence proof for the Newton-like iterations, and we leave this
to future work. We note that LG

p,k is a linear operator, but may not be symmetric, which is one
drawback of the method.

3.2.3. Semi-implicit Approach. Here, we extend the semi-implicit method of Oberman [45] to the
graph setting. Given θ(x) ≥ 1, we add −θ(x)∆G

2 u(x)/(2dx) to both sides of (1.16), to obtain

−θ(x)
2dx

∆G
2 u(x) = −

(︃
θ(x)

2dx
− 1

dxp

)︃
∆G

2 u(x) +

(︃
1− 2

p

)︃
∆G

∞u(x) + f(x).

Solving for ∆G
2 u(x) on the left hand side reduces this equation to

−∆G
2 u(x) = −

(︃
θ(x)p− 2

θ(x)p

)︃
∆G

2 u(x) +
2dx
θ(x)p

(︁
p− 2

)︁
∆G

∞u(x) +
2dx
θ(x)

f(x),

which suggests the iterative scheme

(3.24) −∆G
2 u

k+1(x) = β(x)
(︂
2γ(x)∆G

∞u
k(x)−∆G

2 u
k(x)

)︂
+

2dx
θ(x)

f(x),

where we have defined

β(x) =
θ(x)p− 2

θ(x)p
and γ(x) = dx

p− 2

θ(x)p− 2
.

One fundamental advantage of the semi-implicit iteration (3.24) is that, unlike (3.23), the iter-
ation (3.24) requires the solution of the same symmetric positive definite system at each iteration.
This means we can dramatically speed up the solver, for large scale problems, by pre-computing
a Cholesky factorization and using it at each iteration, or pre-computing an Incomplete Cholesky

ANALYSIS AND ALGORITHMS FOR ℓp-BASED SEMI-SUPERVISED LEARNING ON GRAPHS 33

factorization, to be used as a preconditioner for CG. Another favorable feature of this scheme is
the fact that the conditioning of the system is independent of p, allowing the scheme to reliably
solve problems for any p.

The choice of θ(x) affects stability and convergence of the scheme. We give a heuristic argument
here suggesting the iteration (3.24) is a contraction when

(3.25) θ(x) ≥ 2

p
+ dx

(︂
1− 2

p

)︂
=: η(x).

Define yk±(x) as in (3.20) and write y± in place of yk±(x). Noting that (3.25) implies −1 ≤ 2γ(x)−1 ≤
1, we have

|2γ∆G
∞u

k(x)−∆G
2 u

k(x)|

=

⃓⃓⃓⃓
⃓⃓(2γ(x)− 1)

(︂
wxy−

(︁
uk(y−)− uk(x)

)︁
+ wxy+

(︁
uk(y+)− uk(x)

)︁)︂
−
∑︂
y ̸=y±

wxy

(︁
uk(y)− uk(x)

)︁⃓⃓⃓⃓⃓⃓
≤ |2γ(x)− 1|

(︂
wxy− |uk(y−)− uk(x)|+ wxy+ |uk(y+)− uk(x)|

)︂
+
∑︂
y ̸=y±

wxy|uk(y)− uk(x)|

≤
∑︂
y∈X

wxy|uk(y)− uk(x)|.

Therefore, for f ≡ 0 it follows from the definition of the iteration (3.24) that⃓⃓⃓⃓
⃓⃓∑︂
y∈X

wxy(u
k+1(y)− uk+1(x))

⃓⃓⃓⃓
⃓⃓ ≤ β(x)

∑︂
y∈X

wxy|uk(y)− uk(x)|,

where 0 < β(x) < 1. While this is not a contraction, it is suggestive of what we observe in
practice, namely that the semi-implicit iteration is a contraction when (3.25) is satisfied. It seems
that a convergence proof for the semi-implicit method not straightforward. Indeed, even in the
case of a uniform grid in 2-dimensions, a proof of convergence for the semi-implicit method is not
available [45].

4. Algorithm Comparisons

We now give a numerical study of the performance of each algorithm on synthetic problems.
This allows us, in particular, to control the intrinsic dimension of the graph—the dimension of the
ambient Euclidean space or manifold from which the graph is sampled—and study how the intrinsic
dimension affects convergence rates.

4.1. Experiment Design. This section specifies design choices for our synthetic data experiments.

4.1.1. Problem S (synthetic data). We sample X from a uniform distribution on [0, 1]d, and label
10 of these points with labels sampled from a uniform distribution on [0, 1]. The experiments we
report on use d = 2, d = 5 and d = 10, as the computational cost did not change substantially for
d > 10.

4.1.2. Graph Construction. Define the relation ∼K on X by x ∼K y if x is among the k nearest
neighbors of y in Euclidean distance. We construct a symmetric K-nearest neighbor graph as
follows

(4.1) wxy =

{︄
exp

(︂
− |x−y|2

σ2

)︂
, if x ∼K y or y ∼K x

0, otherwise.

34 ANALYSIS AND ALGORITHMS FOR ℓP -BASED SEMI-SUPERVISED LEARNING ON GRAPHS

p
N 3 4 6 8 10 15 20 25 30 40 50
1 2e-01 3e-02 1e-02 8e-04 2e-04 8e-05 4e-06 3e-07 3e-08 1e-09 2e-11
2 5e-02 3e-03 4e-04 1e-05 7e-07 1e-06 2e-08 6e-10 3e-11 5e-12 3e-14
3 7e-03 2e-04 4e-05 7e-08 2e-10 3e-10 3e-13 4e-15 1e-16 9e-17 -
4 8e-04 1e-05 4e-06 2e-09 1e-13 2e-14 - - - - -
5 5e-05 4e-07 8e-07 5e-12 - - - - - - -
6 4e-07 1e-09 7e-08 2e-16 - - - - - - -
7 2e-11 2e-14 6e-10 - - - - - - - -
8 8e-15 - 1e-12 - - - - - - - -
9 - - 2e-16 - - - - - - - -

Table 1. Newton’s method with homotopy solved problem S for p = 50, ϵ < 10−12

in just 56 iterations. We take increasingly large steps in p while remaining in the
quadratic convergence regime, suggesting we could go much farther than p = 50.

The constant σ plays the role of being a typical length scale for the problem. In our experiments,
we compute it as σ = 1

2 max
{︁
|x− y| : wxy > 0

}︁
. We use K = 10 in all experiments. Other choices

of K would produce similar accuracy, but larger K would increase the cost of each iteration. The
only requirement is that K needs to be large enough to ensure the graph is connected. It should
be noted that, even though we prescribe K = 10, after we apply (4.1), most vertices will have a
higher number of neighbors (so that symmetry can be enforced).

4.1.3. Error Reporting. For the variational formulation, we report

(4.2) ϵ =
1

nσd+p−1
max
x∈X

⃓⃓
∆G

p u(x)
⃓⃓
,

which amounts to scaling the largest residual in equation (1.13), by the number of points, and the
typical length scale σ. This scaling ensures a fair comparison across different n, p, d. For the game
theoretic formulation, the scaling of the residual in equation (1.16) is different, and we report

(4.3) ϵ =
1

σ
max
x∈X

⃓⃓
LG
p u(x)

⃓⃓
.

4.2. Homotopy Results for Newton and Newton-like Methods. Homotopy is very effective
at improving the performance and reliability of Newton’s method for higher p. We illustrate this
by solving problem S with d = 10, p = 50, m = 10 and n = 104. We use the solution to the p = 2
problem as u0 for the p = 3 problem. Then, we apply homotopy until p = 50 is reached. For each
p, we require ϵ < 10−12 according to (4.2). Table 1 reports ϵ at each iteration.

We repeat the experiment using the Newton-like algorithm for the game-theoretic formulation (now
ϵ is given by (4.3)). As we can see from Table 2, homotopy is equally effective in this case.

4.3. Computational Cost vs. Dimension d and Size n . Our timing results were performed
on a laptop with 16GB of RAM memory. For the gradient descent method, we used a C-language
implementation. Other methods were implemented in MATLAB 2018, as the computational cost
was dominated by matrix operations. For these methods, we observed the cost of direct solvers in-
crease by as much as 100×, when going from d = 2 up to d = 100, hence we used iterative methods
instead. For Newton’s method, we used a conjugate gradient’s method (CG), preconditioned with
an Incomplete Cholesky factorization. Given that the matrix system for Newton-like’s method is
no longer symmetric, we used a Generalized Minimal Residual Algorithm (GMRES) [48], precondi-
tioned with an Incomplete LU factorization instead. The semi-implicit method performed very well
with a preconditioned CG method. Since the matrix to be inverted does not change, we compute

ANALYSIS AND ALGORITHMS FOR ℓp-BASED SEMI-SUPERVISED LEARNING ON GRAPHS 35

p
N 3 4 6 8 10 15 20 25 30 40 50
1 4e-02 1e-02 9e-03 4e-03 2e-03 3e-03 1e-03 7e-04 5e-04 6e-04 3e-04
2 4e-03 3e-03 3e-03 2e-03 1e-03 3e-03 2e-03 7e-04 3e-04 9e-04 6e-04
3 1e-03 8e-04 2e-03 6e-04 5e-04 2e-03 9e-04 1e-04 9e-05 1e-04 3e-05
4 1e-04 1e-04 5e-04 5e-04 6e-05 3e-04 5e-04 3e-16 3e-16 3e-16 3e-16
5 6e-06 1e-05 9e-05 2e-04 2e-07 6e-05 3e-16 - - - -
6 2e-16 2e-16 2e-16 8e-06 4e-16 3e-16 - - - - -
7 - - - 3e-16 - - - - - - -

Table 2. The Newton-like method with homotopy solved problem S for p = 50
and ϵ < 10−12 in 52 iterations. Similar to Newton’s method, increasingly large step
sizes in p are possible, suggesting the ability to go even higher in p.

an Incomplete Cholesky factorization, with a drop tolerance of 10−1, at the very beginning, and
use it as our preconditioner in each iteration.

We explore how the Newton, Newton-like, Semi-Implicit, and Gradient Descent algorithms scale
with n, d. To measure this relationship, we solved problem S for p = 11, until ϵ < 10−7, according
to (4.2) and (4.3) respectively. These results are reported in Figure 2. In the figure, the complexity
of Newton’s method scales roughly like n0.8, the Newton-like method scales roughly like n1.3, the
semi-implicit method scales like n1 for d = 2 and d0.75 for d = 5, 10, and the gradient descent-type
method scales like n2 for d = 2, and n1.5 for d = 5, 10. We note that Figure 2a and Figures 2(b-d)
cannot be directly compared, since the parameters p, ϵ do not have the same meaning in both
problems, but give a rough idea of the relative performance of the variational and game-theoretic
solvers. We also illustrate our ability to solve large scale problems by solving problem S, with
m = 10, K = 10, n = 5 · 105 and d = 10. For the variational formulation, we use Newton’s
method starting from the solution of the p = 2 problem (1-step homotopy). For the game theoretic
formulation, we choose the semi-implicit method. In both cases, iterative solvers were used. We
plot the results, averaged over 5 trials in Figure 3. In the figure, the CPU time for Newton’s method
scales like ε−0.05 with tolerance ε > 0, while the CPU time for the semi-implicit method scales like
ε−0.2.

Remark 4.1. It is interesting to point out that the results in Figure 2 show that the cost of all
four methods decreases (sometimes significantly) as the dimension d increases. This is due to the
graph Laplacian matrices having better condition numbers in higher dimensions. To see why this
is the case, we recall that on a uniform grid, the condition number for a discrete Laplacian is on
the order of ∆x−2, where ∆x is the grid resolution. When ∆x is small, the Laplacian is poorly
conditioned and iterative methods are stiff without some form of preconditioning. The same scaling
for the condition number holds for graph Laplacians constructed from random geometric graphs,
due to the spectral convergence results in, for example, [14], but now ∆x should be replaced by
the length scale ε > 0 on which the graph is constructed. In dimension d, the length scale is at
least ε ≥ n−1/d, to ensure graph connectivity. This implies that as a function of n and d, the
condition number of the graph Laplacian should scale like n−2/d. Thus, the curse of dimensionality
improves the condition number of graph Laplacians in higher dimensions, and explains why iterative
methods perform better for larger d. The stiffness of Laplace equations is essentially a phenomenon
of high resolution meshes, which are only possible to construct in low dimensional spaces (e.g.,
d = 2, 3). By the manifold assumption in machine learning [18], we expect our graphs to have
intrinsic dimensionality significantly higher than d = 3, and so the graph Laplacians we encounter
in practice are better conditioned than what we may expect from experience with solving PDEs in
d = 2 or d = 3 dimensions.

36 ANALYSIS AND ALGORITHMS FOR ℓP -BASED SEMI-SUPERVISED LEARNING ON GRAPHS

100 1000 10000

n

-1

0

1

L
o
g
1
0
(
C
P
U

t
i
m
e

(
s
)
)

d = 2

d = 5

d = 10

(a) Newton’s cost for 26 ≤ n ≤ 215, p = 11.

100 1000 10000

n

-1

0

1

2

3

L
o
g
1
0
(
C
P
U

t
i
m
e

(
s
)
)

d = 2

d = 5

d = 10

(b) Newton-like’s cost for 26 ≤ n ≤ 215, p = 11.

100 1000 10000

n

-1

0

1

2

L
o
g
1
0
(
C
P
U

t
i
m
e

(
s
)
)

d = 2

d = 5

d = 10

(c) Semi-Implicit’s cost for 26 ≤ n ≤ 215, p = 11.

100 1000 10000

n

-3

-2

-1

0

1

2

3

L
o
g
1
0
(
C
P
U

t
i
m
e

(
s
)
)

d = 2

d = 5

d = 10

(d) Gradient descent’s cost, 26 ≤ n ≤ 215, p = 11.

Figure 2. The computational cost of solving problem S, averaged over 5 trials.
(a) Newton’s cost in solving problem S until ϵ < 10−7 with preconditioned CG.
(b) Newton-like’s cost in solving problem S, until ϵ < 10−7, with preconditioned
GMRES. (c) Semi-implicit method’s cost for solving problem S until ϵ < 10−7, with
preconditioned CG. (d) Gradient descent’s cost for solving problem S until ϵ < 10−7.

4.4. Synthetic Experiment Conclusions. The experiments shown demonstrate that both vari-
ational and game-theoretic formulations can be solved with the algorithms we propose for large
scale graphs with high intrinsic dimensionality, similar to what will be observed in practice. For
the game-theoretic problem, the semi-implicit formulation is likely to perform the best, although
it lacks the convergence guarantees enjoyed by the gradient descent method. The Newton and
Newton-like algorithms show strong resemblance to one another, and both methods improve their
performance and reliability substantially when homotopy is utilized.

5. Experiments with Real Data

We now give an experimental study of p-Laplacian semi-supervised learning classification on real
datasets, including MNIST, and the more complex datasets Fashion MNIST and Extended MNIST.

5.1. Description of the Experiments and Datasets. On each dataset, we shall perform two
experiments. For the first, we explore the performance as the number of labels varies, with the
goal of understanding how different models perform with increasing, but very small, amounts of
labeled data. For the second experiment, we fix the number of labels to 1 per class, and explore

ANALYSIS AND ALGORITHMS FOR ℓp-BASED SEMI-SUPERVISED LEARNING ON GRAPHS 37

(a) Newton (b) Semi-implicit

Figure 3. Solving problem S at large scale with n = 5 · 105, p = 5 and d = 10.
(a) Newton’s cost for solving the variational formulation, using preconditioned CG.
(b) Semi-implicit’s cost for the game-theoretic problem, with preconditioned CG.

the performance as a function of the amount of unlabeled data. This experiment helps to illustrate
the degeneracy of the 2-Laplacian, while also illustrating how other models can profit from an
increasing amount of unlabeled data, which is the premise upon which semi-supervised learning is
built. Before proceeding to the results, we provide some detail on the datasets we work with.

In all three problems, we first preprocess each image via a Scattering Transform [7] in order to
extract features upon which to build the graph. The graphs are constructed as K-nearest neighbor
graphs in the feature space using the weights (4.1). In all experiments we chose K = 10, to ensure
graph connectivity and sufficient sparsity. We also experimented with K = 25 and K = 50 and
found that increasing the number of neighbors in the graph does not provide any advantages, and
results in significantly higher computational cost.

We solve the M -class classification problem with the standard one-vs-rest approach, whereby we
solve M binary classification problems classifying each digit against the rest. This gives M scores
for each unlabeled image, and the final classification is chosen as the class with the highest score.

5.1.1. MNIST. The MNIST dataset is a standard benchmark that consists of 70, 000 images of
handwritten digits 0 through 9 [37]. Each image is a 28× 28 pixel grayscale image, meaning it can
be represented as a vector in R784 dimensions. The classes are well balanced, with roughly 7, 000
examples for each digit.

5.1.2. Fashion MNIST. This dataset, recently introduced by [55], was designed as a drop-in re-
placement for MNIST, in order to test classification accuracy for a significantly harder problem.
This dataset also consists of 70, 000 grayscale images of size 28 × 28 pixels, except the 10 hand-
written digits are replaced by 10 classes of clothing items, such as sandals, and dresses. For an
example, see Figure 4.

5.1.3. Extended MNIST. The Extended MNIST (EMNIST) dataset [19] contains images of hand-
written letters, of 28× 28 pixels. Given that letters may be uppercase or lowercase, and there are
now 26 classes, the semisupervised task on this dataset is substantially more challenging. To sim-
plify the task slightly, we downsample the dataset for the first experiment (performance vs. number
of labels) so that all classes have the same number of labels. We end up with 3419 samples for each
of the 26 classes, for a total of n = 88, 894 images. For the second task, we measure performance
with subsampled datasets of 25, 26, . . . , 211 samples per class, always having 1 labeled sample.

38 ANALYSIS AND ALGORITHMS FOR ℓP -BASED SEMI-SUPERVISED LEARNING ON GRAPHS

Figure 4. Sample 28× 28-pixel images from the Fashion MNIST dataset.

5.2. Experimental Results. We report the results of our experiments in Figure 5. In all exper-
iments, we report results using 5 formulations: the standard 2-Laplacian, the Weighted Non-local
Laplacian (WNLL) [49], and the game-theoretic p-Laplacian for p = 5, p = 9 and p = ∞ (e.g.
Lipschitz learning). All models were solved to a tolerance of ϵ < 10−2, which provides consistent
results. The results we report paint a similar picture across all three datasets. For the first type
of experiment (left column), all formulations improve their accuracy as the number of labels in-
creases, and they gradually approach a similar level as m grows. This means that the choice of a
good model is of particular importance in the regime when labeled data is extremely limited. Both
the p-Laplace and WNLL methods clearly outperform the 2-Laplacian at low label rates, while the
WNLL and p-Laplacian give fairly similar results.

The second experiment (right column) provides further evidence of the superiority of the p-
Laplacian model over the 2-Laplacian. In this case we fix 1 label per class, which means m = 10 for
MNIST and Fashion MNIST, while m = 26 for EMNIST. The premise of semi-supervised is that
we may achieve superior performance by including both labeled and unlabeled data. If we keep m
fixed, we should expect the accuracy to improve as the number of unlabeled images increases. In
all three datasets, the 2-Laplacian classification performance decreases substantially as the amount
of unlabeled data n grows. This illustrates the need for alternative models when n ≫ m. On the
other hand, the p-Laplacian models (for sufficiently large p) do not degenerate as n grows, and in
fact, their performance increases slightly as n grows. The Weighted Non-local Laplacian exhibits
mixed results. For the MNIST and Fashion MNIST datasets, performance decreases slightly when
n = 70, 000. Meanwhile, this model outperforms others on the EMNIST dataset.

Let us make some final remarks comparing and contrasting WNLL and p-Laplace learning. The
experimental results in Figure 5 show that neither method is strictly better than the other. For the
most part, the methods are comparable. The largest difference is seen at 1 label per class on MNIST
where p-Laplace is roughly 10% better than WNLL. The difference is much more pronounced in
terms of the theoretical guarantees for each method. It was shown in [8] (see [50] for the variational
p-Laplacian) that p-Laplace learning is well-posed with arbitrarily few labeled examples; in fact,
we can take the number of labeled examples to be finite while sending the number of unlabeled
examples to infinity, and still obtain a well-posed continuous extension of the label values. On the
other hand, the WNLL was shown in [15] to be ill-posed in the same setting of finite labeled data
and infinite unlabeled data. In particular, [15, Corollary 3.8] shows that the WNLL with finite
labeled data converges to a constant labeling function as the amount of unlabeled data tends to
infinity. To the best of our knowledge, the only semi-supervised learning algorithm with theoretical
guarantees at arbitrarily low label rates, such as the ones given in [8,50], is the graph p-Laplacian.

6. Conclusions

This paper is focused on theory and applications of ℓp-Laplacian regularized semi-supervised
learning. We preformed a detailed analysis of discrete to continuum theory for the p-Laplacian on
k-NN graphs, which are more commonly used in practice compared to random geometric graphs,
and made the surprising discovery that the p-Laplacian models retain information about the data

ANALYSIS AND ALGORITHMS FOR ℓp-BASED SEMI-SUPERVISED LEARNING ON GRAPHS 39

(a) MNIST, n = 70000, 10 ≤ m ≤ 50. (b) MNIST, m = 10, 2188 ≤ n ≤ 70000.

(c) Fashion MNIST, n = 70000, 10 ≤ m ≤ 50. (d) Fashion MNIST, m = 10, 2188 ≤ n ≤ 70000.

(e) EMNIST, n = 88894, 10 ≤ m ≤ 50. (f) EMNIST, m = 26, 832 ≤ n ≤ 53248.

Figure 5. Classification accuracy for the MNIST, Fashion MNIST and Extended
MNIST datasets. Figures (a,c,e) show the performance as a function of the number
of labels per class, while (b,d,f) show the performance for 1 label per class as a
function of the amount of unlabeled data used.

40 ANALYSIS AND ALGORITHMS FOR ℓP -BASED SEMI-SUPERVISED LEARNING ON GRAPHS

distribution as p→ ∞ on k-NN graphs, contrary to conventional wisdom from the existing p-Laplace
theory on random geometric graphs. We also presented a simple and very general framework for
proving discrete to continuum convergence results that only requires pointwise consistency and a
monotonicity property. We expect this framework to be useful in future work.

We also studied and developed algorithms for solving the variational and game-theoretic formula-
tions of the p-Laplacian on a weighted graph. The variational formulation may be solved efficiently
using Newton’s method with homotopy. The semi-implicit method is the fastest method for solving
the game-theoretic formulation, while the gradient-descent approach enjoys rigorous convergence
guarantees. Our experiments with real data show that p-Laplacian learning is superior to Laplace
learning (p = 2) at very low label rates on common image classification datasets including MNIST,
FashionMNIST and EMNIST.

Appendix A. Review of viscosity solutions

Viscosity solutions are a notion of weak solution for partial differential equations that obeys the
maximum principle and enjoys strong stability and uniqueness theorems. The theory is especially
useful for passing from discrete to continuum limits (see, e.g., [9, 13, 17]). We review here the
basic definitions. Let USC(Ω) (resp. LSC(Ω)) denote the collection of functions that are upper
(resp. lower) semicontinuous at all points in Ω. We make the following definitions.

Definition A.1. We say u ∈ USC(Ω) is a viscosity subsolution of (2.48) if for all x ∈ Ω and
every φ ∈ C∞(Rn) such that u− φ has a local maximum at x with respect to Ω{︄

F (∇2u(x),∇φ(x), u(x), x) ≤ 0, if x ∈ Ω

min
{︁
F (∇2φ(x),∇φ(x), u(x), x), u(x)− g(x)

}︁
≤ 0 if x ∈ ∂Ω.

Likewise, we say that u ∈ LSC(Ω) is a viscosity supersolution of (2.48) if for all x ∈ Ω and
every φ ∈ C∞(Rn) such that u− φ has a local minimum at x with respect to Ω{︄

F (∇2u(x),∇φ(x), u(x), x) ≥ 0, if x ∈ Ω

max
{︁
F (∇2φ(x),∇φ(x), u(x), x), u(x)− g(x)

}︁
≥ 0 if x ∈ ∂Ω.

Finally, we say that u is a viscosity solution of (2.48) if u is both a viscosity sub- and supersolu-
tion. In this case, we say that the boundary conditions in (2.48) hold in the viscosity sense, which
is also known as the generalized Dirichlet sense.

Definition A.2. We say that (2.48) enjoys strong uniqueness if whenever u ∈ USC(Ω) is a
subsolution of (2.48) and v ∈ LSC(Ω) is a supersolution, we have u ≤ v on Ω.

We refer the reader to [20] for the proof of the comparison principle for viscosity solutions with
generalized Dirichlet boundary conditions, which implies strong uniqueness.

References

[1] D. Adil, R. Peng, and S. Sachdeva. Fast, provably convergent irls algorithm for p-norm linear regression. In
Advances in Neural Information Processing Systems, pages 14166–14177, 2019.

[2] M. Alamgir and U. V. Luxburg. Phase transition in the family of p-resistances. In Advances in Neural Information
Processing Systems, pages 379–387, 2011.

[3] R. K. Ando and T. Zhang. Learning on graph with Laplacian regularization. In Advances in neural information
processing systems, pages 25–32, 2007.

[4] G. Aronsson, M. Crandall, and P. Juutinen. A tour of the theory of absolutely minimizing functions. Bulletin of
the American mathematical society, 41(4):439–505, 2004.

[5] G. Barles and P. E. Souganidis. Convergence of approximation schemes for fully nonlinear second order equations.
Asymptotic analysis, 4(3):271–283, 1991.

[6] N. Bridle and X. Zhu. p-voltages: Laplacian regularization for semi-supervised learning on high-dimensional
data. In Eleventh Workshop on Mining and Learning with Graphs (MLG2013), 2013.

ANALYSIS AND ALGORITHMS FOR ℓp-BASED SEMI-SUPERVISED LEARNING ON GRAPHS 41

[7] J. Bruna and S. Mallat. Invariant scattering convolution networks. IEEE transactions on pattern analysis and
machine intelligence, 35(8):1872–1886, 2013.

[8] J. Calder. The game theoretic p-Laplacian and semi-supervised learning with few labels. Nonlinearity, 32(1),
2018.

[9] J. Calder. Lecture notes on viscosity solutions. 2018. Online Lecture Notes: http://www-users.math.umn.edu/

~jwcalder/viscosity_solutions.pdf.
[10] J. Calder. Consistency of Lipschitz learning with infinite unlabeled data and finite labeled data. SIAM Journal

on Mathematics of Data Science, 1(4):780–812, 2019.
[11] J. Calder. Calculus of variations. Lecture notes, 2020. http://www-users.math.umn.edu/~jwcalder/

CalculusOfVariations.pdf.
[12] J. Calder. GraphLearning Python Package. doi:10.5281/zenodo.5850940, 2022. https://github.com/

jwcalder/GraphLearning.
[13] J. Calder, S. Esedoglu, and A. O. Hero. A Hamilton–Jacobi equation for the continuum limit of nondominated

sorting. SIAM Journal on Mathematical Analysis, 46(1):603–638, 2014.
[14] J. Calder and N. Garćıa Trillos. Improved spectral convergence rates for graph Laplacians on ε-graphs and k-NN

graphs. arXiv:1910.13476, 2019.
[15] J. Calder and D. Slepčev. Properly-weighted graph laplacian for semi-supervised learning. Applied Mathematics

& Optimization, pages 1–49, 2019.
[16] J. Calder, D. Slepčev, and M. Thorpe. Rates of convergence for Laplacian semi-supervised learning with low

labeling rates. arXiv:2006.02765, 2020.
[17] J. Calder and C. K. Smart. The limit shape of convex hull peeling. Duke Mathematical Journal, 169(11):2079–

2124, 2020.
[18] O. Chapelle, B. Scholkopf, and A. Zien. Semi-supervised learning. MIT, 2006.
[19] G. Cohen, S. Afshar, J. Tapson, and A. Van Schaik. Emnist: Extending mnist to handwritten letters. In 2017

International Joint Conference on Neural Networks (IJCNN), pages 2921–2926. IEEE, 2017.
[20] M. G. Crandall, H. Ishii, and P.-L. Lions. User’s guide to viscosity solutions of second order partial differential

equations. Bulletin of the American mathematical society, 27(1):1–67, 1992.
[21] A. El Alaoui, X. Cheng, A. Ramdas, M. J. Wainwright, and M. I. Jordan. Asymptotic behavior of ℓp-based

Laplacian regularization in semi-supervised learning. In Conference on Learning Theory, pages 879–906, 2016.
[22] A. Elmoataz, X. Desquesnes, and M. Toutain. On the game p-Laplacian on weighted graphs with applications

in image processing and data clustering. European Journal of Applied Mathematics, 28(6):922–948, 2017.
[23] A. Elmoataz, F. Lozes, and M. Toutain. Nonlocal PDEs on graphs: From tug-of-war games to unified interpo-

lation on images and point clouds. Journal of Mathematical Imaging and Vision, 57(3):381–401, 2017.
[24] A. Elmoataz, M. Toutain, and D. Tenbrinck. On the p-Laplacian and ∞-Laplacian on graphs with applications

in image and data processing. SIAM Journal on Imaging Sciences, 8(4):2412–2451, 2015.
[25] L. Evans. Partial Differential Equations (Graduate Studies in Mathematics, V. 19) GSM/19. American Mathe-

matical Society, June 1998.
[26] R. Fletcher, J. Grant, and M. Hebden. The calculation of linear best Lp approximations. The Computer Journal,

14(3):276–279, 1971.
[27] M. Flores. Algorithms for semisupervised learning on graphs. 2018.
[28] N. Garcia Trillos. Variational limits of k-nn graph-based functionals on data clouds. SIAM Journal on Mathe-

matics of Data Science, 1(1):93–120, 2019.
[29] N. Garćıa Trillos and D. Slepčev. Continuum limit of Total Variation on point clouds. Archive for Rational

Mechanics and Analysis, 220(1):193–241, 2016.
[30] Y. Hafiene, J. Fadili, and A. Elmoataz. Nonlocal p-Laplacian variational problems on graphs. arXiv:1810.12817,

2018.
[31] J. He, M. Li, H.-J. Zhang, H. Tong, and C. Zhang. Manifold-ranking based image retrieval. In Proceedings of the

12th annual ACM international conference on Multimedia, pages 9–16. ACM, 2004.
[32] J. He, M. Li, H.-J. Zhang, H. Tong, and C. Zhang. Generalized manifold-ranking-based image retrieval. IEEE

Transactions on image processing, 15(10):3170–3177, 2006.
[33] M. Hein, J.-Y. Audibert, and U. v. Luxburg. Graph Laplacians and their convergence on random neighborhood

graphs. Journal of Machine Learning Research, 8(Jun):1325–1368, 2007.
[34] M. Hein, J.-Y. Audibert, and U. Von Luxburg. From graphs to manifolds–weak and strong pointwise consistency

of graph Laplacians. In International Conference on Computational Learning Theory, pages 470–485. Springer,
2005.

[35] A. Jung, A. O. Hero III, A. Mara, and S. Jahromi. Semi-supervised learning via sparse label propagation. arXiv
preprint arXiv:1612.01414, 2016.

[36] R. Kyng, A. Rao, S. Sachdeva, and D. A. Spielman. Algorithms for Lipschitz learning on graphs. In Conference
on Learning Theory, pages 1190–1223, 2015.

http://www-users.math.umn.edu/~jwcalder/viscosity_solutions.pdf
http://www-users.math.umn.edu/~jwcalder/viscosity_solutions.pdf
http://www-users.math.umn.edu/~jwcalder/CalculusOfVariations.pdf
http://www-users.math.umn.edu/~jwcalder/CalculusOfVariations.pdf
https://github.com/jwcalder/GraphLearning
https://github.com/jwcalder/GraphLearning

42 ANALYSIS AND ALGORITHMS FOR ℓP -BASED SEMI-SUPERVISED LEARNING ON GRAPHS

[37] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11):2278–2324, 1998.

[38] G. Leoni. A first course in Sobolev spaces. American Mathematical Soc., 2017.
[39] M. Lewicka and J. J. Manfredi. Game theoretical methods in PDEs. Bollettino dell’Unione Matematica Italiana,

7(3):211–216, 2014.
[40] P. Lindqvist. Notes on the p-Laplace equation. 2017.
[41] U. v. Luxburg and O. Bousquet. Distance-based classification with Lipschitz functions. Journal of Machine

Learning Research, 5(Jun):669–695, 2004.
[42] J. J. Manfredi, A. M. Oberman, and A. P. Sviridov. Nonlinear elliptic partial differential equations and p-

harmonic functions on graphs. Differential Integral Equations, 28(1-2):79–102, 2015.
[43] B. Nadler, N. Srebro, and X. Zhou. Semi-supervised learning with the graph Laplacian: The limit of infinite

unlabelled data. Advances in neural information processing systems, 22:1330–1338, 2009.
[44] A. M. Oberman. Convergent difference schemes for degenerate elliptic and parabolic equations: Hamilton–jacobi

equations and free boundary problems. SIAM Journal on Numerical Analysis, 44(2):879–895, 2006.
[45] A. M. Oberman. Finite difference methods for the infinity laplace and p-laplace equations. Journal of Computa-

tional and Applied Mathematics, 254:65–80, 2013.
[46] J. M. Ortega. The newton-kantorovich theorem. The American Mathematical Monthly, 75(6):658–660, 1968.
[47] Y. Peres, O. Schramm, S. Sheffield, and D. Wilson. Tug-of-war and the infinity Laplacian. Journal of the

American Mathematical Society, 22(1):167–210, 2009.
[48] Y. Saad and M. H. Schultz. Gmres: A generalized minimal residual algorithm for solving nonsymmetric linear

systems. SIAM Journal on scientific and statistical computing, 7(3):856–869, 1986.
[49] Z. Shi, S. Osher, and W. Zhu. Weighted nonlocal Laplacian on interpolation from sparse data. Journal of

Scientific Computing, 73(2-3):1164–1177, 2017.
[50] D. Slepcev and M. Thorpe. Analysis of p-laplacian regularization in semisupervised learning. SIAM Journal on

Mathematical Analysis, 51(3):2085–2120, 2019.
[51] D. Ting, L. Huang, and M. Jordan. An analysis of the convergence of graph laplacians. arXiv preprint

arXiv:1101.5435, 2011.
[52] N. G. Trillos and R. Murray. A maximum principle argument for the uniform convergence of graph laplacian

regressors. arXiv preprint arXiv:1901.10089, 2019.
[53] R. A. Vargas and C. S. Burrus. Iterative design of lp fir and iir digital filters. In 2009 IEEE 13th Digital Signal

Processing Workshop and 5th IEEE Signal Processing Education Workshop, pages 468–473, Jan 2009.
[54] Y. Wang, M. A. Cheema, X. Lin, and Q. Zhang. Multi-manifold ranking: Using multiple features for better

image retrieval. In Pacific-Asia Conference on Knowledge Discovery and Data Mining, pages 449–460. Springer,
2013.

[55] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist: a novel image dataset for benchmarking machine learning
algorithms. arXiv:1708.07747, 2017.

[56] B. Xu, J. Bu, C. Chen, D. Cai, X. He, W. Liu, and J. Luo. Efficient manifold ranking for image retrieval.
In Proceedings of the 34th international ACM SIGIR conference on Research and development in Information
Retrieval, pages 525–534. ACM, 2011.

[57] C. Yang, L. Zhang, H. Lu, X. Ruan, and M.-H. Yang. Saliency detection via graph-based manifold ranking. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 3166–3173, 2013.

[58] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf. Learning with local and global consistency. In
Advances in neural information processing systems, pages 321–328, 2004.

[59] D. Zhou, J. Huang, and B. Schölkopf. Learning from labeled and unlabeled data on a directed graph. In Pro-
ceedings of the 22nd international conference on Machine learning, pages 1036–1043. ACM, 2005.

[60] D. Zhou and B. Schölkopf. Regularization on discrete spaces. In Joint Pattern Recognition Symposium, pages
361–368. Springer, 2005.

[61] D. Zhou, J. Weston, A. Gretton, O. Bousquet, and B. Schölkopf. Ranking on data manifolds. In Advances in
neural information processing systems, pages 169–176, 2004.

[62] X. Zhu, Z. Ghahramani, and J. D. Lafferty. Semi-supervised learning using gaussian fields and harmonic functions.
In Proceedings of the 20th International conference on Machine learning (ICML-03), pages 912–919, 2003.

	1. Introduction
	1.1. Main results and contributions

	2. Continuum limits on k-nearest neighbor graphs
	Notation
	2.1. Graph construction
	2.2. epsilon-ball graphs
	2.3. Nonsymmetric k-nearest neighbor graphs
	2.4. Symmetric k-nearest neighbor graphs
	2.5. Discrete to continuum convergence

	3. Algorithms for p-Laplacian learning
	3.1. Newton's Method for variational p-Laplacian
	3.2. Algorithms for the game theoretic formulation

	4. Algorithm Comparisons
	4.1. Experiment Design
	4.2. Homotopy Results for Newton and Newton-like Methods
	4.3. Computational Cost vs. Dimension d and Size n
	4.4. Synthetic Experiment Conclusions

	5. Experiments with Real Data
	5.1. Description of the Experiments and Datasets
	5.2. Experimental Results

	6. Conclusions
	Appendix A. Review of viscosity solutions
	References

