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Abstract
Integrable standard and nonlocal derivative nonlinear Schrödinger
equations are investigated. The direct and inverse scattering are con-
structed for these equations; included are both the Riemann–Hilbert and
Gel’fand–Levitan–Marchenko approaches and soliton solutions. As a typical
application, it is shown how these derivative NLS equations can be obtained as
asymptotic limits from a nonlinear Klein–Gordon equation.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Nonlinear Schrödinger (NLS) equations are among the most physically important equations in
mathematical physics. The one space one time integrable cubic NLS equation

iqt + qxx ± 2q2q∗ = 0,
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where ∗ represents complex conjugation, is a universal model arising in nonlinear dispersive
waves cf [1]. Soon after the Korteweg–deVries (KdV) equation was integrated for rapidly
decaying data [17], this NLS equation was also found to be integrable by the inverse scat-
tering methods [23]. In 1974, KdV, NLS, modified KdV, sine-Gordon and, more generally,
a class of nonlinear equations were integrable by a unified method, termed the inverse scat-
tering transform (IST) [4]. Many new and physically significant equations were subsequently
found to be integrable by these procedures, both continuous and discrete cf [3, 9, 11], and there
have been extensive results inspired by IST [1, 2, 10]. Among these equations is the deriva-
tive NLS equation which arises in plasma physics [19], see equation (2.11) below. In [19], a
Gel’fand–Levitan–Marchenko approach was employed to carry out the inverse scattering, the
case of non-vanishing background was subsequently considered by Kawata and Inoue [20],
and the associated 1-soliton solutions were attained accordingly [19, 20]. The 2-soliton solu-
tions for zero and nonzero boundary conditions were reconstructed by Kawata et al [21]; later
Chen and Lam utilized Riemann–Hilbert methods to explore the case of non-decaying data
[14]. Subsequently, the multi-soliton solutions of the derivative NLS equation with vanish-
ing and non-vanishing backgrounds were investigated [15, 26]. More recently, the double-pole
solitons were formulated via IST [25]. Moreover, Liu, Perry and Sulem applied IST to study
global existence for the derivative NLS equation [22]. Subsequently, the long-time asymptotics
for the solution of the derivative NLS equation with generic initial data in a weighted Sobolev
space was analyzed and the asymptotical stability for the soliton solutions was proven [18].
In addition, the well-posedness and regularity of the derivative NLS equation on the half line
were discussed by Erdoǧan et al [16]. Even though there was extensive research in the field
of integrable systems/soliton theory, it was not until 2013–2017 that large classes of new non-
local equations (of very simple form) were obtained and solved via AKNS procedure [5–7].
This included the PT symmetric NLS, the reverse space time (RST) NLS and reverse time (RT)
NLS equations:

iqt(x, t) + qxx(x, t) ± 2q2 ((x, t)q∗(−x, t) = 0, PT NLS,

iqt(x, t) + qxx(x, t) ± 2q2(x, t)q(−x,−t) = 0, RST NLS,

iqt(x, t) + qxx(x, t) ± 2q2(x, t)q(x,−t) = 0, RT NLS.

In this paper, we analyze the derivative NLS equation in the general case, the ‘standard’
derivative NLS equation (2.11), the nonlocal PT symmetric derivative NLS equation (2.13)
and the RST derivative NLS equation (2.16); we remark that we do not find an equivalent
integrable RT derivative NLS equation.

It should be pointed out that the derivative NLS type equations are extremely important.
From mathematical viewpoint, they are integrable systems and hence amenable to IST. Thus,
they have deep underlying mathematical structure, an infinite number of conserved quantities
and soliton solutions. In addition, the nonlocal PT and RST derivative NLS equations are new.
In this paper, the IST is employed to investigate the Cauchy problems for these novel non-
local equations; we revisit the standard derivative NLS equation. The inverse scattering via
both Riemann–Hilbert and Gel’fand–Levitan–Marchenko approaches and soliton solutions
are formulated. The nonlocal derivative NLS systems are extremely simple in form. From phys-
ical intuition, one expects that simple equations should be derivable from physically related
problems. Indeed that is what we find. Here the derivative NLS type equations, including the
standard and two nonlocal cases, are obtained from a nonlinear Klein–Gordon type equation
via multi-scale methods.
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Note that different symmetry reductions between potentials q and r yield different spectral
problems, see equation (2.1). For the standard derivative NLS equation, there is one-to-one
correspondence between eigenvalues k2

j defined in the upper half plane and k2
j in the lower

half plane. However, such symmetries are not valid for either the PT or RST derivative NLS
equations. Consequently, there are different types of solutions that can occur; e.g. they admit
both singular and non-singular solutions; furthermore, the simplest soliton solution for the PT
case is a 2-soliton (there is no pure 1-soliton solution).

The outline of this paper is as follows. In section 2, we find compatible linear systems asso-
ciated with the general derivative NLS equations including the standard derivative NLS and
two nonlocal derivative NLS equations: the PT symmetric and RST derivative NLS equations.
Section 3 contains the direct scattering analysis, time dependence, symmetries and trace formu-
lae. Unlike the standard case, trace formulae are necessary in order to carry out the complete
IST in the nonlocal cases. Section 4 details the inverse scattering via the Riemann–Hilbert
method and pure soliton solutions. The Gel’fand–Levitan–Marchenko approach is discussed
in section 5. In section 6, we address the important question of how the standard and nonlocal
systems arise in physically related systems. Here, by allowing for solutions to be complex,
we show how the general ‘q, r’ derivative NLS system: (2.8) and (2.9) is derived as a quasi-
monochromatic asymptotic limit from a nonlinear Klein–Gordon type equation. Since the
general derivative NLS equation has reductions to the standard and nonlocal derivative NLS
equations, they are all contained as asymptotic limits from this nonlinear Klein–Gordon type
equation. This is consistent with the result in [8], where it was shown that there are quasi-
monochromatic asymptotic reductions from nonlinear Klein–Gordon, KdV and water wave
equations to the general ‘q, r’ NLS equations found in [4]; these ‘q, r’ NLS equations have sym-
metry reductions to the nonlocal NLS equations: PT NLS, RST NLS and RT NLS equations.
We then conclude.

2. Compatible linear system: nonlocal derivative NLS equations

We begin with the linear scattering problem

vx = Xv = (ik2D + kQ(x, t))v, (2.1)

where v = v(x, t) is a two-component vector: v(x, t) = (v1(x, t), v2(x, t))T; X is a 2 × 2 matrix; k
is a complex spectral parameter; D = diag(−1, 1) and Q(x, t) is an off diagonal matrix depend-
ing on two complex-valued potentials: q(x, t), r(x, t) that vanish rapidly as |x| →∞. Below we
show that q(x, t), r(x, t) satisfy coupled nonlinear equations. More explicitly, the matrix X takes
the form

X =

(
−ik2 kq(x, t)

kr(x, t) ik2

)
. (2.2)

Associated with the scattering problem (2.1), the time evolution equation of the eigenfunctions
v j, j = 1, 2, is given by

vt = Tv, (2.3)

where

T =

(
A B
C −A

)
, (2.4)
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and the quantities A, B and C are scalar functions of q(x, t), r(x, t) and the spectral parameter
k. Depending on the choice of these functions, one finds an evolution equation for the poten-
tial functions q(x, t) and r(x, t) which, under a certain symmetry restriction, leads to a single
evolution equation for either q(x, t) or r(x, t). The above formulation [19] is a generalization
of the AKNS construction [3, 4, 11].

We are interested in the case where the quantities A, B and C are polynomials of degree four
in the constant parameter k with coefficients depending on q(x, t), r(x, t):

A = −i(2k4 + ik2q(x, t)r(x, t)), (2.5)

B = −i(2ik3q(x, t) − kqx + ikrq2), (2.6)

C = −i(2ik3r(x, t) + krx + ikr2q). (2.7)

The compatibility condition of system (2.1) and (2.3) leads to

qt(x, t) = iqxx(x, t) + (q2(x, t)r(x, t))x, (2.8)

rt(x, t) = −irxx(x, t) + (r2(x, t)q(x, t))x. (2.9)

Below we give three symmetries of this ‘q, r’ system associated with the spectral/scattering
problem (2.1) and (2.2). Under the symmetry reduction

(i) r(x, t) = σq∗(x, t), σ = ±1, (2.10)

the system (2.8) and (2.9) is compatible; this yields the standard derivative nonlinear
Schrödinger (derivative NLS) equation:

qt(x, t) = iqxx(x, t) + σ(q2(x, t)q∗(x, t))x, (2.11)

which was found/analyzed in [19]. There are two more symmetry reductions which lead to
integrable nonlocal nonlinear equations.

(ii) r(x, t) = iσq∗(−x, t), σ = ±1. (2.12)

In this case, the compatibility of (2.8) and (2.9) yields the nonlocal PT derivative nonlinear
Schrödinger (PT derivative NLS) equation:

qt(x, t) = iqxx(x, t) + iσ(q2(x, t)q∗(−x, t))x. (2.13)

We note that when the equation is put in the form

qt(x, t) = iqxx(x, t) + iσ(V[q; x, t]q(x, t))x, V[q; x, t] = q(x, t)q∗(−x, t),

(2.14)

then the potential V[q; x, t] satisfies the PT-symmetry condition V[q; x, t] = V∗[q;−x, t].

(iii) r(x, t) = σq(−x,−t), σ = ±1. (2.15)

In this case, the compatibility of (2.8) and (2.9) leads to the reverse space-time derivative
nonlinear Schrödinger (RST derivative NLS) equation:

qt(x, t) = iqxx(x, t) + σ(q2(x, t)q(−x,−t))x. (2.16)

4
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We further remark that unlike the standard NLS equation, the sign of σ = ±1 does not matter
in the derivative NLS equations; it can be rescaled to unity. So it is sufficient to carry out the
analysis for σ = 1 only. Indeed, it is due to the invariance x →−x. The ‘q, r’ system (2.8) and
(2.9) here does not admit pure RT (without reverse space) symmetry; this is different from the
‘q, r’ system in the AKNS case [7], i.e. there is no analog of the RT NLS equation mentioned
in the introduction.

The ‘q, r’ system (2.8) and (2.9) has an infinite number of conserved quantities, among
which the simplest one is

C0 =

∫ ∞

−∞
qr dx ≡

∫
qr dx. (2.17)

We also note that the above nonlocal equations which are nonlocal in space or nonlocal in
both space and time are embedded into the local ‘q, r’ system. Namely, they satisfy the local
system (2.8) and (2.9). Then the nonlocal equation (2.13) is obtained from (2.8) and (2.9) with
the initial condition r(x, t = 0) = iσq∗(−x, t = 0); similarly the nonlocal equation (2.15) is
obtained from (2.8) and (2.9) with the initial condition r(x, t = 0) = σq(−x, t = 0).

3. Direct scattering, time dependence, symmetries, trace formulae

3.1. Direct scattering

We will assume that q(x, t), r(x, t) → 0 rapidly as |x| →∞. The solutions to the scattering
problem (2.1) and (2.2) are defined by their boundary conditions

φ(x, t, k) ∼
(

1
0

)
e−ik2x , φ(x, t, k) ∼

(
0
1

)
eik2 x , as x →−∞,

ψ(x, t, k) ∼
(

0
1

)
eik2 x, ψ(x, t, k) ∼

(
1
0

)
e−ik2x , as x →+∞.

(3.1)

Note that the bar on the top of a quantity does not denote complex conjugation. In addition,
the bounded eigenfunctions are defined as follows:

M(x, t, k) = φ(x, t, k)eik2x , M(x, t, k) = φ(x, t, k)e−ik2 x, (3.2)

N(x, t, k) = ψ(x, t, k)e−ik2x , N(x, t, k) = ψ(x, t, k)eik2 x. (3.3)

From the asymptotics (3.1), one has

W(φ,φ) = lim
x→−∞

W(φ(x, t, k),φ(x, t, k)) = 1, (3.4)

W(ψ,ψ) = lim
x→+∞

W(ψ(x, t, k),ψ(x, t, k)) = −1, (3.5)

where W(u, v) is the Wronskian of the two solutions u, v of the scattering problem (2.1) and
(2.2), i.e., W(u, v) = u1v2 − v1u2.

The functions φ(x, t, k), φ(x, t, k) and ψ(x, t, k), ψ(x, t, k) are linearly independent, hence we
can write

φ(x, t, k) = a(k, t)ψ(x, t, k) + b(k, t)ψ(x, t, k) (3.6)

5
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and

φ(x, t, k) = a(k, t)ψ(x, t, k) + b(k, t)ψ(x, t, k). (3.7)

From (3.4) and (3.5), we deduce the following characterization equation

a(k, t)a(k, t) − b(k, t)b(k, t) = 1. (3.8)

In addition, the scattering data: a(k, t), b(k, t), a(k, t), b(k, t) are related to the Wronskian of
the system via the relations below:

a(k, t) = W(φ(x, t, k),ψ(x, t, k)), (3.9)

a(k, t) = W(ψ(x, t, k),φ(x, t, k)), (3.10)

and

b(k, t) = W(ψ(x, t, k),φ(x, t, k)), (3.11)

b(k, t) = W(φ(x, t, k),ψ(x, t, k)). (3.12)

The functions φ,ψ are analytic in the upper half k2-plane, and φ,ψ are analytic in the
lower half k2-plane. Equivalently, φ,ψ are analytic in quadrants I and III, and φ,ψ are ana-
lytic in quadrants II and IV. The proof makes use of Neumann series for � k2 > 0 or � k2 < 0,
respectively (see lemma 2.1 in [9]).

As a result, a(k) is analytic in quadrants I and III, and a(k) is analytic in quadrants II and
IV. Further, the components

φ1,ψ2,ψ1,φ2 are even functions of k; φ2,ψ1,ψ2,φ1 are odd functions of k.

(3.13)

Therefore, the scattering data

a, a are even functions of k; b, b are odd functions of k. (3.14)

This follows from transformations to standard scattering problems. For example, letting

φ1 = m̃1 es1 e−ik2x , (3.15)

kφ2 =

(
m̃2 e−s1 +

ir
2

m̃1 es1

)
e−ik2 x, (3.16)

which transforms (2.1) and (2.2) with v = φ to

m̃1,x = Q̃Lm̃2, (3.17)

m̃2,x = 2ik2m̃2 + R̃Lm̃1, (3.18)

6
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where

s1 =
i
2

∫ x

−∞
qr dx′, R̃L = − i

2

(
rx +

i
2

qr2 e2s1

)
, Q̃L = q e−2s1 .

Standard estimates [4, 11] show that m̃1, m̃2, and henceφ1 eik2x ,φ2 eik2x are analytic in the upper
half k2-plane. The above equations also show that m̃1,φ1 are even functions of k, while m̃2,φ2

are odd functions of k.
Following the methods of AKNS [4, 11], we find the following asymptotics as k →∞,

m̃1 ∼ 1 − 1
2ik2

∫ x

−∞
Q̃LR̃L dx′, (3.19)

m̃2 ∼ − 1
2ik2

R̃L. (3.20)

In terms of φ, the key term for large k from (3.15) and (3.16) is

φ ∼
(

1
ir
2k

)
es1−ik2x. (3.21)

Similar analysis can be employed for the other functionsψ,ψ,φ by considering the asymptotics
as k →∞, which are given by

φ ∼
(−iq

2k
1

)
e−s1+ik2 x, ψ ∼

(−iq
2k
1

)
es2+ik2 x, ψ ∼

(
1

ir
2k

)
e−s2−ik2x ,

(3.22)

where s2 = i
2

∫∞
x qr dx′. With the above results, we find the asymptotics of a(k, t), a(k, t) as

k →∞:

a(k, t) = W(φ,ψ) ∼ es, s = s1 + s2 =
i
2

∫ ∞

−∞
qr dx, (3.23)

a(k, t) = −W(φ,ψ) ∼ e−s. (3.24)

The zeros of a(k, t), a(k, t) are the eigenvalues, which are associated with decaying eigen-
fucntions; i.e. the bound states. These values are assumed simple and finite in number; they
are a(k j, t) = 0, j = 1, 2, . . . , J and a(k j, t) = 0, j = 1, 2, . . . , J. Below we show that a(k, t)
and a(k, t) are time-independent so that the eigenvalues k j and k j are also time-independent.
Moreover, at these points

φ(x, t, k j) = b(k j, t)ψ(x, t, k j), φ(x, t, k j) = b(k j, t)ψ(x, t, k j). (3.25)

We simply write b j(t) = b(k j, t), bj(t) = b(k j, t).

7
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3.2. Time dependence

The evolution of the data will be needed in order to obtain solutions of the derivative NLS
equations. As |x| →∞, the coefficients of the time evolution of the eigenfunctions in (2.4)
behave like

A → A∞(k) = −2ik4, B → 0, C → 0. (3.26)

To account for the fact that the above eigenfunctions are time-independent, the time evolution
equation (2.3) needs to be modified:

φt(x, t, k) =

(
A − A∞(k) B

C −A − A∞(k)

)
φ(x, t, k). (3.27)

Substituting the scattering equation (3.6) into the above equation yields

at(k, t) = 0, bt(k, t) = −2A∞(k)b(k, t).

=> a(k, t) = a(k, 0), b(k, t) = b(k, 0)e−2A∞(k)t = b(k, 0)e4ik4t.

(3.28)

Hence, the eigenvalues k j are time-independent. Applying a similar analysis on φ leads to

āt(k, t) = 0, b̄t(k, t) = 2A∞(k)b̄(k, t).

=> a(k, t) = a(k, 0), b̄(k, t) = b̄(k, 0)e2A∞(k)t = b̄(k, 0)e−4ik4t.

(3.29)

Therefore, the eigenvalues k j are time-independent. Later we will also need the time depen-
dence of b j(t) = b(k j, t), bj(t) = b(k j, t). A similar procedure as above shows that they satisfy
the same time dependence as b(k, t) and b(k, t). For convenience, we assume sufficient decay
on the initial data so that we can extend the data b(k, t), b(k, t) off the real axis.

3.3. Symmetries

In what follows, we use the notations a(k) := a(k, 0), a(k) := a(k, 0), b(k) := b(k, 0) and
b(k) := b(k, 0).

Associated with the scattering problem, (2.1) and (2.2) admit three symmetries in the physi-
cal space: (i): (2.10), (ii): (2.12), (iii): (2.15). With each of them, below we provide the spectral
symmetries. Later we use these symmetries to find solutions.

3.3.1. General case. If (v1(x, t, k), v2(x, t, k))T satisfies (2.1), then (v1(x, t,−k),
−v2(x, t,−k))T also solves for (2.1). Taking into account the boundary conditions (3.1),
one has

φ(x, t, k) =

(
1 0
0 −1

)
φ(x, t,−k), ψ(x, t, k) =

(
1 0
0 −1

)
ψ(x, t,−k), (3.30)

φ(x, t, k) =

(
−1 0
0 1

)
φ(x, t,−k), ψ(x, t, k) =

(
−1 0
0 1

)
ψ(x, t,−k). (3.31)

8
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Thus,

a(k, t) = a(−k, t),

a(k, t) = a(−k, t),

b(k, t) = −b(−k, t),

b(k, t) = −b(−k, t). (3.32)

It follows that if k = k j is a zero of a(k, t), then so is k = −k j. Similarly, if k = k j is a zero of
a(k, t), then k = −k j is also a zero of a(k, t). Thus, the number of eigenvalues must be even,
and the minimal number is two for the non-trivial case.

Remark 3.1. The above symmetry relations imply that φ1,ψ2,ψ1,φ2 are even functions of
k, and φ2,ψ1,ψ2,φ1 are odd functions of k. Moreover, a, a are even functions of k and b, b are
odd functions of k. These properties are consistent with (3.13) and (3.14).

3.3.2. Standard derivative NLS equation. The first physical space symmetry

(i) r(x, t) = σq∗(x, t), σ = ±1

is the one connected with the standard derivative NLS equation (2.11).
In spectral space, we find the following symmetries associated with the eigenfunctions:

ψ(x, t, k) =

(
0 1
σ 0

)
ψ∗(x, t, k∗), (3.33)

φ(x, t, k) =

(
0 σ
1 0

)
φ∗(x, t, k∗). (3.34)

These symmetries translate into the following symmetries in the scattering data

a(k, t) = a∗(k∗, t), b(k, t) = σb∗(k∗, t), c j(t) = σc∗j(t), (3.35)

where c j(t) = b(k j, t)/a′(k j, t), c j = b(k j, t)/a′(k j, t). We note that if k j is a zero of a(k, t), then
k j = k∗j is also a zero of a(k, t), where the eigenvalue k j is located either in quadrant I or III.

3.3.3. PT derivative NLS equation. The second physical space symmetry

(ii) r(x, t) = iσq∗(−x, t), σ = ±1

is the one connected with the PT derivative NLS equation (2.13).
In spectral space, we obtain the following symmetries associated with the eigenfunctions:

φ(x, t, k) =

(
0 1
±σ 0

)
ψ∗(−x, t,±ik∗), (3.36)

φ(x, t, k) =

(
0 ±σ
1 0

)
ψ∗(−x, t,±ik∗). (3.37)

These symmetries yield the following symmetries in the scattering data

a(k, t) = a∗(±ik∗, t), a(k, t) = a∗(±ik∗, t), b(k, t) = ∓σb∗(±ik∗, t). (3.38)

9
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We note that if k j is a zero of a(k, t), then so is ±ik∗j , and similarly, if k j is a zero of a(k, t),
then so is ±ik∗j . In general, the eigenvalues come in quartets, where {±k j,±ik∗j} are located in
quadrants I, III and {±k j,±ik∗j} are in quadrants II, IV.

The normalization constants are defined as c j(t) = b(k j, t)/a′(k j, t), c j = b(k j, t)/a′(k j, t).
In this case, we determine a symmetry for b(k j, t) separately. We use trace formulae to deter-
mine a′(k j, t) (similarly for b(k j, t) and a′(k j, t)) [6, 7]. To obtain the symmetry for b(k j, t), we
use (3.25) and the symmetry (3.36). Similarly, (3.25) and the symmetry (3.37) are applied to
b(k j, t). This leads to

b(k j, t)b∗(±ik∗j , t) = ±σ, b(k j, t)b∗(±ik∗j , t) = ±σ. (3.39)

Indeed, from (3.2), (3.3), (3.6), (3.7) and (3.36)–(3.38), we derive

M1(x, t, k j) = b(k j, t)N1(x, t, k j)e
2ik2

j x = ±σb(k j, t)M∗
2(−x, t,±ik∗j )e

2ik2
j x , (3.40)

M2(−x, t,±ik∗j ) = b(±ik∗j , t)N2(−x, t,±ik∗j )e
2ik∗2

j x. (3.41)

It follows that

M1(x, t, k j) = ±σb(k j, t)b∗(±ik∗j , t)N∗
2 (−x, t,±ik j)

= ±σb(k j, t)b∗(±ik∗j , t)M1(x, t, k j), (3.42)

which implies

b(k j, t)b∗(±ik∗j , t) = ±σ. (3.43)

Similarly, one has

b(k j, t)b∗(±ik∗j , t) = ±σ. (3.44)

Although, in principle, we can have two eigenvalues ±k1 on the rays π/4 and 5π/4, this
turns out not allowed by equation (3.38). The reason is as follows. When k1 = r eiπ/4, r > 0,
then k1 = ik∗1, and for J = 2, we can take k2 = ik∗1; similarly if k1 = r e5iπ/4, r > 0, then again
k1 = ik∗1; hence (3.32) and (3.39) yield b(k j, t)b∗(ik∗j , t) = |b(k j, t)|2 = σ; therefore, we must
take σ = 1. On the other hand, if we take k1 = r e−iπ/4 or k1 = r e3iπ/4, then for J = 2, we
need to take k2 = −ik∗1 = k1. However, in this case, the second symmetry condition yields
b(k j, t)b∗(−ik∗j , t) = |b(k j, t)|2 = −σ; hence in this case, we must take σ = −1, which con-
tradicts what we found for k1 = r eiπ/4 or k1 = r e5iπ/4. Consequently, we have to consider
quartets:±k1,±k2 = ±ik∗1 off the raysπ/4, 5π/4 and analogous situation for±k1,±k2 = ∓ik∗1
off the rays 3π/4,−π/4 in order to construct a solution. This case is discussed below.

Remark 3.2. {±k j,±ik∗j : R k j · � k j > 0 and R k j 
= � k j}J1
j=1 is the zero set of a(k).

The number of eigenvalues is J = 4J1, and the simplest non-trivial case is obtained when
J1 = 1. Similarly, {±k̄ j,±ik̄∗j : R k̄ j · � k̄ j < 0 and R k̄ j 
= −� k̄ j}J̄1

j=1 is the zero set
of a(k).

Figure 1 shows the locations of eigenvalues, i.e., zeros of a(k) and a(k), respectively.
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Figure 1. The sets of eigenvalues, where the solid/hollow dots are zeros of a(k)/a(k),
respectively.

3.3.4. RST derivative NLS equation. The third physical space symmetry

(iii) r(x, t) = σq(−x,−t), σ = ±1

is the one connected with the RST derivative NLS equation (2.16).
In spectral space, we find the following symmetries associated with the eigenfunctions:

φ(x, t, k) =

(
0 1
σ 0

)
ψ(−x,−t,−k), (3.45)

φ(x, t, k) =

(
0 σ
1 0

)
ψ(−x,−t,−k). (3.46)

These symmetries translate into the following symmetries in the scattering data

a(k, t) = a(−k,−t), a(k, t) = a(−k,−t), b(k, t) = −σb(−k,−t).

(3.47)

As above, the normalization constants are c j(t) = b(k j, t)/a′(k j, t), c j(t) = b(k j, t)/a′(k j, t), and
in this case, we determine the symmetry for b(k j, t) separately and use trace formulae to
determine a′(k j, t) (similarly for b(k j, t), a′(k j, t)). Using the same procedure that we used to
determine (3.38), we find

b(k j, t)b(−k j,−t) = σ, b(k j, t)b(−k j,−t) = σ. (3.48)

By (3.32), one obtains

b(k j, t)b(k j,−t) = −σ, b(k j, t)b(k j,−t) = −σ, (3.49)

11
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which implies

b2(k j, 0) = −σ,

b2(k j, 0) = −σ,

b(k j, 0)b(−k j, 0) = σ,

b(k j, 0)b(−k j, 0) = σ. (3.50)

3.4. Trace formulae

Unlike the standard derivative NLS equation, in the nonlocal derivative NLS equations,
the numerator and denominator of the normalization constants c j(t) = b(k j, t)/a′(k j, t), c j =
b(k j, t)/a′(k j, t) need to be separated; we use the trace formulae to evaluate derivatives
a′(k j, t), a′(k j, t). To find the trace formulae, we first define new scattering coefficients

ã(k, t) = a(k, t)e−s, ã(k, t) = a(k, t)es.

We assume that a(k) and a(k) have simple zeros {±k j : R k j · � k j > 0}J1
j=1 and

{±k̄ j : R k̄ j · � k̄ j < 0}J̄1
j=1, respectively. Indeed, from the symmetry relation (3.32), one

has if k j(k j) is a zero of a(k)(a(k)), then so is −k j(−k j).

3.4.1. General trace formulae. Letting J1 = J1, we define

α(k) = ã(k) ·
J1∏

j=1

(k − k j)(k + k j)
(k − k j)(k + k j)

, α(k) = ã(k) ·
J1∏

j=1

(k − k j)(k + k j)

(k − k j)(k + k j)
.

(3.51)

Thus, α(k) (α(k)) is analytic in quadrants I and III (II and IV). Moreover, α(k),α(k) → 1 as
k →∞ and have no zeros in their respective quadrants. Hence, we have

log α(k) =
1

2πi

∫
Σ

log α(ξ)
ξ − k

dξ,
1

2πi

∫
Σ

log α(ξ)
ξ − k

dξ = 0 (3.52)

for R k · � k > 0, and

log α(k) = − 1
2πi

∫
Σ

log α(ξ)
ξ − k

dξ,
1

2πi

∫
Σ

log α(ξ)
ξ − k

dξ = 0 (3.53)

for R k · � k < 0, where Σ = Σ1 ∪ Σ2, Σ1 :=
−−−−−→
(+i∞, 0] ∪ −−−−−→

[0,+∞) and Σ2 :=
−−−−−→
(−i∞, 0] ∪−−−−−→

[0,−∞). The contour Σ is depicted in figure 2.
Adding/subtracting the above equations in their quadrants respectively yields

log α(k) =
1

2πi

∫
Σ

log α(ξ)α(ξ)
ξ − k

dξ, R k · � k > 0, (3.54)

log α(k) = − 1
2πi

∫
Σ

log α(ξ)α(ξ)
ξ − k

dξ, R k · � k < 0. (3.55)
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Figure 2. The contour Σ = Σ1 ∪ Σ2, where the blue one is for Σ1 and the red one is
for Σ2.

From (3.8) and (3.51), one obtains

log ã(k) =
J1∑

j=1

log

(
(k − k j)(k + k j)

(k − k j)(k + k j)

)
+

1
2πi

∫
Σ

log(1 + b(ξ)b(ξ))
ξ − k

dξ (3.56)

for R k · � k > 0,

log ã(k) =
J1∑

j=1

log

(
(k − k j)(k + k j)
(k − k j)(k + k j)

)
− 1

2πi

∫
Σ

log(1 + b(ξ)b(ξ))
ξ − k

dξ (3.57)

for R k · � k < 0.
In order to reconstruct potentials, ã′(k j), ã′(−k j), ã

′
(k j) and ã

′
(−k j) are needed. These

derivatives are found to be

ã′(k j) =

∏
m
= j(k j − km) ·

∏J1
m=1(k j + km)∏J1

m=1

[
(k j − km) · (k j + km)

] · e
1

2πi

∫
Σ

log(1+b(ξ)b(ξ))
ξ−k j

dξ
, (3.58)

ã′(−k j) =

∏J1
m=1(−k j − km) ·

∏
m
= j(−k j + km)∏J1

m=1

[
(−k j − km) · (−k j + km)

] · e
1

2πi

∫
Σ

log(1+b(ξ)b(ξ))
ξ+k j

dξ
, (3.59)

ã
′
(k j) =

∏
m
= j(k j − km) ·

∏J1
m=1(k j + km)∏J1

m=1

[
(k j − km) · (k j + km)

] · e
− 1

2πi

∫
Σ

log(1+b(ξ)b(ξ))
ξ−k j

dξ
, (3.60)

ã
′
(−k j) =

∏J1
m=1(−k j − km) ·

∏
m
= j(−k j + km)∏J1

m=1

[
(−k j − km) · (−k j + km)

] · e
− 1

2πi

∫
Σ

log(1+b(ξ)b(ξ))
ξ+k j

dξ
. (3.61)
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In general, these four derivatives depend on the simple zeros {±k j : R k j · � k j > 0}J1
j=1 and

{±k̄ j : R k̄ j · � k̄ j < 0}J1
j=1 as well as the scattering data b(k) and b(k).

In particular, if b(k) = 0 or b(k) = 0 onΣ, then it corresponds to the reflectionless potentials.
Thus, these derivatives only depend on the above zeros; moreover, (3.56) and (3.57) imply
ã(k) = ã(−k) and ã(k) = ã(−k). Combining (3.32), one has

b(k, t)
ã′(k, t)

=
b(−k, t)
ã′(−k, t)

,
b(k, t)

ã
′
(k, t)

=
b(−k, t)

ã
′
(−k, t)

, (3.62)

which will be applied in subsequent subsections.

3.4.2. Standard derivative NLS equation. By the symmetry relation a(k, t) = a∗(k∗, t), we
have k j = k∗j and J1 = J1. Thus, {±k∗j : R k j · � k j > 0}J1

j=1 are simple zeros of a(k). Com-
bining (3.35) and section 3.4.1, it yields

log ã(k) =
J1∑

j=1

log

(
(k − k j)(k + k j)
(k − k∗j )(k + k∗j )

)
+

1
2πi

∫
Σ

log(1 + σb(ξ)b∗(ξ∗))
ξ − k

dξ (3.63)

for R k · � k > 0,

log ã(k) =
J1∑

j=1

log

(
(k − k∗j )(k + k∗j )

(k − k j)(k + k j)

)
− 1

2πi

∫
Σ

log(1 + σb(ξ)b∗(ξ∗))
ξ − k

dξ (3.64)

for R k · � k < 0.
In order to solve the inverse problem, we need ã′(k j), ã′(−k j), ã

′
(k∗j ) and ã

′
(−k∗j). In general,

these derivatives are found below:

ã′(k j) =
ã(k)

k − k j
|k=k j , ã′(−k j) =

ã(k)
k + k j

|k=−k j , (3.65)

˜̄a′(k∗j) =
˜̄a(k)

k − k∗j
|k=k∗j

, ˜̄a′(−k∗j) =
˜̄a(k)

k + k∗j
|k=−k∗j

, (3.66)

where

ã(k) :=
J1∏

m=1

(k − km) · (k + km)
(k − k∗m) · (k + k∗m)

· e
1

2πi

∫
Σ

log(1+σb(ξ)b∗(ξ∗))
ξ−k dξ, (3.67)

ã(k) :=
J1∏

m=1

(k − k∗m) · (k + k∗m)
(k − km) · (k + km)

· e−
1

2πi

∫
Σ

log(1+σb(ξ)b∗(ξ∗))
ξ−k dξ. (3.68)

In general, these four derivatives depend on the simple zeros {±k j : R k j · � k j > 0}J1
j=1 as

well as the scattering coefficient b(k). In particular, if b(k) = 0 on Σ, then it corresponds to
pure solitons. Thus, these derivatives only depend on {±k j : R k j · � k j > 0}J1

j=1.
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3.4.3. PT derivative NLS equation. Under the symmetry reduc-
tion r(x, t) = iσq∗(−x, t), (3.38) implies that a(k) and a(k) have
the simple zeros {±k j,±ik∗j : R k j · � k j > 0 and R k j 
= � k j}J1

j=1 and

{±k̄ j,±ik̄∗j : R k̄ j · � k̄ j < 0 and R k̄ j 
= −� k̄ j}J̄1
j=1, respectively.

Letting J1 = J1, we define

α(k) = ã(k) ·
J1∏

j=1

(k − k j)(k + k j)(k − ik∗j)(k + ik∗j)

(k − k j)(k + k j)(k − ik∗j )(k + ik∗j )
,

α(k) = ã(k) ·
J1∏

j=1

(k − k j)(k + k j)(k − ik∗j )(k + ik∗j )

(k − k j)(k + k j)(k − ik∗j)(k + ik∗j)
.

(3.69)

Thus, α(k) (α(k)) is analytic in quadrants I and III (II and IV). Moreover, α(k),α(k) → 1 as
k →∞ and have no zeros in their respective quadrants. Hence, we have

log α(k) =
1

2πi

∫
Σ

log α(ξ)
ξ − k

dξ,
1

2πi

∫
Σ

log α(ξ)
ξ − k

dξ = 0 (3.70)

for R k · � k > 0, and

log α(k) = − 1
2πi

∫
Σ

log α(ξ)
ξ − k

dξ,
1

2πi

∫
Σ

log α(ξ)
ξ − k

dξ = 0 (3.71)

forR k · � k < 0. Adding/subtracting the above equations in their quadrants respectively yields

log α(k) =
1

2πi

∫
Σ

log α(ξ)α(ξ)
ξ − k

dξ, R k · � k > 0, (3.72)

log α(k) = − 1
2πi

∫
Σ

log α(ξ)α(ξ)
ξ − k

dξ, R k · � k < 0. (3.73)

From (3.8), (3.38) and (3.51), one obtains

log ã(k) =
J1∑

j=1

log

(
(k − k j)(k + k j)(k − ik∗j )(k + ik∗j )

(k − k j)(k + k j)(k − ik∗j)(k + ik∗j)

)

+
1

2πi

∫
Σ

log(1 ∓ σb(ξ)b∗(±iξ∗))
ξ − k

dξ (3.74)

for R k · � k > 0,

log ã(k) =
J1∑

j=1

log

(
(k − k j)(k + k j)(k − ik∗j)(k + ik∗j)

(k − k j)(k + k j)(k − ik∗j )(k + ik∗j )

)

− 1
2πi

∫
Σ

log(1 ∓ σb(ξ)b∗(±iξ∗))
ξ − k

dξ (3.75)

for R k · � k < 0.
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In order to recover the potentials, ã′(k j), ã′(−k j), ã′(ik∗j ), ã′(−ik∗j ), ã
′
(k j), ã

′
(−k j), ã

′
(ik∗j),

ã
′
(−ik∗j) are needed. These derivatives are found as follows:

ã′(k j) =
ã(k)

k − k j
|k=k j , ã′(−k j) =

ã(k)
k + k j

|k=−k j , (3.76)

ã′(ik∗j ) =
ã(k)

k − ik∗j
|k=ik∗j

, ã′(−ik∗j ) =
ã(k)

k + ik∗j
|k=−ik∗j

, (3.77)

˜̄a
′(k̄ j) =

˜̄a(k)
k − k̄ j

|k=k̄ j
, ˜̄a

′(−k̄ j) =
˜̄a(k)

k + k̄ j
|k=−k̄ j

, (3.78)

˜̄a′(ik̄∗j) =
˜̄a(k)

k − ik̄∗j
|k=īk∗j

, ˜̄a′(−ik̄∗j) =
˜̄a(z)

k + ik̄∗j
|k=−īk∗j

, (3.79)

where

ã(k) :=
J1∏

m=1

(k − km) · (k + km) · (k − ik∗m)(k + ik∗m)
(k − k̄m) · (k + k̄m) · (k − ik̄∗m) · (k + ik̄∗m)

× e
1

2πi

∫
Σ

log(1∓σb(ξ)b∗(±iξ∗))
ξ−k dξ , (3.80)

ã(k) :=
J1∏

m=1

(k − km) · (k + km) · (k − ik∗m) · (k + ik∗m)
(k − km) · (k + km) · (k − ik∗m) · (k + ik∗m)

× e−
1

2πi

∫
Σ

log(1∓σb(ξ)b∗(±iξ∗))
ξ−k dξ. (3.81)

In general, these derivatives depend on the simple zeros
{±k j,±ik∗j : R k j · � k j > 0 and R k j 
= � k j}J1

j=1,

{±k̄ j,±ik̄∗j : R k̄ j · � k̄ j < 0 and R k̄ j 
= −� k̄ j}J1
j=1 and the scattering coefficient b(k).

In particular, if b(k) = 0 on Σ, then these derivatives only rely on the above simple zeros,
which corresponds to the case of pure solitons.

3.4.4. RST derivative NLS equation. Under the symmetry reduction r(x, t) = σq(−x,−t),
there are no more symmetries among eigenvalues, thus, the statement of trace formulae is
the same as the general case (section 3.4.1).

4. Inverse scattering: Riemann–Hilbert approach

The inverse scattering problem constructs the potentials ‘q, r’ from suitable scattering data.
To do this, we first determine a Riemann–Hilbert problem from the analytic properties of the
eigenfunctions and then use the above large k formulae to determine q, r. Recall

ã(k, t) = a(k, t)e−s, ã(k, t) = a(k, t)es.

Multiplying equation (3.6) by eik2 x−s1 and subtracting the bounded term and poles yield
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Φ+(k; x, t) − Φ−(k; x, t) = ρ̃(k, t)e2ik2 xN(x, t, k)e−s1 , ρ̃(k, t) =
b(k, t)
ã(k, t)

(4.1)

on R k = 0 ∪ � k = 0, where

Φ+(k; x, t) =

⎧⎨
⎩M(x, t, k)e−s1

ã(k, t)
−
(

1
0

)
−

J∑
j=1

c̃ j(t)e
2ik2

j xN(x, t, k j)e−s1

k − k j

⎫⎬
⎭ , (4.2)

Φ−(k; x, t) =

⎧⎨
⎩N(x, t, k)es2 −

(
1
0

)
−

J∑
j=1

c̃ j(t)e
2ik2

j xN(x, t, k j)e−s1

k − k j

⎫⎬
⎭ . (4.3)

Φ±(k; x, t) is analytic in the upper/lower half k2-plane, and following the procedure outlined
earlier, the time dependence of the ‘normalization’ constants are given by

c̃ j(t) =
b j(t)

ã′(k j, t)
= c̃ j(0)e4ik4

j t, c̃ j(t) =
b j(t)

ã
′
(k j, t)

= c̃ j(0)e−4ik4
j t, (4.4)

where c̃ j(0) := b(k j,0)
ã′(k j,0) and c̃ j(0) := b(k j,0)

ã
′
(k j,0)

. Similarly, multiplying equation (3.7) by e−ik2x+s1 and

subtracting the bounded term and poles yield

Ψ+(k; x, t) −Ψ−(k; x, t) = − ¯̃ρ(k, t)e−2ik2xN̄(x, t, k)es1 , ˜̄ρ(k, t) =
b̄(k, t)
˜̄a(k, t)

,

(4.5)

on R k = 0 ∪ � k = 0, where

Ψ−(k; x, t) =

⎧⎨
⎩M(x, t, k)es1

ã(k, t)
−
(

0
1

)
−

J∑
j=1

c̃ j(t)e
−2ik2

j xN(x, t, k j)es1

k − k j

⎫⎬
⎭ , (4.6)

Ψ+(k; x, t) =

⎧⎨
⎩N(x, t, k)e−s2 −

(
0
1

)
−

J∑
j=1

c̃ j(t)e
−2ik2

j xN(x, t, k j)es1

k − k j

⎫⎬
⎭ , (4.7)
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and Ψ±(k; x, t) is analytic in the upper/lower half k2-plane. For convenience, we define the
projection operators

P± f =
1

2πi

∫
Σ

f (ξ)
ξ − (k ± 0)

dξ, (4.8)

where k ± 0 represents that k slightly moves inside the +/− regions of the cross in figure 2.
The cross separates the plane into four regions with the usual four quadrants. The + region
consists of contours in the first and third quadrants: inside quadrants I and III with the arrows
indicating the positive direction; the—region consists of analogous regions inside quadrants II
and IV. If f±(k) is analytic in quadrants I and III (II and IV) and f±(k) → 0 as |k| →∞, then

P±( f∓)(k) = 0, P±( f±)(k) = ± f±(k).

Recall that Σ is illustrated in figure 2.
Taking the minus/plus projector of equations (4.1) and (4.5) respectively yields an inte-

gral/algebraic system of equations for N(x, t, k), N(x, t, k), N(x, t, k j), N(x, t, k j). Thus,

N(x, t, k)es2 −
(

1
0

)
−

J∑
j=1

c̃ j(t)e
2ik2

j xN(x, t, k j)e−s1

k − k j

=
1

2πi
P−

∫
+

ρ̃(ξ, t)e2iξ2xN(x, ξ, t)e−s1

ξ − k
dξ, (4.9)

and

N(x, t, k)e−s2 −
(

0
1

)
−

J∑
j=1

c̃ j(t)e
−2ik2

j xN(x, t, k j)es1

k − k j

= − 1
2πi

P+

∫
−

ρ̃(ξ, t)e−2iξ2xN(x, ξ, t)es1

ξ − k
dξ, (4.10)

where values of k in the P−/P+ projector are taken just inside the −/+ region of the cross
in figure 2. The system is closed when we evaluate equation (4.9) at k = km and evaluate
equation (4.10) at k = km, m = 1, 2, . . . , J.

By equating the O( 1
k ) terms from equations (3.22) and (4.9), we can determine the potentials

q(x, t), r(x, t), which are

q(x, t) = 2i
J∑

j=1

c̃ j(t)e
−2ik2

j xN1(x, t, k j)es1

+
1
π

∫
Σ

ρ̃(ξ, t)e−2iξ2xN1(x, ξ, t)es1 dξ, (4.11)

r(x, t) = −2i
J∑

j=1

c̃ j(t)e
2ik2

j xN2(x, t, k j)e−s1

+
1
π

∫
Σ

ρ̃(ξ, t)e2iξ2xN2(x, ξ, t)e−s1 dξ, (4.12)

18



Inverse Problems 38 (2022) 065003 M J Ablowitz et al

where c̃ j(t), c̃ j(t) are given by equation (4.4). The structure of the equations for N, N implies
that we can solve for N1 es2 and N2 e−s2 in terms of scattering data. Note that the product qr
can be solved in terms of scattering data.

If the potentials decay rapidly at infinity such that ρ̃ and ρ̃ can be analytically continued
to include all poles {k j : R k j · � k j > 0}J

j=1 and {k j : R k j · � k j < 0}J
j=1, respectively, then

(4.9) and (4.10) can be written in reduced notation as

N(x, t, k)es2 =

(
1
0

)
+

1
2πi

∫
C0

ρ̃(ξ, t)e2iξ2xN(x, ξ, t)e−s1

ξ − k
dξ, (4.13)

N(x, t, k)e−s2 =

(
0
1

)
− 1

2πi

∫
�0

ρ̃(ξ, t)e−2iξ2xN(x, ξ, t)es1

ξ − k
dξ, (4.14)

where the contours C0 = C1 ∪ C3 and C̄0 = C2 ∪ C4; here C1 is a contour beginning from
+i∞+ ε continuing to +∞+ iε outside all poles inside quadrant I and C3 is a contour begin-
ning at −i∞− ε continuing to −∞− iε outside all poles inside quadrant III, 0 < ε  1. The
integral over C0 contains the continuous spectrum of P+ plus the pole contributions. Similarly,
C2 ∪ C4 is taken so that it contains the continuous spectrum of P− plus the pole contributions
in quadrants II and IV.

Under the same hypothesis, (4.11) and (4.12) can be simplified as

q(x, t) =
1
π

∫
C0

ρ̃(ξ, t)e−2iξ2xN1(x, ξ, t)es1 dξ, (4.15)

r(x, t) =
1
π

∫
C0

ρ̃(ξ, t)e2iξ2xN2(x, ξ, t)e−s1 dξ. (4.16)

4.1. Soliton solutions

The above system for N, N is reduced to an algebraic system when ρ̃(k, t) = 0, ρ̃(k, t) = 0:

N(x, t, k)es2 −
(

1
0

)
−

J∑
j=1

c̃ j(t)e
2ik2

j xN(x, t, k j)e−s1

k − k j
= 0, (4.17)

N(x, t, k)e−s2 −
(

0
1

)
−

J∑
j=1

c̃ j(t)e
−2ik2

j xN(x, t, k j)es1

k − k j
= 0, (4.18)

and we take k = km in equation (4.17) and k = km in equation (4.18). The solution of this
system yields the eigenfunctions/soliton solutions.

4.2. 1-soliton solution

The simplest case is a single soliton. From equation (3.14), eigenvalues always come
in pairs ±k1,±k1, hence the simplest soliton occurs when J = 2. Since the components
N1(x, t, k), N2(x, t, k) are odd in k, N2(x, t, k), N1(x, t, k) are even in k, c̃1, c̃1 are even with respect
to ±k1,±k1, we have
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N1(x, t,−k1) = −N1(x, t, k1), N2(x, t,−k1) = N2(x, t, k1),

N1(x, t,−k1) = N1(x, t, k1), N2(x, t,−k1) = −N2(x, t, k1).

From equations (3.62) and (4.17), we get(
N1(x, t, k)
N2(x, t, k)

)
es2 =

(
1
0

)
+ c̃1(t)e2ik2

1 x e−s1

((
N1(x, t, k1)
N2(x, t, k1)

)
1

k − k1

+

(
N1(x, t,−k1)
N2(x, t,−k1)

)
1

k + k1

)
. (4.19)

Hence, evaluating this equation at k = k1 yields(
N1(x, t, k1)
N2(x, t, k1)

)
es2 =

(
1
0

)
+

c̃1(t)e2ik2
1 x e−s1

k2
1 − k2

1

(
2k1N1(x, t, k1)
2k1N2(x, t, k1)

)
. (4.20)

Similarly, from equation (4.17), we find(
N1(x, t, k1)
N2(x, t, k1)

)
e−s2 =

(
0
1

)
+

c̃1(t)e−2ik2
1x es1

k2
1 − k2

1

(
2k1N1(x, t, k1)
2k1N2(x, t, k1)

)
. (4.21)

Taking the first component of each equation and solving for N1(x, t, k1) yield

N1(x, t, k1) =
e−s2

1 + (2k1)2 c̃1(t)̃c1(t)e2i(k2
1−k2

1)x

(k2
1−k2

1)
2

. (4.22)

From (4.11), the solution corresponding to the above eigenfunction is given by

q(x, t) =
4ic̃1(t)e−2ik2

1x es1−s2

1 + (2k1)2 c̃1(t)̃c1(t)e2i(k2
1−k2

1)x

(k2
1−k2

1)
2

. (4.23)

Taking the second component of each equation and solving for N2(x, t, k1) yield

N2(x, t, k1) =
es2

1 + (2k1)2 c̃1(t)̃c1(t)e2i(k2
1−k2

1)x

(k2
1−k2

1)
2

. (4.24)

Using (4.11), the solution corresponding to the above eigenfunction is given by

r(x, t) =
−4ĩc1(t)e2ik2

1 x es2−s1

1 + (2k1)2 c̃1(t)̃c1(t)e2i(k2
1−k2

1)x

(k2
1−k2

1)
2

. (4.25)

Since

s1 =
i
2

∫ x

−∞
qr dx′, s2 =

i
2

∫ ∞

x
qr dx′,

we have

s1 − s2 =
i
2

∫ ∞

−∞
qr dx′ − i

∫ ∞

x
qr dx′. (4.26)
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The first integral above is a constant of the motion. To calculate q(x, t) or r(x, t), we must
calculate s1 − s2. We note that qr(x, t) is independent of s1, s2, hence it is determined purely in
terms of scattering data. Indeed, qr can be readily integrated. We see that it takes the form

qr(x, t) =
−A eiμx

(1 + Bk2
1 eiμx)(1 + Bk2

1eiμx)
,

where

A := (4i)2c̃1(t)˜̄c1(t), B := − A
4(k2

1 − k̄2
1)2

, μ := 2(k2
1 − k̄2

1),

whereupon

−qr(x, t) =
α1 eiμx

1 + Bk2
1 eiμx

+
α2 eiμx

1 + Bk2
1 eiμx

, α1 =
Ak2

1

k2
1 − k2

1

, α2 = − Ak2
1

k2
1 − k2

1

,

hence ∫
qr(x, t)dx =

−A

iμB(k2
1 − k2

1)
log

(
1 + Bk2

1 eiμx

1 + Bk2
1 eiμx

)

= −2i log

(
1 + Bk2

1 eiμx

1 + Bk2
1 eiμx

)
,

s1 − s2 = log

(
1 + Bk2

1 eiμx′

1 + Bk2
1 eiμx′

)∣∣∣∣∣
x

−∞

− log

(
1 + Bk2

1 eiμx′

1 + Bk2
1 eiμx′

)∣∣∣∣∣
∞

x

= 2 log

(
1 + Bk2

1 eiμx

1 + Bk2
1 eiμx

)
. (4.27)

Note that

c̃1(t) =
b(k1, 0)e4ik4

1 t

ã′(k1)
, c̃1(t) =

b(k1, 0)e−4ik4
1t

ã
′
(k1)

. (4.28)

From the trace formulae (section 3.4), one deduces

ã′(k1) =
2k1

k2
1 − k2

1

, ã
′
(k1) =

2k1

k2
1 − k2

1

. (4.29)

Thus, s1 − s2 only depends on eigenvalues k1, k1 and norming constants b(k1, 0), b(k1, 0).
Moreover,

c̃1(t) =
(k2

1 − k2
1)b1 e4ik4

1 t

2k1
, c̃1(t) =

(k2
1 − k2

1)b1 e−4ik4
1t

2k1
, (4.30)

where b1 := b(k1, 0) and b1 := b(k1, 0). Then (4.23) can be written as

q(x, t) =
2i(k2

1 − k2
1)b1 e−4ik4

1t e−2ik2
1x es1−s2

k1 − k1b1b1 e4i(k4
1−k4

1)t e2i(k2
1−k2

1)x
, (4.31)
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where s1 − s2 is given in (4.27). Specifically, (4.31) can be written in an explicit form:

q(x, t) =
2i(k2

1 − k2
1)b1 e−4ik4

1t e−2ik2
1x
(

1+Bk2
1 eiμx

1+Bk2
1 eiμx

)2

k1 − k1b1b1 e4i(k4
1−k4

1)t e2i(k2
1−k2

1)x
. (4.32)

(4.32) is the general formula of a pure 1-soliton solution. Once the symmetry reduction is
imposed, the above q(x, t) will be specified. In general, the 1-soliton does not blow up if

k1
k1b1b1


= e4i(k4
1−k4

1)t e2i(k2
1−k2

1)x.

4.3. 2-soliton solution

From (3.14), one has eigenvalues always come in pairs ±k j,±k j, j = 1, 2. Thus, a pure 2-
soliton solution occurs when J = 4. From (3.31), (3.62) and (4.17), one has

(
N1(x, t, k)
N2(x, t, k)

)
es2 =

(
1
0

)
+ c̃1(t)e2ik2

1 x e−s1

((
N1(x, t, k1)
N2(x, t, k1)

)
1

k − k1

+

(
N1(x, t,−k1)
N2(x, t,−k1)

)
1

k + k1

)

+ c̃2(t)e2ik2
2 x e−s1

((
N1(x, t, k2)
N2(x, t, k2)

)
1

k − k2

+

(
N1(x, t,−k2)
N2(x, t,−k2)

)
1

k + k2

)

=

(
1
0

)
+ c̃1(t)e2ik2

1 x e−s1

((
N1(x, t, k1)
N2(x, t, k1)

)
1

k − k1

+

(
−N1(x, t, k1)
N2(x, t, k1)

)
1

k + k1

)

+ c̃2(t)e2ik2
2 x e−s1

((
N1(x, t, k2)
N2(x, t, k2)

)
1

k − k2

+

(
−N1(x, t, k2)
N2(x, t, k2)

)
1

k + k2

)

=

(
1
0

)
+

2c̃1(t)e2ik2
1 x e−s1

k2 − k2
1

(
k1N1(x, t, k1)
kN2(x, t, k1)

)

+
2c̃2(t)e2ik2

2 x e−s1

k2 − k2
2

(
k2N1(x, t, k2)
kN2(x, t, k2)

)
. (4.33)

Evaluating the above equation at k = k1 and k = k2 yields

(
N1(x, t, k1)
N2(x, t, k1)

)
es2 =

(
1
0

)
+

2c̃1(t)e2ik2
1 x e−s1

k2
1 − k2

1

(
k1N1(x, t, k1)
k1N2(x, t, k1)

)

+
2c̃2(t)e2ik2

2 x e−s1

k2
1 − k2

2

(
k2N1(x, t, k2)
k1N2(x, t, k2)

)
(4.34)

22



Inverse Problems 38 (2022) 065003 M J Ablowitz et al

and (
N1(x, t, k2)
N2(x, t, k2)

)
es2 =

(
1
0

)
+

2c̃1(t)e2ik2
1 x e−s1

k2
2 − k2

1

(
k1N1(x, t, k1)
k2N2(x, t, k1)

)

+
2c̃2(t)e2ik2

2 x e−s1

k2
2 − k2

2

(
k2N1(x, t, k2)
k2N2(x, t, k2)

)
. (4.35)

Similarly, we deduce

(
N1(x, t, k)
N2(x, t, k)

)
e−s2 =

(
0
1

)
+

2c̃1(t)e−2ik2
1x es1

k2 − k2
1

(
kN1(x, t, k1)
k1N2(x, t, k1)

)

+
2c̃2(t)e−2ik2

2x es1

k2 − k2
2

(
kN1(x, t, k2)
k2N2(x, t, k2)

)
. (4.36)

Evaluating this equation at k = k1 and k = k2 gives

(
N1(x, t, k1)
N2(x, t, k1)

)
e−s2 =

(
0
1

)
+

2c̃1(t)e−2ik2
1x es1

k2
1 − k2

1

(
k1N1(x, t, k1)
k1N2(x, t, k1)

)

+
2c̃2(t)e−2ik2

2x es1

k2
1 − k2

2

(
k1N1(x, t, k2)
k2N2(x, t, k2)

)
(4.37)

and (
N1(x, t, k2)
N2(x, t, k2)

)
e−s2 =

(
0
1

)
+

2c̃1(t)e−2ik2
1x es1

k2
2 − k2

1

(
k2N1(x, t, k1)
k1N2(x, t, k1)

)

+
2c̃2(t)e−2ik2

2x es1

k2
2 − k2

2

(
k2N1(x, t, k2)
k2N2(x, t, k2)

)
. (4.38)

From equations (4.11) and (4.12), the solutions are given by

q(x, t) = 2i
2∑

j=1

c̃ j(t)e
−2ik2

j xN1(x, t, k j)es1 (4.39)

and

r(x, t) = −2i
2∑

j=1

c̃ j(t)e
2ik2

j xN2(x, t, k j)e−s1 (4.40)

with c̃ j(t), c̃ j(t), j = 1, 2 given by equation (4.4). Hence we need N1(x, t, k j), N2(x, t, k j), j =
1, 2.

From (4.34), (4.35), (4.37) and (4.38), after some algebra, we find the solutions of the form

N1(x, t, k1) = e−s2 · A12 + A22

DA
, N1(x, t, k2) = e−s2 · A21 + A11

DA
,

DA = A11A22 − A12A21, (4.41)
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N2(x, t, k1) = es2 · B12 + B22

DB
, N2(x, t, k2) = es2 · B21 + B11

DB
,

DB = B11B22 − B12B21, (4.42)

where

A11 = 1 − k2
1C1(k1)C1(k1) − k2

2C2(k1)C1(k2),

A12 = k2
1C1(k1)C2(k1) + k2

2C2(k1)C2(k2), (4.43)

A21 = k2
1C1(k2)C1(k1) + k2

2C2(k2)C1(k2),

A22 = 1 − k2
1C1(k2)C2(k1) − k2

2C2(k2)C2(k2),

B11 = 1 − k2
1C1(k1)C1(k1) − k2

2C2(k1)C1(k2),

B12 = k2
1C1(k1)C2(k1) + k2

2C2(k1)C2(k2), (4.44)

B21 = k2
1C1(k2)C1(k1) + k2

2C2(k2)C1(k2),

B22 = 1 − k2
1C1(k2)C2(k1) − k2

2C2(k2)C2(k2),

and

Cj(k) =
2c̃ j(t)e

2ik2
j x

k2 − k2
j

, C j(k) =
2c̃ j(t)e

−2ik2
j x

k2 − k2
j

.

Recall that

c̃1(t) =
b1 e4ik4

1 t

ã′(k1)
, c̃2(t) =

b2 e4ik4
2 t

ã′(k2)
, c̃1(t) =

b1 e−4ik4
1t

ã
′
(k1)

, c̃2(t) =
b2 e−4ik4

2t

ã
′
(k2)

,

(4.45)

where b1 := b(k1, 0), b2 := b(k2, 0), b1 := b(k1, 0), b2 := b(k2, 0). From the trace formulae
(section 3.4), we have

ã′(k1) =
2k1 · (k2

1 − k2
2)(

k2
1 − k2

1

) (
k2

1 − k2
2

) , ã′(k2) =
2k2 · (k2

2 − k2
1)(

k2
2 − k2

1

) (
k2

2 − k2
2

) , (4.46)

ã
′
(k1) =

2k1 · (k2
1 − k2

2)(
k2

1 − k2
1

) (
k2

1 − k2
2

) , ã
′
(k2) =

2k2 · (k2
2 − k2

1)(
k2

2 − k2
1

) (
k2

2 − k2
2

) . (4.47)

By inserting the above into (4.39) and (4.40), the general formula of the 2-soliton solutions is
found.

Remark 4.1. (4.39) and (4.40) give the general formula of 2-soliton solutions, and a symmetry
reduction between potentials q, r will induce a 2-soliton solution to certain derivative NLS
equation. Note that the product qr is independent of s1, s2.
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Figure 3. Typical 1-soliton solutions of the standard derivative NLS equation with
b1 = 1 + i. Left: left moving soliton with k1 = −1 − 0.95i; right: standing soliton with
k1 = 1 + i.

Remark 4.2. q(x, t) and r(x, t) are regular if DA 
= 0 and DB 
= 0, respectively.

Recall that σ can be rescaled to unity, in what follows, we only consider the case of σ = 1.

4.4. Standard derivative NLS equation

By the symmetry relation a(k) = a∗(k∗), we have k j = k∗j and J1 = J1. In addition, from the
general symmetry relations: a(k) = a(−k) and a(k) = a(−k), one has that k = −k j is also a
zero of a(k). Similarly, k = −k∗j is also a zero of a(k). Thus, J = 2J1, it means that the number
of eigenvalues is even, and the simplest soliton solution is a 1-soliton, which is obtained when
J1 = 1, i.e., J = 2. By (3.35), it implies b1 = b∗

1. Let k1 = ξ1 + iη1 with ξ1η1 > 0, then (4.32)
gives

q(x, t) =
8ξ1η1b∗

1 e−4[4ξ1η1(ξ2
1−η2

1)+i(ξ4
1+η4

1−6ξ2
1η

2
1)]te−2[2ξ1η1+i(ξ2

1−η2
1)]x

(ξ1 − iη1) − (ξ1 + iη1)|b1|2e−32ξ1η1(ξ2
1−η2

1)te−8ξ1η1x

·

⎛
⎝1 − |b1|2(ξ2

1−η2
1+2iξ1η1)

ξ2
1+η2

1
e−8ξ1η1x−32ξ1η1(ξ2

1−η2
1)t

1 − |b1|2(ξ2
1−η2

1−2iξ1η1)

ξ2
1+η2

1
e−8ξ1η1x−32ξ1η1(ξ2

1−η2
1)t

⎞
⎠

2

.

(4.48)

This 1-soliton solution is always non-singular and the velocity is 4(η2
1 − ξ2

1). The minimal data
we use for recovering the simplest reflectionless potential (1-soliton) contain the following
two quantities: the eigenvalue k1 = ξ1 + iη1 and the norming constant b1, where ξ1η1 > 0. In
figure 3, we show typical profiles of left moving and standing waves.

Moreover, a 2-soliton solution is given by setting J1 = 2, i.e., J = 4. From (3.35), one has
bj = b∗

j , j = 1, 2. By (4.45), we obtain

c̃1(t) =
b1 e4ik4

1 t

ã′(k1)
, c̃2(t) =

b2 e4ik4
2 t

ã′(k2)
, c̃1(t) =

b∗
1 e−4ik4

1t

ã
′
(k1)

, c̃2(t) =
b∗

2 e−4ik4
2t

ã
′
(k2)

.

(4.49)

Using the 2-soliton formulae derived earlier, from (4.39) and (4.40), we get a pure 2-soliton
solution of the standard derivative NLS equation (2.11). The corresponding velocities are
4
(
η2

j − ξ2
j

)
, j = 1, 2.
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Figure 4. Typical 2-soliton solutions of the standard derivative NLS equation.
Left: k1 = 1 + 1.05i, k2 = −1.05 − i, b1 = 1, b2 = 0.9i; right: k1 = 1.3 + 1.35i, k2 =
−1.05 − i, b1 = 1, b2 = 0.9i.

The minimal data for reconstruction of pure 2-soliton solutions include two eigenvalues: k1,
k2 and norming constants: b1, b2, where R k j · � k j > 0, j = 1, 2.

Figure 4 describes 2-soliton interactions for the standard derivative NLS equation. Specif-
ically, we find two solitons interact at around t = 0, and the left figure shows the two solitons
are of the same magnitude, while the right one gives the collision of two solitons, whose
magnitudes are different.

Remark 4.3. The solutions obtained above are consistent with the results in [19], but the
methodology used here: Riemann–Hilbert problem is different.

4.5. PT derivative NLS equation

Recall that the eigenvalues come in quartets {±k j,±ik∗j : R k j · � k j > 0 and R k j 
= � k j}J1
j=1,

{±k j,±ik∗j : R k j · � k j < 0 and R k j 
= −� k j}J1
j=1, respectively. Let J1 = J1 = 1, k2 = ik∗1

and k2 = ik∗1, thus, J = 4. In addition, (3.38) implies b2 = 1
b∗1

and b2 = 1
b∗1

. Combining (4.45),

one deduces

c̃1(t) =
b1 e4ik4

1 t

ã′(k1)
, c̃2(t) =

e4ik4
2 t

b∗
1 · ã′(k2)

, c̃1(t) =
b1 e−4ik4

1t

˜̄a′(k1)
, c̃2(t) =

e−4ik4
2t

b∗
1 · ã

′
(k2)

.

By substituting all information into (4.39) and (4.40), a pure 2-soliton solution
to the PT derivative NLS equation (2.13) is derived. This 2-soliton solution is
non-singular if DA 
= 0, i.e., A11A22 − A12A21 = 1 − k2

1C1(ik∗1)C2(k1) + k∗2
1 C2(ik∗1)C2(ik∗1) −

k2
1C1(ik1)C2(k1) + k∗2

1 C2(k1)C1(ik∗1) 
= 0. Thus, k j = ±k∗j and b j = α jb∗
j induce a regular 2-

soliton with opposite velocities, i.e., ±4(η2
1 − ξ2

1), where α j is a real constant, j = 1, 2.
Note that k2 = ik∗1, k2 = ik∗1, and qr is independent of s1 and s2, thus, the minimal data

needed for reconstructing the simplest pure soliton solution only include the eigenvalues: k1 =
ξ1 + iη1, k1 = ξ1 + iη1 and norming constants: b1, b1, where ξ1 · η1 > 0, ξ1 · η1 < 0, ξ1 
= η1

and ξ1 
= −η1.
Figure 5 shows the simplest soliton solution which we call a 2-soliton collision for the PT

derivative NLS equation. We see that the two solitons interact near t = 0. In addition, the left
figure depicts the two solitons are of the same magnitude, however, the right one describes the
interaction of two solitons with different amplitudes.
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Figure 5. Typical 2-soliton solutions of the PT derivative NLS equation. Left: k1 = 1 +
1.05i, k1 = 1 − 1.05i, b1 = 1, b1 = 1; right: k1 = 1 + 1.05i, k1 = 1 − 1.05i, b1 =
1, b1 = 0.5.

4.6. RST derivative NLS equation

The simplest soliton solution is a 1-soliton, which is constructed when J1 = 1, that is J = 2.
Let J1 = 1, k1 = ξ1 + iη1 with ξ1η1 > 0 and k1 = ξ1 + iη1 with ξ1η1 < 0. From (3.50), one
has b2

1 = −1 and b2
1 = −1. Then b1 = iδ1 and b1 = iδ2, where δ2

m = 1, m = 1, 2. (4.32) reads

q(x, t) = {− 2δ2[(ξ2
1 − η2

1 − ξ2
1 + η2

1) + 2i(ξ1η1 − ξ1η1)]

× e−4[i(ξ4
1+η4

1−6ξ2
1η

2
1)−4ξ1η1(ξ2

1−η2
1)]t−2[i(ξ2

1−η2
1)−2ξ1η1]x

× [(1 + ((δ1δ2(ξ1 + iη1))/(ξ1 + iη1))

× e4[i(ξ4
1+η4

1−6ξ2
1η

2
1−ξ4

1−η4
1+6ξ2

1η
2
1)−4(ξ1η1(ξ2

1−η2
1 )−ξ1η1(ξ2

1−η2
1))]t )

/ ((1 + ((δ1δ2(ξ1 + iη1))/(ξ1 + iη1))

× e4[i(ξ4
1+η4

1−6ξ2
1η

2
1−ξ4

1−η4
1+6ξ2

1η
2
1)−4(ξ1η1(ξ2

1−η2
1 )−ξ1η1(ξ2

1−η2
1))]t ) ) ]2 }

/
{

(ξ1 + iη1) + δ1δ2(ξ1 + iη1)

× e4[i(ξ4
1+η4

1−6ξ2
1η

2
1−ξ4

1−η4
1+6ξ2

1η
2
1)−4(ξ1η1(ξ2

1−η2
1 )−ξ1η1(ξ2

1−η2
1))]t−2[i(ξ2

1−η2
1−ξ2

1+η2
1 )−2(ξ1η1−ξ1η1)]x

}
.

(4.50)

Note that the above 1-soliton is regular if k1 = ±k∗1, whose velocity is 4(η2
1 − ξ2

1). The
minimal data needed for reconstructing the simplest pure soliton solution (J = 2 and hence
J1 = 1) incorporate eigenvalues: k1 = ξ1 + iη1, k1 = ξ1 + iη1 and the units δm, m = 1, 2,
where δ2

m = 1, ξ1η1 > 0 and ξ1η1 < 0. In general, we need the norming constants b1 and b1,
however, their values can be determined via the symmetries (3.50). In figure 6, we show typical
profiles of right moving and standing solitons.

In addition, a 2-soliton solution is attained by setting J1 = 2, that is J = 4. From (3.50), one
derives b1 = iδ1, b2 = iδ2, b1 = iδ3, b2 = iδ4, where δ2

m = 1, m = 1, 2, 3, 4.
Thus, once all information is put into (4.39) and (4.40), a pure 2-soliton solution to the

RST derivative NLS equation (2.16) can be obtained. Note that the 2-soliton is non-singular if
k j = ±k∗j , which leads to DA 
= 0. The corresponding velocities are 4(η2

j − ξ2
j ), j = 1, 2.

The minimal data used to recover pure 2-soliton solutions include eigenvalues: k1, k2, k1, k2

and the units δm, m = 1, 2, 3, 4, where δ2
m = 1, R k j · � k j > 0 and R k j · � k j < 0, j = 1, 2.
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Figure 6. Typical 1-soliton solutions of the RST derivative NLS equation with b1 =
i, b̄1 = −i. Left: right moving soliton with k1 = 0.95 + i, k̄1 = −0.95 + i; right: stand-
ing soliton with k1 = 1 + i, k̄1 = 1 − i.

Figure 7. Typical 2-soliton solutions of the RST derivative NLS equation. Left:
k1 = 1 + i, k̄1 = 1 − i, b1 = i, b̄1 = −i, k2 = 1 + 0.95i, k̄2 = 1 − 0.95i, b2 = −i,
b̄2 = i; right: k1 = 1 + 1.05i, k̄1 = 1 − 1.05i, b1 = i, b̄1 = −i, k2 = −1.3 − 1.25i,
k̄2 = −1.3 + 1.25i, b2 = −i, b̄2 = i.

Figure 7 depicts typical 2-soliton solutions for the RST derivative NLS equation. It is seen
that two solitons interact near t = 0. In addition, the left figure gives the two solitons are of
the same magnitude, while the right one describes the interaction of two solitons with different
amplitudes.

5. Inverse scattering–Gel’fand–Levitan–Marchenko (GLM) equations

In this section, we reconstruct the potentials by developing the Gel’fand–Levitan–Marchenko
equations instead of the Riemann–Hilbert approach. In fact, we assume that N(x, t, k)e−s2 and
N(x, t, k)es2 have the following triangular forms

N(x, t, k)e−s2 =

(
0
1

)
+

∫ +∞

x

(
kK(1)(x, t, u)e−2s2

K(2)(x, t, u)

)

× e−ik2(x−u) du, u > x, � k2 > 0, (5.1)
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N(x, t, k)es2 =

(
1
0

)
+

∫ +∞

x

(
K(1)(x, t, u)

kK(2)(x, t, u)e2s2

)

× eik2(x−u) du, u > x, � k2 < 0, (5.2)

where v( j) denotes the jth component of the vector v. By inserting (5.1) and (5.2) into (4.13)
and (4.14), one derives

K(1)(x, t, y) − i
∫ +∞

x
K(1)(x, t, u)F′(u + y, t)du = 0 (5.3)

and

K(1)(x, t, y) + F(x + y, t) +
∫ +∞

x
K(1)(x, t, u)F(u + y, t)du = 0, (5.4)

where F′(z, t) := ∂F(z,t)
∂z ,

F(x, t) =
1

2π

∫
C0

ρ̃(ξ, t)eiξ2x esdξ

=
1

2π

∫ +∞

−∞
ρ̃(ξ, t)eiξ2x es dξ − i

J∑
j=1

c̃ j(t)e
ik2

j x es (5.5)

and

F(x, t) =
1

2π

∫
c0

ρ̃(ξ, t)e−iξ2x e−s dξ

=
1

2π

∫ +∞

−∞
ρ̃(ξ, t)e−iξ2x e−s dξ + i

J∑
j=1

c̃ j(t)e
−ik2

j x e−s. (5.6)

It should be pointed out that (5.3) and (5.4) constitute the Gel’fand–Levitan–Marchenko
(GLM) equations.

By substituting (5.1) and (5.2) into (4.15) and (4.16), the reconstruction of the potentials is
obtained in terms of the kernels of the GLM equations, i.e.,

q(x, t) = −2K(1)(x, t, x)e−2s2 , r(x, t) = −2K(2)(x, t, x)e2s2 . (5.7)

Besides, K(1) and K(2) satisfy

(∂x − ∂u)K(1) = q

(
K(2) − i

2
rK(1)e−2s2

)
e2s2 , (5.8)

(∂x − ∂u)

(
K(2) − i

2
rK(1)e−2s2

)
= − i

2
K(1)e−s2∂x

(
r e−s2

)
(5.9)

subject to the boundary conditions: q(x, t) = −2K(1)(x, t, x)e−2s2 and K( j)(x, t, u) → 0 as
u →+∞.

This is a Goursat problem. It can be proven that such a system is uniquely solved, from
which it follows the existence of the integral representation (5.1). A similar conclusion holds
for (5.2).
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5.1. Standard derivative NLS equation

The symmetry reduction r(x, t) = σq∗(x, t) is amenable to the standard derivative NLS
equation. The symmetries among scattering data and eigenfunctions yield

F(x, t) = σF∗(x, t) (5.10)

and

K(x, t, y) =

(
0 1
σ 0

)
K∗(x, t, y). (5.11)

5.2. PT derivative NLS equation

The symmetry reduction r(x, t) = iσq∗(−x, t) is subject to the PT derivative NLS equation. It
turns out that

K(2)(x, t, y)e2s2 = iσK(1)∗(−x, t, y)
(
e−2s2

)∗
. (5.12)

5.3. RST derivative NLS equation

The symmetry reduction r(x, t) = σq(−x,−t) is the one connected with the RST derivative
NLS equation. As a result,

K(2)(x, t, y)e2s2 = σK(1)(−x,−t, y)e−2s2 . (5.13)

Remark 5.1. Unlike the standard derivative NLS equation, there is no symmetry relation
between F(x, t) and F(x, t) for the PT and RST cases.

6. Derivation of derivative NLS systems

The derivative NLS equation and its alternative forms can be derived in many applied fields,
such as nonlinear optics and magneto-hydrodynamics [12, 13, 24]. Different from the standard
NLS equation, the derivative NLS equation is not generic for any envelope dynamics. It is
usually valid for the wave packets associated with special modes. In the following, we give a
comprehensive derivation from a nonlinear Klein–Gordon type equation.

Consider the following general nonlinear Klein–Gordon type equation

utt − uxx + u + ε (α f1(u; ∂t; ∂x) + β f2(u; ∂t; ∂x) = 0, (6.1)

where f1, f2 are cubically nonlinear functionals. If only f1 or f2 are present, then we can derive
the standard NLS equation. However, if α and β are chosen appropriately, then we can derive
the derivative NLS equation. The following prototype illustrates the situation. The specific
choices of f1, f2 are made so that α and β are related via a physically meaningful parameter
(the phase speed of the underlying wave).

We illustrate the derivation with the following nonlinear Klein–Gordon type equation

utt − uxx + u + ε(α∂t∂x + β∂2
x ) ) u3 = 0, (6.2)
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where α > 0. In the weakly nonlinear regime, i.e., |ε|  1, we consider the effective dynamics
of wave packets associated with a special plane wave solution by implementing the multi-scale
method. Define

θ = kx − ωt, X = εx, T = εt, τ = ε2t,

where the linear dispersion relation satisfies

ω2 = k2 + 1.

Note that we want to understand the effective dynamics at the time scale O(1/ε2), so we
introduce two slow times T and τ .

Expand the solution in an asymptotic form

u = u0 + εu1 + ε2u2 + · · · (6.3)

with u j = uj(θ, X, T, τ ), j = 1, 2, . . . , and substitute this into equation (6.2).
At the leading order, we have

Lu0 ≡ (ω2 − k2)∂2
θu0 + u0 = 0. (6.4)

Solving the leading equation yields

u0 = A eiθ + B e−iθ, (6.5)

where A = A(X, T, τ ), B = B(X, T, τ ). Since in general B 
= A∗, the asymptotic limiting
equations will be in the complex domain.

In order to obtain the most interested nonlinear dynamics, i.e., the nonlinearity is suitably
balanced with the slow time and wide envelope scales, we expand the nonlinear terms first.

(α∂t∂x + β∂2
x )u3 = α(−ωk∂2

θ + ε(−ω∂θ∂X + k∂θ∂T ) + O(ε2))

+ β(k2∂2
θ + 2εk∂θ∂X)(u3

0 + 3εu2
0u1 + O(ε2)). (6.6)

Generically, cubic nonlinearity is obtained. In order to obtain the derivative cubic nonlinear
terms, we consider a special wave number (phase velocity and α, β satisfy)

αωk − k2β = 0. (6.7)

Namely,

β = α
ω

k
.

Then the leading nonlinear terms originally appear at O(ε) which just vanish if we choose this
special wave number. Thus, the nonlinear effects appear at O(ε2).

At O(ε), the equation is still linear

Lu1 = (2ω∂θ∂T + 2k∂θ∂X)u0

= 2i(ωAT + kAX)eiθ − 2i(ωBT + kBX)e−iθ.

Removal of secular terms yields that

ωAT + kAX = 0, ωBT + kBX = 0. (6.8)
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Taking u1 = 0, we come to the balanced order O(ε2)

Lu2 = −[(∂2
T − ∂2

X − 2iω∂τ )A eiθ + (∂2
T − ∂2

X + 2iω∂τ )B e−iθ] − NL2,

where the nonlinear term is

NL2 =
[
3(α(−iω∂X + ik∂T ) + 2βki∂X)A2B

]
eiθ

−
[
3(α(−iω∂X + ik∂T ) + 2βki∂X)A2B

]
e−iθ

+ [. . .]e3iθ + [. . .]e−3iθ. (6.9)

For the simplicity, we have omitted the coefficients of non-secular terms.
Recall the linear dispersion relation

ω2 = k2 + 1.

Then

ω′(k) =
k
ω

, ω′′(k) =
1
ω

(1 − (ω′(k))2).

Introducing the moving coordinate ξ = X − ω′(k)T and τ = εT so that the terms in the
equation (6.8) move to O(ε2) and removing the secular terms yields

2iω∂τA = ((ω′(k))2 − 1)∂2
ξA + (−3iαω + 6iβk − 3iαkω′(k))∂XA2B,

2iω∂τB = −((ω′(k))2 − 1)∂2
ξB + (−3iαω + 6iβk − 3iαkω′(k))∂XB2A.

Using the dispersion relation, the above equations are rewritten as

∂τA = i
ω′′(k)

2
∂2
ξA + γ∂ξA

2B, (6.10)

∂τB = −i
ω′′(k)

2
∂2
ξB + γ∂ξB

2A, (6.11)

where

γ =
−3αω + 6βk − 3αkω′(k)

2ω
.

Note that we have chosen the special k such that β = αC(k) = αω
k . Using the dispersion

relation yields that

γ =
3α
2ω2

> 0.

Introduce the following rescallings

ξ = μξ̃, A =
1

√
γμ

Ã, B =
1

√
γμ

B̃

with μ =
(

|ω′′|
2

)1/2
. For the convenience, we drop the tildes and get
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∂τA = is∂2
ξ A + ∂ξA

2B,

∂τB = −is∂2
ξ B + ∂ξB

2A, (6.12)

where s = sgn(ω′′(k)). If s = 1, the above system is the derivative q, r system given by the q, r
equations (2.8) and (2.9). Otherwise, i.e., s = −1, interchanging A, B, we still get the same
derivative q, r system. Since this q, r system reduces to the standard derivative NLS equation
and the nonlocal derivative NLS equations they are too included in this asymptotic limiting
procedure.

7. Conclusion

The derivative NLS equation is an important nonlinear dispersive equation, which arises in
many different contexts. In this paper, we revisit the standard derivative NLS equation and
investigate two nonlocal integrable derivative NLS equations via the IST. The direct problem
is analyzed, and the inverse scattering is formulated in terms of the Riemann–Hilbert (RH) and
Gel’fand–Levitan–Marchenko methods. Explicit soliton solutions are obtained. Finally, it is
shown how these equations can be derived, e.g., from a nonlinear Klein–Gordon type equation.
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