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Nonlinear integrable equations serve as a foundation for nonlinear dynamics, and fractional equations
are well known in anomalous diffusion. We connect these two fields by presenting the discovery of a new
class of integrable fractional nonlinear evolution equations describing dispersive transport in fractional
media. These equations can be constructed from nonlinear integrable equations using a widely general-
izable mathematical process utilizing completeness relations, dispersion relations, and inverse scattering
transform techniques. As examples, this general method is used to characterize fractional extensions to two
physically relevant, pervasive integrable nonlinear equations: the Korteweg–deVries and nonlinear
Schrödinger equations. These equations are shown to predict superdispersive transport of nondissipative
solitons in fractional media.
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Fractional calculus is an effective tool when describing
physical systems with power law behavior such as in
anomalous diffusion, where the mean squared displacement
is proportional to tα, α > 0 [1–4]. This form of transport
has been observed extensively in biology [5–8], amorphous
materials [9–11], porous media [12–14], and climate
science, [15] among others. Equations in multiscale media
can express fractional derivatives in any governing term
[16,17], including dispersion, such as that found in the 1D
nonlinear Schrödinger equation (NLS) in optics [18–24]
and the Korteweg–deVries equation (KdV) in water waves
[25]. In the case of integer derivatives, NLS and KdV are
famously integrable equations, leading to solitonic solu-
tions and an infinite set of conservation laws [26].
Integrable equations are key signposts in nonlinear dynam-
ics as they provide exactly solvable cases and, moreover,
are an essential element of Kolmogorov-Arnold-Moser
theory underlying our understanding of chaos. The funda-
mental solution of 1D dispersive integrable equations
is the soliton, a robust nondispersive localized wave.
While in the space of possible nonlinear evolution equa-
tions integrable cases are extremely rare, they arise fre-
quently in application.
In this Letter, we present a new class of integrable

fractional nonlinear evolution equations which predict super-
dispersive transport in fractional media. Fractional media is
“rough” or multiscale media that is neither regular nor
random; it includes fractals but is more general as it need
not be self-similar. We use the fractional NLS (fNLS) and
fractional KdV (fKdV) equations as case studies. We show
their integrability, demonstrate exact fractional soliton solu-
tions, and make physical predictions about the speed of these

localized waves. To date, to our knowledge, no nonlinear
fractional evolution equationhas beenknown tobe integrable.
The building blocks of our demonstration are three

mathematical ingredients. Two are familiar to physicists
as they are well-known concepts in physics. They are
completeness and the dispersion relations. However, in our
case the dispersion relation will use fractional, rather than
integer, derivatives. The third building block is the funda-
mental ingredient of integrability, namely, the inverse
scattering transform (IST) well known to researchers in
nonlinear dynamics.
Different versions of the fNLS equation have been

studied in, e.g., [20,27–29], and soliton type solutions
have been found, but unlike the fNLS and fKdV equations
that we introduce, none of these are integrable. The
fractional operators in the fNLS and fKdV equations are
nonlinear generalizations of the Riesz fractional derivative.
In fact, the linear limit of the fNLS equation is the well-
known fractional Schrödinger equation derived using a
Feynman path integral over Lévy flights [30,31]. Fractional
equations defined using the Riesz fractional derivative
(alternately termed the Riesz transform [32] or fractional
Laplacian [33]) are effective tools when describing behav-
ior in complex systems because the Riesz fractional
derivative is closely related to non-Gaussian statistics
[34]. It has found physical applications in describing
movement of water in porous media [35], transport of
temperature in fluid dynamics [36], and power law attenu-
ation in materials [37] among many others [38–40].
The KdV and NLS equations arise in many physical

problems. The KdVequation is applicable in shallow water
waves, internal waves, fluid dynamics, plasma physics, and
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lattice dynamics among others [25]. Furthermore, KdV is a
universally important equation whenever weak dispersion
balances weak quadratic nonlinearity; cf. Refs. [18,19].
Similarly, the NLS equation arises in the quasimonochro-
matic approximation with dispersion balancing weak non-
linearity and occurs widely in physical applications, e.g.,
water waves, nonlinear optics, spin waves in ferromagnetic
films, plasma physics, Bose-Einstein condensates, etc.,
[18,19,41,42]. The KdVequation was shown to be solvable
using the IST and to admit soliton solutions when associated
with the linear time-independent Schrödinger equation in
Ref. [43]. Then, the NLS equation with decaying data was
solved and shown to possess solitons via the IST in Ref. [44].
Soon after, the method was extended to the modified KdV
and sine-Gordon equations as well as general classes of
equations written in terms of a linearized dispersion relation
[19,45]. IST is now a large field; cf. Refs. [18,26,46–48].
Here we show how to extend this formulation to

encompass fractional integrable nonlinear evolution equa-
tions. As examples of this technique, we show that fKdV
and fNLS are solvable by the IST. These are two examples
of many possible fractional integrable equations that can be
characterized by this method.
The IST and anomalous dispersion relations.—It is well

known that linear evolution equations for q ¼ qðx; tÞ of the
form

qt þ γð∂xÞqx ¼ 0 ð1Þ

can be solved by Fourier transforms when γð∂xÞ is a
rational function of ∂x; cf. Ref. [19]. We can do this
because the completeness of plane waves gives an integral
representation of γð∂xÞ. The solution to Eq. (1) is explicitly

qðx; tÞ ¼ 1

2π

Z
∞

−∞
dkq̂ðk; 0Þeikx−ikγðikÞt; ð2Þ

where q̂ðk; 0Þ is the Fourier transform of qðx; tÞ with
respect to x evaluated at t ¼ 0. However, as Riesz showed
[32], the solution (2) makes sense for much more general γ.
Specifically, Fourier transforms can be used to solve linear
fractional evolution equations, e.g., γð∂xÞ ¼ j − ∂2

xjε, with
2ε the order of the fractional derivative; we take 0 < ε < 1
throughout this letter.
Here we show that similar analysis applies to nonlinear

evolution equations using the IST. We do this by associat-
ing a class of integrable nonlinear equations with a linear
scattering problem (ingredient 1, IST) characterizing the
fractional equation with an anomalous dispersion relation
(ingredient 2, dispersion), and defining the fractional
operator associated with this dispersion relation using
the completeness of squared eigenfunctions of the scatter-
ing equation (ingredient 3, completeness).
We will apply ingredients 1 and 2 to find the fKdV and

fNLS equations, and use ingredient 3 to define the

fractional operators in these equations. Associated with
the nondimensionalized time-independent Schrödinger
equation for vðx; tÞ with potential qðx; tÞ,

vxx þ ½k2 þ qðx; tÞ�v ¼ 0; jxj < ∞ ð3Þ

is the following class of integrable nonlinear equations for
qðx; tÞ [45]:

qt þ γðLAÞqx ¼ 0; LA ≡ −
1

4
∂2
x − qþ 1

2
qx

Z
∞

x
dy;

ð4Þ
where

R∞
x dy operates on the function to which LA is

applied by integrating it. Hence, Eq. (4) can be solved
by the IST using Eq. (3). We obtain the fKdV equation
by choosing γðLAÞ ¼ −4LAj4LAjϵ; this will be justified
shortly.
Similarly, associated with the following 2 × 2 scatte-

ring problem—termed the Ablowitz-Kaup-Newell-Segur
(AKNS) system—for the vector-valued function vðx; tÞ ¼
½v1ðx; tÞ; v2ðx; tÞ�T (T represents transpose)

vð1Þx ¼ −ikvð1Þ þ qðx; tÞvð2Þ; ð5Þ

vð2Þx ¼ ikvð2Þ þ rðx; tÞvð1Þ ð6Þ

is the set of integrable nonlinear equations [45]

σ3∂tuþ 2A0ðLAÞu ¼ 0; σ3 ¼
�
1 0

0 −1

�
; ð7Þ

where u ¼ ðr; qÞT and the operator

LA ≡ 1

2i

� ∂x − 2rI−q 2rI−r

−2qI−q −∂x þ 2qI−r

�
ð8Þ

with I− ¼ R
x
−∞ dy. Note that I− operates both on the

function immediately to its right and the functions to
which LA is applied. Taking r ¼∓ q�, � the complex
conjugate, and A0ðLAÞ ¼ 2iðLAÞ2j2LAjϵ, we find fNLS to
be the second component of Eq. (7).
These definitions are justified when we note that γðLAÞ

and A0ðLAÞ can be related to the dispersion relation of the
linearization of Eqs. (4) and (7). Specifically, if we put
q ¼ ei(kx−wðkÞt) into the linearizations of Eqs. (4) and (7),
we have

γðk2Þ ¼ wKð2kÞ
2k

; A0ðkÞ ¼ −
i
2
wSð−2kÞ; ð9Þ

where wK is the dispersion relation for the linear fKdV
equation, and wS is the same for the linear fractional
Schrödinger equation. Therefore, γðLAÞ and A0ðLAÞ for
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fKdVand fNLS are generated from the dispersion relations
for linear fKdV and the linear fractional Schrödinger
equation. These equations are, naturally,

qt þ j − ∂2
xjϵqxxx ¼ 0; iqt ¼ j − ∂2

xjϵ=2qxx; ð10Þ

where j − ∂2
xjϵ is the Riesz fractional derivative. So, the

corresponding dispersion relations are wKðkÞ ¼ −k3jkj2ϵ
and wSðkÞ ¼ −k2jkjϵ, which lead to the aforementioned
definitions of γðLAÞ and A0ðLAÞ.
Spectral definitions of fKdV and fNLS by complete-

ness.—To define the fKdVand fNLS equations, we need to
determine what operating on a function with γðLAÞ or
A0ðLAÞ means. We do this using ingredient 3, complete-
ness of the associated linear scattering system.
In Ref. [45] it was shown that the eigenfunctions of LA

are any of the three functions f∂xφ
2; ∂xψ

2; ∂xðφψÞg which
we represent generically as ΨA, each with eigenvalue
λ ¼ k2. Here, ψ and φ solve the time-independent
Schrödinger equation (3) subject to appropriate asymptotic
boundary conditions at x ¼ �∞. Furthermore, the eigen-
functions ofLA areΨA and Ψ̄A each with eigenvalue λ ¼ k.
These may be written in terms of solutions to Eqs. (5) and
(6) (see Supplemental Material [49]).
Starting from γðLAÞ and A0ðLAÞ operating on ΨA and

ΨA, we can write

γðLAÞΨA ¼ γðk2ÞΨA; ð11Þ

A0ðLAÞΨA ¼ A0ðkÞΨA: ð12Þ

To extend this to γðLAÞ and A0ðLAÞ operating on any
function, we need to be able to express any function in
terms of ΨA and ΨA; i.e., we need a completeness relation
for each set of eigenfunctions.
In Ref. [50] it was shown that the eigenfunctions ΨA are

complete. Assuming qðx; tÞ is sufficiently decaying and
smooth in x, an arbitrary, and sufficiently regular, function
hðxÞmay be expanded in terms of the eigenfunctions ΨA as

hðxÞ ¼
Z
Γ∞

dk
τ2ðkÞ
4πik

Z
∞

−∞
dyGðx; y; kÞhðyÞ; ð13Þ

where time is suppressed and Γ∞ ¼ limR→∞ ΓR with ΓR the
semicircular contour in the upper half plane evaluated from
k ¼ −R to k ¼ R. τ is the transmission coefficient defined
by the relation φðx; kÞτðkÞ ¼ ψðx;−kÞ þ ρðkÞψðx; kÞ, ρ is
the reflection coefficient, and

Gðx;y;kÞ¼∂x(ψ
2ðx;kÞφ2ðy;kÞ−φ2ðx;kÞψ2ðy;kÞ): ð14Þ

This completeness relation reduces to Fourier completeness
in the linear limit. From Eqs. (11) and (13), the operation of
γðLAÞ on a sufficiently smooth and decaying function h
follows as

γðLAÞhðxÞ¼
Z
Γ∞

dkγðk2Þτ
2ðkÞ
4πik

Z
∞

−∞
dyGðx;y;kÞhðyÞ: ð15Þ

Hence, Eqs. (13)–(15) provide an explicit representation of
fKdV, i.e., Eq. (4) with γðLAÞ ¼ −4LAj4LAjϵ, which may
be written as

qt þ
Z
Γ∞

dkj4k2jϵ τ
2ðkÞ
4πik

Z
∞

−∞
dyGðx; y; kÞð6qqy þ qyyyÞ ¼ 0:

ð16Þ

Notice that Eq. (16) is in nondimensional coordinates x and
t. In the linear limit q → 0, we have γðLAÞ → γð−∂2

x=4Þ.
So, for fKdV, γðLAÞ → −∂2

xj − ∂2
xjϵ, which is the Riesz

fractional derivative. If we then set ϵ ¼ 0, we recover the
KdV equation:

qt þ 6qqx þ qxxx ¼ 0: ð17Þ

We note that τðk; tÞ has a finite number of simple poles
along the imaginary axis denoted kj ¼ iκj for j ¼
1; 2;…; J, so the above representation can be evaluated
by contour integration (see Supplemental Material [49]).
Similarly, the eigenfunctions ΨA are also complete [51].

Thus, we can write the operation of A0ðLAÞ on a suffici-
ently smooth and decaying vector-valued function hðxÞ ¼
½h1ðxÞ; h2ðxÞ�T as

A0ðLAÞhðxÞ¼
X2
n¼1

Z
ΓðnÞ
∞

dkA0ðkÞfnðkÞ
Z

∞

−∞
dyGnðx;y;kÞhðyÞ;

G1ðx;y;kÞ¼ΨAðx;kÞΨðy;kÞT; f1ðkÞ¼−τ2ðkÞ=π;
G2ðx;y;kÞ¼ Ψ̄Aðx;kÞΨ̄ðy;kÞT; f2ðkÞ¼ τ̄2ðkÞ=π; ð18Þ

where Γð1Þ
R (Γð2Þ

R ) is the semicircular contour in the upper
(lower) half plane evaluated from −R to þR; Ψðx; kÞ,
Ψ̄ðx; kÞ are eigenfunctions of L; ΨAðx; kÞ, Ψ̄Aðx; kÞ are
eigenfunctions of LA; and τðkÞ, τ̄ðkÞ are transmission
coefficients defined similarly to fKdV. Notice that Gn
are 2 × 2 matrices (see Supplemental Material [49]).
Thus, Eq. (18) gives a representation for the fNLS

equation (7) with A0ðLAÞ ¼ 2iðLAÞ2j2LAjϵ and
r ¼∓ q�; see the Supplemental Material [49]. In the linear
limit, fNLS is represented in terms of the Riesz fractional
derivative, and for ϵ ¼ 0 we recover NLS:

iqt ¼ qxx � 2q2q�: ð19Þ

With explicit expressions for γðLAÞ and A0ðLAÞ in
Eqs. (15) and (18), the fKdV and fNLS equations are
characterized. Further, because these equations are inside of
the time-independent Schrödinger and AKNS classes of
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integrable nonlinear equations in Eqs. (4) and (7), fKdVand
fNLS are solvable by the IST.
Soliton solutions of fKdV and fNLS.—Given an initial

state qðx; 0Þ with sufficient smoothness and decay, we can
solve fKdVand fNLS, i.e., obtain qðx; tÞ, using the IST. To
do this, we first map the initial state into scattering space,
evolve the resulting scattering data in time, and reconstruct
the solution in physical space from these data. It turns out
that solving fKdV and fNLS is remarkably similar to
solving KdV and NLS.
We note that, given the explicit representation of fKdV in

Eq. (16), and fNLS in the Supplemental Material [49], these
equations can also be solved numerically in discrete time
by finding the kernels G=Gj and evaluating the integrals
with respect to y and k at each time step.
The fractional soliton solutions of fKdV and fNLS are

given in Eqs. (20) and (21). These correspond to bound
states of the Schrödinger and AKNS scattering problems
with one complex eigenvalue kK ¼ iκ and kS ¼ ξþ iη,
respectively,

qKðx; tÞ ¼ 2κ2sech2ðκ½ðx − x1Þ − ð4κ2Þ1þεt�Þ ð20Þ

qSðx; tÞ ¼ 2ηe−2iξxþ4iðξ2−η2Þj2kSjϵtsechðzϵðx; tÞÞ; ð21Þ

where zϵðx; tÞ ¼ 2ηðx − x0 − 4ξj2kSjϵtÞ and x0, x1 can be
characterized in terms of scattering data.
It can also be shown that the fractional solitons solve

their respective equations by evaluating γðLAÞ∂xqK
and A0ðLAÞ∂xqS using contour integration methods (this
computation for the fKdV equation is given in the
Supplemental Material [49].) Further, higher order solitons
can be calculated and their interactions are elastic.
Physical predictions.—The fKdV and the fNLS equa-

tions describe the transport of fluid and photons in multi-
scale fluid channels and laser fiberoptic systems,
respectively. The multiscale characteristic of these materi-
als represents a certain “roughness” which is averaged over
in fKdV and fNLS. The solitonic solutions of these
equations describe how localized waves of fluid or prob-
ability are transported in such systems. Both fKdV and
fNLS predict solitons with anomalous motion, that is,
superdispersive transport where speeds are larger than
expected from regular or ordered systems (note that
subdispersive transport can also be realized by modifying
the dispersion relation). Specifically, the group velocity of
fKdV and fNLS and the phase velocity of fNLS are
given by

vKðϵ; κÞ ¼ ð4κ2Þ1þϵ; ð22Þ

vSðξ; ηÞ ¼ 22þϵξðξ2 þ η2Þϵ=2; ð23Þ

vθðξ; ηÞ ¼ 21þϵðξ2 − η2Þðξ2 þ η2Þϵ=2=ξ: ð24Þ

In a wave tank of height 5 cm we expect solitons with
amplitude and KdV speed around 2=3 cm and 0.3 cm=s,
respectively. One can similarly associate physical values to
solitons in fiberoptics [52], spin waves in ferromagnetic
films [53], Bose-Einstein condensates [54], or any of the
many other contexts in which NLS is applicable.
Figure 1 shows the velocities in Eqs. (22)–(24) as they

interpolate between KdV (NLS) for ϵ ¼ 0 and ϵ ¼ 1.
Notice that fKdV and fNLS predict a power law relation-
ship between the amplitude of the wave κ2 and η,
respectively, and the speed of the wave characterized by
ϵ. Experimentally verifying these relations relies on com-
paring the amplitude of water waves and the amplitude and
phase of laser pulses in optical fibers to their speed in
multiscale media.

FIG. 1. Localized waves predicted by the fKdV and fNLS
equations (22)–(24) show superdispersive transport as their
velocity increases as ϵ increases from 0 to 1. Like anomalous
diffusion where the mean squared displacement is proportional to
tα, the velocity in anomalous dispersion is proportional to Aϵ,
where A is the amplitude of the wave. The parameter values used
are κ ¼ 3=2, ξ ¼ 2, and η ¼ 1=2.

FIG. 2. Note that soliton solutions to the fKdV equation
propagate without dissipating or spreading out. The parameter
values used are κ ¼ 3=2 and x0 ¼ 0.
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Importantly, the physical properties of fractional soli-
tons, besides the change in velocity described by Eqs. (22)–
(24), are identical to regular ones. From Fig. 2, fractional
solitons propagate without dissipating or spreading out. An
open question is to compare the solitons predicted by fKdV
and fNLS to solitary waves predicted by other, nonintegr-
able versions of these equations. This could be done by
studying how the velocity of each equation varies with the
fractional parameter ϵ and whether soliton-soliton inter-
actions are elastic or inelastic and what the predicted phase
shifts are.
Conclusion.—We demonstrated a new class of integrable

equations, namely, 1D fractional integrable nonlinear
evolution equations derivable from a general method. As
ubiquitous examples of this class, we presented integra-
bility and solitonic solutions of the fractional nonlinear
Schrödinger and Korteweg–deVries equations. We dem-
onstrated the three basic mathematical ingredients of our
procedure: completeness, dispersion relations, and inverse
scattering transform techniques. We also gave fractional
soliton solutions to these equations and demonstrated
superdispersive transport as a physical implication of the
equations. Such fractional equations model multiscale
materials and open new directions in integrable nonlinear
dynamics for such systems, both artificial and naturally
occurring. Our method provides a context for the discovery
and understanding of 1D fractional nonlinear evolution
equations generally, with integrability acting as a key
signpost for fractional nonlinear dynamics.
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No. DMR-2002980.

[1] M. F. Shlesinger, B. J. West, and J. Klafter, Lévy Dynamics
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Fractional diffusion and Lévy stable processes, Phys. Rev. E
55, 99 (1997).

[4] W. Wang, A. G. Cherstvy, A. V. Chechkin, S. Thapa, F.
Seno, X. Liu, and R. Metzler, Fractional Brownian motion
with random diffusivity: Emerging residual nonergodicity
below the correlation time, J. Phys. A 53, 474001 (2020).

[5] M. J. Saxton, A biological interpretation of transient anoma-
lous subdiffusion. I. Qualitative model, Biophys. J. 92, 1178
(2007).

[6] I. Bronstein, Y. Israel, E. Kepten, S. Mai, Y. Shav-Tal, E.
Barkai, and Y. Garini, Transient Anomalous Diffusion of
Telomeres in the Nucleus of Mammalian Cells, Phys. Rev.
Lett. 103, 018102 (2009).

[7] A. V. Weigel, B. Simon, M. M. Tamkun, and D. Krapf,
Ergodic and nonergodic processes coexist in the plasma
membrane as observed by single-molecule tracking, Proc.
Natl. Acad. Sci. U.S.A. 108, 6438 (2011).

[8] B. M. Regner, D. Vučinić, C. Domnisoru, T. M. Bartol,
M.W. Hetzer, D. M. Tartakovsky, and T. J. Sejnowski,
Anomalous diffusion of single particles in cytoplasm,
Biophys. J. 104, 1652 (2013).

[9] H. Scher and E. W. Montroll, Anomalous transit-time
dispersion in amorphous solids, Phys. Rev. B 12, 2455
(1975).

[10] G. Pfister and H. Scher, Time-dependent electrical transport
in amorphous solids: As2Se3, Phys. Rev. B 15, 2062 (1977).

[11] Q. Gu, E. A. Schiff, S. Grebner, F. Wang, and R. Schwarz,
Non-Gaussian Transport Measurements and the Einstein
Relation in Amorphous Silicon, Phys. Rev. Lett. 76, 3196
(1996).

[12] D. A. Benson, S. W. Wheatcraft, and M.M. Meerschaert,
Application of a fractional advection-dispersion equation,
Water Resour. Res. 36, 1403 (2000).

[13] D. A. Benson, R. Schumer, M. M. Meerschaert, and S. W.
Wheatcraft, Fractional dispersion, Lévy motion, and the
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