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Abstract

In this paper, a reinforcement learning-based method is 
proposed to adapt autonomous vehicle passengers’ expecta-
tion of comfort through in-situ human-vehicle interaction. 

Ride comfort has a significant influence on the user’s experi-
ence and thus acceptance of autonomous vehicles. There is 
plenty of research about the motion planning and control of 
autonomous vehicles. However, limited studies have explicitly 
considered the comfort of passengers in autonomous vehicles. 
This paper studies the comfort of humans in autonomous 
vehicles longitudinal autonomous driving. The paper models 

and then improves passengers’ feelings about autonomous 
driving behaviors. This proposed approach builds a control 
and adaptation strategy based on reinforcement learning using 
human’s in-situ feedback on autonomous driving. It also 
proposes an adaptation of humans to autonomous vehicles to 
account for improper human driving expectations. The 
proposed approaches are implemented and tested with human-
in-the-loop experiments and the results demonstrate that the 
proposed approaches can successfully adapt the vehicle behav-
iors, improve the ride comfort of humans in autonomous 
vehicles, and also correct improper human driving expectations.

Introduction

Autonomous vehicles have become a driving force to 
transform our existing transportation system in the 
near future and will help improve a lot of driving 

performance such as driving safety, congestion, emissions, 
etc. [1, 2]. The gradual maturity of autonomous driving tech-
nology and increasing consumer expectations spark interest 
in passenger comfort research [3, 4] . Although passengers’ 
comfort has always been an essential topic for automotive-
related research, ride comfort in AVs is dramatically different 
from ride comfort in a traditional vehicle. Traditionally, 
researchers mostly investigated ergonomic factors such as seat 
vibrations and noise. The introduction of automated driving 
functions would lead researchers to shift toward vehicle 
control factors, but limited methods have explicitly considered 
passengers in AVs [3].

Headway distance (gap) and speed are probably the first 
two to be noticed and the most significant control factors that 
affect the ride comfort [5]. Many traditional studies have 
focused on the gap acceptance of human drivers [6-8]. 
However, these works mainly focused on studying the gap 
acceptance and comfort of the population or a specific popula-
tion is most likely has a neutral driving style, however, his/
her headway selection may make a conservative driver feel 
nervous and unsafe, and at the same time, make an aggressive 
driver feel impatient and uncomfortable.

To make AVs comfortable for individuals, the concept of 
personalized autonomous driving has arisen in recent years. 
General approaches to achieve personalized autonomous 
driving can be  categorized into analytical model-based 
approaches and heuristic approaches. Analytical approaches 
use explicit mathematical models to model the human 
expected driving behaviors [9-13]. Heuristic approaches do 
not assume a predefined mathematical model. Instead, they 
employ machine learning techniques such as artificial neural 
network [14, 15], Gaussian mixture models [16] and deep 
learning [17, 18] to approximate the human expected driving 
behaviors. However, existing approaches have two drawbacks. 
Firstly, they require humans to drive the vehicle to generate 
complete demonstrations, which does not match the applica-
tion scenario of autonomous vehicles. Secondly, a person’s 
expectations of driving behavior may vary as one’s identity 
changes from driver to passenger. A control model trained on 
a person’s driving data may still make him/her uncomfortable 
as a passenger.

Therefore, we propose to learn human expectations on 
autonomous vehicles without a need of human demonstra-
tions but just intuitive force feedback from humans. More 
specifically, Reinforcement learning (RL) is used as the tool 
to find the most comfortable gap and speed for specific 
passengers with only their pressing force input data. The goal 
of reinforcement learning is to learn policies for 
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decision-making by optimizing a cumulative future reward 
function. Different from existing reinforcement learning 
approaches that use some calculated criteria like safety or 
efficiency as the reward, we directly integrate the real-time 
in-situ human pressing force into the reward as a representa-
tion of human comfort. In addition, it is known that rein-
forcement learning may sometimes learn unrealistically high 
action values because it includes a maximization step over 
estimated action values, which tends to prefer overestimated 
to underestimated values [19]. To address this, we have inte-
grated some extra constraints and penalties in reinforcement 
learning to avoid such unrealistic actions. It is also known 
that human expected driving behaviors may not always 
be  correct. For instance, one passenger may expect very 
aggressive driving behavior which may lead to safety issues. 
In contrast, another passenger may expect a very conservative 
driving behavior which may lead to efficiency issues. To 
address this, we  propose an adaptation of humans to 
autonomy through human-vehicle interfaces to provide real-
time feedback to humans in order to correct their improper 
expectations. Simulator-based research on the comfort of 
occupants in autonomous vehicles has been very popular in 
recent years and has produced many valuable results [20-22]. 
In this paper, we also propose to use a driving simulator to 
train and test the proposed reinforcement learning-
based approach.

The contributions of the paper can be  summarized 
as follows:

•• Propose a reinforcement learning-based approach to 
learn human comfort expectations on autonomous 
vehicles using in-situ human pressing force feedback 
without a need for human driving demonstrations.

•• Build a reinforcement learning-based comfortable 
autonomous driving control with an adaptation design 
for humans to correct their improper 
driving expectations.

•• Conduct human-in-the-loop experiments to validate and 
evaluate the proposed approaches.

The rest of the paper is organized as follows. The third 
section gives details of the reinforcement learning-based 
learning of human comfort expectation and the adaptation 
of human passengers. The fourth section presents the human-
in-the-loop experimental results and analysis.

Human Comfort 
Improvement by 
Reinforcement Learning
In the first part of this section, the method of learning 
human comfortable expectations and adapting a controller 
to human expectations using reinforcement learning is 
described in detail. Then, the adaption of humans to 
autonomy is introduced.

Reinforcement Learning of 
Human Comfortable 
Expectations with In-Situ 
Human Feedback
Comfort Data Collection through In-Situ Human-
Vehicle Interaction In this paper, comfort data are 
collected through in-situ human-vehicle interaction. The 
participants will experience a virtual automated car-following 
ride, which is simulated by Simulink, as shown in Figure 1 
left. The lead vehicle in the virtual ride will track a preset test 
drive cycle. The host vehicle, in which the participants are 
sitting virtually, is controlled by an existing car-following 
controller. The velocity and acceleration of both vehicles and 
the headway distance (gap) between them are recorded. To 
discretize the data for reinforcement learning, those recorded 
data are rounded to integers. During the virtual ride, the 
participants can feel and react to the states of the two-vehicle 
system. Although many features can affect ride comfort, this 
paper will focus on the influence of relative velocity (RV) and 
gap. In the real world, there are generally three different types 
of drivers: aggressive, neutral, and conservative. These three 
types of participants will be involved in this paper since they 
should have different feelings over the gap and relative speed 
conditions. An aggressive participant may feel more comfort-
able with a small gap and high relative velocity. On the 
contrary, a conservative participant may feel more comfort-
able with a large gap and low relative velocity. A neutral 
participant would feel uncomfortable with extreme gap and 
relative velocity.

Before the data collection process starts, the participants 
need to watch a three-minute sample video to get familiar 
with the in-situ interface. During the data collection, the 
participants will experience five three-minute-long rides. 
Three minutes is long enough to make the participants experi-
ence the car-following process comprehensively and not too 
long to keep them focused. If the participants feel uncomfort-
able with the relative velocity and/or gap, they can press a 
button, as shown in Figure 1 right, to express their discomfort. 
The button will measure the pressing force, and a larger 
pressing force stands for a greater sense of discomfort.

After the participants finish the visual rides, all the data 
will be fit to a reward policy. The reward policy can show the 
relationship between comfort level and gap and relative 
velocity. The reward policy table will play an essential role in 
this paper. During the Q-Learning training process, the 

 FIGURE 1  In-situ human-vehicle interaction.
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reward policy table will be used as the RL reward policy, which 
generates the reward for each step in RL. During the evalua-
tion process, the reward policy will be used to evaluate the 
trained agent. The detailed data fitting process will be intro-
duced in section 3.1.2 below.

Comfort Data Regression and Normalization After 
the data collection process is finished, the raw data, which are 
pressing force versus time, need to be converted to the form 
that can be used to train the agent. Firstly, the data should 
be converted from pressing force versus time to pressing force 
versus relative velocity and pressing force versus gap.

The pressing force eventually is going to be used as the 
comfort reward for each state. Later in the next subsection, 
another type of reward, the safety reward, will be introduced. 
These two types of rewards will be combined to form the 
reward function of the RL. Thus, to balance the weights of 
these two rewards, the pressing force data should be normal-
ized so that the comfort reward shares the same value range 
as the safety reward. Also, different participants may press 
the button with different forces to express the same level of 
discomfort. Normalization is critical for analyzing data from 
different participants fairly. Furthermore, the training with 
a normalized reward policy is easier to track during the 
training process. Lastly, the normalized data can be used 
directly for future training such as deep-q learning.

The next step is regression. Despite the preventive design 
in the virtual ride experience, the participant may still 
be distracted and press the button wrongly during the ride, 
which will bring noise and inaccuracy to the data. This paper 
presumes that the relationship between people’s comfort and 
gap and RV is continuous and differentiable. It is unlikely that 
a person feels uncomfortable when the gap is 100 meters but 
feels extremely comfortable when the gap is 101 meters and 
feels extremely uncomfortable again when the gap is 
102 meters. Since the general comfort expectations of different 
types of participants can be roughly anticipated, it is relatively 
easy to get a reasonable initial guess of the form of the 
fitted curve.

Learning of Human Comfortable Expectations In 
this paper, the RL method called Q-Learning is used. 
Q-Learning is a model-free reinforcement learning method 
firstly proposed by Watkins and developed further in 1992. 
Agents in RL algorithms are incentivized with punishments 
for bad actions and rewards for good ones. The goal of the 
agent is to learn a behavior rule that maximizes the reward it 
receives [23]. There is a table called Q-table used to record 
those learning results, which are also called Q-value. Each 
Q-value represents thereby the reward of a unique state-action 
pair, and a higher value relative to other values promises a 
higher return according to the definition [23].

Q-learning specifically allows an agent to learn to act 
optimally in an environment that can be represented by a 
Markov decision process (MDP). Consider a finite MDP 
〈S, A, P, R, η〉 with state-space S, action space A, state transition 
probability P, reward function R and discount factor η. In this 
paper, the state space will be formed by the host vehicle’s 

velocity, the relative velocity, the headway distance, and the 
front vehicle’s trend. The trend of the front vehicle is based on 
whether it is accelerating or decelerating. Action space will 
contain the acceleration choices for the host vehicle. The tran-
sition probability will be determined by the state trajectories 
of both vehicles and the physics of the vehicle motion.

The reward function will be  formed by the comfort 
reward defined in the previous subsection and an extra safety 
reward. The detailed reward function is given by the 
equation below:

	 R w C w St t ts a R s R st,� � � �� � � �� �1 21 1 	 (1)

where R(st, at) is the reward for taking action at in state 
st. w1 and w2 denote the weights that balance the comfort 
reward and safety reward. CR(st+1) denotes the comfort reward 
produced by reward policy based on the new state. SR(st+1) 
denotes the safety penalty that prevents the agent from driving 
too aggressively. After normalization, the value of CR and SR 
will be between 0 and 1. In this paper, a higher reward value 
means greater discomfort or safety hazard, and the rewards 
are actually penalties, thus both w1 and w2 are negative. The 
SR reward function is given below
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A safety penalty will be imposed if one of the following 
three situations happens. The first situation is the car-following 
is out of state. Because of the property of the Q-learning, the 
training must be reset if the agent is out of state. The valid 
state range is defined by the minimum gap gapmin, maximum 
gap gapmax, minimum relative speed RVmin and maximum 
relative speed gapmax. The second situation is the car is 
reversing. In the real world, no human driver will reverse the 
car during the car following. The third situation is violating 
the safety constraints, which are defined by minimum time 
to collision TTCmin.

Q-learning is based on iteratively improving the state-
action value function (or Q-function), which represents an 
expectation of the future reward when taking action a in state 
s and following policy π from thereon after. The Q-function is:

	 Q a R s at t
�

�s E s at, |, |,� � � � �� � 	 (3)

where Qπ(s, a) denotes Q-Value, and it represents the 
reward value for each action’s behaviors in each state of AVs. 
Rt denotes the future reward.

As described before, the state space will be formed by the 
host vehicle’s velocity, RV, gap, and acceleration trend of 
the lead vehicle. Action space will be the acceleration choice. 
The behavior rule tells the host vehicle how to select actions 
given a certain state. At the same time, only one future step 
will be considered to calculate the reward.

Therefore, the Q-Table update equation in this paper is 
presented as follows:
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where η denotes the discount factor, θ denotes the learning 
rate, Rnew denotes the updated estimated reward. R denotes 
the reward for reaching the current state, which is decided by 
the predefined reward policy. Q(st+1, a)max denotes the 
maximum potential future reward for the current state. 
Q(st, at)new denotes the new Q-Value for the updated Q-Table. 
Q(st, at) denotes the old Q-Value.

Algorithm 1 Algorithm for human comfortable 
expectation learning.

Input: Lead vehicle velocity trajectory (LV), comfort reward 
policy (CR), training parameters

Initialization: Q − table(Q) = zeros(s, a), s, leadv

Output: Updated Q-table

1: for GP = GPmin to GPmax do

2: for x = 0 : Blength : Tlength do

3:  j ← x;

4:  for i = 0 to iteration do

5:   j ←increment.

6:   trending ← LV(j) compare to leadv

7:   leadv ←LV(j).

8:   a = eps(Q(s)).

9:   v ← v(s) + a.

10:   rv ← v − leadv.

11:   gap ← gap(s) + rv.

12:   st+1 ← v, gap, rv, trending

13:   if safety penalty then

14:    reward = SR(st+1) ∗ w2

15:    j ← x.

16:    leadv ←LV(j).

17:    v ← leadv ± Δv

18:    gap ← wGP ∗ GP + wv ∗ leadv ± Δgap

19:   else

20:    reward ←CR(st+1) ∗ w1 + η ∗ Q(st+1)max

21:   end if

22:   Q(s, a) ← Q(s, a) + θ ∗ (reward − Q(s, a))

23:   s ← st+1.

24:   end for

25:  end for

26: end for

27: return Q

In this paper, the Q-Learning is applied to a single-lane 
car-following scenario where the host vehicle follows the lead 
vehicle. During the training, a Q-table-based controller is 
used to control the host vehicle moving from initial states to 

new states. As shown in Figure 2, at the start of each 
Q-Learning iteration, the host vehicle starts at certain initial 
states, an acceleration from available options will be assigned 
using the Epsilon-Greedy Action Selection method, and the 
vehicle will run with this acceleration for the next 1 second. 
The traveled distances, velocities, and accelerations of both 
vehicles, together with the relative velocity and the gap are 
also updated. Then, the vehicle will reach new states and 
the  reward will be  decided based on the new states. The 
Q-table is then updated based on the reward and state transi-
tion. Such training will be repeated until the iteration limit is 
reached. After the training, the trained Q-table will be able 
to control the host vehicle effectively. The details of the 
learning process are given in Algorithm 1.

The lead vehicle’s velocity trajectory is prerecorded and is 
divided into multiple sub-trajectory batches. Tlength and Blength 
are the lengths of the complete training trajectory and sub-
trajectory respectively in seconds. The comfort reward policy 
has been defined in previous sections. GP denotes the gap 
parameter. The larger the gap parameter is, the larger the initial 
gap will be after each reset. All the batches will run Ngap ∗ itera-
tion, where Ngap is the number of optional values of the gap 
parameter. Other training parameters include learning rate θ 
and discount factor η. The Q-table is initialized as all the 
Q-value are zeros. For each iteration, there will be one action 
performed at one state, and one Q-value is updated. The eps 
denotes the Epsilon-Greedy Action Selection method used to 
pick the action. When the new state triggers the safety penalty, 
the states will be reset to a random initial gap and velocity. 
Although the front vehicle’s state trajectory is fixed, the initial 
gap and the host vehicle’s velocity are random after each reset.

Adaptation of Human to 
Autonomy
The human’s in-situ feedback may not always be reasonable. 
The human participants could have improper expectations of 
the automated driving style. For example, an aggressive 
participant could prefer a too short headway distance that 
may cause accidents under emergent scenarios. A conservative 
participant could want the vehicle to drive too slowly, which 
reduces the traffic efficiency significantly. Thus, apart from 
learning a driving model from human expectations, we also 
propose to adapt to the human’s expectations to autonomy by 
providing necessary feedback to the human.

 FIGURE 2  Reinforcement learning flow chart.
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After a trained Q-table is obtained, the participants will 
be asked to experience an automated car-following ride again. 
This time, the host vehicle is controlled by the trained Q-table 
while the front vehicle’s motion trajectory comes from test 
drive cycles, some of which are the same as those during 
training, and some are not. At the same time, safety and effi-
ciency warnings will be provided, as shown in Figure 3.

The safety warning light will be turned on if the time to 
collision is smaller than 3s. The efficiency warning light will 
be turned on if the time to collision is larger than 5s. During 
the process, the participants can see the warning light if the 
driving is too dangerous or too inefficient. Meanwhile, the 
participants have the freedom to press the button whenever 
they want. For example, the participants can still decide to 
press the button if they think the vehicle drive too slowly when 
the safety warning is on. The new data collected will be used 
to evaluate the result of Q-learning. The comparison of the 
data before and after the participants see the warning can 
reveal if the adaptation works.

Experimental Results and 
Analysis
The experiments in this paper were conducted using a real-
time driving simulator build with Matlab. The interface of the 
3D simulation environment is shown in Figure1.

Results of Reinforcement 
Learning with In-Situ Human 
Feedback
During the in-situ human feedback data collection, the lead 
vehicle was following the EPA Urban Dynamometer Driving 
Schedule (UDDS) cycle, which is shown in the top figure in 
Figure 4. Figure 5 shows the converted, normalized, and 
regressed pressing force data.

The state space of the MDP, like introduced in previous 
sections, contains the host vehicle’s speed, gap, RV, and the 
front vehicle’s trend. In the experiment, there are 41 different 
speed states that are evenly distributed from 0m/s to 40m/s, 
111 gap states from 10m to 120m, 13 relative velocity states 
from −6m/s to 6m/s, and 3 front vehicle trend states. The 
action space contains only the host vehicle’s acceleration, 
which has 8 options: −4m/s2, −3m/s2, −2m/s2, −1m/s2, 0m/s2, 
1m/s2, 2m/s2, and 3m/s2. Thus, the dimensions of the Q-Table 

is 41(velocity) ∗ 111(gap) ∗ 13(relativevelocity) ∗ 3(trending) ∗ 
8(acceleration). The EPS values and other training related 
parameters used are shown in Table 1.

 FIGURE 3  Feedback interface for human participants.  FIGURE 4  Trajectories of the front vehicle.

 FIGURE 5  Raw press force versus gap and relative velocity.
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Multiple virtual automated driving rides were designed 
to evaluate how well do the trained Q-learning controllers 
work. The rides could be classified into two main categories: 
objective quantitative evaluation and subjective evaluation. 
The objective quantitative evaluation focuses on analyzing 
quantitative data such as total reward value, state statistics 
(e.g., Average gap and change of speed), and the number of 
“accidents” that happen. In this paper, “accidents” are repre-
sented by the safety penalty in training. In subjective evalu-
ation, the participants will experience the virtual ride in the 
host vehicle under the control of the Q-controller and evaluate 
the performance of the Q-controller directly.

The weights of the safety and comfort rewards need to 
be  figured out before further experiments. Five sets of 
weights were tried to train the agent. The trained agent then 
drove the vehicle to follow the front vehicle that tracked the 
UDDS cycle. All training parameters remained the same for 
all training. All the accidents caused by the agent were 
counted. The results are shown in Table 2. The results reveal 

that it is impossible to train a reliable agent with a small w2. 
Therefore, in this paper, all the training used 50 for w2 and 
1 for w1.

Evaluation of Learning Human 
Comfortable Expectations
In this section, three Q-controller agents trained with different 
comfort reward policies learned from 3 different types of 
participants (aggressive (Agg), neutral (Neu), and conservative 
(Cons)) are evaluated. Aggressive participants expect smaller 
headway and higher speed. Conservative participants expect 
larger headway and lower speed. All the Q-controllers were 
trained with the same training parameters and lead trajectory 
(UDDS). Parameters setting is shown in Table 1.

Each controller ran three tests following three different 
driving cycles. One is the same cycle as the training (UDDS), 
and the others are new cycles. The two new cycles were the 
Inspection and Maintenance (IM240) and the New York City 
Cycle (NYCC), which are also shown in Figure 4. An IDM 
car-following controller ran the same tests as a baseline.

The first quantitative data are the reward collection. In 
this paper, reward collection denotes the cumulative reward 
a trained agent can gather in one car-following test. Reward 
gathering ability is an essential index that reflects the perfor-
mance of Q-learning. The results are shown as table 3. The 
results show that all the controllers could collect higher 
rewards than the base IDM controllers in all three lead cycles, 
proving that the Q-training successfully adapted the vehicle 
behavior to the human’s expectations.

The second quantitative data are the number of “acci-
dents”. A successfully trained Q-controller should minimize 
the number of “accidents”. In this paper, five classes of “acci-
dents” are defined. Accident Class1(AC1) is defined as the gap 
being too small. Whenever the gap is smaller than 10m, an 
AC1 event will be  triggered and recorded. Accident 
Class2(AC2) is defined as the gap being too large. Whenever 
the gap is larger than 120m, an AC2 event will be triggered 
and recorded. Accident Class3(AC3) is defined as relative 
velocity being too small. Whenever the relative velocity is 
smaller than −6m/s2, an AC3 event will be  triggered and 
recorded. Accident Class4(AC4) is defined as relative velocity 
being too large. Whenever the relative velocity is large than 
6m/s2, an AC4 event will be triggered and recorded. Accident 
Class5(AC5) is defined as vehicle reversing. Whenever the 
velocity is smaller than 0m/s, an AC5 event will be triggered 
and recorded. The numbers of occurred “accidents” are shown 
as table 4.

The length of UDDS is 1370s, IM240 is 240s, NYCC is 
599s. The frequency of ”accidents” is relatively low but not low 
enough. A well-trained Q-controller should avoid ”accidents” 
completely. However, the cause of most ”accidents” is not 
directly related to the Q-learning algorithm. AC3 and AC4 
happen when relative velocity is too large or too small. In this 
paper, the available acceleration options are limited. If the 
lead vehicle accelerates or decelerates dramatically, AC3/4 
cannot be avoided even if the most optimized acceleration 
option is chosen. Similarly, AC2 happened when the lead 
vehicle accelerates too fast with a big gap. For instance, if the 

TABLE 1 training parameters.

Training 
Parameters Value

Iteration 
Percentage EPS Value

learning 
rate(η)

0.5 10% 0.9

iteration 20000 20% 0.8

batch 
size(Blength)

50 40% 0.6

batch number 27 60% 0.4

discount 
factor(θ)

1 80% 0.2

Δv 6 90% 0.1

Δgap 5 99% 0

wGP 10

wv 2

TABLE 2 Number of accidents with different reward weights.

w1 w2 Accidents
–1 0 648

–1 –1 524

–1 –10 124

–1 –25 27

–1 –50 0

TABLE 3 reward collection.

LT IDM Agg IDM Neu IDM Cons
UDDS –613.6 –335.65 –628.9 –557.38 –597 –384.48

IM240 –145.9 –74.39 –113.28 –99.68 –108.6 –76.74

NYCC –172.1 –101.92 –280.32 –138.96 –232.04 –128.5

TABLE 4 Accidents record.

LT Agg Neu Cons
UDDS 0 1AC5 2AC2, 2AC3

IM240 0 4AC3, 1AC4 0

NYCC 3AC3 3AC3, 1AC4 1AC3, 1AC4, 3AC5
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current gap is 119m, the current relative velocity is 0m/s, and 
the front vehicle has an acceleration of 5m/s2; there is no way 
the agent can avoid AC4 to happening with the currently 
available actions. Under-coverage causes AC5. With full 
coverage, the agent will not be able to decelerate to negative 
velocity. Therefore, all the AC can be avoided with a larger 
iteration number and range of states and actions.

The third quantitative data are the gap and Time to 
Collision (TTC). Gap and TTC are two critical values that 
determine the driving style. The average gap and TTC for each 
Q-controller in each driving cycle are shown in table 5.

The results show that the aggressive controller has the 
smallest gap and TTC, the conservative controller has 
the largest gap and TTC, and the neutral controller has the 
medium gap and TTC. These results show that the trained 
Q-controller matched the different styles of participants. This 
is another piece of evidence that proves the Q-learning 
adaption is working.

Evaluations of Human 
Comfort Improvement
The gap and relative velocity trajectories of all Q-controllers 
in all cycles are shown in Figure 6, 7, and 8. It can be seen from 
the figures that the aggressive Q-controller kept a smaller gap 
than the other Q-controllers while the conservative 
Q-controller kept a larger gap. The relative velocity trajectories 
are not showing as big differences between each other as the 
gap trajectories. However, it is safe to say the aggressive 
Q-controller is trying to avoid negative RV when the conser-
vative Q-controller is trying to avoid positive RV. The neutral 
controller performed in between the aggressive and the 
conservative controller. These driving styles corroborate how 
each type is defined.

We asked all the participants to experience the autono-
mous driving journey again. During this time, the host vehicle 
was controlled by the Q-controller trained with the data gener-
ated by the corresponding participant. They had access to the 
safety and efficiency warning signal, which would warn them 
if the acceleration option they did not want to be had been the 
most aggressive or conservative option. Figure 9 - 11 show the 
raw pressing force data collected from different participants 
during the IDM ride and the Q-controller ride. In the figures, 
the legend IDM refers to the original IDM controller, legend 
Q − controller1th refers to the learned RL-based controller, 
and legend Q − controller2nd refers to the RL-based controller 
with warnings for the participants. The results show that the 
aggressive and the neutral participants felt much more 
comfortable and pressed less during the Q-controller ride than 
during the IDM ride. However, the conservative participant 
felt a little more comfortable with the IDM. The reason is the 
initial IDM setting is already extremely conservative. There 

is no significant room for improvement. For the second virtual 
ride, since the participants had access to the warning notifica-
tion, the participants knew that what Q-controller was doing 
was the best under safety constraints. The results show that 
the aggressive and the conservative participants pressed much 
less in the second virtual ride. It proves that showing partici-
pants the safety warning can increase ride comfort if the 
participants have improper and extreme driving expectations. 
The human-vehicle interface could correct Their improper 
expectations. The result shows that the neutral participants’ 
average pressing force decreased the most dramatically 
(decrease from 1.042 to 0.0503, 95.2%), which indicates that 

 FIGURE 6  Gap and relative velocity trajectory on UDDS.

 FIGURE 7  Gap and relative velocity trajectory on IM240.

TABLE 5 Average Gap(m)/TTC(s).

LT Agg Neu Cons
UDDS 30.69/2.75 31.91/2.83 43.31/4.11

IM240 41.20/3.23 44.83/3.36 52.70/4.09

NYCC 18.73/2.13 18.98/2.35 20.81/2.78
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this method works exceptionally effectively in driving behav-
iors for neutral participants. Because of the safety penalty, the 
trained agent tended to drive neutrally to avoid triggering the 
safety penalty. It explains why the trained agent satisfied the 
neutral participant the most even though the reward collection 
score is not impressive.

Conclusion
In this paper, a reinforcement learning-based method is 
proposed to adapt automated driving behaviors to human 
expectations for better ride comfort. The method utilizes 
human in-situ feedback to generate the Q-table for the 
learning process. We also propose to use the trained Q-learning 
controller to correct bad expectations from humans by 
providing necessary warning feedback. Experiments have 
been conducted on three different types of human partici-
pants. The results showed that the trained automated driving 
agent could increase the ride comfort for the corresponding 
participant. Simultaneously, the human participants could 
acquire effective warning information when they are having 
improper feedback. Such information successfully helped the 
participants to develop better expectations during automated 
driving rides. In future work, we will apply this proposed 
method to a wider range of autonomous driving scenarios 
such as lane switching, cornering, and overtaking.
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