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Abstract

n this paper, a reinforcement learning-based method is

proposed to adapt autonomous vehicle passengers’ expecta-

tion of comfort through in-situ human-vehicle interaction.
Ride comfort has a significant influence on the user’s experi-
ence and thus acceptance of autonomous vehicles. There is
plenty of research about the motion planning and control of
autonomous vehicles. However, limited studies have explicitly
considered the comfort of passengers in autonomous vehicles.
This paper studies the comfort of humans in autonomous
vehicles longitudinal autonomous driving. The paper models

Introduction

utonomous vehicles have become a driving force to

transform our existing transportation system in the

near future and will help improve a lot of driving
performance such as driving safety, congestion, emissions,
etc. [L, 2]. The gradual maturity of autonomous driving tech-
nology and increasing consumer expectations spark interest
in passenger comfort research [3, 4] . Although passengers’
comfort has always been an essential topic for automotive-
related research, ride comfort in AVs is dramatically different
from ride comfort in a traditional vehicle. Traditionally,
researchers mostly investigated ergonomic factors such as seat
vibrations and noise. The introduction of automated driving
functions would lead researchers to shift toward vehicle
control factors, but limited methods have explicitly considered
passengers in AVs [3].

Headway distance (gap) and speed are probably the first
two to be noticed and the most significant control factors that
affect the ride comfort [5]. Many traditional studies have
focused on the gap acceptance of human drivers [6-8].
However, these works mainly focused on studying the gap
acceptance and comfort of the population or a specific popula-
tion is most likely has a neutral driving style, however, his/
her headway selection may make a conservative driver feel
nervous and unsafe, and at the same time, make an aggressive
driver feel impatient and uncomfortable.
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and then improves passengers’ feelings about autonomous
driving behaviors. This proposed approach builds a control
and adaptation strategy based on reinforcement learning using
human’s in-situ feedback on autonomous driving. It also
proposes an adaptation of humans to autonomous vehicles to
account for improper human driving expectations. The
proposed approaches are implemented and tested with human-
in-the-loop experiments and the results demonstrate that the
proposed approaches can successfully adapt the vehicle behav-
iors, improve the ride comfort of humans in autonomous
vehicles, and also correct improper human driving expectations.

To make AVs comfortable for individuals, the concept of
personalized autonomous driving has arisen in recent years.
General approaches to achieve personalized autonomous
driving can be categorized into analytical model-based
approaches and heuristic approaches. Analytical approaches
use explicit mathematical models to model the human
expected driving behaviors [9-13]. Heuristic approaches do
not assume a predefined mathematical model. Instead, they
employ machine learning techniques such as artificial neural
network [14, 15], Gaussian mixture models [16] and deep
learning [17, 18] to approximate the human expected driving
behaviors. However, existing approaches have two drawbacks.
Firstly, they require humans to drive the vehicle to generate
complete demonstrations, which does not match the applica-
tion scenario of autonomous vehicles. Secondly, a person’s
expectations of driving behavior may vary as one’s identity
changes from driver to passenger. A control model trained on
a person’s driving data may still make him/her uncomfortable
as a passenger.

Therefore, we propose to learn human expectations on
autonomous vehicles without a need of human demonstra-
tions but just intuitive force feedback from humans. More
specifically, Reinforcement learning (RL) is used as the tool
to find the most comfortable gap and speed for specific
passengers with only their pressing force input data. The goal
of reinforcement learning is to learn policies for
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decision-making by optimizing a cumulative future reward
function. Different from existing reinforcement learning
approaches that use some calculated criteria like safety or
efficiency as the reward, we directly integrate the real-time
in-situ human pressing force into the reward as a representa-
tion of human comfort. In addition, it is known that rein-
forcement learning may sometimes learn unrealistically high
action values because it includes a maximization step over
estimated action values, which tends to prefer overestimated
to underestimated values [19]. To address this, we have inte-
grated some extra constraints and penalties in reinforcement
learning to avoid such unrealistic actions. It is also known
that human expected driving behaviors may not always
be correct. For instance, one passenger may expect very
aggressive driving behavior which may lead to safety issues.
In contrast, another passenger may expect a very conservative
driving behavior which may lead to efliciency issues. To
address this, we propose an adaptation of humans to
autonomy through human-vehicle interfaces to provide real-
time feedback to humans in order to correct their improper
expectations. Simulator-based research on the comfort of
occupants in autonomous vehicles has been very popular in
recent years and has produced many valuable results [20-22].
In this paper, we also propose to use a driving simulator to
train and test the proposed reinforcement learning-
based approach.

The contributions of the paper can be summarized
as follows:

* Propose a reinforcement learning-based approach to
learn human comfort expectations on autonomous
vehicles using in-situ human pressing force feedback
without a need for human driving demonstrations.

* Build a reinforcement learning-based comfortable
autonomous driving control with an adaptation design
for humans to correct their improper
driving expectations.

* Conduct human-in-the-loop experiments to validate and
evaluate the proposed approaches.

The rest of the paper is organized as follows. The third
section gives details of the reinforcement learning-based
learning of human comfort expectation and the adaptation
of human passengers. The fourth section presents the human-
in-the-loop experimental results and analysis.

Human Comfort
Improvement by
Reinforcement Learning

In the first part of this section, the method of learning
human comfortable expectations and adapting a controller
to human expectations using reinforcement learning is
described in detail. Then, the adaption of humans to
autonomy is introduced.

Reinforcement Learning of
Human Comfortable
Expectations with In-Situ
Human Feedback

Comfort Data Collection through In-Situ Human-
Vehicle Interaction In this paper, comfort data are
collected through in-situ human-vehicle interaction. The
participants will experience a virtual automated car-following
ride, which is simulated by Simulink, as shown in Figure 1
left. The lead vehicle in the virtual ride will track a preset test
drive cycle. The host vehicle, in which the participants are
sitting virtually, is controlled by an existing car-following
controller. The velocity and acceleration of both vehicles and
the headway distance (gap) between them are recorded. To
discretize the data for reinforcement learning, those recorded
data are rounded to integers. During the virtual ride, the
participants can feel and react to the states of the two-vehicle
system. Although many features can affect ride comfort, this
paper will focus on the influence of relative velocity (RV) and
gap. In the real world, there are generally three different types
of drivers: aggressive, neutral, and conservative. These three
types of participants will be involved in this paper since they
should have different feelings over the gap and relative speed
conditions. An aggressive participant may feel more comfort-
able with a small gap and high relative velocity. On the
contrary, a conservative participant may feel more comfort-
able with a large gap and low relative velocity. A neutral
participant would feel uncomfortable with extreme gap and
relative velocity.

Before the data collection process starts, the participants
need to watch a three-minute sample video to get familiar
with the in-situ interface. During the data collection, the
participants will experience five three-minute-long rides.
Three minutes is long enough to make the participants experi-
ence the car-following process comprehensively and not too
long to keep them focused. If the participants feel uncomfort-
able with the relative velocity and/or gap, they can press a
button, as shown in Figure 1 right, to express their discomfort.
The button will measure the pressing force, and a larger
pressing force stands for a greater sense of discomfort.

After the participants finish the visual rides, all the data
will be fit to a reward policy. The reward policy can show the
relationship between comfort level and gap and relative
velocity. The reward policy table will play an essential role in
this paper. During the Q-Learning training process, the

m In-situ human-vehicle interaction.
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reward policy table will be used as the RL reward policy, which
generates the reward for each step in RL. During the evalua-
tion process, the reward policy will be used to evaluate the
trained agent. The detailed data fitting process will be intro-
duced in section 3.1.2 below.

Comfort Data Regression and Normalization After
the data collection process is finished, the raw data, which are
pressing force versus time, need to be converted to the form
that can be used to train the agent. Firstly, the data should
be converted from pressing force versus time to pressing force
versus relative velocity and pressing force versus gap.

The pressing force eventually is going to be used as the
comfort reward for each state. Later in the next subsection,
another type of reward, the safety reward, will be introduced.
These two types of rewards will be combined to form the
reward function of the RL. Thus, to balance the weights of
these two rewards, the pressing force data should be normal-
ized so that the comfort reward shares the same value range
as the safety reward. Also, different participants may press
the button with different forces to express the same level of
discomfort. Normalization is critical for analyzing data from
different participants fairly. Furthermore, the training with
a normalized reward policy is easier to track during the
training process. Lastly, the normalized data can be used
directly for future training such as deep-q learning.

The next step is regression. Despite the preventive design
in the virtual ride experience, the participant may still
be distracted and press the button wrongly during the ride,
which will bring noise and inaccuracy to the data. This paper
presumes that the relationship between people’s comfort and
gap and RV is continuous and differentiable. It is unlikely that
a person feels uncomfortable when the gap is 100 meters but
feels extremely comfortable when the gap is 101 meters and
feels extremely uncomfortable again when the gap is
102 meters. Since the general comfort expectations of different
types of participants can be roughly anticipated, it is relatively
easy to get a reasonable initial guess of the form of the
fitted curve.

Learning of Human Comfortable Expectations In
this paper, the RL method called Q-Learning is used.
Q-Learning is a model-free reinforcement learning method
firstly proposed by Watkins and developed further in 1992.
Agents in RL algorithms are incentivized with punishments
for bad actions and rewards for good ones. The goal of the
agent is to learn a behavior rule that maximizes the reward it
receives [23]. There is a table called Q-table used to record
those learning results, which are also called Q-value. Each
Q-value represents thereby the reward of a unique state-action
pair, and a higher value relative to other values promises a
higher return according to the definition [23].

Q-learning specifically allows an agent to learn to act
optimally in an environment that can be represented by a
Markov decision process (MDP). Consider a finite MDP
(S, A, P,R,n) with state-space S, action space A, state transition
probability P, reward function R and discount factor #. In this
paper, the state space will be formed by the host vehicle’s

velocity, the relative velocity, the headway distance, and the
front vehicle’s trend. The trend of the front vehicle is based on
whether it is accelerating or decelerating. Action space will
contain the acceleration choices for the host vehicle. The tran-
sition probability will be determined by the state trajectories
of both vehicles and the physics of the vehicle motion.

The reward function will be formed by the comfort
reward defined in the previous subsection and an extra safety
reward. The detailed reward function is given by the
equation below:

R(st,a,):wlCR<st +1)+szR(st +1) 1)

where R(s,, a,) is the reward for taking action g, in state
s;. w; and w, denote the weights that balance the comfort
reward and safety reward. CR(s,,;) denotes the comfort reward
produced by reward policy based on the new state. SR(s,,,)
denotes the safety penalty that prevents the agent from driving
too aggressively. After normalization, the value of CR and SR
will be between 0 and 1. In this paper, a higher reward value
means greater discomfort or safety hazard, and the rewards
are actually penalties, thus both w; and w, are negative. The
SR reward function is given below

1 gap<gapmin>gap>gapmax>
SR(s)= RV RV, RV )RV, @
- V <0m/s,TTC <TTCpy

0 otherwise

A safety penalty will be imposed if one of the following
three situations happens. The first situation is the car-following
is out of state. Because of the property of the Q-learning, the
training must be reset if the agent is out of state. The valid
state range is defined by the minimum gap gap,,;,, maximum
gap gap,.., minimum relative speed RV,,;, and maximum
relative speed gap,,,.. The second situation is the car is
reversing. In the real world, no human driver will reverse the
car during the car following. The third situation is violating
the safety constraints, which are defined by minimum time
to collision TTC,,;,,.

Q-learning is based on iteratively improving the state-
action value function (or Q-function), which represents an
expectation of the future reward when taking action a in state
sand following policy z from thereon after. The Q-function is:

Q”(s,a):E,, {Rt|,st =4, a, :a} (3)

where Q™(s, a) denotes Q-Value, and it represents the
reward value for each action’s behaviors in each state of AVs.
R, denotes the future reward.

As described before, the state space will be formed by the
host vehicle’s velocity, RV, gap, and acceleration trend of
the lead vehicle. Action space will be the acceleration choice.
The behavior rule tells the host vehicle how to select actions
given a certain state. At the same time, only one future step
will be considered to calculate the reward.

Therefore, the Q-Table update equation in this paper is
presented as follows:
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R, =R+n *Q(St-f—ba)m “)

ax

Q(Staaz)new:Q(Sn at)+9*(Rnew_Q(st’ at) (5)

where 17 denotes the discount factor, & denotes the learning
rate, R,,, denotes the updated estimated reward. R denotes
the reward for reaching the current state, which is decided by
the predefined reward policy. Q(s;,;, @), denotes the
maximum potential future reward for the current state.
Q(S, a,) ey denotes the new Q-Value for the updated Q-Table.
Q(s;, a,) denotes the old Q-Value.

Algorithm 1 Algorithm for human comfortable
expectation learning.

Input: Lead vehicle velocity trajectory (LV), comfort reward
policy (CR), training parameters

Initialization: Q — table(Q) = zeros(s, a), s, leadv
Output: Updated Q-table

1. for GP = GP,,, to GP,,,, do

2 forx=0:Biengtn : Tiengtn d0

3: j<x;

4 for i = 0 to iteration do

5 j <increment.

6: trending < LV(j) compare to leadv

7 leadv <LV(j).

8 a = eps(Q(s)).

9 V<v(s)+a

10: v < v — leadv.

1 gap < gap(s) +rv.

12: S.. < V, gap, rv, trending

13: if safety penalty then

14: reward = SR(S;.;) * w,

15: jex

16: leadv <LV(j).

17: V < leadv £ Av

18: gap < wgp * GP + w, « leadv £ Agap
19: else

20: reward <—CR(S;.1) # Wy + 1 % Q(Sp1)max
21 end if

22: Q(s, @) < Q(s, a) + 0 = (reward — Q(s, a))
23: S « Sy

24: end for

25: end for

26: end for

27: returnQ

In this paper, the Q-Learning is applied to a single-lane
car-following scenario where the host vehicle follows the lead
vehicle. During the training, a Q-table-based controller is
used to control the host vehicle moving from initial states to

m Reinforcement learning flow chart.
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new states. As shown in Figure 2, at the start of each
Q-Learning iteration, the host vehicle starts at certain initial
states, an acceleration from available options will be assigned
using the Epsilon-Greedy Action Selection method, and the
vehicle will run with this acceleration for the next 1 second.
The traveled distances, velocities, and accelerations of both
vehicles, together with the relative velocity and the gap are
also updated. Then, the vehicle will reach new states and
the reward will be decided based on the new states. The
Q-table is then updated based on the reward and state transi-
tion. Such training will be repeated until the iteration limit is
reached. After the training, the trained Q-table will be able
to control the host vehicle effectively. The details of the
learning process are given in Algorithm 1.

The lead vehicle’s velocity trajectory is prerecorded and is
divided into multiple sub-trajectory batches. Tj,,gy, and By,
are the lengths of the complete training trajectory and sub-
trajectory respectively in seconds. The comfort reward policy
has been defined in previous sections. GP denotes the gap
parameter. The larger the gap parameter is, the larger the initial
gap will be after each reset. All the batches will run N, * itera-

ap
tion, where N, is the number of optional values of the gap

qa
parameter. Otgiler training parameters include learning rate 0
and discount factor 7. The Q-table is initialized as all the
Q-value are zeros. For each iteration, there will be one action
performed at one state, and one Q-value is updated. The eps
denotes the Epsilon-Greedy Action Selection method used to
pick the action. When the new state triggers the safety penalty,
the states will be reset to a random initial gap and velocity.
Although the front vehicle’s state trajectory is fixed, the initial
gap and the host vehicle’s velocity are random after each reset.

Adaptation of Human to
Autonomy

The human’s in-situ feedback may not always be reasonable.
The human participants could have improper expectations of
the automated driving style. For example, an aggressive
participant could prefer a too short headway distance that
may cause accidents under emergent scenarios. A conservative
participant could want the vehicle to drive too slowly, which
reduces the traffic efficiency significantly. Thus, apart from
learning a driving model from human expectations, we also
propose to adapt to the human’s expectations to autonomy by
providing necessary feedback to the human.
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m Feedback interface for human participants.

acceleration velocity time to collision

gap to the front vehicle

After a trained Q-table is obtained, the participants will
be asked to experience an automated car-following ride again.
This time, the host vehicle is controlled by the trained Q-table
while the front vehicle’s motion trajectory comes from test
drive cycles, some of which are the same as those during
training, and some are not. At the same time, safety and effi-
ciency warnings will be provided, as shown in Figure 3.

The safety warning light will be turned on if the time to
collision is smaller than 3s. The efficiency warning light will
be turned on if the time to collision is larger than 5s. During
the process, the participants can see the warning light if the
driving is too dangerous or too inefficient. Meanwhile, the
participants have the freedom to press the button whenever
they want. For example, the participants can still decide to
press the button if they think the vehicle drive too slowly when
the safety warning is on. The new data collected will be used
to evaluate the result of Q-learning. The comparison of the
data before and after the participants see the warning can
reveal if the adaptation works.

Experimental Results and
Analysis

The experiments in this paper were conducted using a real-
time driving simulator build with Matlab. The interface of the
3D simulation environment is shown in Figurel.

Results of Reinforcement
Learning with In-Situ Human
Feedback

During the in-situ human feedback data collection, the lead
vehicle was following the EPA Urban Dynamometer Driving
Schedule (UDDS) cycle, which is shown in the top figure in
Figure 4. Figure 5 shows the converted, normalized, and
regressed pressing force data.

The state space of the MDP, like introduced in previous
sections, contains the host vehicle’s speed, gap, RV, and the
front vehicle’s trend. In the experiment, there are 41 different
speed states that are evenly distributed from 0m/s to 40m/s,
111 gap states from 10m to 120m, 13 relative velocity states
from —6m/s to 6m/s, and 3 front vehicle trend states. The
action space contains only the host vehicle’s acceleration,
which has 8 options: —4m/s?, —3m/s?, —2m/s*, —1m/s*, Om/s?,
1m/s?, 2m/s?, and 3m/s?. Thus, the dimensions of the Q-Table

m Trajectories of the front vehicle.
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is 41(velocity) * 111(gap) = 13(relativevelocity) % 3(trending)
8(acceleration). The EPS values and other training related
parameters used are shown in Table 1.
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Multiple virtual automated driving rides were designed
to evaluate how well do the trained Q-learning controllers
work. The rides could be classified into two main categories:
objective quantitative evaluation and subjective evaluation.
The objective quantitative evaluation focuses on analyzing
quantitative data such as total reward value, state statistics
(e.g., Average gap and change of speed), and the number of
“accidents” that happen. In this paper, “accidents” are repre-
sented by the safety penalty in training. In subjective evalu-
ation, the participants will experience the virtual ride in the
host vehicle under the control of the Q-controller and evaluate
the performance of the Q-controller directly.

The weights of the safety and comfort rewards need to
be figured out before further experiments. Five sets of
weights were tried to train the agent. The trained agent then
drove the vehicle to follow the front vehicle that tracked the
UDDS cycle. All training parameters remained the same for
all training. All the accidents caused by the agent were
counted. The results are shown in Table 2. The results reveal

TABLE 1 training parameters.

Training Iteration
Parameters Value Percentage EPS Value
learning 0.5 10% 0.9
rate(n)

iteration 20000 20% 0.8
batch 50 40% 0.6
Size(Blength)

batch number 27 60% 0.4
discount 1 80% 0.2
factor(0)

Av 6 90% 0.1
Agap 5 99% 0
Wep 10

w, 2

TABLE 2 Number of accidents with different reward weights.

A w, Accidents

4 0 648

-1 -1 524

-1 -10 124

-1 -25 27

-1 -50 0

TABLE 3 reward collection.

LT IDM Agg IDM Neu IDM Cons

UDDS -613.6 -335.65 -628.9 -557.38 -597 -384.48
IM240 -1459 -74.39 -113.28 -99.68 -108.6 -76.74
NYCC -1721 -101.92 -280.32 -138.96 -232.04 -128.5

TABLE 4 Accidents record.

LT Agg [\ [1T] Cons

uDDS 0 1AC5 2AC2, 2AC3
IM240 0 4AC3,1AC4 O

NYCC 3AC3 3AC3,1AC4  1AC3, 1AC4, 3AC5

that it is impossible to train a reliable agent with a small w,.
Therefore, in this paper, all the training used 50 for w, and
1 for w,.

Evaluation of Learning Human
Comfortable Expectations

In this section, three Q-controller agents trained with different
comfort reward policies learned from 3 different types of
participants (aggressive (Agg), neutral (Neu), and conservative
(Cons)) are evaluated. Aggressive participants expect smaller
headway and higher speed. Conservative participants expect
larger headway and lower speed. All the Q-controllers were
trained with the same training parameters and lead trajectory
(UDDS). Parameters setting is shown in Table 1.

Each controller ran three tests following three different
driving cycles. One is the same cycle as the training (UDDS),
and the others are new cycles. The two new cycles were the
Inspection and Maintenance (IM240) and the New York City
Cycle (NYCC), which are also shown in Figure 4. An IDM
car-following controller ran the same tests as a baseline.

The first quantitative data are the reward collection. In
this paper, reward collection denotes the cumulative reward
a trained agent can gather in one car-following test. Reward
gathering ability is an essential index that reflects the perfor-
mance of Q-learning. The results are shown as table 3. The
results show that all the controllers could collect higher
rewards than the base IDM controllers in all three lead cycles,
proving that the Q-training successfully adapted the vehicle
behavior to the human’s expectations.

The second quantitative data are the number of “acci-
dents”. A successfully trained Q-controller should minimize
the number of “accidents”. In this paper, five classes of “acci-
dents” are defined. Accident Class1(AC1) is defined as the gap
being too small. Whenever the gap is smaller than 10m, an
AC1 event will be triggered and recorded. Accident
Class2(AC2) is defined as the gap being too large. Whenever
the gap is larger than 120m, an AC2 event will be triggered
and recorded. Accident Class3(AC3) is defined as relative
velocity being too small. Whenever the relative velocity is
smaller than —6m/s?, an AC3 event will be triggered and
recorded. Accident Class4(AC4) is defined as relative velocity
being too large. Whenever the relative velocity is large than
6m/s%, an AC4 event will be triggered and recorded. Accident
Class5(AC5) is defined as vehicle reversing. Whenever the
velocity is smaller than Om/s, an AC5 event will be triggered
and recorded. The numbers of occurred “accidents” are shown
as table 4.

The length of UDDS is 1370s, IM240 is 240s, NYCC is
599s. The frequency of "accidents” is relatively low but not low
enough. A well-trained Q-controller should avoid "accidents”
completely. However, the cause of most "accidents” is not
directly related to the Q-learning algorithm. AC3 and AC4
happen when relative velocity is too large or too small. In this
paper, the available acceleration options are limited. If the
lead vehicle accelerates or decelerates dramatically, AC3/4
cannot be avoided even if the most optimized acceleration
option is chosen. Similarly, AC2 happened when the lead
vehicle accelerates too fast with a big gap. For instance, if the
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current gap is 119, the current relative velocity is Om/s, and
the front vehicle has an acceleration of 5m/s% there is no way
the agent can avoid AC4 to happening with the currently
available actions. Under-coverage causes AC5. With full
coverage, the agent will not be able to decelerate to negative
velocity. Therefore, all the AC can be avoided with a larger
iteration number and range of states and actions.

The third quantitative data are the gap and Time to
Collision (TTC). Gap and TTC are two critical values that
determine the driving style. The average gap and TTC for each
Q-controller in each driving cycle are shown in table 5.

The results show that the aggressive controller has the
smallest gap and TTC, the conservative controller has
the largest gap and TTC, and the neutral controller has the
medium gap and TTC. These results show that the trained
Q-controller matched the different styles of participants. This
is another piece of evidence that proves the Q-learning
adaption is working.

Evaluations of Human
Comfort Improvement

The gap and relative velocity trajectories of all Q-controllers
in all cycles are shown in Figure 6, 7, and 8. It can be seen from
the figures that the aggressive Q-controller kept a smaller gap
than the other Q-controllers while the conservative
Q-controller kept a larger gap. The relative velocity trajectories
are not showing as big differences between each other as the
gap trajectories. However, it is safe to say the aggressive
Q-controller is trying to avoid negative RV when the conser-
vative Q-controller is trying to avoid positive RV. The neutral
controller performed in between the aggressive and the
conservative controller. These driving styles corroborate how
each type is defined.

We asked all the participants to experience the autono-
mous driving journey again. During this time, the host vehicle
was controlled by the Q-controller trained with the data gener-
ated by the corresponding participant. They had access to the
safety and efficiency warning signal, which would warn them
if the acceleration option they did not want to be had been the
most aggressive or conservative option. Figure 9 - 11 show the
raw pressing force data collected from different participants
during the IDM ride and the Q-controller ride. In the figures,
the legend IDM refers to the original IDM controller, legend
Q — controllerlth refers to the learned RL-based controller,
and legend Q — controller2nd refers to the RL-based controller
with warnings for the participants. The results show that the
aggressive and the neutral participants felt much more
comfortable and pressed less during the Q-controller ride than
during the IDM ride. However, the conservative participant
felt a little more comfortable with the IDM. The reason is the
initial IDM setting is already extremely conservative. There

TABLE 5 Average Gap(m)/TTC(s).

LT Agg [\ [11] Cons
uDDS 30.69/2.75 31.91/2.83 43.31/41
IM240 41.20/3.23 44.83/3.36 52.70/4.09
NYCC 18.73/2.13 18.98/2.35 20.81/2.78

is no significant room for improvement. For the second virtual
ride, since the participants had access to the warning notifica-
tion, the participants knew that what Q-controller was doing
was the best under safety constraints. The results show that
the aggressive and the conservative participants pressed much
less in the second virtual ride. It proves that showing partici-
pants the safety warning can increase ride comfort if the
participants have improper and extreme driving expectations.
The human-vehicle interface could correct Their improper
expectations. The result shows that the neutral participants’
average pressing force decreased the most dramatically
(decrease from 1.042 to 0.0503, 95.2%), which indicates that

m Gap and relative velocity trajectory on UDDS.
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m Gap and relative velocity trajectory on NYCC.
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this method works exceptionally effectively in driving behav-
iors for neutral participants. Because of the safety penalty, the
trained agent tended to drive neutrally to avoid triggering the
safety penalty. It explains why the trained agent satisfied the
neutral participant the most even though the reward collection
score is not impressive.
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Conclusion

In this paper, a reinforcement learning-based method is
proposed to adapt automated driving behaviors to human
expectations for better ride comfort. The method utilizes
human in-situ feedback to generate the Q-table for the
learning process. We also propose to use the trained Q-learning
controller to correct bad expectations from humans by
providing necessary warning feedback. Experiments have
been conducted on three different types of human partici-
pants. The results showed that the trained automated driving
agent could increase the ride comfort for the corresponding
participant. Simultaneously, the human participants could
acquire effective warning information when they are having
improper feedback. Such information successfully helped the
participants to develop better expectations during automated
driving rides. In future work, we will apply this proposed
method to a wider range of autonomous driving scenarios
such as lane switching, cornering, and overtaking.
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AV - Automated Vehicle
RL - Reinforcement Learning
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