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Abstract— The rapid development of autonomous vehi-
cles (AVs) has depicted a promising future of a safer and more
efficient transportation system. To better induce this revolution,
massive efforts have been spent on the technical competence
of AVs. However, the human comfort in AVs has been an
under-discussed yet important topic to the user acceptance of
AVs. For the detection of human comfort, existing studies focus
more on the physical influential factors of comfort such as
sitting posture, vibration, and noise. With the introduction of
AVs, psychological factors also have gained greater influence on
human comfort. Despite existing studies of exploring correla-
tions between human comfort and some physiological signals in
automated driving contexts, there is few study on how human
comfort level in AVs can be detected with these physiological
signals. In this paper, we developed effective human comfort
study approaches in autonomous vehicles with wearable sensors.
We also proposed a machine learning based approach with
adaptive feature selection to detect human comfort levels based
on the wearable sensing data. The experimental results illustrated
the effectiveness of the proposed approaches in studying human
comfort in AVs.

Index Terms— Autonomous vehicles, human comfort detection,
physiological signal, virtual environment.

I. INTRODUCTION

AUTONOMOUS vehicles (AVs) are at their dawn before a
great revolution to the transportation system. The benefits

promised by the prevailing of AVs are plenty, including
freeing the drivers from drowsy or distracted driving, increased
safety, less energy consumption and pollution [1], optimized
road capacity [2]. Despite the magnificent effort that the
technical experts have dedicated to the enhancement of the
AVs’ safety and efficiency, the user’s acceptance is still a big
obstacle on the road of AVs [3]. According to the J.D. Power
2019 Mobility Confidence Index Study [4], the mainstream
attitude towards AVs from the customers is still pessimistic.
The lack of confidence is pronounced when it comes to
comfort. The two questions in the study about the customer’s
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confidence of ride comfort in AVs received 34 and 35 out
of 100 points per each. Considering the tremendous works
done from the technical aspect and legislation aspect to build
up the customers’ confidence towards the AVs, the comfort
aspect of the AVs seems not receiving enough attention.
A proper platform is needed for carrying out studies on

human comfort in AVs. A driving simulator that can provide
a realistic virtual environment is an appropriate solution for
this type of study. Several studies in the human factors field
have proved the feasibility of using a driving simulator instead
of an actual vehicle in a human-centered study. Furthermore,
driving simulators with high-end and low-cost configurations
have been well validated for inducing inner arousal on the par-
ticipants in these studies. In Bellem’s work [5], a full-vehicle
scale driving simulator with a motion system was validated for
ride comfort study in a comparative experiment between the
simulator and actual test drives. Du et al. [6] studied driver’s
trust, preference, anxiety, and mental workload during AV
rides with a full-vehicle scale driving simulator. The studies by
Peterson employed a simple simulator consisting of a screen,
a seat, and a set of steering wheel and pedals to investigate the
influence of risk [7] and situational awareness [8] on driver’s
trust towards a driver’s assistance system. These are the
successful cases where a driving simulator showed the value
in creating a virtual driving environment for human-centered
study.
To further study comfort, we should clarify the concept of

comfort and determine a way to quantify it. There has not been
a standard and universal scientific definition of comfort [5].
In different studies, comfort and discomfort have been inter-
preted as either two endpoints on a single dimension [9], [10]
or as two entirely different constructs that can coexist, each
with their own influential factors [11], [12]. While the def-
inition of comfort has been left as an open option for dif-
ferent studies, according to de Looze’s work [11], there are
three assumptions that have been commonly accepted about
comfort: (1) comfort is subjectively defined by each occupant,
thus variability between individuals is expected; (2) comfort
can be influenced by a wide variety of factors; (3) comfort
is influenced by one’s reactions to their surroundings and
environment.
Before the rapid development of AVs, human comfort

studies in vehicles mainly focused on the physical aspects
of comfort. These topics include vibration [13], noise [14],
thermal comfort [15], air quality [16], etc. Early discussions
on human comfort under the AV context focused on some
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specific control parameters of the vehicle. In [17], a semi-
automated-driving scenario was created, and only some simple
variations of factors were provided in the scenario to study the
relationship between time headway and driver comfort. In [18],
one major change in the comfort study of AVs compared to the
traditional ones was pointed out. Due to the deprivation of the
human driver’s control over the vehicle, some psychological
factors, e.g., perceived safety, have started to play a bigger role
in human comfort in AVs. Therefore, there is a possibility
of referring to psychological arousal detection methods in
detecting human comfort level in AVs.
In the field of psychological research, multiple studies

[19], [20] have examined the effectiveness of using different
machine learning or deep learning methods to recognize
different types of human emotions with physiological sig-
nals. Maaoui’s work [21] used two methods, support vector
machine (SVM) and Fisher discriminant, to recognize human’s
emotion of amusement, contentment, disgust, fear, neutral, and
sadness with multiple physiological signals, including Blood
Volume Pulse (BVP), Electrodermal Activities (EDA), Skin
Temperature (SKT). The recognition results for different types
of emotions turned out to be excellent, with an accuracy of
around 92%. Jang et al. [22] and her team attempted to use
several different statistical and machine learning methods to
examine the differences between several types of emotions
with several physiological signals. The study successfully
demonstrated the differences between the emotions and found
out that discriminant function analysis was the best recognizer
of the emotions in their study.
In human comfort detection studies, physiological signals

have also been proved to be effective indicators of human
comfort. The effectiveness of using various physiological sig-
nals, including Electroencephalogram (EEG), EDA, and SKT,
for human thermal comfort assessment has been discussed in
[23] and [24]. In [25], EEG and EDA were used in the analysis
of human comfort in bicycling. In [26]–[28], researchers have
studied the correlations between human discomfort and facial
expressions and some physiological indicators such as heart
rate, pupil dilation, eye blink and EDA in automated driving
contexts. However, few work has explored the in-situ detec-
tion of human comfort levels in autonomous vehicles using
physiological signals. Such a human comfort detection is more
challenging than just correlations because it will require much
more complex modeling of the relationship between human
comfort levels and various physiological signals. Therefore,
our research aims to formulate a realistic fully autonomous
driving context for the participants and develop models that
could perform multiple-level comfort detection based on phys-
iological signals from wearable sensors.
The study was carried out using a high-fidelity driving

simulator under the AV context. In this study, we defined
human comfort as a single dimension measurement with
comfort and extreme discomfort as the two endpoints of
a continuum. The definition of human comfort in AVs is
further elaborated in Section II. A collection of autonomous
vehicle video journeys with synchronized motions were used
as the stimuli in the experiment. The data captured in
this study included the subjective comfort level and the

physiological signals. We designed and produced a pressing
button for the participants to press during the ride where a
hard press represented a feeling of discomfort about the ride,
and not pressing the button meant feeling comfortable about
the ride. The physiological signals were collected using a set of
wearable sensing devices. After completing the data collection
process, we explored the feasibility and effectiveness of using
machine learning algorithms to infer the comfort level of the
participants with their physiological data.
In summary, the contributions of the paper can be summa-

rized as:

1) Developed and conducted human comfort studies on
autonomous vehicles using wearable sensing on a
high-fidelity autonomous driving simulation platform.

2) Proposed a support vector machine based approach with
adaptive feature selection to detect human comfort levels
in AVs using physiological signals from wearable sensors.

3) Conducted a variety of experimental studies to validate
and evaluate the proposed comfort detection approaches.

II. DEFINITION OF HUMAN COMFORT IN AVS

Human comfort can be defined in various ways, as several
studies have done [9], [11]. The comfort and discomfort caused
by vehicle vibrations were interpreted as one continuum with
two ends representing very comfortable and very uncomfort-
able in Oborne’s study [9]. While in [11], de Looze modeled
the comfort and discomfort when sitting on a chair as two
independent constructs, each with its own influential factors.
In this study, we focused on human comfort in AVs. The

influential factors that contribute to human comfort in this situ-
ation are different from the studies mentioned above. To clarify
the scope of comfort we intended to cover, we established a
definition of human comfort in AVs.

• Definition: when riding in an AV, human comfort is a
feeling of not being unsafe and/or unnatural resulting
from the behaviors of the AV itself and the way the AV
interacts with the environment.

In this definition, human comfort C in AVs was defined
as a single-dimensional construct with one end representing
not feeling uncomfortable and the other end representing
feeling very uncomfortable. The factors related to human
comfort were limited to the behaviors of the vehicle. Only the
impacts from the vehicle behaviors to human comfort would
be considered in this study.
We defined being comfortable as being free from discomfort

feelings because discomfort has been found out to have the
dominant effect in human comfort [29]. In [29], Helander
studied comfort and discomfort as two independent constructs.
While low discomfort ratings were found to coexist with all
range of comfort ratings, the comfort rating was found to drop
sharply as the discomfort rating increased. This indicated that
the factors related to comfort became trivial in the occurrence
of discomfort-related factors. Based on this understanding,
we believed that identifying discomfort feelings was more
important. Therefore, the human comfort in this paper was
defined in a single-dimensional way with emphasis on the
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Fig. 1. Visualization of the video stimuli. The black lines represent the frames of the monitors.

discomfort feelings, in which feeling comfortable was defined
as not feeling discomfort.
In this study, we considered the human comfort changes

related to vehicle behaviors only. Elbanhawi et al. [18] pointed
out that the loss of controllability could expose the passen-
ger of AVs to new influential factors related to discomfort.
Compared to traditional human-driven vehicles in which the
behaviors can be easily handled, the passenger in AVs would
be more likely to feel uncomfortable due to the loss of
controllability when experiencing risky or unnatural driving
behaviors. The study by Hartwich et al. [30] has also suggested
that the familiarity of the driving style of the AV could play
an important role in a person’s preference of an AV. Different
opinions towards the behaviors of the vehicle are the major
difference between human comfort in a traditional vehicle
and an AV. Despite that the factors of human comfort in a
traditional vehicle would retain the influence in an AV [21],
we focused more on the factors that are unique to AVs and
limited the scope the human comfort to comfort only related to
the behavioral factors of AVs. The comfort changes resulting
from the other factors, e.g. the motion sickness when riding
the experimental platform or the room temperature, were not
within the range of consideration in this study.

III. EXPERIMENT AND DATA ACQUISITION

A. Autonomous Driving Stimuli

We created 27 video journeys of simulated autonomous
vehicle rides with synchronized motions as the stimuli of the
study. A visualization of the video stimuli is shown in Fig. 1.
The videos with motions were recorded in a driving simulation
software. The duration of each journey was between three to
five minutes. Different combinations of road types and driving
styles were included in the journeys.
The road types chosen for the study were city roads, high-

way roads, and mountain/rural roads. The traffic generated
by the driving simulation software was in a realistic form
with environmental vehicles, road systems, and traffic rules
to follow. Three different routes were designed for each type
of road. Therefore, there were in total nine different routes in
the journeys.
Driving styles were divided into three classes as well,

which were named as the gentle style, the normal style,
and the aggressive style. Under the gentle and aggressive
style, the simulated vehicle was controlled by the autonomous

Fig. 2. Trajectories of lane switching maneuvers under three different driving
styles. The vehicle was driving at the highway TCVs.

controller in the simulation software. The vehicle in normal
style was controlled manually by the experimenter.
We found that the vehicle controlled by the autonomous

controller maneuvered with high yaw rate in lateral maneuvers
like lane changing and cornering during the creation of stimuli.
This led to the unnaturalness in the behaviors of the vehicle
controlled by the controller. In order to give a more human-like
natural control than what the autonomous controller could pro-
vide, we have decided to create the ‘normal’ driving style by
manually driving the agent vehicle in the simulation software.
The experimenter acted as the autonomous controller and was
required to drive the vehicle with the intermediate configu-
ration that would have been applied to the autonomous con-
troller. Sample trajectories of lane switching maneuvers under
different driving styles are displayed in Fig. 2. From the figure,
the differences between human-driven style (normal style) and
automated-controlled styles (gentle style and aggressive style)
could be clearly seen. Besides, we have conducted pre-testing
with the experimenter to examine the fidelity of the stimuli.
We have received some feedback on the apparent differences
between human-controlled and automated-controlled journeys.
Based on these facts, the driver’s driving style could be clearly
distinguished from the other two driving styles controlled by
the autonomous controller.
The major differences between the three driving styles were

target cruising velocity (TCV), overtaking tendency (OT), and
lateral maneuvering quickness (LMQ). The TCV was the
cruising velocity of the vehicle when not being blocked by
other vehicles and varied for different driving styles and road
conditions. The vehicle in the gentle style had the lowest OT
and never overtook the leading vehicle in the same lane; the
vehicle in the aggressive would take chances of overtaking on
two-lane roads when the rule allowed; the vehicle in normal
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TABLE I

CONFIGURATION SETUPS OF THE THREE DRIVING STYLES

style only took chances of overtaking slower cars on multi-lane
roads. The vehicle in aggressive style had the highest TCV
and OT, and vice versa for the gentle style. These features for
the normal style vehicle were at the intermediate level. The
driving styles controlled by the autonomous controller had
a high yaw rate when performing lateral maneuvers, while
the normal style had a lower LMQ. Detailed information
about how different driving styles differed from each other is
included in Tab. I. The number of overtake maneuvers during
highway journeys has been counted and displayed in Tab. I to
numerically demonstrate the OTs of different driving styles.

B. Autonomous Driving Simulator

The video stimuli were presented to the participants on
a driving simulator with a 3-screen media system, shown
in Fig.3. The 6-degree-of-freedom (6-DOF) motions synchro-
nized with the videos, including roll, pitch, yaw, heave, sway,
and surge, were also provided to the people riding on the
simulator.
The driving simulator used in this study was the Prosimu

T6 simulation platform. The platform consists of a moving
platform and a static base. A linkage mechanism connects the
platform and the base and allows the motors on the static base
to generate the 6-DOF motions of the platform. During the
experiment, the participant was seated in the racing seat on the
moving platform. The seat is equipped with a 4-point harness.
The harness was fastened up to guarantee the participant’s
safety during the experiment as the platform moved. There is
an emergency stop button within easy reach of the participants.
The platform would return to its neutral position and keep
static after the button is pressed down in any unexpected event.
The media system of the simulator consists of a set of three

27-inches monitors. The monitors are aligned horizontally to
create an immersive visual experience of wide field-of-view
for the participants. Built-in speakers of the monitors and
noise-canceling headphones are available options for audio
output. Given that the participants in this study needed to wear
a physiological data collection device on the head, the built-in
speakers were used for audio output in the experiment. In the
experiment, the simulator and media system worked collabo-
ratively to deliver the stimuli of simulated autonomous vehicle
rides to the participants.

C. Comfort Study Procedures and Protocols

Ten healthy (nine males and one female) and with a mean
age of 26.7 (SD 3.68) years old graduate students and faculty

Fig. 3. High-fidelity autonomous driving simulation platform.

members participated in the experiment. All participants had
an engineering background and were licensed to drive in the
United States.
Before the experiment, the participants were introduced to

the experimental protocols and signed on the consent form for
participating in the study. After that, the experimenter should
help them wear the physiological measurement devices and
assist them to get on the simulator.
Then, the experiment procedures and the tasks for the

participants were introduced in detail to them. They were
instructed to imagine themselves actually being in a fully
autonomous vehicle and experiencing the journey shown in the
video. They were also guided to use a pressing button to rate
their level of comfort during the virtual ride subjectively. Since
the vehicle was assumed to satisfy the SAE Level 5 definition,
the participants were not required to perform any takeover
action during the experiment. The only task for the participants
during the experiment was to provide their comfort levels
perceived in real-time based on the behaviors of the vehicle.
The data acquisition was initiated after the introduction being
addressed.
After the participants responded that they were ready,

the experimenter should start to play the videos. Each video
lasted for three to five minutes. The participants were asked
questions on how they felt after each video played to them.
We used a Likert-Scale-based questionnaire from the question-
naire developed in [31] to monitor any sign of the participants
suffering from motion sickness. The questionnaire was used
for physical condition monitoring purposes only. The results
were only used for filtering out data affected by motion
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sickness. Their unpleasant feelings of dizzy, queasy, sweaty,
and feeling like vomiting would be recorded. If there were no
significant unpleasant feelings from the participants, the next
video would be played when they were ready; otherwise,
the participants could take a break until they felt physically
ready for the next video. The participants had the right to
suspend or withdraw from the experiment at any time.
The whole experiment was divided into three separate

sessions to control the tiredness of the participants during the
process. The typical duration of one session in the experiment
was 75 minutes. One participant could get scheduled with only
one session at most per day. Nine journeys were included
in one session. The participants only needed to fill out the
consent form during their first session. The instructions were
repeated in a brief version in the next two sessions of the
experiment.
The design of how different road types and driving styles

were presented to the participants was optimized to help the
participants better adapt to the experimental environment. The
journeys within one session were all from the same type of
road. We expected the participants to maintain a consistent
criterion for feeling comfortable or uncomfortable about the
maneuvers occurring within a specific type of road when
experiencing only one type of road in one session.
In the first session, the highway journeys were experienced

by the participants, and the three driving styles were arranged
in the order of the gentle style, the aggressive style, and
then the normal style. The participants were in the process
of getting familiar with the virtual experience in the first
session. A simpler scenario should help the participant adapt
to the experience. Therefore, the highway road type, which
was the simplest within the three road types, was selected for
the first session. The three journeys in the gentle style were
presented in the beginning as an adaptation to the experience
for the participants. The journeys in the normal style followed
the gentle style, and the aggressive style was the last style
presented. We designed the order that gradually moved from
the least to the most aggressive style to help the participants
gradually obtain a sense of the differences between the driving
styles and establish a criterion for perceiving and expressing
their comfort levels.
For the next two sessions, we assumed that the partici-

pants had completed the adaptation process and established
a criterion for comfort and discomfort, and the orders of road
types and driving styles were determined randomly. The rules
were still obeyed that only one road type was included within
one session and the journeys under the same driving style
were presented in a row. The orders of the road types and
driving styles were the same for all participants for the ease
of data processing. The arrangement of how different road
types and driving styles were presented to the participants
is demonstrated in Tab. II. However, the orders of scenarios
in each session for a participant were different. Furthermore,
since each participant participated in this experiment only
once, the scenarios they saw were always new to them. The
potential risk of learning effects and bias would only occur
if a participant participated in the same experiment multiple
times. However, we did not have such a case in our experiment

TABLE II

ARRANGEMENT OF JOURNEYS IN DIFFERENT ROAD TYPES AND
DRIVING STYLES IN THE THREE EXPERIMENTAL SESSIONS

Fig. 4. Physical button box for pressing force collection and its structure
diagram.

because it would violate the rule of keeping the participants
innocent of the stimuli.

D. Subjective Comfort Level Acquisition

Questionnaires have been proved to be an effective approach
for ground truth comfort level collection in different studies
[32], [33]. However, the participants would have been inter-
rupted from the AV journey experience when answering the
questions. Also, it is impossible to collect real-time data with
questionnaires. In this study, we hoped that the participants
could maintain an undisturbed immersive experience while
providing the real-time comfort level report. With the inspira-
tion from [34], a button box was designed and produced for the
experiment to collect real-time comfort from the participants,
as is shown in Fig. 4.
The box was 3D printed about the size of a smartphone,

106 mm length, 51 mm width, and 23 mm height. All edges
were rounded to fillets of a 2 mm radius for better holding
comfort. A button with a radius of 5 mm was located within
the natural reach of a person’s thumb. The top surface of the
button was curved to fit the shape of a thumb. This design
would contribute to the comfort of usage as well.
A force-sensitive-resistance (FSR) was placed between the

button and the box. The resistance of the FSR would drop as
the pressure being applied on it increased. We used a National
Instruments USB-6003 Data Acquisition (DAQ) device to
capture the resistance change on the FSR to infer the pressing
force applied by the participants. We selected the sampling
rate as 15 Hz with the consideration of how the comfort
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levels of the participants were stimulated. The comfort changes
considered in this study were expected to result from the
behaviors of the AV. Since the behaviors of the AV should not
change at a very high rate during the journey, the sampling
rate was selected at 15-Hz to save the hardware resource.
The participants were instructed to press the button when-

ever they felt uncomfortable about the behaviors of the vehicle
during the ride. They should press and hold the button until the
uncomfortable feeling disappeared. The more uncomfortable
the participants felt, the harder should they press the button.
They were also asked to keep clear of the button when
there was no uncomfortable feeling. Because the FSR was
very sensitive and unintentional touches on the button could
confuse the measurement. We used the pressing force from the
participants as the measurement of the participants’ real-time
subjective comfort level, where a higher pressing force value
represented a higher level of discomfort and vice versa.

E. Data Acquisition With Wearable Sensing Devices

Two types of wearable sensing devices were used in this
study, as shown in Fig. 5, the Empatica E4 wristband and the
Emotiv EPOC+ headsets. With these devices, a wide range of
physiological signals was captured in the experiment. Given
that the EDA, SKT, and EEG have been used in different
studies [23]–[25] for comfort detection purpose, and that the
EDA, BVP, and SKT have been employed in emotion detection
studies [21], [22], we selected EEG, EDA, BVP, and SKT
for the human comfort detection in this study. These signals
have been validated to be effective in multiple studies and thus
would be reliable for the usage in this study.
EEG provides us the insight into the brain activities of a

person [35]. It is measured by applying multiple non-invasive
electrodes on a person’s scalp. The electric potential values
measured from the skin at different locations on a person’s
scalp reflect the activities taking part in the corresponding
parts of the brain. The EEG data in this study were captured
using the Emotiv EPOC+ headsets. During the measurement
process, the 16 fabric feelers of the headsets were satu-
rated with saline to enhance the conductivity between the
feelers and the skin. The EmotivPro software worked with
the headsets and output the measurement results, including
raw EEG data, frequency domain analysis of raw EEG data,
and performance metrics that measured the person’s mental
state. The frequency-domain analysis of EEG data is usually
carried out based on the band power of five different fre-
quency bands (δ : 1 − 3Hz, θ : 4 − 7Hz, α : 8 − 13Hz,
β : 14 − 30Hz, γ : 31 − 50Hz) of the signals from different
measurement channels. A short-time Fourier transform can
be performed on a given sequence of EEG measurements
first. Then the powers of the five frequency bands can be
manipulated to get the features for further usages like emotion
recognition [35]. The performance metrics signals provided by
the EmotivPro software include stress, engagement, interest,
focus, excitement, and relaxation. These signals are directly
outputted from the software, and each represents the arousal
of a specific type. In [36], the researchers successfully used the
performance metrics signals to differentiate the brain activities

Fig. 5. Wearable sensing devices used in the study: Emotive EPOC+ headsets
and Empatica E4 wristband.

between the rest and active states. Aspinall and his team [37]
used the Emotiv EPOC headsets for an outdoor experiment and
captured a systematic difference in the performance metrics
signals as the participants walked in different urban areas.
We used the excitement (EXC) from the performance metrics
for the feature extraction, which was believed to be related to
positive feelings of arousal. The EXC had a 0.1-Hz sampling
rate.
EDA is a physiological signal that can be easily mea-

sured from the skin. This signal characterizes the change
in the electric conductance of the skin due to the activ-
ity of the autonomic nervous system. The arousal of the
sympathetic autonomic nervous system activity can increase
sweat gland activity, which leads to greater skin conductance.
Thus, the EDA signal can be used as an indication of a
person’s psychological or physiological arousal in response
to an external stimulus [38]. The EDA signal was measured
with the Empatica E4 wristband. Although the wrist area is
not the top-recommended area for EDA measurement [39],
we selected the wrist measurement solution of Empatica
E4 because the E4 wristband provided an integrated measure-
ment of physiological signals. Using E4 saved extra devices
needed for BVP and SKT measurement. The wireless measure-
ment also ensured the least obtrusiveness to the participants
during the experiment. The wrist has been recognized as the
best alternative area for EDA measurement when neither fin-
gers nor the feet are available [39]. With these considerations,
the wrist measurement provided by Empatica E4 was selected
for the EDA measurement. For the measurement, two AgCl
plated electrodes were located inside the strap. The electrodes
touched the skin of the inside of the wrist and lined up under
the middle and ring fingers. The data were measured from
the non-dominant hand of the participants and had a 4-Hz
sampling rate.
BVP measures the heart rate based on the volume of

blood passing through the tissue at each beat of the heart.
It is measured with the photoplethysmography (PPG) sensor
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embedded in the Empatica E4 wristband. The PPG sensor
sends out an infrared light onto the surface of the skin on the
wrist. The light transmits through the tissue and gets reflected
back to the sensor. Because the hemoglobin selectively absorbs
the light in the red blood cell, the amount of light reflected
will be proportional to the volume of the blood flowing under
the tissue. The pulse in the measurement of the reflection
light from the PPG sensor is then processed into BVP data.
During the experiment, the measurement of BVP had a 64-Hz
sampling rate.
SKT measures the thermal changes on the skin. The SKT

variations mainly result from localized changes in blood
flow caused by vascular resistance or arterial blood pressure.
Local vascular resistance is modulated by smooth muscle
tone, which is mediated by the sympathetic nervous system.
The mechanism of arterial blood pressure variation can be
described by a complicated model of cardiovascular regulation
by the autonomic nervous system. The SKT variation reflects
autonomic nervous system activities and is another indicator
of a person’s psychological state [22]. During the experiment,
the SKT had a 4-Hz sampling rate.

F. Preprocessing of Data

Before feature extraction, several preprocessing tasks were
completed upon the raw data we had. For the subjective com-
fort level data, because the participants had different physical
condition, the pressing force collected were standardized to
eliminate the individual differences. The Z-Score methodology
was used for the process. Supposing that the comfort level
data from a participant being denoted as a set

{
Cp

}
, a new

set
{
Cp_new

}
including the original

{
Cp

}
and a new set{−Cp

}
consisting of the opposite numbers of all elements in

the original set. The standardization results can be calculated
through the following formula:

z p = (cp − µ)/σ (1)

where z p is the standardized comfort level which is a dimen-
sionless number, cp is the raw comfort level from the original
set

{
Cp

}
, µ is the mean value of the set

{
Cp_new

}
which

equals to zero, and σ is the standard deviation of the set{
Cp_new

}
. The labeling process of the dataset was based on

the standardized comfort level data.
The EDA signal consists of the long-term slow-changing

component (skin conductance level, SCL, also known as the
tonic component) and the short-term fast-changing component
(skin conductance responses, SCRs, also known as the phasic
component) [40]. Both components were found to be well
correlated with emotional changes [41], [42].
To extract these two components, a Matlab-based software,

Ledalab, was used to preprocess the EDA signal. This software
employed continuous decomposition analysis (CDA) [40]. The
first step of CDA was to perform deconvolution on EDA
data. The nerve activities that cause EDA can be considered
a driver, consisting of a series of impulses that trigger a
specific impulse response, i.e., SCRs. Suppose an impulse
response function (IRF) that describes the course of the
impulse response over time. The result of this process can

be represented by the convolution of the driver with the IRF:
SCR = Driverphasic ∗ I RF (2)

Since the EDA signal consists of both tonic and phasic
component, we have:

EDA = SCL + SCR = SCL + Driverphasic ∗ I RF (3)

The tonic component can be equally represented as the
convolution of a tonic driver function and the same IRF. The
EDA data can be represented by:

EDA = (Drivertonic + Driverphasic) ∗ I RF (4)

Deconvolution is the reverse process of convolution. The
deconvolution of the EDA data results in a composite of both
tonic and phasic driver functions. After either of the two
functions has been estimated, the other one can be calculated
by subtracting the known driver from the total driver as well:

EDA

I RF
= Driver = Drivertonic + Driverphasic (5)

With the driver estimated, the corresponding data can be
calculated by the convolution of the driver and the IRF. The
raw EDA signal can then be decomposed into two composi-
tions. For the data process in this study, the EDA, SCL, SCR
signals were all involved in the feature extraction process.

G. Label Creation

To perform label creation, the subjective comfort level data
were cut into samples with a time duration ts . The label of
each segmentation was based on the standardized comfort level
data within the segmentation. The creation of labels followed
the two rules:

• For binary labels: the segmentation should be labeled
as ‘discomfort’ whenever a comfort level peak greater
than 0.1 was spotted within a segmentation; otherwise,
it should be labeled as ‘comfort’.

• For 3-level labels: for samples previously labeled as
‘discomfort’, if the mean comfort level was no greater
than 0.5, then it should be labeled as ‘low-discomfort’;
if the mean comfort level was greater than 0.5 and
no greater than 3, then it should be labeled as
‘mid-discomfort’; if the mean comfort level was greater
than 3, then it should be labeled as ‘hi-discomfort’; no
changes to samples of ‘comfort’.

The cut-off value between ‘comfort’ and ‘discomfort’ sam-
ples was determined based on the measurement noise of the
DAQ device. When not being pressed, the measurements of
the noises from the DAQ device were typically small numbers
under 0.03 after standardization. Furthermore, any pressing
feedback that indicated a feeling of discomfort should result
in a measurement of greater than 0.15 after standardization.
Based on this observation of the data, we concluded that
setting the cut-off value at 0.1 could effectively distinguish
‘discomfort’ samples from the random noises. Therefore,
0.1 was selected as the cut-off value between ‘comfort’ and
‘discomfort’ samples.
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The cut-off values between the three levels of discomfort
samples were determined based on the standardization process
of the data. The Z-Score value of a data point shows how
far the point is from the average value. Based on our stan-
dardization process, the value should demonstrate how far a
point was from being a ‘comfort’ sample. If the Z-Score of
a ‘discomfort’ sample was under 0.5, we considered it as a
’low-discomfort’ sample that was close to ‘comfort’ samples;
if the Z-Score of a ‘discomfort’ sample was between 0.5 and 3,
it meant that the comfort level was at ’mid-discomfort’ level
which was far from being comfortable but not extremely
uncomfortable; for the other samples with Z-Score above 3,
the comfort levels represented in these samples were extremely
far from being comfortable, and thus these samples were con-
sidered as ’hi-discomfort’ samples. In summary, the Z-Score
provided us a standardized way to understand and determine
different levels of discomfort, and we chose these cut-off
values based on our knowledge of the standardized comfort
levels.

H. Feature Extraction

With a wide range of signals available, the next step was
to perform feature extraction on the data to prepare the
material for the training process. To perform feature extraction,
the physiological signal measurements were first synchronized
with the comfort level data and cut into samples with the same
time duration ts as the label creation process.
Normalization is also an important technique for minimizing

the individual differences in their physiological responses
when exposed to the same stimuli. The collected physiological
signals were normalized using the average value of the same
type of signal collected within all samples labeled as ‘comfort’
[19]. The normalized physiological signals were calculated
using the following formulas:

x̄com =
∑

xcom
ncom

(6)

xnorm = xraw − x̄com
x̄com

(7)

where xnorm is the normalized signal, xraw is the raw signal,
¯xcom is the average value of the signal within all samples

labeled as ‘comfort’, xcom is the signal within samples labeled
as ‘comfort’, and ncom is the number of samples labeled as
‘comfort’.
Based on the features proposed in Picard’s work [43],

several additional statistical features were also considered
in the feature extraction process. For an acquired signal
x , the features directly taken from Picard’s work were the
mean value µx , the standard deviation σx , the mean of the
absolute values of the first differences δx , and the mean of
the absolute values of the second differences γx . Other than
these, our additional statistical features were the maximal
value maxx , the minimal value minx , the odds of the minimal
value over the maximal value ratiox [44], and the root mean
square value Mx . All eight statistical features mentioned above
were calculated within each of the sample for each type of
physiological signal and its normalized form. These features

were calculated with the following formulas:

µx = 1

T

T∑
t=1

X (t) = X̄(t) (8)

σx =
√√√√ 1

T

T∑
t=1

(X (t) − µx)2 (9)

δx = 1

T − 1

T−1∑
t=1

|X (t + 1) − X (t)| (10)

γx = 1

T − 2

T−2∑
t=1

|X (t + 2) − X (t)| (11)

maxx = max(x) (12)

minx = min(x) (13)

ratiox = min(x)

max(x)
(14)

Mx =
√√√√ 1

T

T∑
t=1

(X (t))2 (15)

where X (t) is the signal x at sampling number t , and T is the
total number of samples.
Given that the features were extracted from all six sources

of raw physiological signals, including the EXC, EDA, SCL,
SCR, BVP, and SKT, and all these signals had their normalized
form, a total of 96 features was extracted. The sample length
ts for the comfort level data and the physiological signals were
selected based on two considerations. A too-short time window
would not be able to capture some discomfort feelings, while
a too-long time window would introduce noises to the labeling
and feature extraction. They would both influence prediction
accuracy. To balance the two concerns, we selected 2 seconds
as the length of the samples, and there were 3,032 samples
for each type of signal per participant.

IV. COMFORT LEVEL DETECTION METHODOLOGY

A. Support Vector Machine

SVM is a non-linear model that has been widely applied
in various fields. The advantage of SVM is that it uses only
the support vectors for finding the optimal hyperplane that
maximizes the margin. The use of support vectors reduces the
complexity of finding the hyperplane function and increases
the generalization of the classifier when the size of the dataset
is not large. SVM can also handle non-linear datasets well
with the use of the kernel trick.
In different studies, SVM has been proved to be an effective

machine learning model to detect comfort [24] and emotions
[20], [22]. The ability to handle high-dimensional features
is an important advantage of SVM. Besides SVM, some
other algorithms have also been tested in [22] and [24]. The
algorithms in common between these two studies include
Linear Discriminant Analysis (LDA), Naive Bayes (NB),
Classification And Regression Tree (CART), and SVM. When
applied to different scenarios, the performance of LDA and
NB varied a lot, both showing good performance in [22] while
performing poorly in [24]. For CART that outperformed SVM
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in both studies, the ability to handle high dimensional features
is a weakness compared to SVM. Because the effectiveness
of SVM has been proved to be consistent in related studies,
and SVM is more suitable for processing high dimensional
features, which could be up to 96 dimensions in this study,
SVM was selected to develop the comfort detection model.
In this study, we used a binary SVM classifier to solve the

problem. The kernel function selected for the classifier was
the radial-based function (RBF). The input of the classifier
was the sample’s physiological features, and the output of the
classifier was the predicted label of the comfort level of the
sample. In the classification process, the decision function is
given by:

f (x) = sgn(

n∑
i=1

yiαi K (xi , x) + ρ) (16)

where f (x) is the classification results of the sample input
x , n is the total number of support vectors, yi is the label of
the i th support vector, αi is the Lagrange multiplier of a dual
optimization problem, xi is the i th support vector, ρ is the
interception, K (xi , x) is the kernel function, which is RBF in
our case:

K (xi , x) = exp(−	 ‖xi − x‖2) (17)

where 	 is the inverse of the standard deviation of the
RBF core, which is an important hyperparameter of an SVM
classifier.
When processing the training data, we noticed that the

dataset was imbalanced. For most of the participants, the pro-
portion of samples labeled as ‘discomfort’ took up around
20% to 30% of the entire dataset. The number of ‘comfort’
samples would be two to four times the number of ’discomfort‘
samples in the training set if no countermeasure were taken.
The performance of the classifier would be negatively affected
if it was trained with the imbalanced dataset. We employed
the under-sampling method to construct a balanced dataset.
Within the dataset of a specific participant, an equal amount
of ‘comfort’ samples were randomly selected based on the
number of ‘discomfort’ samples. The ‘discomfort’ samples and
the selected ‘comfort’ samples were then combined into a new
balanced dataset. The data processing for the study was based
on the new dataset for each participant.

B. Adaptive Feature Selection

Among the 96 features extracted from the physiological
signals, not all of them were valuable for the training of
the classifier. Some features might not contribute to or even
confuse the training process. Therefore, a feature selection
algorithm should be applied to the training data to improve
the training results.
We proposed an adaptive feature selection (AFS) method-

ology using SVM Recursive Feature Elimination (SVM RFE)
and Bayesian optimization algorithms. The overall process of
the AFS algorithm can be simplified to a flow chart in Fig. 6.
RFE algorithm is a feature ranking algorithm [44]. The

process of RFE can be sorted into three steps:

Fig. 6. The working process flow chart of the AFS algorithm.

Algorithm 1 Algorithm for SVM RFE

Input: Training examples X0 = [x1, x2, . . . xm]T , class labels
y = [y1, y2, . . . ym]T .

Output: Ranked list of features r = [ f1, f2, . . . fn]T .
1: the indices of features not eliminated s ← [1, 2, . . . n]T ,

the ranked list r ← [ ].
2: while s not empty do
3: X ← X0(:, s).
4: train an SVM classifier model ← SV M_train(X, y).
5: compute w = ∑

k αk ykxk.
6: compute ci = w2

i , for all i .
7: f ← argmin(c).
8: r ← [s( f ), r]T .
9: s ← s(1 : f − 1, f + 1 : end).
10: end while
11: return r.

1) Train the classifier (optimize the weights wi with respect
to cost function J ).

2) Compute the ranking criterion for all features (can be
w2
i ).

3) Remove the feature with the smallest ranking criterion.

SVM RFE algorithm employs a linear SVM as the classifier
in the training process [44]. The rank criterion is calculated
with the following formulas:

w =
∑
k

αk ykxk (18)

ci = w2
i (19)

where w is the weight vector, αk is the kth Lagrange multiplier,
yk is the label of the kth support vector, xk is the kth support
vector, ci is the criterion of the i th feature. The feature with the
lowest criterion will be eliminated for the current iteration and
be put into the ranked list. After all features have been added
to the ranked list, the algorithm stops and returns the list. The
algorithm of the SVM RFE is described in Algorithm 1.
With the ranked list where all features are ranked according

to their ranking criterion from the highest to the lowest,
we will train and tune the classifier using different features.
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Algorithm 2 Algorithm for Feature Selection and Model
Training

Input: Training examples X0 = [x1, x2, . . . xm]T , class labels
y = [y1, y2, . . . ym]T , ranked list of features r =
[ f1, f2, . . . fn]T .

Output: SVM model trained with optimized number of fea-
tures m, optimized number of features ns .

1: i ← 0, l prev ← 0.
2: while i < length(r) do
3: X ← X0(:, r(1 : i)).
4: create a K-Fold partition c based on the training set X.
5: train an SVM classifier, use Bayesian optimization

to tune the classifier based on cross-validation loss
model ← SV M_train(X, y, BayesOpt, K Fold = c).

6: collect training loss of model, l ← model.loss.
7: if l < l prev then
8: l prev ← l.
9: m ← model.
10: ns ← i .
11: end if
12: end while
13: return m, ns .

The kernel function in the SVM used in the study was
RBF kernel. Two hyperparameters, C and 	, were to be
tuned in an RBF kernel to achieve the optimal classification
result [45]. The C parameter determines the trade-off between
minimizing the training error and reducing the complexity of
the model. The 	 parameter has been mentioned in (17) from
the previous section. It affects the mapping from the input
space to the high-dimensional feature space.
Bayesian optimization method was employed in finding the

optimal hyperparameters for the classifier. In the Bayesian
optimization process [46], the cost function is treated as a
random function, and a prior is placed over it. The prior gets
updated to form a posterior distribution as the optimization
process goes on. The posterior is used for the determination of
the next query point in turn. In our case, the prior was based on
the 2D plane of the two hyperparameters,C and 	. The cost of
the optimization was the cross-validation loss of the training
process. A lower cross-validation loss could help us better
approach the parameters that provide the best generalization
performance for the classifier.
The training process shall repeat for 96 iterations for each

participant, as there are 96 available features in total. The first
k features in the ranked list would be used in the kth iteration
of the process. After the process was finished, the algorithm
would return a list of the cross-validation loss values acquired
from each iteration. The number of features used in the
iteration with the lowest loss value would be selected as
the optimized number of features. The algorithm of feature
selection and SVM model training is described in Algorithm 2.
The working process of the AFS algorithm was the com-

bination of Algorithm 1 and 2. It started with ranking the
features using the SVM RFE. And then, the algorithm iterated
96 times to train an SVM and optimize the parameters using

Bayesian optimization method. One more feature from the
ranked list was added to the feature set used for training in
the previous iteration during each iteration. After the iterations
were done, the number of features that achieved the lowest
training loss would be returned as the optimal result.

V. EXPERIMENTAL RESULTS

We carried out the experiment on 10 participants and col-
lected the comfort data and physiological signals required for
the comfort level detection. During the experiment, no partic-
ipant reported any sign of motion sickness with the question-
naire we used. In this study, we performed the AFS algorithm
on the data collected from all 10 participants. The ranked lists
of features from the participants were all unique to each other.
For all the participants, different numbers of features used

in the SVM were tested. The options were 5- features,
10-features, 20-features, 96-features, and the number given by
the AFS algorithm.
Different formations of the dataset were also tested in this

study. The ‘comfort’ vs. ‘discomfort’ dataset was included in
the first place. Other than that, we also explored the possibility
of performing human comfort detection on multiple levels.
Since SVM is a binary classifier, the solution to the real-
ization of multi-class classification is to train multiple SVM
models to work collaboratively in a multi-class classification
task. There are several ways to decompose the multi-class
problem into a set of binary classification problems [47], e.g.,
One-Against-All method, One-Against-One method, Directed
Acyclic Graph SVM. In this study, we focused more on the
discomfort perceived by the participants and defined three lev-
els of discomfort. The multi-class classifier should be designed
to distinguish between different levels of discomfort. There-
fore, another three datasets, the ‘low-discomfort’ vs. ‘mid- &
hi-discomfort’, ‘mid-discomfort’ vs. ‘low- & hi-discomfort’,
and the ‘hi-discomfort’ vs. ‘low- & mid-discomfort’ datasets,
were created and tested as well.
All the datasets used in training were balanced using the

under-sampling method. The distribution of training samples
and testing samples was 70% for training and 30% for testing.
The datasets underwent 10-fold cross-validation during the
training process.

A. Results of Comfort Level Detection

Fig. 7 gives us the testing accuracy, recall, precision,
and F1-Score of comfort level detection when the classi-
fier was trained with 5-features, 10-features, 20-features, all
96-features, and features selected by AFS algorithm. The
circles in the figure represent the results with the classifiers
trained with 5-features, the stars stand for the results from
classifiers trained with 20-features, the hexagram stand for the
results from the classifiers trained with 40-features, the squares
represent the results from the classifiers trained with 96-
features, the diamonds represent the results from the classifiers
trained with features selected with the AFS algorithm.
Fig. 8 shows the confusion matrices achieved across all

participants with the classifiers trained with different number
of features. We can see that the testing datasets were well
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Fig. 7. Classifier testing results of all the participants when trained
with different no. of features. The circles represent the results obtained
with classifiers trained with 5 features; the stars represents the results with
20 features; the hexagrams stand for the results with 40 features; the squares
are for 96 features; and the diamonds stand for the results obtained with
features selected by AFS.

balanced in the number of ‘comfort’ and ‘discomfort’ samples.
The performances of the classifiers in classifying samples
with different labels were similar. Overall, the under-sampling
method helped with balancing the datasets and the perfor-
mance of the classifiers was well balanced for different classes.
For all the participants, the personal best accuracy of com-

fort level detection was above 60% considering all available
feature sets. The best detection accuracy for seven participants
was 70% and greater. Among all the combinations of partici-
pants and features, the best accuracy of comfort level detection
was 78.12%, achieved from Participant 10 when the AFS was
applied. For eight participants, the features selected with the
AFS algorithm achieved the highest detection accuracy among
all options for the features set. By using the AFS algorithm,
the detection of comfort level achieved over 70% accuracy
with six participants. For other feature sets that were chosen
empirically, the numbers of participants who achieved 70%
accuracy or higher were one person for 5-features, four persons
for 20-features, five persons for 20-features, and five persons
for 96-features.
Tab.III shows the average testing accuracy of the classifier

when trained with 5-features, 10-features, 20-features, all
96-features, and features selected with AFS algorithm.
Among all the options of feature combinations tested in the

study, the features selected with the AFS algorithm achieved
the highest average accuracy across participants. The average
accuracy was 71.88% for the features selected with AFS.
Besides, we can also see that the standard deviation values
of the accuracy across different participants were all above
5% for all the feature selection options.

B. Results of Comfort Level Detection in Three Levels

Fig. 9 displays the accuracy, recall, precision, and F1-Score
of the classifier trained with different datasets based on the

Fig. 8. Confusion matrices based on the testing results across all participants
when using classifiers trained with different no. of features.

features selected with the AFS algorithm. The circles in the
figure represent the results with the classifiers trained with
the ‘comfort’ vs. ‘discomfort’ datasets; the stars stand for the
results from classifiers trained with the ‘low-discomfort’ vs.
‘mid- & hi-discomfort’ datasets; the hexagrams stand for the
results from the classifiers trained with the ‘mid-discomfort’
vs. low- & hi-discomfort’ datasets; the squares represent the
results from the classifiers trained with the ‘hi-discomfort’ vs.
‘low- & mid-discomfort’ datasets. The names of these clas-
sifiers were abbreviated to ‘dis’ classifiers, ‘low’ classifiers,
‘mid’ classifiers, and ‘hi’ classifiers in the following.
Fig. 10 shows the confusion matrices achieved across all

participants with the classifiers trained with different datasets.
The label distribution was less balanced than the sample
distribution of the ‘comfort’ and ‘discomfort’ samples in the
entire dataset. We can see that the performance of the ‘low’
classifiers was well balanced. For the ‘mid’ and ‘hi’ classifiers,
although the overall accuracy values were better, the perfor-
mances of the classifiers were less balanced compared to the
‘low’ classifiers.
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TABLE III

STATISTICS OF THE TESTING ACCURACY, RECALL, PRECISION, AND
F1 SCORE OF THE CLASSIFIER WHEN TRAINED WITH 5-FEATURES,

20-FEATURES, 40-FEATURES, 96-FEATURES, AND FEATURES

SELECTED WITH AFS

Fig. 9. Classifier testing results of all the participants when trained
with different datasets. The circles represent the results obtained with ‘dis’
classifiers; the stars represents the results with ‘low’ classifiers; the hexagrams
stand for the results with ‘mid’ classifiers; and the squares stand for the results
obtained with ‘hi’ classifiers.

Compared to the ‘dis’ classifiers, an overall increase of
test accuracy from the other classifiers can be observed from
the figures. More specifically, the ‘low’ classifiers of seven
participants only achieved a slightly worse accuracy compared
to the ‘dis’ classifiers; the ‘mid’ classifiers of six participants
outperformed the ‘dis’ classifiers; all participants ended up
with better accuracy with the ‘hi’ classifiers compared to
the ‘dis’ classifiers. Five participants achieved accuracy over
80% with the ‘mid’ classifiers, and seven participants achieved
accuracy over 80% with the ‘hi’ classifiers.

Fig. 10. Confusion matrices based on the testing results across all participants
when using classifiers trained within different datasets.

TABLE IV

STATISTICS OF THE TESTING ACCURACY, RECALL, PRECISION, AND

F1 SCORE OF THE ‘DIS’, ‘LOW’, ‘MID’, AND ‘HI’ CLASSIFIERS

Tab. IV shows the average testing accuracy of the ‘dis’,
‘low’, ‘mid’, and ‘hi’ classifiers. We can see a monotonic
increasing tendency in the accuracy as the classifier changes
from ‘low’ to ‘hi’ from the average accuracy results. The
average accuracy values of ‘mid’ and ‘hi’ classifiers were
higher than 80%. Similar to the previous section of classifiers
trained with different sets of features, an standard deviation of
more than 5% can be observed with the classifiers that handled
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different levels of discomfort. For the ‘mid’ and ‘hi’ classifiers,
a standard deviation of more than 10% can be spotted.

VI. DISCUSSIONS

In this study, the overall comfort level detection accuracy
achieved with SVM was 71.88%, as is shown in Tab. III. For
all the participants in this study, SVM reached an acceptable
accuracy in the detection of human comfort level, achieving
accuracy higher than 60% for all participants and accuracy
higher than 70% for six participants in the ‘comfort’ vs.
‘discomfort’ case. Other than the ordinary accuracy in the
generic case of ‘comfort’ vs. ‘discomfort’, SVM achieved
good performance with the ‘mid’ and ‘hi’ classifiers with
average accuracy values of 80.72% and 82.80% respectively.
Moreover, except for the 100% accuracy values obtained
with very small testing datasets, excellent performances were
observed with Participant 2 (‘mid’ classifier, accuracy =
89.53%, 86 testing samples), Participant 3 (‘hi’ classifier,
accuracy = 90.20%, 43 testing samples), Participant 6 (‘mid’
classifier, accuracy = 89.63%, 164 testing samples), and
Participant 9 (‘mid’ classifier, accuracy = 98.90%, 182 testing
samples). It indicates that the SVM classifier in this study
can obtain average performance in general cases and achieve
excellent performance in some specific cases.
Compared to some other similar studies [20]–[22] involving

human emotion detection with various methods, the pro-
posed approach in this study has obtained competitive
and reasonable performance. Considering the differences in
the recognition objects, adopted physiological signals, and
approach/experimental designs, the comparison between the
results cannot provide a definitive conclusion of the best
approach to conduct a study of this kind. However, considering
that human comfort is much more complex with a mixture of
various affective states compared to emotions [48], the demon-
strated results can still validate the feasibility of the human
comfort detection methodology in this paper.
From both Tab. III and Tab. IV, a variation of no less

than 5% can be spotted in the accuracy values across dif-
ferent participants. We believed that the major reason for the
variation was that the levels of physiological arousal stimu-
lated by the video stimuli were different for the participants.
Different participants could have different sensitivity levels
to the stimuli presented with the simulator. Participants with
higher sensitivity to the stimuli would have gone through
a more immersive experience during the experiment. More
significant physiological arousal related to the changes in
comfort levels would have been recorded and used to train and
test the classifier. A better accuracy could be expected from
these participants. And vice versa for the participants with
lower sensitivity to the stimuli. The different arousal levels of
physiological signals stimulated by the stimuli might be the
factor behind the variance in the accuracy.
Some limitations with the current study still exist and

will be discussed below. The participants in this study had
a homogeneous demographic background. The participants
might be more familiar with the autonomous driving technol-
ogy given the engineering background, and thus the perception

of comfort and discomfort in AVs for the participants might
have been quite different from people without an engineering
background. Also, only one female participant was within
our participant group. To better validate the universality of
the comfort detection approach, participants with different
demographic backgrounds should be included in the research.
A sample size of 10 will usually be enough to obtain

representative results for such studies, and existing similar
studies [17], [49] also used similar sample sizes. However,
it is true that we could obtain more comprehensive results
with a larger sample size as an extension of this work in the
future.
In the video stimuli, the hands of the virtual driver were still

visible to the participants. To address this issue, the partici-
pants have been explained regarding the hands and instructed
to ignore them and focus on the perception of vehicle driving
behaviors. They were also instructed to report if the hands do
have affected their comfort ratings. Because the hands only
took a tiny portion at the bottom and were always attached to
and moving with the steering wheel, they could be easily and
intuitively considered part of the steering wheel. In addition,
compared to the major stimuli occupying the majority of the
screen and simulator motions, the influence of the hands was
almost ignorable. This is also why we did not receive any
feedback regarding the hands affecting the comfort ratings.
However, it was still an imperfection in the stimuli. In the
future, the hands should be eliminated from the visualization
in the updated stimuli.
In the end, as a simulator-based study, the results may not

perfectly reflect the situations in real vehicle studies. Although
studies have been conducted to prove that both high-end [5]
and low-cost [50] simulators could effectively generate expe-
rience close to real-world driving scenarios, differences may
still exist between the experiences of being in a real vehicle
and on a simulator. To reduce the gap between the simulator
and real vehicle in this study, efforts have been spent on
verbally instructing the participants to imagine the scenarios
as well as tuning the scaling factors of the motions generated
by the platform. Compared to the simulator used in [8] that
successfully supported the research on human’s situational
awareness and trust in a semi-automated vehicle, we believed
that our simulator with similar configurations could adequately
fulfill the requirement of fidelity in this study. Besides, it is
true that only by carrying out the experiment on an actual AV
can we totally eliminate the gap, but the data collection and
processing methods used in the simulator-based studies shall
still be applicable to the real-vehicle-based studies. This is how
the simulator-based studies retain the value even in the future
when actual AVs are ready for conducting similar studies.
Considering that human physiological signals may incor-

porate noises that may have potentially impacted the detec-
tion performance, as the future work, one potential approach
might help improve detection accuracy. We can combine
the physiological-based classifier with a context-based com-
fort model to improve the accuracy. The measurement of
physiological signals using the wearable sensing system can
be affected by various factors, e.g. body movements and
environmental temperature, and these factors are inevitable
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if the system is used on a vehicle passenger. A lowered
detection accuracy can result from these inevitable factors with
physiological signal capture. To reduce the negative influence
from the uncertainty of physiological signals, we can refer to
the contextual information from the road or other vehicles in
the stimuli to make corrections to the detection results merely
from the physiological signals.
The normalization process has been conducted on the entire

dataset for each participant. This has helped handle the vari-
ations across individuals. For the same individual, the phys-
iological responses collected across different days have been
normalized on the same basis. Our collected data showed that
the same individual’s responses usually did not vary much
even on different days, so we think the normalization process
could account for this variation effect.
We created the ‘low-discomfort’ vs. ‘mid- & hi-discomfort’,

‘mid-discomfort’ vs. ‘low- & hi-discomfort’, and the
‘hi-discomfort’ vs. ‘low- & mid-discomfort’ datasets and
trained classifiers based on these datasets as an exploration
of the possibility to perform multi-class detection of human
comfort. With the existing SVM classifiers, the ‘dis’, ‘low’,
‘mid’, and ‘hi’ classifiers, a hierarchical structure multi-class
SVM can be constructed [51]. The ‘dis’ classifier can act
as the top-level classifier and determine whether a sample
is a ‘comfort’ sample or a ‘discomfort’ sample. The sample
classified as a ‘discomfort’ sample by the ‘dis’ classifier can
be further classified as a ‘discomfort’ sample of a certain
level after inputted into the next level classifier, which can be
a One-Against-All multi-class SVM consisting of the ‘low’,
‘mid’, and ‘hi’ classifier. Considering that the accuracy of the
individual classifiers was still not excellent at the current stage,
no further step was taken in this study to test the idea of
the hierarchical multi-class SVM. In the future, multi-class
comfort level detection or even continuous comfort level
detection can be further explored after the overall detection
accuracy has been improved with more sensing signals and
more sophisticated detection algorithms.
Different participants had different ranked lists of features

in our study. This suggests that the classifier trained for one
specific person would only work the best when being applied
to this person. In some other studies [41], [52], a classifier
with this individual-sensitive attribute can be defined as a
subject-dependent classifier. To address this limitation and
develop a classifier that is subject-independent is another
challenging task.

VII. CONCLUSION

We have carried out a simulator-based study of human
comfort subjected to autonomous vehicle ride scenarios. The
driving simulator provided video and 6-DOF motion stimuli of
AV rides to the participants. A wearable sensing system was
used in the experiment to collect physiological data, and the
subjective comfort level of the participants was captured with
a press button. We employed an SVM classifier to detect the
comfort level of the participants based on the data acquired
during the experiment. According to the results, the experiment
stimuli in the study successfully induced different levels of

comfort in the participants. The protocol proposed in this
study was proved to be feasible for studies on human comfort
in AVs. The comfort level detection achieved a good overall
accuracy. This proved the feasibility of using SVM to detect
human comfort levels with physiological signals. Nevertheless,
the accuracy varied a lot across different participants. In the
future, we aim at further improving the accuracy of detection
and extend the resolution of detection to a multi-class or
continuous value measurement of the comfort level.
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[16] K. Ormuž and O. Muftić, “Main ambient factors influencing passenger
vehicle comfort,” in Proc. 2nd Int. Ergonom. Conf. (Ergonomics),
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