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We report the first lattice QCD calculation of pion valence quark distribution with next-to-next-
to-leading order perturbative matching correction, which is done using two fine lattices with spacings
a = 0.04 fm and 0.06 fm and valence pion mass m, = 300 MeV, at boost momentum as large as 2.42
GeV. As a crucial step to control the systematics, we renormalize the pion valence quasi distribu-
tion in the recently proposed hybrid scheme, which features a Wilson-line mass subtraction at large
distances in coordinate space, and develop a procedure to match it to the MS scheme. We demon-
strate that the renormalization and the perturbative matching in Bjorken-z space yield a reliable
determination of the valence quark distribution for 0.03 < 2 < 0.80 with 5-20% uncertainties.

Understanding the hadron inner structure remains one
of the top fundamental questions in nuclear and particle
physics. As the lightest hadrons in nature, pions are the
Nambu-Goldstone bosons of quantum chromodynamics
(QCD), and their quark and gluon structures can help
understand the origins of hadron mass and dynamical
chiral symmetry breaking. The parton distribution func-
tions (PDF's), which describe 1D momentum densities of
quarks and gluons in a hadron, are the simplest and most
important quantities that have been extensively stud-
ied from global high-energy scattering experiments and
will be probed at unprecedented precision at the future
Electron-Ion Collider [II, 2]. Besides the experimental ef-
forts, the first-principles calculations of PDFs using lat-
tice QCD are also expected to provide useful predictions.

Computation of the PDFs on a FEuclidean lattice
has been extremely difficult because they are defined
from light-cone correlations with real-time dependence in
Minkowski space. For a long time, only the lowest mo-
ments of the PDF's were calculable as they are matrix ele-
ments of local gauge-invariant operators. For reviews see
Refs. [3L [4]. Less than a decade ago, a breakthrough was
made by large-momentum effective theory (LaMET) [5-
7], which starts from a Euclidean “quasi-PDF” (qPDF) in
a boosted hadron and obtains the PDF through a large-
momentum expansion and perturbative matching of the
qPDF in Bjorken-z (longitudinal momentum fraction)
space. Over the years, LaMET has led to much progress
in the calculation of PDFs and other parton physics [4} [7],
which reinvigorated the field as other proposals [8HI3] are
also being studied and implemented.

Despite substantial progress, lattice calculation of the
PDF z-dependence has yet to achieve essential control
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of the systematic uncertainties [I4]. In the LaMET ap-
proach, lattice renormalization is one of the most impor-
tant sources of error. The nonlocal quark bilinear opera-
tor Or(z) = ¥(2)TW(z,0)9(0), where I' is a Dirac matrix
and z* = (0,0,0, z), which defines the gPDF, suffers from
a linear power divergence in the Wilson line W (z,0) that
must be subtracted before taking the continuum limit.
The most popular methods so far are the regularization
independent momentum subtraction scheme [I5HI8] and
other ratio schemes [T9H22], which use the matrix element
of Or(z) in an off-shell quark [I5HIg], a static/boosted
hadron [I9] 22] or the vacuum state |20, 21] as the renor-
malization factor. At small z the matrix elements in these
schemes satisfy a factorization relation to the light-cone
correlation [I3] 23H25]. However, at large z they intro-
duce nonperturbative effects [26] that propagate to the
qPDF via Fourier transform (FT) of the matrix elements,
which contaminates the LaMET matching in z-space. To
overcome this limitation, the hybrid scheme [27] was pro-
posed to subtract the linear divergence at large z and
match the result to the MS scheme, thus preserving the
LaMET matching after FT. To date, the hybrid scheme
has not been used in calculating the PDFs, except for
a recent work on meson distribution amplitudes [28].
Apart from renormalization, the accuracy of perturba-
tive matching also controls the precision of the calcula-
tion. In all the existing lattice calculations, the matching
was done at only next-to-leading order (NLO), and it is
not until recently that the next-to-next-to-leading order
(NNLO) matching was derived for the non-singlet quark
qPDF in the MS scheme [21] 29)].

In this Letter we present a state-of-the-art calcula-
tion of pion valence quark PDF using high-statistics,
superfine-spacing, and large-momentum lattice data [26],
with an adapted hybrid-scheme renormalization and the
first-time implementation of NNLO matching. The pion
valence PDF has been extracted from global fits [30H33]
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and studied in lattice QCD [26] [34H40], with both at NLO
accuracy. In this work, we subtract the linear divergence
in Or(z) with sub-percent precision, and develop a pro-
cedure to match the lattice subtraction scheme to MS, a
crucial step in the hybrid scheme to reduce the power cor-
rections [27]. We derive the NNLO hybrid-scheme match-
ing and apply it to the qPDF, showing good perturba-
tive convergence and reduced scale-variation uncertainty
compared to NLO matching. Finally, we demonstrate
that our analysis yields a reliable determination of the
PDF for 0.03 < x < 0.80 with 5-20% uncertainties.

Our lattice data was produced using gauge ensembles
in 241 flavor QCD generated by the HotQCD collabo-
ration [41I] with Highly Improved Staggered Quarks [42],
including two lattice spacings a = 0.04 and 0.06 fm, and
volumes L3 x L; = 64* and 483 x 64, respectively. We use
tadpole-improved clover Wilson valence fermions on the
hypercubic (HYP) smeared [43] gauge background, with
a valence pion mass m, = 300 MeV. Furthermore, the
Wilson line in Or(z) is constructed from HYP-smeared
gauge links. We use pion momenta P? = (27n,)/(Lsa)
with 0 < n, <5, resulting in P* as large as 2.42 GeV.

The ¢PDF f,(z, P*, 1) is defined in a boosted pion
state |P) with four-momentum P* = (P*,0,0, P?):

~ dz . p=, ~
Fa P = [ G2 he P, )

where (2, P*, 1) = (P|O4:(2)|P)/(2P"), and p is the
MS scale. The operator Or(z) can be renormalized under
lattice regularization as [44H40]

OF (z,a) = "™ Z6(a)Of (2), (2)

where “B” and “R” denote bare and renormalized quan-
tities. The factor Zp(a) includes all the logarithmic ul-
traviolet (UV) divergences which are independent of z,
while the Wilson-line mass correction dm(a) includes the
linear UV divergence x 1/a and can be expressed as

dm(a) = m%@ +mo, (3)

where m_1(a) is a series in the strong coupling a;(1/a),
and mg is an O(Aqcp) constant originating from the
renormalon ambiguity in m_1(a) [47].

The hybrid scheme is implemented as follows: For 0 <
z < zg with @ € zg < 1/Aqcp, we form the ratio
h(z, P*,a)/h(z,0,a) to cancel the UV divergences and
the cutoff effects from z ~ a [19]; at z > zg we subtract
dm(a) and determine Zp(a) by imposing a continuity
condition of the renormalized matrix elements at z = zg.
There are different ways to calculate dm(a) [27, [46] (48~
51]. We determine dm(a) from the combination of the
static quark-antiquark potential, V'3t (r) [41}52], and the
free energy of a static quark at non-zero temperature [53-
59], with the following normalization scheme,

V¥ (a, 7 = ro) + 26m(a) = 0.95/r¢ , )

where rog = 0.469 fm is the Sommer scale for 2+1 fla-
vor QCD [I], and the constant 0.95 defines the scheme.
The linear divergence m_1(a)/a does not depend on the
scheme, while mg does. The results are adm = 0.1586(8)
and 0.1508(12) for a = 0.06 and 0.04 fm, respectively.

Since my is scheme dependent, a factor of €™l with
mo ~ O(Aqcep) is needed to match the lattice scheme to
MS, otherwise the LaMET expansion of the qPDF will in-
clude a power correction o mg/P? [27], which slows down
convergence to the PDF as P? grows. It was proposed
that m can be obtained by comparing the subtracted
matrix elements of Or(z) [B1] or W(z,0) [49] with their
MS operator product expansion (OPE), whose accuracy
requires z < 0.2 fm [27]. But due to discretization effects,
the window of z that can be used is actually narrow.

Our new procedure for the hybrid scheme is distinct
by the determination of 7. In order to use larger z, we
construct the following ratio and compare it to a form
motivated by the OPE of h(z,0, u),

Co(p?22) + Az2”’
()

where 2, zg > a, and the parameter A ~ O(AéCD). The
Wilson coefficient Cy is known to NNLO [21], 25| 29], and
mo and Az? originate from the leading UV and infrared
renormalons in Cy [20]. According to Eq. , the Lh.s.
of Eq. must have a continuum limit if m(a) includes
all the linear divergences, which is renormalization group
(RG) invariant. We choose z > zy = 0.24 fm and find
agreement between the a = 0.04 fm and a = 0.06 fm
ratios at sub-percent level up to z ~ 1 fm (see App. .
Then we extrapolate the lattice ratios to the continuum
with a?-dependence [26], and fit the result to the r.h.s of
Eq. . For zy < z < 0.4 fm, we obtain decent plateaus
and x* values for both my and A with the NNLO Cj.
By definition mg cancels the lattice scheme dependence
of ém(a), as changing the scheme only shifts dm(a) by a
constant, but mg will inherit the O(Aqcp) ambiguity in
the MS scheme. Since Cj is at fixed order, both mg and A
depend on pu, which we vary to estimate the related uncer-
tainty in the final result. At p = 2.0 GeV, mg = 0.151(1)
GeV and A = 0.041(6) GeV?, so the power correction is
not negligible. Therefore, we modify the hybrid scheme
by correcting the Az? term in h(z,0, i) at short z as

lim e‘sm(“)(z—z[))m —
a—0 h(20,0,a)

~ h(z, P?,a)Co(2%u?)+Az>
h(z,zs, P?, i,a) =N —
(2,25 ) h(z,0,a)  Co(2%u?)

+ Nt (2—25) }E(Zv P, a) 00(2§ﬂ2)+AZ% 0
h(zg,0,a)  Co(z2u?)
where 6m’ = dm + g, and N = h(0,0,a)/h(0, P*, a)
normalizes iz(z, zs, P*, u,a) to one at z = 0. Since Cj is
at fixed order, ﬁ(z, zs, P*, i, a) depends on p despite the
fact that it should be RG invariant. Such a renormal-
ization is performed through bootstrap loops so that the
correlation between different P* and z is taken care of.

0(zs—2)

(z—2s), (6)
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FIG. 1. Renormalized matrix elements in the hybrid scheme.

The hybrid-scheme matrix elements are shown in
Fig. |1l At small z, h(z, P?) is dominated by the leading-
twist contribution. At large z, the spacelike correlator
for pion valence quarks will exhibit an exponential decay
o e~ ™tz where meg is an effective mass related to the
system [56]. When plotted as a function of A = zP?,
h(\, P#) should scale in P* at small A, with slight vio-
lation due to QCD evolution. Its exponential decay will
emerge at a larger A with greater P? and with decay rate
meg/P*. In the P* — oo limit, the exponential decay
vanishes at finite A (z — 0), and only the leading-twist
contribution remains, which almost scales in P* and fea-
tures a power-law decay at large A that corresponds to
small-z PDF [27]. This picture is consistent with Fig.

The next step is a FT. We truncate the matrix elements
at zy, or A\, = z;, P* where h(Ar) ~ 0, and extrapolate to
o0 to remove the unphysical oscillations from a truncated
FT [27]. The extrapolation form is Ae=™e1?l /|]\|?] where
A, meg and d are the parameters. Since meg is indepen-
dent of P#, by fitting to the P* = 0 matrix elements we
find that it is around 0.1 GeV, which is not far from the
phenomenological estimate of 0.2-0.5 GeV in HQET [57].
Therefore, we impose meg > 0.1 GeV, as well as A > 0
and d > 0, to ensure a convergent FT on each bootstrap
sample. Since the FT converges fast with the exponen-
tial decay, the extrapolation mainly affects the small-z
region apart from removing the unphysical oscillations.
To verify this we vary zr,, which turns out to have little
impact, and use different meg bounds and extrapolation
forms, which lead to consistent qPDFs down to = ~ 0.05.
(See App. . .

Then, we match the qPDF f,(z, As, P?, it) to the MS

PDF f,(z, ) through LaMET [25] 27, 58] [9]:

Cdy ,,f(x p
Jo(z, :/ — C (’ ’
(210 —oo [yl y yp*

Ajep Adcp
+0(Ghor o np) @)

|y)‘5> .fv(:% AS? Pznu’)

where A\g = zgP?, zg = 0.24 fm, and the power correc-
tions are controlled by the parton and spectator momenta
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FIG. 2. Comparison of PDFs obtained from the qPDF with
NLO and NNLO matching corrections.

xP? and (1 — z2)P? [27]. Here C~! is the inverse of the
hybrid-scheme matching coefficient C, which we derive
at NNLO [60] by conversion from the MS result [21] [29].
Based on Eq. @, we can directly calculate the PDF with
P#-controlled power corrections for & € [Zmin, Tmax]-

In Fig. [2] we show the results of perturbative matching.
The matching drives the qPDF to smaller « and reduces
the statistical errors at moderate x, because matching
effectively relates the qPDF from finite P?* to infinity,
and the qPDF evolves to smaller x as P? increases. The
NNLO correction is generally smaller than the NLO cor-
rection, which indicates good perturbative convergence,
a crucial criterion for precision calculation. Besides, by
varying p and evolving the matched results to the same
u, we find that the scale-variation uncertainty is reduced
at NNLO, which is further evidence of improved preci-
sion. The matching correction diverges as x — 0, imply-
ing that resummation of small-z logarithms is needed. A
resummation is also necessary as © — 1 [40], but these
resummations are not needed for moderate .

We compare the PDFs obtained at different P* with
NNLO matching in Fig. [B] At moderate z, the PZ-
dependence is remarkably reduced, and the results ap-
pear to converge for P* > 1.45 GeV, which strongly in-
dicates the effectiveness of LaMET matching. At z 2 1,
each PDF curve has a small non-vanishing tail due to
the power corrections in Eq. (7)), but they decrease with
larger P* (see also App. [C3). To estimate the size
of the power corrections, we fit the PDFs obtained at
a = 0.04 fm, P?* = {1.45,1.94,2.42} GeV and a = 0.06
fm, P = {1.72,2.15} GeV to the ansatz f,(z)+a(x)/P?
for each fixed z, where we ignore the a-dependence as it
has been found that the matrix elements have O(a?P?)
effects that are less than 1% [26]. Since this fit is mainly
affected by the data sets at lower P* with smaller sta-
tistical errors, which have larger power corrections, we
use the result at P* = 2.42 GeV instead of the fitted
fo(z) as our final prediction. The power correction at
P? =2.42 GeV is estimated to be a(z)/[P2f,(z)] < 0.10
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FIG. 3. The PDFs obtained from the qPDFs with NNLO
matching at different PZ.

for 0.01 < x < 0.80. It is surprising that the results
are insensitive to P? for x as small as 0.01, nor do they
show dependence on the extrapolation form in the F'T as
we have checked. This can be explained by that, under
matching, the qPDF contributes to the PDF at larger z
which has less dependence on P* or the extrapolation.
Nevertheless, it must be pointed out that the smallness
here is only relative, as a(z)/P? still diverges as  — 0.

Our final prediction for the pion valence quark PDF
(BNL-ANL21) is shown in Fig. [d] which is obtained from
the qPDF at a = 0.04 fm, zg = 0.24 fm, z;, = 0.92
fm, u = 2.0 GeV and P? = 2.42 GeV with exponential
extrapolation and NNLO matching. The red band repre-
sents the statistical error, and the light purple band in-
cludes the error from scale variations, which is obtained
by repeating the same analysis for 4 = 1.4 GeV and
2.8 GeV and evolving the PDFs to p = 2.0 GeV with
the NLO DGLAP kernel. Since the hybrid-scheme pa-
rameter mgy depends on pu, the small scale variation in
the final result shows that the renormalization uncer-
tainty is well under control. We require that the O(a?)
matching correction at p = 2.0 GeV be smaller than 5%,
which propagates geometrically to < 37% at NLO and
< 14% at NNLO, thus excluding = < 0.03 and z > 0.88.
A list of the above uncertainties at selected x is shown
in Table [l See also App. [D] We neglect the FT uncer-
tainty as it is extremely small. As for m, dependence,
our associated calculation of the second PDF moment at
m, = 140 MeV [61] shows consistency within 5% sta-
tistical uncertainty, which will be validated by a direct
comparison in the future. Previous studies [62] [63] also
suggest that the finite volume correction is less than 1%
for our lattice setup. At last, by limiting the estimated
power corrections to be less than 10%, we determine the
PDF at 0.03 < = < 0.80 with 5-20% uncertainties. Our
result is in great agreement with the recent global fits
by xFitter [3I] and JAM2I1nlo [32] for 0.2 < z < 0.6,
but deviates from the earlier GRVPI1 [30] and ASV [33]
fits. When compared to a previous analysis of the same
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FIG. 4. Comparison of our prediction of f,(x), BNL-ANL21,
to global fits and BNL20. The shaded regions x < 0.03 and
x > 0.8 are excluded by requiring that estimates of O(ag’) and
power corrections be smaller than 5% and 10%, respectively.

x [Statistical| Scale | O(a2) [Power corrections|O(a®PZ)
0.03 0.10 0.04 |<0.05 < 0.01 < 0.01
0.40 0.07 < 0.01|< 0.05 0.04 < 0.01
0.80 0.15 0.03 |< 0.05 0.10 < 0.01

TABLE I. Statistical and systematic uncertainties at given x.

lattice data (BNL20) [26], which used a short-distance
factorization of the matrix elements at NLO, and a pa-
rameterization of the PDF, our new result has shifted
central values and considerably reduced uncertainties at
moderate z, but still agrees within errors. With finite P*
and statistics, lattice QCD can only make predictions for
2 € [Tmin, Tmax]- The PDF parameterization correlates
the information at all x € [0, 1], so the larger uncertain-
ties at moderate z in BNL20 could be propagated from
the uncontrolled errors in the end-point regions. Besides,
there is no practical estimate of the model uncertainty in
the parameterization. Therefore, the LaMET calculation
for & € [Zmin, Tmax) 1s more reliable as it does the power
expansion and matching directly in z-space.

In summary, we have performed a state-of-the-art lat-
tice QCD calculation of the z-dependence of pion valence
quark PDF, where we developed a procedure to renormal-
ize the qPDF in the hybrid scheme and match it to the
MS PDF at NNLO. The final results show reduced per-
turbation theory uncertainty and converge at moderate x
with pion momenta greater than 1.45 GeV, which allows
us to reliably estimate the systematic errors. This calcu-
lation can be improved with physical pion mass, contin-
uum extrapolation, and higher statistics for the matrix
elements at long distances and at larger boost momenta.

Our renormalization procedure can also be incorpo-
rated into the lattice calculations of gluon PDFs, distri-
bution amplitudes, generalized parton distributions and
transverse momentum distributions. With the systemat-
ics under control, we can expect lattice QCD to provide
reliable predictions for these quantities in the future.
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Appendix A: Hybrid scheme renormalization

1. Definition of scheme

As has been described in the main text, the hybrid
scheme renormalization includes two parts:

e For z < zg, we form the ratio of bare matrix ele-
ments [19],

P pe
Mz Pre) (A1)
h(z,0,a)

which has a well-defined continuum limit and is

renormalization group (RG) invariant.

e For z > zg, the renormalized matrix element is
eém(a)|z—zs| ]’L(Z, P*, (l)
h(ZS7 Oa a) 7

which is equal to the ratio in Eq. (Al) at z = zg.
To determine dm(a) we use the additive renormal-
ization constant, cg(a) = dm(a), which is obtained

(A2)

in Ref. [4] from the analysis of the free energy of
a static quark, Fg(T), at non-zero temperature T
with the normalization condition in Eq. . Re-
cently Fp has been calculated using one step of
HYP smearing [55], and it was found that HYP
smearing does not affect the temperature depen-
dence of Fo(T'), but only shifts it by an additive

constant. Therefore, we have Fg’l(T) + om(a) =

FS’O(T) + cg(a) with superscripts 0 and 1 refer-
ring to the number of HYP smearing steps in the
bare free energy of the static quark. Using the lat-
tice results for Fg 2(T) and FQB 1(T) obtained on
N, = 12 lattices and temperatures corresponding
to a = 0.04 fm and a = 0.06 fm (where cutoff ef-
fects can be neglected), as well as the values of ¢
from Table X of Ref. [54] for 8 = 7.825 (a = 0.04
fm) and 8 = 7.373 (a = 0.06 fm), we obtain dm(a).
The results are adm(a = 0.06 fm) = 0.1586(8) and
adém(a = 0.04 fm) = 0.1508(12).

First of all, to test how well the subtraction of dm(a)

can remove the linear divergences in h(z, P?,a), we con-
struct the ratio in Eq. ,

(2, 20,a) = ePm(@)e—z0) 1(2:0,0)

- h(20,0,a) ’ (A3)

where zg = 0.24 fm for both lattice spacings. According
to Eq. (2)), the renormalization factor Zo(a) cancels out
in the ratio. Therefore, if ém(a) includes all the linear
divergences, then R(z, zo,a) should have a well-defined
continuum limit.

Our lattice results for the above ratio with zg = 0.24 fm
is shown in Fig.[5] As one can see, the differences between
the ratios at a = 0.04 fm and 0.06 fm are at sub-percent
level, which clearly shows that the linear divergences have
been sufficiently subtracted by dm(a). Therefore, the
ratio in Eq. has a continuum limit

lim R(z, 2o, a) = R(z, 20)

a—0

(A4)

which is RG invariant.
Our next step is to match the lattice subtraction
scheme to MS. When z,zyp < A(Sé]y the MS matrix

element 7MS(z,0, 1) has an OPE that goes as

M3 (2,0, 1) = e ™01 [Cy(22?)

20 (2 PlOwa (WIP) +...] , (A5)
where m} is the O(Aqcp) renormalon ambiguity
from the Wilson line self-energy renormalization [20],
Ouwa(pt) is a twist-four operator (for example, ¥ D?1)
or gzﬁau,,F“”w), Cy and Cs are perturbative coefficient
functions, and “...” denotes contributions at higher
twists. Since P* = 0, Cp is the only Wilson coef-
ficient that contributes at leading-twist. The leading-
twist contribution is proportional to (P|y~yi|P)/(2P?)
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FIG. 5. Upper panel: ratios of bare lattice matrix elements
without the Wilson-line mass subtraction. Lower panel: the
ratio in Eq. with Wilson-line mass subtraction. The red
and blue points are for a = 0.04 fm and 0.06 fm. The red and
blue bands are interpolations of the points, and the gray band
is the continuum extrapolation of them with a®-dependence.

which is trivially one due to vector current conserva-
tion. Since ﬁMS(z,O,u) is multiplicatively renormaliz-
able, both Co(2%2u?) and C(22u?)(P|Owwa(p)|P) must
satisfy RG equations with the same anomalous dimen-
sion, which is known to next-to-next-to-next-to-leading
order (N3LO) [64]. Due to the ambiguity in summing
the perturbative series in Cp(2%p?), there are O(A%"CD)
IR renormalons in the leading-twist contribution that
should be cancelled by those from higher-twist conden-
sates, along with the O(Agcp) UV renormalon to be can-

celled by md™S [20, 57]. Both the UV and IR renormalon
contributions cannot be well defined unless one specifies
how to sum the perturbative series in Co(2%u?) to all or-
ders, which, however, is unknown as Co(z?u?) has been
calculated to only NNLO so far [21].

Note that m{! is analogous to the mass renormaliza-
tion in heavy-quark effective theory (HQET) [567], which
is of UV origin and cannot be attributed to any short-
distance condensate. Instead, it appears as a resid-
ual mass term in the HQET Lagrangian and exists in

BMS(z,O,,u) at all z, i.e.,

AVS(2,0,0) =™ FIRMS (2 0, 1),  (A6)
where h)5(z,0, 1) at short distance reduces to the OPE

series in the brackets of Eq. (A5]).
The renormalons have been studied extensively for the

Polyakov loop and plaquette in lattice QCD [47), 65H6S].
In lattice perturbation theory, one has to compute the
perturbative series to very high orders of ag in order
to see the renormalon effects. Nevertheless, in the MS
scheme, the OPE with Wilson coefficient at a few loop
orders and the condensate term, turns out to be success-
ful in describing the static potential at short distance
up to ~ 0.25 fm [69]. One explanation is that ay in
the MS scheme is larger than that in lattice perturba-
tion theory, so the renormalon effect which is of O(a?)
with n ~ (27)/(Bocs) becomes significant at lower or-
ders. This situation is similar to the OPE in QCD sum
rules [70H74], which works well in phenomenology. The
reason behind such success is probably due to a proper
choice of the renormalization scale p so that a,(u) is
small enough for the perturbative series to converge,
while the p-dependent effects in the condensate remain
insignificant as they should be of the same magnitude of
highest order in the truncated perturbative series [73, [74].
Therefore, we approximate Eq. as

7MS —mMS z
BMS (2,0, 1) ~ e~™o (1)12] [C(ITO(Z2M2) +A(u)22] ’
(A7)

where “FO” stands for fixed order, A(u) is a parameter
of O(A%CD), and we ignore the higher power corrections

by working at not too large z. The u dependence of
the parameters m)™> and A is understandable because
this approximation is valid for a small window of u, and
they also depend on the perturbative orders in CE© if
the latter does not converge fast. Note that the although

the model in Eq. (A7) is not guaranteed to satisfy the

RG equation for hM5(z,0, 1), we argue that within the
range of p where it can describe the physical results, the
p-dependence in the power correction term, which is al-
ready suppressed, is weak and can be ignored.

Based on the above approximation, we fit our lattice
results of the ratio in Eq. to the following ansatz,

- . Co°(2Pp?) + A(p)2?
R(z, 20) = e~ m0((z—=0) €0 . (A8)
) CEO(2242) + ()23

where the mass shift

o () = —mo +mg'S () (A9)
cancels the lattice scheme dependence of mg in Eq.
and introduces the renormalon ambiguity of the MS
scheme. Effectively, mg matches the hybrid-scheme ma-

trix elements at z > zg to the ratio of legTS as

i e(Em(@-+mo () (c—2) Uz PP a) g (2 P2 )
a—0 h(zs, 0, a) hg/IS(ZS7 0, 1)
(A10)

Moreover, since the ansatz in Eq. (A8]) can describe the
short-distance matrix elements well, we can correct the



Az? term in hYS (2,0, 1) at z < zg as
G

Bm 707 b
050 1) GroCaym) 1 A )2

(A11)

which is equivalent to replacing iLIO\TS(z, 0, 1) by the per-
turbative Cjy, as in Eq. @ Eventually, the continuum
limit of the matched matrix element in Eq. @ is

hyS (2, P, )

ﬁ(23237pzvu) - CFO(ZQ,U/2) G(ZS - |Z|)
RIS (2, Pz,,u)
W 0(|z] — zs), (Al12)

which is different from MS through a perturbative match-
ing for all z as long as zg < AééD. Therefore, the gPDF

defined as FT of h(z, zg, P?) is still factorizable.

Note that mg(u) introduces the ambiguity mj!
the matched matrix elements.
that CFO (222
summation prescription by O(«

NS (1) to
Nevertheless, we argue

) at NNLO is different from a particular
3) contributions, which
cannot be smaller than the ambiguity in my™ () as the
latter reflects the uncertainty in summing divergent per-
turbative series at sufficiently high orders. Therefore,
we can attribute the renormalon ambiguity in mg(u) to
higher loop-order effects, and estimate the latter by vary-
ing by a factor of v/2 and 1/v/2. The range of u we
vary from cannot be too large. If u is too small, then
as(p) becomes too large if u is too large, then we need
to resum the large In(22p2) in Co(2%42). In both cases
the perturbative series converges slowly. In our analysis,
we scan p within [0.9,2.0] GeV for C© and [1.4,3.2]
GeV for CY'NEO to study the scale dependence and un-
certainty from renormalon ambiguity.

2. Fitting of mo and A(u)
Currently, the Wilson coefficient Co(122?) is known to

NNLO [21} 29] and its anomalous dimension has been
calculated at three-loop order [64],

1
Co(p*2?, as(p)) =1+ as (2L + 30)

13, 146142872 38127—82472—4032((3)
+a; [QL + 51 L+ 618
143 6127 9172
3 71’/3 L2
+as[6 +(36+27)
4 2 _ 4
+690939 + 7607* — 89767 — 94068((3) L + 400
972
+0(ag) (A13)

where as = as/(27), L = In(u?22/b3), and by = 275 .
The factor 400 in the last square bracket is a simple guess
by assuming that the constant part of the perturbative
correction grows as a geometric series in the order of a.

We also consider the RG improved (RGI) Wilson co-
efficient [40]

CRGI( 2) = Co(l,as<b0/z))

n
X exp [// das (1
bo z

where v» is the anomalous dimension of the operator
Or(z, 1), and B(as(p)) = das(p)/dIn 2. In this way, we
can first factor out the evolution factor in Eq. as it
must be satisfied by the full matrix element iLMS(Z, 0, u),
and therefore construct the ratio R(z, z) in an explicitly
p-independent way.

(A14)

) vo(a(u'))}
Blas(u)) I’

—NLO
..... NLO+RGI
— NNLO
..... NNLO+RGI
2.0 —N3LO
N3LO+RGI

C[)(Zv ,lL)

0.0 0.1 0.2 0.3 0.4

z/fm

FIG. 6. The fixed-order and RGI Wilson coefficients Co (z2u?)
up to N3LO.

We compare Cy and CRGI at NLO, NNLO and N3LO
at 4 = 2.0 GeV in Fig. [f] The strong coupling con-
stants at each perturbative order are defined by the

corresponding Ag(st with one-, two- and three- loop
functions and ny = 3, which are fixed by matching to
as(p = 2 GeV) = 0.293. The latter is obtained from

AI\Q/[CS;D = 332 MeV with five-loop 8-function and n; = 3,
as has been calculated using the same lattice ensem-
bles [75]. As one can see, at z > 0.2 fm the RGI Wilson
coeflicients start to deviate significantly from the fixed-
order ones, which is mainly due to the large value of c
as in RGI Wilson coefficients as we evolve from p to 1/z.
This indicates that at z > 0.2 fm, the scale uncertainty
in the perturbative series is significant due to the en-
hancement of non-perturbative effects, and to use OPE
we should work at very short distances (z < 0.2 fm).
However, there will not be enough room for varying z to
satisfy z > a so that discretization effects are suppressed.
Therefore, in our analysis we loosen our requirement for
very small z by only using the ansatz in Eq. and
not considering the RGI Wilson coefficients.

In Fig. [7al we plot an effective mass m§T(z) which is
defined as

 off _ h(z,0,a)
my (2)(z —20) = —1In F(70.0.0)

CNNLO( IuQ)
p?)’
(A15)

+In i

2
NNLO (2
Ch (25
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FIG. 7. Effective mass m§ (z) (a) and its slope msT (z) (b)
VS 2.

where 1 = 2.0 GeV. If the twist-four condensate is neg-
ligible, then we should expect a plateau in z, but Fig.
shows that it has an almost constant nonzero slope at z
from 0.24 fm up to 1.0 fm. In Fig. [7b] we plot its slope

mgff(z) _ mgﬂ( ) — mgﬂ(z — (1)

(A16)

which is consistent with being constant for a wide range
of z. This suggests that there is considerable quadratic
z-dependence from the twist-four condensate, as inclued
in the ansatz in Eq. .

Our results for mo and A fitted from R(z,z) for
20 < 2 < Zmax With zg = 0.24 fm are shown in Fig. 8] As
one can see, the two parameters remain constant in zmax
up to around 0.5 fm within a small window of u, which
is different with the NLO and NNLO Wilson coefficients.
At larger z, the higher-twist and o, In(z2u?) effects be-
come 51gn1ﬁcant Wthh can no longer be descrlbed | by the
simple ansatz in Eq. . In this work, we use R(z, )
at 0.24 fm < 2 < 04 fm to fit the parameters at all p as
input for the hybrid scheme renormalization and match-
ing. To estimate the uncertainty from the choice of p,
we will match the qPDF's obtained at different p to the
corresponding PDFs, and then evolve the final results to
u=2.0 GeV for comparison.

Appendix B: Fourier transform (FT)

The qPDF is defined as the FT of ﬁ(z, zg, P*) or

h(\ s, P?),
3 z dA ITA T, z
f(z,zs, P ):/% e h(\, Ag, P?). (B1)

Since (A, Ag, P?) is perturbatively matched from the
MS scheme, the factorization formula should still be valid
for the corresponding qPDF f(x, zg, P?) [27]. Therefore,
we should integrate over all z in the FT to obtain the x-
dependence of the qPDF. However, due to finite lattice
size effects, worsening signal-to-noise ratio and other sys-
tematics at large z, we have to truncate h(z, zg, P*) at
z = zr, and extrapolate to z — 0o to complete the FT. As
a result, the small-z (x < 1/A\1) region is the most sen-
sitive to the extrapolation model, and the corresponding
systematic uncertainty cannot be well controlled. On the
other hand, the reliability of the x 2 1/, region depends
on the premises that the h(z) is small at z = z7, and
exhibits an exponential decay when zy is large enough.
The first condition is easy to understand as a truncated
FT will lead to an unphysical oscillation in the z-space
with amplitude proportional to |h(zr)|, while the expo-
nential decay guarantees that the FT converges fast and
the qPDF at x = 1/, has very little dependence on the
specific model used in the extrapolation.

In this section, we first derive that the equal-time cor-
relator in a hadron state does exhibit an exponential
decay at large distances, then we demonstrate that in-
cluding this constraint in the extrapolation will lead to
a reliable FT in the moderate-to-large z region. Finally,
we perform the extrapolated FT on our lattice results.

1. Matrix elements at large 2

To begin with, let us consider a current-current corre-
lation in the vacuum, (Q|J5(z)J5(0)|2), where J5 = §7v5q
and 22 < 0. If we ignore the existence of zero modes and
only consider gapped vacuum excitations, then

J5(0 )|Q>
‘Z/ e
Z/ 2m) 32E (9] J5(0)|n) (n]J5(0)|2) e~

—ix-k

_ Z 2 € "
Z | ‘ / 2m) 4 k‘2 m% + 40
Vv —x?).

(QJs(z

(5 () [n)(n]J5(0)[€2)

My,

where Z,, is the overlap between the operator Js(z) and
intermediate sate |n). Here m,, is the mass of the in-
termediate state particle, and K, is the modified Bessel
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Wilson coefficients at various values of .

function of the second kind. Then, since

V—a?) \/7\/_” —malzl - (B3)

lim Ki(my, W

|z| =00 4/ —x2

The correlation function should, therefore, be dominated
by the exponential decay of the lowest-lying state that
overlaps with J5(x).

When the external state is a static hadron, it has also
been shown that the spacelike correlations exhibit an ex-
ponential decay at large distance [56].

We are interested in equal-time quark bilinear cor-
relators in a boosted hadron state, which can be ex-
pressed in terms of the product of two “heavy-light” cur-
rents [44] [46], where the “heavy quark” h; is an auxil-
iary field defined along the & direction, similar to that in
HQET.

Let us choose the external state to be a pion. Accord-
ing to Lorentz covariance, we can decompose the corre-
lation as

(m(p)lq(x)"

=p'fo(p-x,2®) +

ha(2)hz(0)g(0)|7(p))

“folp-x,27), (B4)
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Results for mo(u) (a) and A(u) (b) fitted from R(z,z0) for zo < 2z < Zmax and zo = 0.24 fm, with NLO and NNLO

where the scalar functions f, . (p-z, x?) are analytic func-
tions of p -z and 22. We can select the index p such
that z# = 0. For example, we can choose u = z when
x* = (¢,0,0,0) or g = ¢t when z#* = (0,0,0,z). The
HQET corresponds to the timelike case, as

Z/ o 32Ek efzz (kn—mgv—p)
x (m(p)|aCholn)(nlhoaln(p)),  (BS)

where h, is the effective heavy-quark field moving with
velocity v* and related to the QCD heavy quark @ by
the projection

pfpp 1‘1‘

hofa) = e P G (B6)

The lowest intermediate state |H (v)) is a heavy-light me-
son with mass mg = mqg + A and momentum k* =
mpvH, where mg is the heavy quark pole mass, and A
can be interpreted as the mass of the constituent light
quark or binding energy. Both A and mq have O(Aqcep)

renormalon ambiguities which cancel between each other.
In the Aqcp/mg — 0 limit, A should be independent of



the heavy quark mass, but can depend on the light quark
mass.

The matrix element (7(p)|qgTh,|H (v)) is given by the
transition form factors [76],

(m(p)|qThy | H (v))

——Tl"{% [fl(v p) + fa(v- P) XA } (U)}v (B7)

where the form factors f; and fs only depend on v - p in
HQET, and the projetion operator M(v) depends on the
spin of the heavy-light meson H (v),

M(v) = 1—;—7&{ —2:57 for JP =0—, (BS)

for JE =1,

with € being the polarization vector for vector mesons.
Therefore,

(m(p)|gy"holH(v)) = 2f1(v - p)v* 4 2f2(v - p)p**, (BY)

(m(p)|gho|H (v)) = 2f1(v - p) +2f2(v-p). (B10)
Then, the correlation function becomes
d3v
z -z, 2 ~ 4 2 /—
p fp(p x, ) szn: (27T)32\/1+7172
—i(AVIFE )2 (fr + f2)(friv* + fop®) . (B11)

Note that when 2% — oo, 29AV1 + 92 > 2OA consti-
tutes a large phase, so the integrand is quickly oscillating
and should be suppressed. To have a naive estimate, let
us assume f1 and fo are constant in v-p, and the remain-
ing integral is simply

/( )Sd?’ﬁ _ (AT )"
2m)32V1 + U

1 A sz
~ et ( >AJ70

- —Kl (A\/—Tg?> A\;p_%

where we first obtained the result for imaginary x° and
then analytically continued back to the real axis.

Then, using Lorentz invariance and analyticity, we can
obtain the result for 22 < 0, which corresponds to the
equal-time correlator that we calculate in this work. At
large separation, we have

(B12)

—Alz]
2 € ip-x

lim f,(p-z,2?) ochm

|z|— 00

; (B13)

which also exhibits an exponential behavior with decay
constant A. Moreover, the correlation also includes a
phase €”"* which becomes cos(p - x) in the case of the
valence quark distribution. Another important takeaway
is that A is a Lorentz-invariant quantity and should be
independent of the external momentum.
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However, it must be pointed out that the conclusion in
Eq. is based on a rather crude approximation that
f1 and f5 are constant in v - p. In practice, the transition
form factors could have a pole at the mass of a heavy-
light meson created by the current gy*h, or h,q, which
is different from mpy for the intermediate state |H(v)).
As a result, the binding energy A would also be different.
If we take this into account in Eq. , then the result
will exhibit a more complicated asymptotic behavior at
large distance,

e—l_\|m\ ]
T glp - x,cos(p - x),sin(p - x)],

(B14)

lim f,(p-z,2%)

|z|—o0

where the decay constant A should vary among the
different binding energies for the heavy-light mesons,
which is similar to the observation in Ref. [56], and
g is a function that can have both oscillating and
non-oscillating dependence on p-x. For large enough ||,
the exponential decay should suppress the correlation
and make it or its extremes decrease monotonically in
magnitude.

Note that after we match the hybrid scheme matrix
elements to MS, the renormalon ambiguity in the Wilson
line mass, mg/ls, is subtracted out, so the matched re-

sult should exhibit an asymptotic behavior that goes as

e=(A=mi®)lz] gt large z. Therefore, the sign of (A —m}®)
becomes crucial in determining whether it is exponen-
tially decaying or growing.

In QCD sum rule calculations, the result is A = 0.4 —
0.6 GeV from phenomenology, while m} is expected to
be 0.1 — 0.2 GeV [57], so A — m}®® = 0.2 — 0.5 GeV.
Since the quarks have heavier-than-physical masses in
our lattice calculation, one bhould expect a larger A, so
it is very likely that A —m{! still remains positive. After
all, this can be always put to test on the P?* = 0 matrix
MS

elements since A —mg™ is a Lorentz-invariant quantity.

2. Extrapolation and FT

If 2z, is large enough for the correlation h(z) to reach
the asymptotic region, then an extrapolation that en-
codes the exponential decay behavior we derived in
App. should lead to reliable FT for moderate-to-large
. To be more precise, there is a rigorous upper bound
for the uncertainty of FT which decreases with x.

To prove the above statement, let us consider extrap-
olation based on the general model

h(A) = e~ elg(y), (B15)
where g(Az) = h(AL), and ¢ = meg/P* with meg being
the effective mass for the exponential decay. Motivated
by QCD sum rule results, we expect meg ~ 0.2 — 0.5



GeV, which can be larger since we have used heavier-
than-physical quark masses. Therefore, for P* ~ 2.0
GeV in the current work, we should have ¢ ~ 0.10 — 0.25
or higher.

Now let us compare two extrapolations h; and hy with
different g; and go. The difference between the two ex-
trapolations,

(B16)

should satisfy 6h(Az) = 0 and 6k(co) = 0. The difference
in the FT with extrapolation is therefore

5F(x) = /:O BASHA) cos(aN).- (B17)

. T

If we can approximate 6h()\) as a flat curve within one
period of the oscillatory function cos(z\), then the inte-
gral in that region vanishes. This condition can be satis-
fied if |04/ ()| < =, which should be reached very quickly
due to the exponential suppression at large A. For each
z, there should be a minimal integer N, which satisfies
[0R' (AL + N27/x)| < z, so that we can approximate

df(z) as

5 AL+Nm% N
5f(z) ~ /A D iV cos(@r).  (B1S)

I ™

Since dh(Ag) = 0 and 6h(o0) = 0, there must be at
least one extremum of dh(A) for Ay, < A < 0o, so we have
the inequality

AL+Ng 2 d\

i@l [T 2 i) cos(a)

L

. AHEE )
< Nz|5h()\)|max/ — | cos(xA)|
AL ™

_ANG[Sh) I — ANa[B(O\L)]

T T

(B19)

According to our estimate of A — m}™>, ¢ > 0.1 at
P? ~2 GeV, so
e—CNz(Q‘ﬂ')/(L‘ 5 e—O-GNm/LE7 (B20)
and N, ~ O(1) should be sufficient to satisfy |0h’(Az, +
N,2m/z)| < = with 0 < z < 1. Therefore, in Eq.
we demonstrate that there is an upper bound for the
model uncertainty in the FT with exponential extrapo-
lation, which decreases in x. The error is also propor-
tional to |0h(A)|max which can be much smaller than
|h(AL)| that is already close to zero. If h(\p) = 0.1,
16R(\)|max = 0.05, and N, = 1, then we have

0.07

/(@) < =, (B21)

which is less than 0.15 at x = 0.5 and around 15% of
the central value of the qPDF as we obtain below. It is
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worth pointing out that our estimate of the upper bound
in Eq. can be highly overestimated, as dh(A) has
an oscillation from cos(A) and sin(\) which are out of
pace with cos(zA) for 0 < x < 1, and |6A(A)|max could
be much smaller than |A(Ar)| and at a sharp peak within
AL < A< AL +Nx27r/a:.

Therefore, the F'T with exponential extrapolation is
under control for moderate and large . When h(Ap) is
small enough, the model uncertainty from the extrapola-
tion can be controlled to be much smaller than the other
systematic uncertainties which are about 10% — 20% in
this work.

It is worth to compare with the extrapolation error
when the correlation function decreases algebraically as
1/|A|%, which corresponds to the generic model

~ A\ ¢
)= (2] 9. (B22)
Suppose we truncate at A;, = 10, then
AL d
— | ~(1 6N, /z)"¢. B2
(AL+Nx27T/1:> (14+0.6N,/x) (B23)

The power d is related to the small-z behav-
ior of the PDF. If we parameterize the PDF as
~ %1 — z)°, then with LO matching one can derive
that d = min{l + a,1 + b} [27], which is O(1) empiri-
cally. Therefore, it will take N, > 1 for the factor in
Eq. to decrease sufficiently to satisfy the condition
160 (A1, + N,27/x)| < . As a result, the uncertainty
in the FT is of orders of magnitude larger than that of
extrapolation with exponential decay.

To test our claim of controlled FT error with exponen-
tial decay, we choose a particular model

h()\) = h(AL) (“)d e~eA=ALl (B24)

A

Suppose that the extrapolation is done at Az = 10 with
h(Ar) = 0.15, and the parameters ¢ and d are fitted with
errors dc and dd, then we analytically FT the extrapo-

lated result to the z-space, and calculate its error using

~\ 2 ~\ 2
6f(z,e,d) = (‘;ﬁ) 5C2+<g§> 5dz.  (B25)

In Fig. [0} we plot the extrapolation error against z.
We have chosen different central values of the param-
eters ¢ and d and fairly large uncertainties in them.
The parameter d cannot have a large negative value,
otherwise it would make h(\) grow beyond Ay. In most
of the scenarios considered, the error is < 0.1 for > 0.1.
As we shall see below, the actual extrapolation error
is much smaller than this estimate and thus negligible
when compared to the other systematic errors.
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FIG. 9. Estimate of error in the FT with extroplation using

the model in Eq. (B24)).

zr/a
N a=0.04 fm a = 0.06 fm
1 {29, 30,31} N/A
2 {26,27,28} {19, 20,21}
3 {19, 20,21} {16, 17,18}
4 {24, 25,26} {14, 15,16}
5 {21,22,23} {15,16,17}

TABLE II. Choices of z, for the extrapolations.

In the following, we perform the extrapolation with
four different models. The extrapolation is carried out
on each bootstrap sample by a minimal-square fit. For
each P*, we truncate h(z) at the largest z, z~¢, where the
central value of h(z) remains positive, and choose Zmax =
{z>0—2a, z>0 —a, z>0} to estimate the truncation error.
The range of z used to fit the parameters is zyin < 2 <
Zmax Where zpmin satisfies A(zmin) < 0.2. The continuty
condition between data and model was imposed in the
middle point of the fit range, namely z;, which is listed
in Table[[]] The extrapolation models are:

Ezponential decay model, or “model-exp”. The
model for extrapolation is

e—Mett|2]

We have tried to fit meg from the same range of
z for P = 0 matrix elements with a similar form,
Ae~meitl2l /1219, and found that meg is around 0.1 GeV,
about the same scale as the phenomenological estimate.
For the P* # 0 matrix elements, we do not fix meg,
but constrain it with a prior meg > Mmin. 1o test
the dependence on this prior condition, we have set
Mmin = {0,0.1,0.2} GeV. Besides, we also impose A > 0
and d > 0 to ensure that the extrapolated result is posi-
tive and decreases in .

Power-law decay model, or “model-pow”. The model
is defined by setting meg = 0 in model-exp. As the P* —
oo limit of model-exp, model-pow can be used to give a
coarse estimate of the significance of higher-twist effects,
although its FT error is not well under control as we
discussed above. We impose the conditions A,d > 0 so
that the fitted results decrease to zero as A — oc.

12

Two-parameter model with exponential decay, or
“model-2p-exp”. As we can see from Fig. [I} the matrix
elements at A\ ~ 6 — 10 do not show a clear exponen-
tial decay, although they can be fitted by the latter with
x%/d.o.f < 1 due to the large errors. This may indicate
that there is oscillation in B(A) To incorporate such de-
pendence, we ignore the higher-twist contributions and
assume that the qPDF is parameterized as

I'(2+a+b)
T(1+a)l(1+0)
x O(|z[)O(1 — |x]).

fo(w;a,b) = (1 = |])°

(B27)

By doing an inverse F'T into the A-space, the asymptotic
form of hop(A) at large A reads,
T'(1+a)
(i)

a1 +0)

aayer) - B

?lgp(/\) = A Re

Then we multiply hop,(\) with an exponential decay fac-
tor as our model for extrapolation,

hop-exp = hap(A)e Mo (Z70) (B29)

Two-parameter model, or “model-2p”. Again, we
ignore the exponential decay and use hg, as the extrapo-
lation model, which can help us estimate the significance
of higher-twist effects.

In Fig. we compare the FT with different z;, for
extrapolation with model-exp and condition meg > 0.1
GeV. Except for very small x, the results are consistent,
and those at smaller z;, have smaller errors because the
error of the matrix element grows with z. Therefore, for
the rest of our analysis, we simply use the largest z, for
each P~.

In Fig. we show the extrapolations with different
models, which have noticeable differences at A > Ar. In
Fig. we compare the FT with different extrapolation
models as well as with the discrete FT (DFT). As we
can see, the DF'T introduces unphysical oscillation in the
qPDF which is due to the truncation of h(\) at Ar. In
contrast, the extrapolations are free of such oscillation,
and different models yield consistent gPDF's at moderate
and large x, thought they differ significantly at small z.
We notice that the qPDF from model-2p extrapolation
still has slight oscillations despite its agreement with the
others, because the extrapolated result decays too slowly
at A > Ar. As expected, the models with exponential
decay lead to regular qPDFs at x = 0, whereas model-
pow and model-2p give divergent qPDFs as z — 0.

Based on the above results, we use model-exp with
meg > 0.1 GeV for the FT in our following analysis. To
have a coarse estimate of the uncertainties from extrapo-
lation model and higher-twist contributions, we look into
the difference between final PDFs matched from qPDFs
with model-exp and model-pow extrapolations.

Recall that although the hybrid-scheme matrix ele-
ments h(A, Ag, P?) should be RG invariant, they can still
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FIG. 10. FT with different z1, for model-exp extrapolation (with prior meg > 0.1 GeV) of the NNLO-matched fz(/\, As,

at zg = 0.24 fm.
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FIG. 11. Extrapolation with different models for the NNLO-matched I~1(>\, As, P?,p,a). At P® =1.94 GeV, we have added the

comparison with the 2p-exp and 2p models.

depend on p due to the fixed-order Wilson coefficients
used in the matching between lattice and MS schemes.
In Fig. . we compare the qPDFs which are FTs of
h(\, As, P*, i, a) obtained at a = 0.04 fm with CN“© and
CYNLEO - We choose p = 1.0 GeV for OO and uw=20
GeV for OO as the ansatz in Eq. appear to best
describe the lattice matrix elements according to Fig.
at these scales. The results are almost identical to each
other, which shows that the renormalon-inspired model
with fixed-order Wilson coefficient can indeed describe
the data within a specific window of u. At NLO, smaller
u is favored as as(u) is larger so that the renormalon
effects become important at lower orders. In Fig. [14] we
show the p-dependence of the qPDFs from NLO- and
NNLO-matched h()\ As, P# p,a). As one can see, the
results have mild dependence on p which becomes more
significant at lower scales. Therefore, the uncertainty
from scale variation will also be larger in this region.

Appendix C: Perturbative matching

In this section we perform the perturbative matching
to the gPDF. Recall that Eq. @ relates the qPDF to the
PDF,

 d
fv(:wb)Z/_ oo

A2 A2
+ O(( le))w (1- x)lzjazy)

x ~
! <_a %7 |y|)‘5> fv(y3237pz)

(C1)

The matching kernel C can be expanded to O(«y) as

X
C(y PZ’|y| S)

_s(*_ )

e QM (2. )

+a20c® ( |y|)\s> +0(a?).

e (C2)

The inverse matching kernel C~! can obtained by solving
Eo (2 L) o2 s =52 - 1)
T ) S Ty T 0 S = - =
E 2Pz y yb? y

(C3)
order by order in a; [60], and the result is

_ x
C 1(_ Pza|y| S)
:6(5—1)—a0(1)< ypz7|y| S)

+a ﬁc (“"” Pz7|z|)\g) c<1><

-0 (22 s + Ofad).

PZ ’ ‘y| S)
(C4)

It has been shown in Ref. [60] that the inverse match-
ing coefficient satisfies the correct RG and P?-evolution
equations.



a=0.04 fm, P* = 1.45 GeV, u = 2.0 GeV
— DFT

14

— DFT

a=0.04 fm, P* =242 GeV, 1 = 2.0 GeV

h\ a=0.04 fm, P* = 1.94 GeV, i = 2.0 GeV

= — pow 4 — DFT
— exp, meg > 0.2 GeV B: ; — exp, Merr > 0.2 GeV — 2p-exp NSZ s — exp, meg > 0.2 GV
— exp, meg > 0.1 GeV @ — exp, Mer > 0.1 GeV 2p Qq — exp, meg > 0.1 GeV
— exp, Mg > 0 :} 2 — exp, Mey > 0 zi;j 2 — exp, Mg > 0
— pow Y = — pow

~ [ 1

Ok T = = — 0
2
15 20 00 05 10 = 20 00 05 10 1.5 20

€xr

xr

FIG. 12. Comparison of DFT and FT with different extrapolation models for the NNLO-matched iz(/\, As, P* p,a) at zs = 0.24
fm. At P* = 1.94 GeV, we have added the comparison with the 2p-exp and 2p models.
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is a plus function (with “r” denotes the z # y part)
that regulates the singularity at y = x, the convolution
integral in Eq. is convergent and insensitive to the
cutoffs for y — 0, x, co, as long as the qPDF is integrable.
Therefore, we are able to evaluate the integral numeri-
cally within a finite range of y with a target precision.
The numerical integration in Eq. @ is time consum-
ing, especially when we have to perform the matching for
the gPDF on each bootstrap sample. Therefore, to speed
up the matching procedure, we discretize the integral in
Eq. @) and reexpress it as multiplication of a matching
matrix and the qPDF vector. In our implementation, our
integration domain is —2.0 < y < 2.0 discretized with a
step size dy = 0.001. Since the qPDF falls very close to

h(/\,As,PZHLh a‘)'

zero at |y| = 2.0, the corresponding uncertainty is negli-
gible as we have varied the truncation point. Note that
the matching coefficient is a plus function, the step size
0y also serves as a soft cutoff for the singularity near
|z/y| = 1 in the plus functions. To test how well the
matrix multiplication can reproduce the exact numeri-
cal intergration, we compare the NLO corrections to the
gPDF from one bootstrap sample using the two methods
in Fig. With our current step size, the results are
almost indentical for x as small as 0.01.

Moreover, to test the reliability of our inverse matching
coefficient, which is obtained through expansion in a;, we
compare it to direct matrix inversion. To be specific, we
construct a square matching matrix C in « and y with
x,y € [—2,2], which is asymmetric but has dominant
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FIG. 15. Comparison of matrix multiplication to direct nu-

merical integration for the NLO matching correction to one
gPDF sample.

diagonal elements, and then invert it to obtain the inverse
matching matrix C~1. At small o, the matrix C' can be
schematically expressed as

C=T+E€, (C7)

where Z is an identity matrix, whereas £ is O(as), so
that its inverse can be expanded as

Cl'=T-&+&-8E+.... (C8)
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FIG. 16. (a) Comparison of the NLO matching correction

to the qPDF with matrix inversion and the expansion in
Eq. to order n. (b) Comparison of NLO and NNLO
matching corrections to the qPDF from direct matrix inver-
sion and the as-expansion in Eq. .
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In Fig. we first test the convergence of the solution
in Eq. for the NLO matching matrix. By expanding
the solution to order n, we calculate the NLO matching
correction to a qPDF sample, and then compare it to
the result from direct matrix inversion. Since our main
purpose is to compare the two inversion methods, we
increase the step size to dy = 0.01 to reduce the comput-
ing time regardless the accuracy of numerical integration.
We find that by increasing n, the expansion method grad-
ually coverges to direct inversion, as expected. Of course,
in perturbation theory, we should calculate the matching
coefficient to n-loop accuracy for consistency, for a; is
the actual power-counting parameter.

In Fig. [I6D] we compare the NLO and NNLO match-
ing corrections to a qPDF sample using direct matrix
inversion and the as-expansion methods. The results are
basically consistent with each other for almost the entire
range of x € (0,1), except for small deviations. This is
because direct matrix inversion includes all-order terms
in ag, and the deviations reflect the size of higher-order
effects, whose smallness shows that the perturbation se-
ries is convergent. With our current two-loop accuracy,
we adopt the as-expansion method.

2. Perturbative convergence

In Fig. [17] we show the matched results for the PDF
from the qPDF obtained from model-exp extrapola-
tion (with meg > 0.1 GeV) of the NNLO-matched
iz()\, As, P# p,a). As one can see, the NNLO correction
is generally smaller than the NLO correction for mod-
erate z, which indicates good perturbative convergence.
Near the end-point regions, the NLO and NNLO cor-
rections become larger than 50%, which suggests that
higher-order corrections or resummation effects become
important.

To see whether the NNLO matching reduces the un-
certainty from scale variation, we match qPDF's at differ-
ent 1 to the corresponding PDFs, and then use DGLAP
equation to evolve the results to p = 2.0 GeV. We
use NLO matching coefficient and LO DGLAP evolution
kernel for the qPDF obtained from the NLO-matched
h(\, A, P*, pu,a), and NNLO matching coefficient and
NLO DGLAP evolution kernel for the gPDF obtained
from the NNLO-matched h(\, A, P*, u,a). The NLO

DGLAP evolution formula takes the following form,

fU(xa/u’) :fv(.’E,,U,()) (Cg)
as (po)t /1 Y o) (2
—— | P | =) foly,
2 1
s (po)t dy | pvay . 1o 0
+<27T) L M[qu()+2p<§q)®Pq(q)

Bo z
2p@| () 2w, (c10

where t = In(p?/pd), Bo = (11C4 — 2ny)/6, Pq(g) is the
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FIG. 17. Upper row: the PDFs from NLO and NNLO matching corrections are compargd to the qPDF (or LO PDF), which is
obtained from model-exp (with meg > 0.1 GeV) extrapolation of the NNLO-matched h(A, As, P*, u,a). Lower row: the ratio

of NLO and NNLO corrections to the qPDF.
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FIG. 18. Comparison of the PDFs at different p obtained
from the NLO- and NNLO-matched h(\, As, P?, i, a).

LO splitting kernel, and Pq‘(/z(l) is the NLO splitting ker-
nel [77] for the valence quark PDF.

Since there are only a few common p values for the
NLO- and NNLO- matched h(A, A, P, i, a), we choose
@ = 14 and 2.0 GeV for our comparison. In Fig.
we show the scale variation of the PDFs from NLO and
NNLO matching, where only the central values are plot-
ted for our purpose. As one can see, the NNLO match-
ing correction significantly reduces the uncertainty for
z < 0.4 at NLO, while for z 2 0.4 the NNLO uncertainty
band is still about a factor of one half of the NLO case.
Therefore, the NNLO matching does indeed improve the
perturbation theory uncertainty.

Finally, for the NNLO matching we vary p = 2.0 GeV
by a factor of v/2 and 1/\/5, and then use NLO DGLAP
equation to evolve the matched results to u = 2.0 GeV,
whose central vavlues are shown in Fig. As one can
see, there is virtually no difference between choosing
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& 025
=
=
& 0200 4 4= 1.4 GéV,NNLO
0.15 —— 4= 2.0 GeV,NNLO
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0.0 0.2 0.4 0.6 0.8 1.0
z
FIG. 19. Comparison of the PDFs obtained from NNLO

matching of the gPDF's at different © and NLO DGLAP evo-
lution to pu = 2.0 GeV.

I 2.0 and 2.8 GeV as the factorization scale, but
the lower choice of p = 1.4 GeV does introduce larger
uncertainty mainly because as becomes too large. Nev-
ertheless, such uncertainty is still quite small compared
to the other systematics.

3. Dependence on P*, a and extrapolation model

In Fig. 20| we show the P*-dependence of the PDF
with NNLO matching correction. We find that despite
the considerable differences between the qPDF's at P* <
1.45 GeV and those at P* > 1.94 GeV, the matching
corrections bring the final results closer, which shows the
effectiveness of LaMET. Note that the matching drives
the qPDF closer to the smaller = region, so the error
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FIG. 20. The PDF's from NNLO matching of the qPDFs at different P?, which is obtained from model-exp extrapolation of

the NNLO-matched (X, As, P, i1, a).
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FIG. 21. Comparison of the final results from qPDF's obtained by different model extrapolations for the FT.

bands of the PDFs also shrink after matching as they are
contributed from the larger x region. Moreover, we find
that the PDF's start to converge at P* > 1.29 GeV, which
corresponds to a boost factor of ~ 4. As P? increases, the
results becomes smaller as x — 1, which agrees with our
expectation that large momentum suppresses the higher-
twist contributions. It is worth mentioning that both
the P*-dependence and matching correction appear to
be small for « as low as 0.05, which hints that the power
correction and resummation effects are less severe than
our naive estimate through power counting.

In Fig. 2I] we compare the PDFs matched from the
qPDFs with model-exp (with meg > 0.1 GeV) and
model-pow extrapolations. For ¢ = 0.04 fm and P* =
1.94 GeV, we also added comparison to the model-2p-exp
and model-2p extrapolations. Despite the differences be-
tween the qPDFs at small x, the matched results are
almost identical even at the smallest x shown in the plot.
Again, this is the outcome of the PDF receiving contribu-
tions from the qPDF at larger x through matching, which
suggests that the extrapolation error can still be under
control for z as small as ~ 0.01. Note that the result from
model-2p also shows agreement, but it includes slight os-
cillations in the z-space, because the extrapolated h(\)
decays too slowly in the coordinate space. Therefore,
in the region where other systematic errors are under
control, the difference between model-exp and other ex-
trapolations is negligible, and we will use the model-exp
extrapolation to obtain the final results.

Appendix D: Final results

The central value of our final result is obtained from
the qPDF at a = 0.04 fm, zg = 0.24 fm, z;, = 0.92 fm,
@ = 2.0 GeV and P? = 2.42 GeV with exponential ex-
trapolation (meg > 0.1 GeV) and NNLO matching. The
error from variation of the factorization scale is obtained
by repeating the same procedure for ;x = 1.4 and 2.8 GeV
and evolving the matched results to p = 2.0 GeV with
the NLO DGLAP equation, as shown in Fig. where
let the error band cover all the data sets from the three
different factorization scales.

In order to obtain a target precision of 10%, we aim to
control the relative O(a?) matching correction at yu = 2.0
GeV be smaller than 5%. By assuming that the perturba-
tion series grows geometrically, it means that the relative
NLO correction should be less than 3v/5% = 37% and the
relative NNLO correction less than 14%. By comparing
to Fig. [[7] it means that we should exclude the regions
x < 0.03 and = > 0.88.

To estimate the size of the power corrections, we fit the
PDFs obtained at a = 0.04 fm, P* = {1.45,1.94,2.42}
GeV and a = 0.06 fm, P* = {1.72,2.15} GeV to the
ansatz f,(x) + a(z)/P2? for each fixed x, and show the
size of the power correction term in Fig.22] At P* = 2.42
GeV, we find that the absolute value of the power correc-
tion diverges at very small x, as expected, but its relative
size a(x)/[P2 f,(x)] remains finite because the PDF also
diverges. On the contrary, a(z)/[P2 f,(z)] starts to grow
as ¢ — 1. According to our estimate, a(z)/[P?f,(7)] <
0.1 for 0.01 < z < 0.80 and a(z)/[P2f,(z)] < 0.05 for
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PDF obtained from the gPDF at a = 0.04 fm and P* = 2.42
GeV.

0.01 < z < 0.70. According to Fig. 21} the qPDF from
power-law extrapolation leads to almost identical PDF
after the matching correction for x as small as 0.01. Our
explanation is that the matching correction drives the
gPDF to smaller =, so the PDF at a given z receives
contributions from the larger-x region of the qPDF which
has less P* dependence. Although there are logarithms of
w1/ (xP?) in the matching coefficient which become large
at small x, they are always multiplied by the DGLAP
splitting function, which when convoluted with the gPDF
always drives the result to smaller z, thus the perturba-
tive correction remains small even at z = 0.03.

In Fig. we show uncertainty of the PDF,
dfu(z)/ fu(x), where § f,(x) includes both statistical and
scale-variation errors. The uncertainty is < 20% for

18

0.01 < z <€ 0.93, as z = 0.01 is the smallest x that
we show in the plot, and < 10% for 0.08 < x < 0.45.

Therefore, by combining the estimates of power correc-
tion, higher-order perturbative correction, statistical and
scale-variation errors, we determine the PDF at 0.03 <
x < 0.80 with < 20% uncertainty and at 0.08 < = < 0.45
with < 10% uncertainty, which is shown in Fig. [
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