

An orthologous gene coevolution network provides insight into eukaryotic cellular and genomic structure and function

Jacob L. Steenwyk¹, Megan A. Phillips¹, Feng Yang^{2,3}, Swapneeta S. Date¹, Todd R. Graham¹,
Judith Berman², Chris Todd Hittinger⁴, & Antonis Rokas^{1,*}

¹ Vanderbilt University, Department of Biological Sciences, Nashville, TN, United States of America

² Shmunis School of Biomedical and Cancer Research, Tel Aviv University, Ramat Aviv, Israel

³ Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China

⁴ Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Center for Genomic Science Innovation, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, Wisconsin, United States of America

*Correspondence should be addressed to: antonis.rokas@vanderbilt.edu

Running title: Budding yeast genetic coevolution network

125-character teaser: The budding yeast coevolution network captures cellular structure and function in the absence of functional data.

Keywords: Evolutionary rate covariation, DNA replication, DNA repair, genetic network, chromatin remodeler, Golgi transport

25 **Abstract**

26 The evolutionary rates of functionally related genes often covary. We present a gene coevolution
27 network inferred from examining nearly three million orthologous gene pairs from 332 budding
28 yeast species spanning ~400 million years of evolution. Network modules provide insight into
29 cellular and genomic structure and function. Examination of the phenotypic impact of network
30 perturbation using deletion mutant data from the baker's yeast *Saccharomyces cerevisiae*, which
31 were obtained from previously published studies, suggests that fitness in diverse environments is
32 impacted by orthologous gene neighborhood and connectivity. Mapping the network onto the
33 chromosomes of *S. cerevisiae* and *Candida albicans* revealed coevolving orthologous genes are
34 not physically clustered in either species; rather, they are often located on different chromosomes
35 or far apart on the same chromosome. The coevolution network captures the hierarchy of cellular
36 structure and function, provides a roadmap for genotype-to-phenotype discovery, and portrays
37 the genome as a linked ensemble of genes.

38 **Introduction**

39 Genetic networks—diagrams wherein nodes represent genes and edges represent measured
40 functional relationships between nodes—can elucidate how genes are organized into pathways
41 and contribute to cellular functions, shedding light onto the relationship between genotype and
42 phenotype (1–4). Given the rich information contained in or derived from genetic networks,
43 numerous approaches that aim to capture some aspect(s) of functional relationships among genes
44 in a genome (e.g., gene coexpression, genetic interaction) have been developed (5–7). While
45 these networks are highly informative, their availability and applicability is typically limited to
46 select model organisms and single extant species or strains. Application of information from the
47 genetic network of one organism to understand the biology of another requires assuming that the
48 networks of the two organisms are conserved, which is not always the case (8, 9, 18, 10–17).

49

50 One complementary, but poorly studied, method for constructing genetic networks is by
51 measuring the coevolution of orthologous genes, which can be done by calculating the
52 covariation of relative evolutionary rates among orthologous genes (19–22). Briefly, by
53 estimating an orthologous gene’s phylogeny, one infers the rate (and changes in rate) of its
54 evolution across the phylogeny; if the evolutionary rate values estimated for each branch of an
55 orthologous gene’s phylogeny are significantly correlated with those of another gene’s
56 phylogeny, the two orthologs are said to be coevolving. Note, coevolution of orthologous genes
57 is distinct from organismal coevolution in which reciprocal evolutionary changes occur between
58 interacting lineages—for example, insect pollinators impacting flowering plant diversification
59 (23, 24). By estimating coevolution for all pairs of orthologous genes in a clade, one can infer the
60 clade’s orthologous gene coevolution network, where nodes correspond to orthologs and edges
61 correspond to the degree to which two orthologs coevolve (22). Genetic networks based on gene
62 coevolution leverage evolutionary information, whereas standard genetic networks rely on the
63 correlation of functional data such as gene expression or the presence of genetic interactions
64 among genes within a single extant species or strain.

65

66 Orthologous gene coevolution is often observed among genes that share functions, are
67 coexpressed, or whose protein products are subunits in a multimeric protein structure, and can
68 yield insights into the genotype-to-phenotype map (25, 26). For example, screening for genes

69 that have coevolved with genes in known DNA repair pathways across 33 mammals led to the
70 identification of *DDIAS*, whose involvement in DNA repair was subsequently functionally
71 validated (26). Furthermore, among 918 pairs of interacting proteins in the protein structural
72 interactome map, a database of structural domain-domain interactions in the protein data bank
73 (<https://www.rcsb.org/>), four out of five proteins exhibit signatures of gene coevolution (27).
74 Although these and other studies have demonstrated that signatures of coevolution are a
75 powerful method to detect functional associations among genes in the absence of functional data
76 (20, 25, 26, 28–30), the network biology principles of gene coevolution, especially between
77 genes that have coevolved for hundreds of millions of years, remain unexplored.

78

79 To unravel general principles of orthologous gene coevolutionary networks, we constructed the
80 coevolution network of a densely sampled set of orthologs from one-third of known budding
81 yeast species (332 species) that diversified over ~400 million years. The inferred network
82 provides a hierarchical view of cellular function from broad bioprocesses to specific pathways.
83 Interpolation of the gene coevolution network with of fitness assay data from single- and digenic
84 *S. cerevisiae* mutants (1, 2, 31, 32) provides insight into subnetwork- and ortholog-specific
85 potential to buffer genetic perturbations. Surprisingly, comparisons of genetic networks inferred
86 from gene coevolution and genetic interactions yield similar functional insights; for example,
87 hubs of genes tend to be functionally related and gene essentiality impacts gene connectivity
88 wherein essential genes are more densely connected than non-essential genes. Unlike genetic
89 interaction networks, gene coevolution networks can also provide evolutionary insights; for
90 example, mapping the orthologous gene coevolution network onto the chromosomes of two
91 model yeast genomes uncovers extensive inter-chromosomal and long-range intra-chromosomal
92 associations, providing an ‘entangled’ view of the genome across evolutionary timescales. We
93 anticipate these results will facilitate the generation, interpretation, and utility of these networks
94 among other lineages in the tree of life.

95

96 **Results**

97 **A gene coevolution network**

98 We examined 2,898,028 pairs of orthologous genes from a dataset of 2,408 orthologous genes in
99 332 budding yeast species. Broad network properties were stable across a range of thresholds for

100 “significant” orthologous gene coevolution (Fig. S2). To conservatively define “significant”
101 coevolution and therefore examine orthologous gene pairs with only robust signatures of
102 coevolution, we implemented a high correlation coefficient threshold for significant orthologous
103 gene coevolution ($r \geq 0.825$; Pearson correlation among relative evolutionary rates). This
104 resulted in 60,305 significant signatures of orthologous gene coevolution; Fig 1A, 1B, and S1),
105 which were used to construct a network where nodes are orthologous genes and edges connect
106 orthologous genes that are significantly coevolving (Fig. 1C).

107

108 To determine how orthologous gene connectivity varied in the network, we examined patterns of
109 dense and sparse connections for individual orthologous genes. Individual orthologous genes
110 coevolved with a median of eight other orthologous genes, but connectivity varied substantially
111 across the network (Fig. S3). For example, 1,091 orthologous genes have signatures of
112 coevolution with five or fewer other orthologous genes and 601 orthologous genes are
113 singletons, which we define as orthologous genes that are not significantly coevolving with any
114 other orthologous genes in the dataset. In contrast, 420 orthologous genes have signatures of
115 coevolution with 100 or more other orthologous genes, and 21 orthologous genes coevolve with
116 400 or more others.

117

118 Coevolving orthologous genes in the network tend to be functionally related. For example, *PEX1*
119 and *PEX6* are one of the pairs of genes with the highest observed correlation coefficient in
120 evolutionary rates (Fig. S4). In *S. cerevisiae*, the two orthologous genes encode a
121 heterohexameric complex responsible for protein transport across peroxisomal membranes (33)
122 and mutations in either gene can lead to severe peroxisomal disorders in humans (34). Functional
123 enrichment among densely connected orthologous genes revealed that complex bioprocesses that
124 require coordination among polygenic protein products are overrepresented (Fig. S5, Table S1).
125 For example, *CHD1*, *INO80*, and *ARP5*, which encode proteins responsible for chromatin
126 remodelling processes such as nucleosome sliding and spacing (35), are coevolving with 400 or
127 more other orthologous genes (Fig. S5, Table S1). Taken together, these findings highlight that
128 coevolution may be observed among orthologous genes that physically interact (e.g., *PEX1* and
129 *PEX6*) or contribute to highly intricate biological processes (e.g., *INO80*). More broadly, these
130 data support the hypothesis that coevolving orthologous genes tend to have similar functions.

131
132 To determine how connectivity varied within the network, we examined the properties of
133 subnetworks across orthologous genes considered essential and nonessential in the model yeast
134 *S. cerevisiae* or the opportunistic pathogen *C. albicans* (36, 37). Essential genes are densely
135 connected in the orthologous gene coevolutionary network, whereas nonessential genes exhibit
136 sparser connections (Fig. 2A-D). To infer network **orthologous gene** communities—clusters of
137 orthologous genes that have more connections between them than between orthologous genes of
138 different clusters—we used a hierarchical agglomeration algorithm (Fig. 2A). Five large
139 **orthologous gene** communities (clusters of more than 10 orthologous genes) were identified.
140 Each **orthologous gene** community varied in size, **orthologous gene** community-to-**orthologous**
141 **gene** community connectivity, and essential/nonessential orthologous gene composition.
142 Specifically, the two largest orthologous gene communities, communities 1 and 2, share the most
143 connections and belong to a higher-order cluster with the next two largest orthologous gene
144 communities, communities 3 and 4 (Fig. 2E and S6). In contrast, the smallest orthologous gene
145 community, community 5, does not cluster with the other orthologous gene communities.
146 Similarly, essential genes are overrepresented in orthologous gene community 1 but are
147 underrepresented in orthologous gene communities 2, 3, and in smaller communities of 10 or
148 fewer orthologous genes (Fig. 2F; $p < 0.01$ for all tests; Fisher's exact test). The result that *S.*
149 *cerevisiae* and *C. albicans* essential genes are central hubs in coevolution network constructed
150 from orthologous genes that represent 400 million years of budding yeast evolution mirrors **the**
151 **finding that essential genes are central hubs** in the *S. cerevisiae* genetic interaction network (2).
152

153 **From processes to pathways: the budding yeast coevolution network captures the**
154 **hierarchy of cellular function**

155 To gain insight into the functional neighborhoods of the orthologous gene coevolution network,
156 we examined via gene ontology (GO) enrichment analysis (38) the composition of each
157 **orthologous gene** community. Among the highest-order cluster of **orthologous gene** communities
158 (i.e., communities 1 through 4), we found that higher-order cellular processes including nucleic
159 acid metabolism ($p = 0.040$; Fisher's exact test multi-test corrected using false discovery rate
160 correction with Benjamini/Hochberg (FDR-BH)) and cellular anatomical entities ($p = 0.020$;
161 Fisher's exact test multi-test corrected using FDR-BH) are enriched. At the individual

162 **orthologous gene** community level, we found that **orthologous gene** community 1 is enriched in
163 orthologous genes with helicase activity ($p = 0.005$; Fisher's exact test multi-test corrected using
164 FDR-BH), ligase activity ($p = 0.004$; Fisher's exact test multi-test corrected using FDR-BH), and
165 translation initiation factors ($p = 0.024$; Fisher's exact test multi-test corrected using FDR-BH);
166 **orthologous gene** community 2 is enriched in Golgi vesicle transport orthologous genes ($p =$
167 0.009 ; Fisher's exact test multi-test corrected using FDR-BH); whereas singletons are enriched
168 in GTPase activity ($p = 0.016$; Fisher's exact test multi-test corrected using FDR-BH) and
169 peroxiredoxin activity ($p = 0.036$; Fisher's exact test multi-test corrected using FDR-BH) (Fig.
170 2G-I, Table S3).

171
172 Functional neighborhoods of coevolving orthologous genes within and between biological
173 functions as well as cellular compartments and complex categories are also captured by the
174 network. For example, orthologous genes involved in the biological functions of ribosome
175 biogenesis, rRNA processing, and translation, which represent different functional categories, are
176 extensively coevolving with one another (Fig. S7A). This finding suggests that the complexity of
177 protein biosynthesis, a process that requires coordination among diverse biochemical functions,
178 is captured in the coevolution of the underlying orthologous genes. Similarly, orthologous genes
179 involved in nuclear processes or located in the cytoplasm tend to coevolve with orthologous
180 genes in the same cellular compartment, however, substantial signatures of coevolution between
181 orthologous genes from different cellular compartments are also observed (Fig. S7B).

182
183 Finally, our network captures functional neighborhoods of coevolving orthologous genes at the
184 level of pathways and complexes. We found strong signatures of coevolution among orthologous
185 genes from specific pathways and complexes. For example, orthologous genes that encode
186 proteins responsible for DNA replication coevolve with a larger number of other DNA
187 replication orthologous genes than expected by random chance ($p < 0.001$; permutation test)
188 (Fig. S8). Orthologous genes involved in DNA mismatch repair and nucleotide excision repair
189 pathways, which participate in the repair of DNA lesions, have more signatures of coevolution
190 than expected by random chance ($p < 0.001$ for each pathway; permutation test). Orthologous
191 genes in the phosphatidylcholine biosynthesis pathway, which is responsible for the biosynthesis
192 of the major phospholipid in organelle membranes, and orthologous genes in the tricarboxylic

193 acid cycle (also known as the Krebs cycle or citric acid cycle), a key component of aerobic
194 respiration (Fig. S9), also have more signatures of coevolution than expected by random chance
195 ($p < 0.001$ for each pathway; permutation test). Among complexes, orthologous genes that
196 encode the minichromosome maintenance protein complex that functions as a DNA helicase, the
197 DNA polymerase α -primase complex that assembles RNA-DNA primers required for replication,
198 and DNA polymerase ϵ that serves as a leading strand DNA polymerase (Fig. 3) also coevolve
199 with larger numbers of orthologs from the same complex than expected by random chance ($p <$
200 0.001 for each multimeric complex; permutation test). Note, certain gene categories (e.g.,
201 transposons and hexose transporters) are not represented in our dataset of orthologous genes and
202 could not be examined (see *Methods*).

203

204 In summary, these findings reveal that functional aspects of the network can be viewed with
205 varying degrees of specificity. For example, the highest-order insights (i.e., GO enrichment
206 across **orthologous gene** communities 1, 2, 3, and 4) revealed coevolution among cellular
207 anatomical entities whereas greater specificity—such as coevolution among orthologous genes
208 responsible for Golgi vesicle transport—can be obtained by examining lower-order hubs of
209 genes (e.g., GO enrichment in **orthologous gene** community 2). Furthermore, coevolutionary
210 signatures can bridge distinct but related functional categories such as cellular compartments and
211 complexes, highlighting the complex interplay of distinct functional modules over evolutionary
212 time. Thus, the budding yeast coevolution network captures the hierarchy of cellular function
213 from broad bioprocesses to specific pathways or multimeric complexes.

214

215 **The coevolution network constructed from budding yeast orthologous genes is distinct, but**
216 **complementary, to the *S. cerevisiae* genetic interaction network**

217 To determine similarities and differences between our coevolution network inferred from
218 orthologous genes in the budding yeast subphylum and the genetic interaction network inferred
219 from digenic null mutants in the model organism *S. cerevisiae* (1, 31), **both data types were**
220 **integrated into a single supernet (Fig. S10 and S11). In the genetic interaction network,**
221 **nodes represent genes and edges represent non-additive genetic interactions between genes; in**
222 **the supernet, nodes represent genes and edges connect two genes that have a significant**
223 **signature of coevolution, of genetic interaction, or both.** We hypothesize that there will be broad

224 similarities between the networks because they both capture functional associations; however,
225 we also hypothesize that the connectivity of individual nodes between the networks will
226 sometimes differ because one network is built from ~400 million years of orthologous gene
227 coevolution whereas the other from genetic interactions in a single extant species.

228

229 Supporting this hypothesis, the **orthologous gene** community clustering observed in the gene
230 coevolution network was also evident in the supernetwo **and the two networks were found to**
231 **be more similar for all metrics examined (i.e., mean distance and transitivity) than expected by**
232 **random chance (p < 0.001 for both tests; permutation test); however, gene- / ortholog-wise**
233 **connectivity at times differed suggesting each network harbors distinct and complementary**
234 **insights (Fig. S10).** For example, connectivity is similar for the gene / ortholog *CDC6*, which is
235 required for DNA replication (39), between the two networks. Specifically, *CDC6* is connected
236 to 96 genes / orthologs in both networks and 56 of the genes / orthologs are the same. This result
237 suggests that the connectivity of the *CDC6* gene in *S. cerevisiae* is broadly conserved across
238 species from the budding yeast subphylum. In contrast, different gene- / ortholog-wise
239 connectivity was observed for the choline kinase *CKII* (40, 41); *CKII* is coevolving with 87
240 orthologs, has a significant genetic interaction with 10 genes, and seven of these genes /
241 orthologs are shared by both networks. This result suggests that the connectivity of the *CKII*
242 gene observed in *S. cerevisiae* is not broadly conserved across species from the budding yeast
243 subphylum. This difference may be partially explained by the fact that *CKII* has a paralog, *EKII*,
244 which arose from an ancient whole genome duplication event that affected some, but not all,
245 species in the subphylum (42, 43). These results reveal that orthologous gene coevolution
246 networks inferred over macroevolutionary timescales and networks inferred from genetic
247 interactions in single organisms offer complementary insights into functional relationships
248 between genes.

249

250 **Orthologous gene communities differ in capacity to compensate for perturbation**

251 Examinations of gene dispensability in the model budding yeast *S. cerevisiae* and the
252 opportunistic pathogen *Candida albicans* (36, 37) **suggest that single-organism genetic networks**
253 **can buffer single gene losses as evidenced by the ability to maintain organismal viability.** Thus,
254 we sought to determine whether a gene's dispensability varies in an orthologous gene

255 community-dependent manner. To address this, we integrated information from the budding
256 yeast orthologous gene coevolution network and genome-wide single-gene deletion fitness
257 assays (or, in the case of essential genes, expression suppression) of *S. cerevisiae* in 14 diverse
258 environments (32) (Fig. S12 and S13). Here, single-gene deletion fitness assays serve as a proxy
259 for network perturbation in which deletion of a single gene is analogous to removing a node from
260 the network. We found that fitness of *S. cerevisiae* gene knockouts in different environments was
261 significantly dependent on orthologous gene community and the number of coevolving genes per
262 gene (Fig. 4; $p < 0.001$ for both comparisons of an interaction between orthologous gene
263 community:environment interaction and environment:number of coevolving genes, Multi-factor
264 ANOVA). We also observed a significant fixed effect for orthologous gene community and
265 environment ($p < 0.001$, Multi-factor ANOVA). These observations highlight the importance and
266 role of the environment and the architecture of the underlying genetic network when evaluating
267 the consequences of single-gene deletions on organismal fitness.

268

269 To further investigate the relationship between *S. cerevisiae* gene dispensability and structure of
270 the coevolution network, we integrated *S. cerevisiae* genetic interaction data from double-gene or
271 digenic deletion fitness assays, wherein positive and negative genetic interactions refer to
272 positive and negative fitness effects in the digenic deletion mutants relative to those expected
273 from the combined effects of the individual single-gene deletion mutants, respectively (1, 2, 31).
274 We found that most gene pairs were associated with negative genetic interactions (Fig. S14).
275 Furthermore, genetic interactions scores among different orthologous gene community
276 combinations were not significantly different (p -value > 0.05 ; Kruskal-Wallis rank sum test)
277 suggesting digenic losses negatively impacted fitness irrespective of orthologous gene
278 community.

279

280 Finally, to examine evolutionary gene loss in the context of the gene coevolution network, we
281 investigated orthologous gene community-wide patterns of gene losses among genes lost in a
282 lineage of budding yeasts previously reported to have undergone extensive gene losses (44).
283 These analyses revealed orthologous gene community 2 and singleton orthologs are more likely
284 to be lost (Fig. S14B), which supports the hypothesis that gene losses do not occur stochastically

285 (45). In summary, the architecture of the coevolution network is significantly associated with a
286 gene's dispensability.

287

288 **An entangled genome: extensive inter- and long-range intra-chromosomal coevolution**

289 Gene order is not random among eukaryotes and physically linked genes tend to be involved in
290 the same metabolic pathway or protein-protein complex (46, 47). Thus, we hypothesized that
291 coevolving orthologous genes will likely be physically linked or clustered onto yeast
292 chromosomes. To test this hypothesis, we projected the budding yeast gene coevolution network
293 onto the one-dimensional genome structure of *S. cerevisiae* and *C. albicans*, which diverged
294 ~235 million years ago (48). We chose the genomes of these two organisms because they both
295 have complete and high-quality chromosome-level assemblies. The two organisms also have
296 distinct evolutionary histories; the lineage that includes *S. cerevisiae* underwent whole-genome
297 duplication, whereas *C. albicans* underwent intra-species hybridization (42, 49). These processes
298 have contributed to differences in chromosome number (16 in *S. cerevisiae* vs. eight in *C.*
299 *albicans*) and a lack of macrosynteny (50–54) (Fig. 5A-B and Fig. S15-S16).

300

301 Contrary to our hypothesis, we observed extensive inter-chromosomal and long-range intra-
302 chromosomal orthologous gene coevolution (Fig. 5 and Fig. S17-S23). Specifically, co-evolving
303 orthologous gene pairs were commonly located on different chromosomes (Fig. 5C-D and Table
304 S4). There was a near-perfect correlation between the number of intra-chromosomal signatures
305 of coevolution (corrected by the number of genes on that chromosome in the dataset) and the
306 number of inter-chromosomal signatures of coevolution (corrected by the number of genes on all
307 other chromosomes in the dataset) ($r = 0.95$, $p < 0.001$ for *S. cerevisiae*; $r = 0.98$, $p < 0.001$ for
308 *C. albicans*; Spearman correlation). This result suggests that orthologous genes located on the
309 same or different chromosomes are equally likely to be coevolving. Given the extensive
310 coevolution among orthologous genes in the same or similar functional categories, these results
311 support the notion that function, not chromosome structure, is the primary driver of coevolution
312 over macroevolutionary timescales.

313

314 Examination of intra-chromosomal coevolution revealed variation in orthologous gene pair
315 distances along the genome. Two coevolving orthologous genes on the same chromosome can be

316 kilobase-to-megabase distances from one another (Fig. 5G-H). The distribution of the closest
317 distance between an orthologous gene and its coevolving partners revealed a positively skewed
318 distribution with a similar range of kilobase-to-megabase associations (Fig. S23). In *S.*
319 *cerevisiae*, the number of intra-chromosomal signatures of coevolution is correlated with the
320 number of genes on a chromosome represented in the dataset, whereas in *C. albicans* the number
321 of intra-chromosomal signatures of coevolution is correlated both with chromosome length and
322 with the number of genes on a chromosome represented in the dataset (Fig. S24). Examination of
323 the distances between orthologous genes in our dataset and their coevolving partners revealed
324 that long-range intra-chromosomal coevolution was not an artifact of gene sampling (Fig. S24).
325 Investigation of the interplay between orthologous gene coevolution and chromosomal contacts
326 using a three-dimensional model of the *S. cerevisiae* genome (55) revealed signatures of
327 coevolution occur independent of chromosomal contacts (Fig. S26).

328

329 Extensive inter- and intra-chromosomal associations are exemplified by *INO80*, which encodes a
330 chromatin remodeler and has coevolved with 591 orthologous genes on all other chromosomes in
331 both *S. cerevisiae* and *C. albicans* (Fig. 5I-J). To date, few examples of inter-chromosomal
332 associations between loci are known. One example includes concerted copy number variation
333 between 45S and 5S rDNA loci in humans; imbalance in copy number is thought to be associated
334 with disease (56, 57). Our observations suggest extensive inter-chromosomal and long-range
335 intra-chromosomal functional associations may be more common than previously appreciated.

336

337 **Discussion**

338 We constructed a genetic network based on orthologous gene coevolution from a densely
339 sampled set of orthologs across the budding yeast subphylum. These analyses are distinct from
340 genetic interaction- and gene expression-based genetic networks in that they leverage
341 evolutionary, rather than functional, data. Thus, coevolution networks infer functionally
342 conserved relationships among orthologous genes across entire lineages, whereas genetic
343 networks infer functional relationships among genes in a single extant species or strain
344 (irrespective of whether these relationships are conserved in other species or not). Gene
345 coevolution networks are also distinct from networks constructed from correlated presence and
346 absence patterns of orthologs across a lineage (an approach known as phylogenetic profiling (58,

347 59)) in that coevolutionary networks depict relationships among orthologs conserved in the
348 majority of taxa. Examination of the global coevolution network, orthologous gene communities
349 therein, and signatures of orthologous gene coevolution among bioprocesses, complexes, and
350 pathways reveals that the network reflects the hierarchy of cellular function. Moreover, the
351 integration of network-based approaches provides new insights into coevolution among
352 orthologous genes—for example, orthologous genes coevolving with hundreds of other
353 orthologous genes, such as *INO80* (Figure 5I and 5J), are enriched in nucleosome mobilization
354 (Figure S5).

355

356 Comparison of the budding yeast coevolution network to the genetic interaction-based network
357 of *S. cerevisiae* revealed numerous notable similarities and differences. For example, both
358 methods found that gene essentiality significantly impacts connectivity wherein essential genes /
359 orthologous genes are more densely connected than nonessential genes / orthologous genes (Fig.
360 2). This finding suggests that genes with more essential cellular functions are more likely central
361 hubs in the coevolution network (1, 2, 5, 32, 60). Similarities were also observed among genes
362 with broadly conserved functions. For example, the majority of genes / orthologs connected to
363 *CDC6*, a gene required for the fundamental and widely conserved process of DNA replication
364 (39), in the orthologous gene coevolution network and the genetic interaction-based network
365 were the same (1, 31).

366

367 Similarities between genetic interaction and gene coevolution networks were also observed when
368 examining the impact of gene deletion(s) on fitness in diverse environments. For example,
369 integrating fitness data with data from the orthologous gene coevolution network revealed
370 significant interactions between community and environment, environment and the number of
371 coevolving genes, as well as fixed effects of community and environment (Figure 4). These
372 results suggest that phenotype can be affected by genes coevolving with other genes and the
373 environment—a finding that, to our knowledge, represents the first integration of orthologous
374 gene coevolution information and cellular fitness across diverse environments. A similar
375 observation was made in the genetic interaction network wherein phenotype was affected by
376 genes interacting with other genes and the environment, a phenomenon known as differential
377 genetic interaction (32). Taken together with insights discussed in the previous paragraph, these

378 striking similarities suggest that, despite using different data types to infer genetic interaction
379 networks and gene coevolutionary networks (i.e., functional and evolutionary data, respectively),
380 functional associations between genes, even those affected by environmental contexts, can be
381 encoded in their coevolutionary histories; thus, functional insights can be inferred from gene
382 coevolution networks. We find this observation particularly exciting because compared to
383 genetic interaction analysis, which requires generating and phenotyping single and digenic
384 knockouts for all pairwise gene combinations, orthologous gene coevolution analysis is
385 potentially far less challenging technically and requires fewer resources. Notwithstanding these
386 benefits, orthologous gene coevolution analysis does require the availability of well-annotated
387 genome sequences of multiple species and knowledge of orthology relationships of their genes.
388 Nonetheless, in the absence of physical interaction and genetic interaction data, co-evolution
389 networks can provide similar insights into functional relationships among genes.

390

391 In contrast, differences between the two networks are likely driven by the fact that not all parts of
392 the genetic interaction-based network of any single organism are conserved across an entire
393 lineage (8, 9, 18, 10–17). The more distinct the evolutionary histories of genes or pathways of
394 species used to construct an orthologous gene coevolution network, the more divergent the
395 topologies of the genetic interaction-based network of a species in that lineage will be from the
396 coevolution network of the entire lineage. For example, *CKII*, a choline kinase, gene
397 connectivity substantially differed in the two networks. This may be in part driven by an ancient
398 whole genome duplication event and retention of the duplicate gene copy in some, but not all,
399 budding yeast species (42, 43). Taken together, these results indicate that similarities and
400 differences between networks inferred using orthologous gene coevolution from a lineage and
401 networks inferred based on genetic interactions from a single organism are driven by divergence
402 in individual organisms' genetic networks; thus, these methods offer distinct insights into
403 functional associations among genes.

404

405 Another difference between the two networks is that the budding yeast coevolution network
406 offers novel evolutionary insights, which cannot be inferred from genetic interaction networks in
407 a single species. For example, hubs of genes do not only represent functionally related genes but
408 also genes whose function has been maintained across long evolutionary timescales.

409 Furthermore, interpolation of the gene coevolution network and one-dimensional and three-
410 dimensional chromosome structure offers novel insights into the interplay of chromosome
411 structure and coevolution. Despite there being few known examples of inter-chromosomal gene
412 associations (56), we find extensive signatures of inter- and long-range intra-chromosomal
413 coevolution (Fig. 5, S21-S22), which suggests that gene function, not location, drives
414 orthologous gene coevolution over macroevolutionary timescales. These results uncover a
415 previously underappreciated degree of genome-wide coevolution that has been maintained over
416 millions of years of budding yeast evolution, suggesting that the evolution and function of
417 eukaryotic genomes is best viewed as extensively linked ensembles of genes.

418

419 The analyses presented herein enabled us to synthesize information from orthologous gene
420 coevolution, genetic interactions, and cellular fitness among digenic knockout strains in a diverse
421 panel of environments. Importantly, this data-rich case study of orthologous gene coevolution
422 can be thought of as a proof-of-principle report that sets the stage for numerous exciting research
423 opportunities and questions—such as comparisons of orthologous gene coevolutionary networks
424 between lineages that exhibit key evolutionary differences. For example, in budding yeasts, such
425 comparisons of orthologous gene coevolutionary networks could be performed for lineages that
426 differ in their evolutionary rates (44), levels of horizontally acquired genes (48, 61, 62), genetic
427 code (63, 64), whole-genome duplication (43), or ecological niche (65). This approach may also
428 be particularly powerful in lineages where genetically tractable models have yet to be established
429 or in emerging model organisms that are ripe for functional examination.

430

431 In summary, we highlight complementary and novel insights that can be inferred using
432 coevolutionary networks compared to other methods to infer genetic networks. Insights and
433 methods used herein will facilitate the generation, interpretation, and utility of these networks for
434 other lineages in the tree of life.

435 **Methods**

436 **Inferring gene coevolution**

437 To infer gene coevolution across ~400 million years of budding yeast evolution, we first
438 obtained 2,408 orthologous sets of genes (hereafter referred to OGs) from 332 species (48).
439 These 2,408 orthologous genes are from diverse GO bioprocesses but are underrepresented for
440 gene functions known to be present in multiple copies, such as transposons and hexose
441 transporters (Table S5). Thus, we conclude that the 2,408 orthologous sets of genes span a broad
442 range of cellular and molecular functions. Examination of over and underrepresentation of genes
443 from the various chromosomes of *S. cerevisiae* and *C. albicans* revealed no chromosome was
444 over or underrepresented in the 2,408 orthologs (Table S6), suggesting each chromosome is
445 equally represented in our dataset.

446

447 Next, we calculated covariation of relative evolutionary rates of all 2,898,028 pairs from the
448 2,408 orthologous sets of genes. To do so, we developed the CovER (Covarying Evolutionary
449 Rates) pipeline for high-throughput genome-scale analyses of orthologous gene covariation
450 based on the mirror tree principle (Fig. 1). The mirror tree principle is conceptually similar to
451 phylogenetic profiling—wherein correlations in gene presence/absence patterns across a
452 phylogeny are used to identify functionally related genes (66)—but instead uses correlations in
453 orthologous genes' relative evolutionary rates (20, 67, 68).

454

455 To implement the CovER pipeline, single gene trees constrained to the species topology were
456 first inferred using IQ-TREE, v1.6.11 (69) (Fig. 1). Thereafter, all pairwise combinations of gene
457 trees were examined for significant signatures of coevolution (Fig. 1B). Differences in taxon
458 occupancy between gene trees are accounted for by pruning both phylogenies to the set of
459 maximally shared taxa. To mitigate the influence of factors that can lead to high false positive
460 rates, such as time since speciation and mutation rate, and increase the statistical power of
461 calculating gene coevolution, branch lengths were transformed into relative rates by correcting
462 the gene tree branch length by the corresponding branch length in the species phylogeny (19, 20,
463 70). Single data point outliers (defined as having corrected branch lengths greater than five) are
464 known to cause false positive correlations and were removed (20). Branch lengths were then Z-
465 transformed and a Pearson correlation coefficient was calculated for each pair of orthologs. The

466 CovER algorithm has been integrated into PhyKIT, a UNIX toolkit for phylogenomic analysis
467 (22).

468

469 **Network construction**

470 Complex interactions between orthologous gene pairs were further examined using a network
471 wherein nodes represent orthologs and edges connect orthologs that are coevolving. Following
472 our previous work (22), we considered orthologous gene pairs with a covariation coefficient of
473 0.825 or greater to have a significant signature of coevolution. This threshold resulted in 60,305 /
474 2,898,026 (2.08%) significant signatures of coevolution (Fig. S1). To explore the impact of our
475 choice of a covariation coefficient threshold, we examined two measures that describe how
476 densely the network is connected: edge density (the proportion of present edges out of all
477 possible edges) and transitivity (ratio of triangles that are connected to triples); as well as two
478 measures that describe how diffuse the network is: mean distance (average path length among
479 pairs of nodes) and diameter (the longest geodesic distance). Across a wide range of thresholds
480 of significant orthologous gene coevolution (Pearson correlation coefficient range of [0.600-
481 0.900] with a step of 0.005), we found that the choice of threshold had little impact on network
482 structure (Fig. S2).

483

484 Network substructure is commonly referred to as **orthologous gene** community structure and
485 describes a set of orthologs that are more densely connected with each other but more sparsely
486 connected with other sets (or **orthologous gene** communities) of orthologs. To identify the
487 **orthologous gene** community structure of our global orthologous gene coevolution network, a
488 hierarchical agglomeration algorithm that conducts greedy optimization of modularity was
489 implemented (71).

490

491 To determine if the orthologous gene coevolutionary network and genetic interaction network
492 were more similar than expected by random chance, we conducted a permutation test. To do so,
493 we generated a null expectation of similarity between the orthologous gene coevolutionary
494 network and 10,000 random networks. Random networks were generated by shuffling the edges
495 of the genetic interaction network. In this way, the edge density (the ratio of the number of edges
496 and the number of possible edges) is the same between the randomly generated network and the

497 genetic interaction network. This is a more conservative than a completely random (null)
498 network that also alters edge density. Next, we took the absolute values of the differences
499 between the descriptive statistics of the orthologous coevolutionary network and the 10,000
500 random networks to generate the null distribution. The absolute difference between the
501 descriptive statistics of the orthologous coevolutionary network and the observed genetic
502 interaction network were then examined along the null distribution to determine a p-value.
503

504 **Enrichment analysis**

505 To determine functional category enrichment among sets of orthologs, gene ontology (GO)
506 enrichment analysis was conducted. To do so, a background set of GO annotations were curated
507 from the 2,408 orthologous genes (48). Specifically, for an orthologous group of genes, GO
508 associations were mapped from the representative gene from *S. cerevisiae* (72). If an *S.*
509 *cerevisiae* gene was not present, the annotation from the representative gene from *C. albicans*
510 was chosen (73). When neither species was represented in an orthologous group, we considered
511 the function of the orthologous group to be uncertain and did not assign a GO term. Significance
512 in functional enrichment was assessed using a Fischer's exact test with Benjamini Hochberg
513 multi-test correction ($\alpha = 0.05$) using goatools, v1.0.11 (74). GO annotations were obtained from
514 the Gene Ontology Consortium (<http://geneontology.org/>; release date: 2020-10-09). Higher-
515 order summaries of GO term lists were constructed using GO slim annotations and REVIGO
516 (75). Over and underrepresentation of essential genes across orthologous gene communities and
517 genes on the various chromosomes were examined using the same approach in R, v4.0.2
518 (<https://cran.r-project.org/>).
519

520 **Pathway analysis**

521 To examine coevolution between genes in pathways, we first determined the genes belonging to
522 pathways of interest. To do so, we leveraged pathway information in the KEGG database (76)
523 and the *Saccharomyces* Genome Database (SGD; <https://www.yeastgenome.org/>). To determine
524 if there are more signatures of coevolution within a pathway than expected by random chance,
525 we conducted permutation tests. The null distribution was generated by randomly shuffling
526 coevolution coefficients across all ~3 million orthologous gene pairs 10,000 times and then

527 determining the number of coevolving pairs among the pairs of the pathway of interest for each
528 iteration.

529

530 **Integrating gene loss information**

531 To estimate the impact of network perturbation, fitness of single-gene deletions and genetic
532 interaction scores inferred from digenic deletions from were combined with information from the
533 orthologous gene coevolution network (1, 2, 31, 32). For example, the relationship between
534 gene-/ortholog-wise community, connectivity, and fitness in diverse environments was
535 evaluated. To determine if genes / orthologs were equally likely to be lost across orthologous
536 gene communities, we examined patterns of gene losses in *Hanseniaspora* spp., which have
537 undergone extensive gene loss compared to other budding yeasts (44).

538

539 **Projecting the network onto genome structure and organization**

540 To gain insight into the relationship between genome structure and the orthologous gene
541 coevolution network, we projected the network onto the complete chromosome genome
542 assemblies of *S. cerevisiae* and *C. albicans* (72, 73, 77, 78). Prior to mapping the network onto
543 the genome assemblies, we investigated genome-wide synteny using orthology information from
544 the Candida Gene Order Brower (50). Thereafter, the network was projected onto each genome
545 assembly using Circos, v0.69 (79). Examination of the distance between coevolving orthologous
546 genes and chromosomal contacts was conducted using a three-dimensional model of the *S.*
547 *cerevisiae* genome (55).

548

549 **Funding**

550 JLS and AR were supported by the Howard Hughes Medical Institute through the James H.
551 Gilliam Fellowships for Advanced Study program. TRG was supported by NIH
552 (1R01GM118452). MAP was partially supported by the Vanderbilt Undergraduate Summer
553 Research Program and the Goldberg Family Immersion Fund. AR's laboratory received
554 additional support from the Burroughs Wellcome Fund, the National Science Foundation (DEB-
555 1442113 and DEB-2110404), and the National Institutes of Health/National Institute of Allergy
556 and Infectious Diseases (R56 AI146096 and R01 AI153356). This material is based upon work
557 supported by the National Science Foundation under Grant No. DEB-1442148, in part by the

558 DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-SC0018409),
559 and the USDA National Institute of Food and Agriculture (Hatch Project 1020204). C.T.H. is a
560 Pew Scholar in the Biomedical Sciences and an H. I. Romnes Faculty Fellow, supported by the
561 Pew Charitable Trusts and Office of the Vice Chancellor for Research and Graduate Education
562 with funding from the Wisconsin Alumni Research Foundation, respectively. JB was supported
563 by the European Research Foundation Synergy Fungal Tolerance 951475.

564

565 **Data Availability**

566 To facilitate other researchers to explore the gene coevolution information, we created a web
567 application, *the budding yeast coevolution network*
568 (https://github.com/JLSteenwyk/budding_yeast_coevolution_network), written in the R
569 programming language (<https://cran.r-project.org/>). All other supplementary information
570 including single gene phylogenies used to examine coevolution and Pearson covariation
571 coefficients among relative evolutionary rates for all pairwise combinations of orthologous
572 groups of genes will be available on figshare upon publication (doi:
573 10.6084/m9.figshare.14501964). All data needed to evaluate the conclusions in the paper are
574 present in the paper and/or the Supplementary Materials.

575

576 **Competing Interests**

577 AR is a scientific consultant for LifeMine Therapeutics, Inc. JLS is a scientific consultant for
578 Latch AI, Inc. The authors declare no other competing interests.

579

580 **Author Contributions**

581 JLS and AR designed the research; JLS, MAP, FY, and SSD performed analyses; JLS prepared
582 the figures with input from JB and AR; JLS and AR wrote the paper; all authors contributed to
583 the interpretation of the results and provided comments and input on the figures and manuscript.

584

585 **References**

586 1. M. Costanzo, A. Baryshnikova, J. Bellay, Y. Kim, E. D. Spear, C. S. Sevier, H. Ding, J. L.
587 Y. Koh, K. Toufighi, S. Mostafavi, J. Prinz, R. P. St. Onge, B. VanderSluis, T.
588 Makhnevych, F. J. Vizeacoumar, S. Alizadeh, S. Bahr, R. L. Brost, Y. Chen, M. Cokol, R.
589 Deshpande, Z. Li, Z.-Y. Lin, W. Liang, M. Marback, J. Paw, B.-J. San Luis, E. Shuteriqi,
590 A. H. Y. Tong, N. van Dyk, I. M. Wallace, J. A. Whitney, M. T. Weirauch, G. Zhong, H.
591 Zhu, W. A. Houry, M. Brudno, S. Ragibizadeh, B. Papp, C. Pal, F. P. Roth, G. Giaever, C.
592 Nislow, O. G. Troyanskaya, H. Bussey, G. D. Bader, A.-C. Gingras, Q. D. Morris, P. M.
593 Kim, C. A. Kaiser, C. L. Myers, B. J. Andrews, C. Boone, The Genetic Landscape of a
594 Cell. *Science* (80-). **327**, 425–431 (2010).

595 2. M. Costanzo, B. VanderSluis, E. N. Koch, A. Baryshnikova, C. Pons, G. Tan, W. Wang,
596 M. Usaj, J. Hanchard, S. D. Lee, V. Pelechano, E. B. Styles, M. Billmann, J. van
597 Leeuwen, N. van Dyk, Z.-Y. Lin, E. Kuzmin, J. Nelson, J. S. Piotrowski, T. Srikumar, S.
598 Bahr, Y. Chen, R. Deshpande, C. F. Kurat, S. C. Li, Z. Li, M. M. Usaj, H. Okada, N.
599 Pascoe, B.-J. San Luis, S. Sharifpoor, E. Shuteriqi, S. W. Simpkins, J. Snider, H. G.
600 Suresh, Y. Tan, H. Zhu, N. Malod-Dognin, V. Janjic, N. Przulj, O. G. Troyanskaya, I.
601 Stagljar, T. Xia, Y. Ohya, A.-C. Gingras, B. Raught, M. Boutros, L. M. Steinmetz, C. L.
602 Moore, A. P. Rosebrock, A. A. Caudy, C. L. Myers, B. Andrews, C. Boone, A global
603 genetic interaction network maps a wiring diagram of cellular function. *Science* (80-).
604 **353**, aaf1420–aaf1420 (2016).

605 3. E. Kuzmin, B. VanderSluis, W. Wang, G. Tan, R. Deshpande, Y. Chen, M. Usaj, A.
606 Balint, M. Mattiazzi Usaj, J. van Leeuwen, E. N. Koch, C. Pons, A. J. Dagilis, M.
607 Pryszlak, J. Z. Y. Wang, J. Hanchard, M. Riggi, K. Xu, H. Heydari, B.-J. San Luis, E.
608 Shuteriqi, H. Zhu, N. Van Dyk, S. Sharifpoor, M. Costanzo, R. Loewith, A. Caudy, D.
609 Bolnick, G. W. Brown, B. J. Andrews, C. Boone, C. L. Myers, Systematic analysis of
610 complex genetic interactions. *Science* (80-). **360**, eaao1729 (2018).

611 4. M. Costanzo, E. Kuzmin, J. van Leeuwen, B. Mair, J. Moffat, C. Boone, B. Andrews,
612 Global Genetic Networks and the Genotype-to-Phenotype Relationship. *Cell*. **177**, 85–100
613 (2019).

614 5. J. H. Wisecaver, A. T. Borowsky, V. Tzin, G. Jander, D. J. Kliebenstein, A. Rokas, A
615 Global Coexpression Network Approach for Connecting Genes to Specialized Metabolic

616 Pathways in Plants. *Plant Cell.* **29**, 944–959 (2017).

617 6. A. Baryshnikova, M. Costanzo, C. L. Myers, B. Andrews, C. Boone, Genetic Interaction
618 Networks: Toward an Understanding of Heritability. *Annu. Rev. Genomics Hum. Genet.*
619 **14**, 111–133 (2013).

620 7. T. R. Lezon, J. R. Banavar, M. Cieplak, A. Maritan, N. V. Fedoroff, Using the principle of
621 entropy maximization to infer genetic interaction networks from gene expression patterns.
622 *Proc. Natl. Acad. Sci.* **103**, 19033–19038 (2006).

623 8. A. H. Y. Tong, M. Evangelista, A. B. Parsons, H. Xu, G. D. Bader, N. Pagé, M. Robinson,
624 S. Raghlibizadeh, C. W. V. Hogue, H. Bussey, B. Andrews, M. Tyers, C. Boone,
625 Systematic Genetic Analysis with Ordered Arrays of Yeast Deletion Mutants. *Science (80-
626 .)* **294**, 2364–2368 (2001).

627 9. B. Boucher, S. Jenna, Genetic interaction networks: better understand to better predict.
628 *Front. Genet.* **4** (2013), doi:10.3389/fgene.2013.00290.

629 10. R. P. S. Onge, R. Mani, J. Oh, M. Proctor, E. Fung, R. W. Davis, C. Nislow, F. P. Roth,
630 G. Giaever, Systematic pathway analysis using high-resolution fitness profiling of
631 combinatorial gene deletions. *Nat. Genet.* **39**, 199–206 (2007).

632 11. R. Mani, R. P. St.Onge, J. L. Hartman, G. Giaever, F. P. Roth, Defining genetic
633 interaction. *Proc. Natl. Acad. Sci.* **105**, 3461–3466 (2008).

634 12. B. Lehner, Molecular mechanisms of epistasis within and between genes. *Trends Genet.*
635 **27**, 323–331 (2011).

636 13. X. Pan, D. S. Yuan, D. Xiang, X. Wang, S. Sookhai-Mahadeo, J. S. Bader, P. Hieter, F.
637 Spencer, J. D. Boeke, A Robust Toolkit for Functional Profiling of the Yeast Genome.
638 *Mol. Cell.* **16**, 487–496 (2004).

639 14. S. J. Dixon, Y. Fedyshyn, J. L. Y. Koh, T. S. K. Prasad, C. Chahwan, G. Chua, K.
640 Toufighi, A. Baryshnikova, J. Hayles, K.-L. Hoe, D.-U. Kim, H.-O. Park, C. L. Myers, A.
641 Pandey, D. Durocher, B. J. Andrews, C. Boone, Significant conservation of synthetic
642 lethal genetic interaction networks between distantly related eukaryotes. *Proc. Natl. Acad.
643 Sci.* **105**, 16653–16658 (2008).

644 15. T. R. Sorrells, A. D. Johnson, Making Sense of Transcription Networks. *Cell.* **161**, 714–
645 723 (2015).

646 16. A. L. Lind, J. H. Wisecaver, T. D. Smith, X. Feng, A. M. Calvo, A. Rokas, Examining the

647 evolution of the regulatory circuit controlling secondary metabolism and development in
648 the fungal genus *Aspergillus*. *PLoS Genet.* **11**, e1005096 (2015).

649 17. B. Yang, P. J. Wittkopp, Structure of the Transcriptional Regulatory Network Correlates
650 with Regulatory Divergence in *Drosophila*. *Mol. Biol. Evol.* **34**, 1352–1362 (2017).

651 18. G. Monaco, S. van Dam, J. L. Casal Novo Ribeiro, A. Larbi, J. P. de Magalhães, A
652 comparison of human and mouse gene co-expression networks reveals conservation and
653 divergence at the tissue, pathway and disease levels. *BMC Evol. Biol.* **15**, 259 (2015).

654 19. T. Sato, Y. Yamanishi, M. Kanehisa, H. Toh, The inference of protein-protein interactions
655 by co-evolutionary analysis is improved by excluding the information about the
656 phylogenetic relationships. *Bioinformatics* **21**, 3482–3489 (2005).

657 20. N. L. Clark, E. Alani, C. F. Aquadro, Evolutionary rate covariation reveals shared
658 functionality and coexpression of genes. *Genome Res.* **22**, 714–720 (2012).

659 21. C.-S. Goh, A. A. Bogan, M. Joachimiak, D. Walther, F. E. Cohen, Co-evolution of
660 proteins with their interaction partners 1 1Edited by B. Honig. *J. Mol. Biol.* **299**, 283–293
661 (2000).

662 22. J. L. Steenwyk, T. J. Buida, A. L. Labella, Y. Li, X.-X. Shen, A. Rokas, PhyKIT: a
663 broadly applicable UNIX shell toolkit for processing and analyzing phylogenomic data.
664 *Bioinformatics* (2021), doi:10.1093/bioinformatics/btab096.

665 23. M. Medina, D. M. Baker, D. A. Baltrus, G. M. Bennett, U. Cardini, A. M. S. Correa, S. M.
666 Degnan, G. Christa, E. Kim, J. Li, D. R. Nash, E. Marzinelli, M. Nishiguchi, C. Prada, M.
667 S. Roth, M. Saha, C. I. Smith, K. R. Theis, J. Zaneveld, Grand Challenges in Coevolution.
668 *Front. Ecol. Evol.* **9** (2022), doi:10.3389/fevo.2021.618251.

669 24. K. M. Kay, R. D. Sargent, The Role of Animal Pollination in Plant Speciation: Integrating
670 Ecology, Geography, and Genetics. *Annu. Rev. Ecol. Evol. Syst.* **40**, 637–656 (2009).

671 25. G. D. Findlay, J. L. Sitnik, W. Wang, C. F. Aquadro, N. L. Clark, M. F. Wolfner,
672 Evolutionary Rate Covariation Identifies New Members of a Protein Network Required
673 for *Drosophila melanogaster* Female Post-Mating Responses. *PLoS Genet.* **10**, e1004108
674 (2014).

675 26. G. J. Brunette, M. A. Jamalruddin, R. A. Baldock, N. L. Clark, K. A. Bernstein,
676 Evolution-based screening enables genome-wide prioritization and discovery of DNA
677 repair genes. *Proc. Natl. Acad. Sci.* **116**, 19593–19599 (2019).

678 27. W. K. Kim, D. M. Bolser, J. H. Park, Large-scale co-evolution analysis of protein
679 structural interologues using the global protein structural interactome map (PSIMAP).
680 *Bioinformatics*. **20**, 1138–1150 (2004).

681 28. D. M. Talsness, K. G. Owings, E. Coelho, G. Mercenne, J. M. Pleinis, R. Partha, K. A.
682 Hope, A. R. Zuberi, N. L. Clark, C. M. Lutz, A. R. Rodan, C. Y. Chow, A Drosophila
683 screen identifies NKCC1 as a modifier of NGLY1 deficiency. *Elife*. **9** (2020),
684 doi:10.7554/eLife.57831.

685 29. J.-W. Huang, A. Acharya, A. Taglialatela, T. S. Nambiar, R. Cuella-Martin, G. Leuzzi, S.
686 B. Hayward, S. A. Joseph, G. J. Brunette, R. Anand, R. K. Soni, N. L. Clark, K. A.
687 Bernstein, P. Cejka, A. Ciccia, MCM8IP activates the MCM8-9 helicase to promote DNA
688 synthesis and homologous recombination upon DNA damage. *Nat. Commun.* **11**, 2948
689 (2020).

690 30. Q. Raza, J. Y. Choi, Y. Li, R. M. O'Dowd, S. C. Watkins, M. Chikina, Y. Hong, N. L.
691 Clark, A. V. Kwiatkowski, Evolutionary rate covariation analysis of E-cadherin identifies
692 Raskol as a regulator of cell adhesion and actin dynamics in Drosophila. *PLOS Genet.* **15**,
693 e1007720 (2019).

694 31. M. Usaj, Y. Tan, W. Wang, B. VanderSluis, A. Zou, C. L. Myers, M. Costanzo, B.
695 Andrews, C. Boone, TheCellMap.org: A Web-Accessible Database for Visualizing and
696 Mining the Global Yeast Genetic Interaction Network. *G3: Genes|Genomes|Genetics*. **7**, 1539–1549 (2017).

697 32. M. Costanzo, J. Hou, V. Messier, J. Nelson, M. Rahman, B. VanderSluis, W. Wang, C.
698 Pons, C. Ross, M. Ušaj, B.-J. San Luis, E. Shuteriqi, E. N. Koch, P. Aloy, C. L. Myers, C.
699 Boone, B. Andrews, Environmental robustness of the global yeast genetic interaction
700 network. *Science (80-.).* **372**, eabf8424 (2021).

701 33. S. Ciniawsky, I. Grimm, D. Saffian, W. Girzalsky, R. Erdmann, P. Wendler, Molecular
702 snapshots of the Pex1/6 AAA+ complex in action. *Nat. Commun.* **6**, 7331 (2015).

703 34. B. E. Reuber, E. Germain-Lee, C. S. Collins, J. C. Morrell, R. Ameritunga, H. W. Moser,
704 D. Valle, S. J. Gould, Mutations in PEX1 are the most common cause of peroxisome
705 biogenesis disorders. *Nat. Genet.* **17**, 445–448 (1997).

706 35. R. Ayala, O. Willhoft, R. J. Aramayo, M. Wilkinson, E. A. McCormack, L. Ocloo, D. B.
707 Wigley, X. Zhang, Structure and regulation of the human INO80–nucleosome complex.

709 *Nature*. **556**, 391–395 (2018).

710 36. E. S. Segal, V. Gritsenko, A. Levitan, B. Yadav, N. Dror, J. L. Steenwyk, Y. Silberberg,
711 K. Mielich, A. Rokas, N. A. R. Gow, R. Kunze, R. Sharan, J. Berman, Gene Essentiality
712 Analyzed by In Vivo Transposon Mutagenesis and Machine Learning in a Stable Haploid
713 Isolate of *Candida albicans*. *MBio*. **9** (2018), doi:10.1128/mBio.02048-18.

714 37. E. A. Winzeler, D. D. Shoemaker, A. Astromoff, H. Liang, K. Anderson, B. Andre, R.
715 Bangham, R. Benito, J. D. Boeke, H. Bussey, A. M. Chu, C. Connelly, K. Davis, F.
716 Dietrich, S. W. Dow, M. El Bakkoury, F. Foury, S. H. Friend, E. Gentalen, G. Giaever, J.
717 H. Hegemann, T. Jones, M. Laub, H. Liao, N. Liebundguth, D. J. Lockhart, A. Lucau-
718 Danila, M. Lussier, N. M'Rabet, P. Menard, M. Mittmann, C. Pai, C. Rebischung, J. L.
719 Revuelta, L. Riles, C. J. Roberts, P. Ross-MacDonald, B. Scherens, M. Snyder, S.
720 Sookhai-Mahadeo, R. K. Storms, S. Veronneau, M. Voet, G. Volckaert, T. R. Ward, R.
721 Wysocki, G. S. Yen, K. X. Yu, K. Zimmermann, P. Philippse, M. Johnston, R. W. Davis,
722 Functional characterization of the *S-cerevisiae* genome by gene deletion and parallel
723 analysis. *Science* (80-.). **285**, 901–906 (1999).

724 38. GeneOntologyConsortium, The Gene Ontology (GO) database and informatics resource.
725 *Nucleic Acids Res.* **32**, 258D – 261 (2004).

726 39. L. H. Hartwell, J. Culotti, B. Reid, Genetic control of the cell-division cycle in yeast. I.
727 Detection of mutants. *Proc. Natl. Acad. Sci. U. S. A.* **66**, 352–9 (1970).

728 40. K. Hosaka, T. Kodaki, S. Yamashita, Cloning and characterization of the yeast CKI gene
729 encoding choline kinase and its expression in *Escherichia coli*. *J. Biol. Chem.* **264**, 2053–9
730 (1989).

731 41. K. Kim, K. H. Kim, M. K. Storey, D. R. Voelker, G. M. Carman, Isolation and
732 characterization of the *Saccharomyces cerevisiae* EKI1 gene encoding ethanolamine
733 kinase. *J. Biol. Chem.* **274**, 14857–66 (1999).

734 42. M. Marcet-Houben, T. Gabaldón, Beyond the Whole-Genome Duplication: Phylogenetic
735 Evidence for an Ancient Interspecies Hybridization in the Baker's Yeast Lineage. *PLOS*
736 *Biol.* **13**, e1002220 (2015).

737 43. K. H. Wolfe, Origin of the Yeast Whole-Genome Duplication. *PLOS Biol.* **13**, e1002221
738 (2015).

739 44. J. L. Steenwyk, D. A. Opulente, J. Kominek, X.-X. Shen, X. Zhou, A. L. Labella, N. P.

740 Bradley, B. F. Eichman, N. Čadež, D. Libkind, J. DeVirgilio, A. B. Hulfachor, C. P.
741 Kurtzman, C. T. Hittinger, A. Rokas, Extensive loss of cell-cycle and DNA repair genes in
742 an ancient lineage of bipolar budding yeasts. *PLOS Biol.* **17**, e3000255 (2019).

743 45. R. Albalat, C. Cañestro, Evolution by gene loss. *Nat. Rev. Genet.* **17**, 379–391 (2016).

744 46. L. D. Hurst, C. Pál, M. J. Lercher, The evolutionary dynamics of eukaryotic gene order.
745 *Nat. Rev. Genet.* **5**, 299–310 (2004).

746 47. A. Rokas, J. H. Wisecaver, A. L. Lind, The birth, evolution and death of metabolic gene
747 clusters in fungi. *Nat. Rev. Microbiol.* (2018), doi:10.1038/s41579-018-0075-3.

748 48. X.-X. Shen, D. A. Opulente, J. Kominek, X. Zhou, J. L. Steenwyk, K. V. Buh, M. A. B.
749 Haase, J. H. Wisecaver, M. Wang, D. T. Doering, J. T. Boudouris, R. M. Schneider, Q. K.
750 Langdon, M. Ohkuma, R. Endoh, M. Takashima, R. Manabe, N. Čadež, D. Libkind, C. A.
751 Rosa, J. DeVirgilio, A. B. Hulfachor, M. Groenewald, C. P. Kurtzman, C. T. Hittinger, A.
752 Rokas, Tempo and Mode of Genome Evolution in the Budding Yeast Subphylum. *Cell.*
753 **175**, 1533-1545.e20 (2018).

754 49. V. Mixão, T. Gabaldón, Genomic evidence for a hybrid origin of the yeast opportunistic
755 pathogen *Candida albicans*. *BMC Biol.* **18**, 48 (2020).

756 50. D. A. Fitzpatrick, P. O’Gaora, K. P. Byrne, G. Butler, Analysis of gene evolution and
757 metabolic pathways using the *Candida* Gene Order Browser. *BMC Genomics.* **11**, 290
758 (2010).

759 51. K. H. Wolfe, Comparative genomics and genome evolution in yeasts. *Philos. Trans. R.
760 Soc. B Biol. Sci.* **361**, 403–412 (2006).

761 52. B. Dujon, Yeast evolutionary genomics. *Nat. Rev. Genet.* **11**, 512–524 (2010).

762 53. H. Chibana, N. Oka, H. Nakayama, T. Aoyama, B. B. Magee, P. T. Magee, Y. Mikami,
763 Sequence Finishing and Gene Mapping for *Candida albicans* Chromosome 7 and Syntenic
764 Analysis Against the *Saccharomyces cerevisiae* Genome. *Genetics.* **170**, 1525–1537
765 (2005).

766 54. C. Seoighe, N. Federspiel, T. Jones, N. Hansen, V. Bivolarovic, R. Surzycki, R. Tamse, C.
767 Komp, L. Huizar, R. W. Davis, S. Scherer, E. Tait, D. J. Shaw, D. Harris, L. Murphy, K.
768 Oliver, K. Taylor, M.-A. Rajandream, B. G. Barrell, K. H. Wolfe, Prevalence of small
769 inversions in yeast gene order evolution. *Proc. Natl. Acad. Sci.* **97**, 14433–14437 (2000).

770 55. Z. Duan, M. Andronescu, K. Schutz, S. McIlwain, Y. J. Kim, C. Lee, J. Shendure, S.

771 Fields, C. A. Blau, W. S. Noble, A three-dimensional model of the yeast genome. *Nature*.
772 **465**, 363–367 (2010).

773 56. J. G. Gibbons, A. T. Branco, S. A. Godinho, S. Yu, B. Lemos, Concerted copy number
774 variation balances ribosomal DNA dosage in human and mouse genomes. *Proc. Natl.*
775 *Acad. Sci. U. S. A.* **112**, 2485–2490 (2015).

776 57. J. G. Gibbons, A. T. Branco, S. Yu, B. Lemos, Ribosomal DNA copy number is coupled
777 with gene expression variation and mitochondrial abundance in humans. *Nat. Commun.* **5**,
778 4850 (2014).

779 58. M. Pellegrini, (2012), pp. 167–177.

780 59. S. Cokus, S. Mizutani, M. Pellegrini, An improved method for identifying functionally
781 linked proteins using phylogenetic profiles. *BMC Bioinformatics*. **8**, S7 (2007).

782 60. S. Mnaimneh, A. P. Davierwala, J. Haynes, J. Moffat, W.-T. Peng, W. Zhang, X. Yang, J.
783 Pootoolal, G. Chua, A. Lopez, M. Trochesset, D. Morse, N. J. Krogan, S. L. Hiley, Z. Li,
784 Q. Morris, J. Grigull, N. Mitsakakis, C. J. Roberts, J. F. Greenblatt, C. Boone, C. A.
785 Kaiser, B. J. Andrews, T. R. Hughes, Exploration of Essential Gene Functions via
786 Titratable Promoter Alleles. *Cell*. **118**, 31–44 (2004).

787 61. P. Gonçalves, C. Gonçalves, P. H. Brito, J. P. Sampaio, The Wickerhamiella/Starmerella
788 clade—A treasure trove for the study of the evolution of yeast metabolism. *Yeast*. **37**,
789 313–320 (2020).

790 62. C. Gonçalves, P. Gonçalves, Multilayered horizontal operon transfers from bacteria
791 reconstruct a thiamine salvage pathway in yeasts. *Proc. Natl. Acad. Sci.* **116**, 22219–
792 22228 (2019).

793 63. T. Krassowski, A. Y. Coughlan, X.-X. Shen, X. Zhou, J. Kominek, D. A. Opulente, R.
794 Riley, I. V. Grigoriev, N. Maheshwari, D. C. Shields, C. P. Kurtzman, C. T. Hittinger, A.
795 Rokas, K. H. Wolfe, Evolutionary instability of CUG-Leu in the genetic code of budding
796 yeasts. *Nat. Commun.* **9**, 1887 (2018).

797 64. A. L. LaBella, D. A. Opulente, J. L. Steenwyk, C. T. Hittinger, A. Rokas, Variation and
798 selection on codon usage bias across an entire subphylum. *PLOS Genet.* **15**, e1008304
799 (2019).

800 65. D. A. Opulente, E. J. Rollinson, C. Bernick-Roehr, A. B. Hulfachor, A. Rokas, C. P.
801 Kurtzman, C. T. Hittinger, Factors driving metabolic diversity in the budding yeast

802 subphylum. *BMC Biol.* **16**, 26 (2018).

803 66. M. Pellegrini, E. M. Marcotte, M. J. Thompson, D. Eisenberg, T. O. Yeates, Assigning
804 protein functions by comparative genome analysis: Protein phylogenetic profiles. *Proc.
805 Natl. Acad. Sci.* **96**, 4285–4288 (1999).

806 67. F. Pazos, A. Valencia, Similarity of phylogenetic trees as indicator of protein–protein
807 interaction. *Protein Eng. Des. Sel.* **14**, 609–614 (2001).

808 68. D. de Juan, F. Pazos, A. Valencia, Emerging methods in protein co-evolution. *Nat. Rev.
809 Genet.* **14**, 249–261 (2013).

810 69. L.-T. Nguyen, H. A. Schmidt, A. von Haeseler, B. Q. Minh, IQ-TREE: A Fast and
811 Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. *Mol.
812 Biol. Evol.* **32**, 268–274 (2015).

813 70. M. Chikina, J. D. Robinson, N. L. Clark, Hundreds of Genes Experienced Convergent
814 Shifts in Selective Pressure in Marine Mammals. *Mol. Biol. Evol.* **33**, 2182–2192 (2016).

815 71. M. E. J. Newman, Fast algorithm for detecting community structure in networks. *Phys.
816 Rev. E.* **69**, 066133 (2004).

817 72. A. Goffeau, B. G. Barrell, H. Bussey, R. W. Davis, B. Dujon, H. Feldmann, F. Galibert, J.
818 D. Hoheisel, C. Jacq, M. Johnston, E. J. Louis, H. W. Mewes, Y. Murakami, P.
819 Philippsen, H. Tettelin, S. G. Oliver, Life with 6000 Genes. *Science (80-.).* **274**, 546–567
820 (1996).

821 73. T. Jones, N. A. Federspiel, H. Chibana, J. Dungan, S. Kalman, B. B. Magee, G. Newport,
822 Y. R. Thorstenson, N. Agabian, P. T. Magee, R. W. Davis, S. Scherer, The diploid
823 genome sequence of *Candida albicans*. *Proc. Natl. Acad. Sci.* **101**, 7329–7334 (2004).

824 74. D. V. Klopfenstein, L. Zhang, B. S. Pedersen, F. Ramírez, A. Warwick Vesztrocy, A.
825 Naldi, C. J. Mungall, J. M. Yunes, O. Botvinnik, M. Weigel, W. Dampier, C. Dessimoz,
826 P. Flick, H. Tang, GOATOOLS: A Python library for Gene Ontology analyses. *Sci. Rep.*
827 **8**, 10872 (2018).

828 75. F. Supek, M. Bosnjak, N. Skunca, T. Smuc, REVIGO summarizes and visualizes long
829 lists of gene ontology terms. *PLoS One.* **6**, e21800 (2011).

830 76. M. Kanehisa, Y. Sato, M. Kawashima, M. Furumichi, M. Tanabe, KEGG as a reference
831 resource for gene and protein annotation. *Nucleic Acids Res.* **44**, D457–D462 (2016).

832 77. M. van het Hoog, T. J. Rast, M. Martchenko, S. Grindle, D. Dignard, H. Hogues, C.

833 Cuomo, M. Berriman, S. Scherer, B. Magee, M. Whiteway, H. Chibana, A. Nantel, P.
834 Magee, Assembly of the *Candida albicans* genome into sixteen supercontigs aligned on
835 the eight chromosomes. *Genome Biol.* **8**, R52 (2007).

836 78. D. Muzzey, K. Schwartz, J. S. Weissman, G. Sherlock, Assembly of a phased diploid
837 *Candida albicans* genome facilitates allele-specific measurements and provides a simple
838 model for repeat and indel structure. *Genome Biol.* **14**, R97 (2013).

839 79. M. Krzywinski, J. Schein, I. Birol, J. Connors, R. Gascoyne, D. Horsman, S. J. Jones, M.
840 A. Marra, Circos: An information aesthetic for comparative genomics. *Genome Res.* **19**,
841 1639–1645 (2009).

842

843 **Figure legends**

844 **Figure 1. Constructing the budding yeast orthologous gene coevolution network.** (A) We
845 determined coevolution in a set of 2,408 single gene trees in which branch lengths were inferred
846 along the species tree topology. (B) Coevolution of orthologous genes was evaluated across all
847 pairwise combinations of orthologous genes using the CovER function in PhyKIT, v0.1 (22). (C)
848 Significantly coevolving pairs of orthologous genes were used to construct a global network of
849 orthologous gene coevolution where nodes correspond to orthologous genes and edges connect
850 orthologous genes that are significantly coevolving. The “ring” of nodes corresponds to the
851 orthologous genes found to be coevolving with very few or no other (i.e., singletons) orthologous
852 genes in our dataset.

853

854 **Figure 2. Network modules reflect modules of bioprocesses.** (A) Global network of
855 orthologous gene coevolution and essential (B) and nonessential (C) orthologous gene networks
856 in *S. cerevisiae* and *C. albicans*. The “ring” of nodes in each plot is comprised of orthologous
857 genes that coevolve with very few or no other genes. (D) The essential gene subnetwork has
858 higher transitivity and edge density values. The nonessential gene network has higher mean
859 distance and diameter values. (E) There are five major subnetworks or orthologous gene
860 communities illustrated by different colors; small communities (≤ 10 orthologous genes) are in
861 gray. Edge width: number of co-evolving orthologous gene pairs between communities; node
862 size: number of orthologous genes in a community. Orthologous gene communities 1–4 cluster
863 together; community 5 is a singleton. (F) Orthologous gene community 1 is overrepresented with
864 essential orthologous genes. (G-I) Orthologous gene communities differ in enriched terms. MF:
865 molecular functions; BP: biological processes; circles: enriched GO terms; colors: $-\log_{10}$ p-
866 values; size of circles: GO term uniqueness. Enrichment results for each orthologous gene
867 community are reported in Table S3. The figure legend is to the right of panel F.

868

869 **Figure 3. Extensive coevolution in DNA replication genes.** Cartoon representation of DNA
870 replication. Exemplary complex specific subnetworks are depicted in i, ii, and iii. (i) Extensive
871 coevolution between orthologous genes that encode the helicase, minichromosome maintenance
872 (MCM) complex, which functions as a helicase. (ii) Coevolution in the orthologous genes that
873 encode the DNA polymerase α -primase complex and (iii) DNA polymerase ϵ complex, which

874 are responsible for RNA primer synthesis and leading strand DNA synthesis, respectively. Edges
875 in blue connect orthologous genes that are significantly coevolving. Orthologous genes and
876 complexes in bold have signatures of coevolution. Orthologous genes and complexes are colored
877 according to orthologous gene community assignment. Complexes, such as the DNA polymerase
878 α -primase complex, are depicted in multiple colors reflecting the multiple orthologous gene
879 communities represented within the complex. There is significant coevolution across all DNA
880 replication orthologous genes ($p < 0.001$; permutation test) as well as the multimeric complexes
881 such as the MCM complex ($p < 0.001$ for each pathway; permutation test).

882

883 **Figure 4. The impact of perturbing the orthologous gene coevolutionary network through**
884 **single-gene deletion in diverse environments is dependent on orthologous gene community**
885 **and gene connectivity.** (A) Multi-factor ANOVA results indicate orthologous gene community,
886 environment, the interaction between orthologous gene community and environment, and the
887 interaction between environment and the number of coevolving orthologous genes per
888 orthologous gene are significantly associated with the fitness of a single-gene deletion strain
889 (relative to the wild-type strain). (B) Fitness of single-gene deletion strains in diverse
890 environments is impacted by orthologous gene community. Here, the y-axis indicates mean
891 fitness across all genes in a community (x-axis) regardless of node degree. (C) Fitness of single-
892 gene deletion strains in diverse environments is impacted by the number of coevolving
893 orthologous genes the deleted node is connected to. Here, the y-axis indicates fitness of all genes
894 with a given node degree (x-axis) regardless of community status. These results indicate that
895 fitness in diverse environments is impacted by orthologous gene neighborhood and connectivity
896 in the network. In both panels, colors correspond to different environments that fitness was
897 measured in. Df represents degrees of freedom; Sum of Sq. represents sum of squares; Mean of
898 Sq. represents Mean of squares.

899

900 **Figure 5. Extensive long range and inter-chromosomal gene coevolution.** (A) *S. cerevisiae*
901 and (B) *C. albicans* differ in chromosome number and size. (C & D) Numbers of genes with
902 inter-chromosomal orthologous gene coevolution (blue), intra-chromosomal (green), or both
903 (orange). (E & F) Intra-chromosomal signatures of orthologous gene coevolution corrected by
904 number of genes on chromosome (x-axis) and number of inter-chromosomal signatures of

905 orthologous gene coevolution corrected by number of genes on other chromosomes (y-axis).
906 Colors represent different chromosomes and the regression line of all chromosomes is in black.
907 (G & H) Distances among intra-chromosomal signatures of orthologous gene coevolution. (I &
908 J) *INO80*, an example of how orthologous genes can coevolve with others across the genome.
909 Outermost track: chromosomes of either yeast with chromosome 1 at the 12 o'clock position;
910 second track: genes on plus/minus strand; third track: genes colored according to **orthologous**
911 **gene** community. Scatter plot shows the number of coevolving orthologous genes per
912 orthologous gene; size reflects higher values. Links depict orthologous genes coevolving with
913 *INO80* and are colored according to chromosomal location of the other orthologous gene. Colors
914 in E-H and ideogram and link colors in J correspond to chromosomes (see panels A and B).

Figure 1

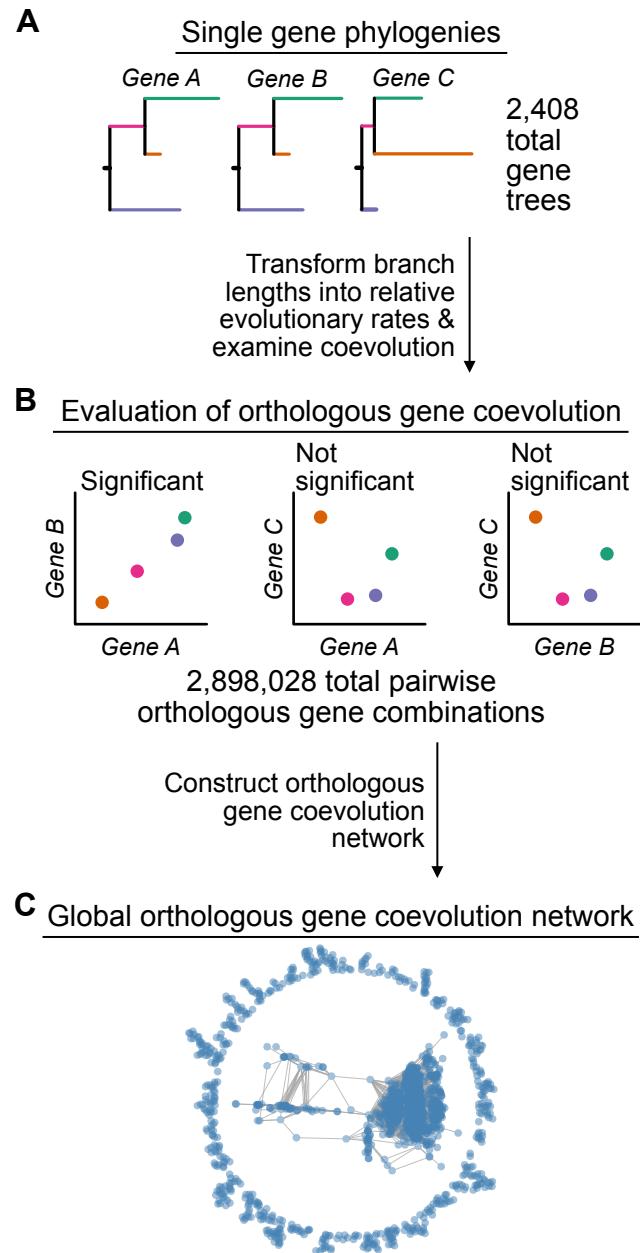


Figure 2



Figure 3

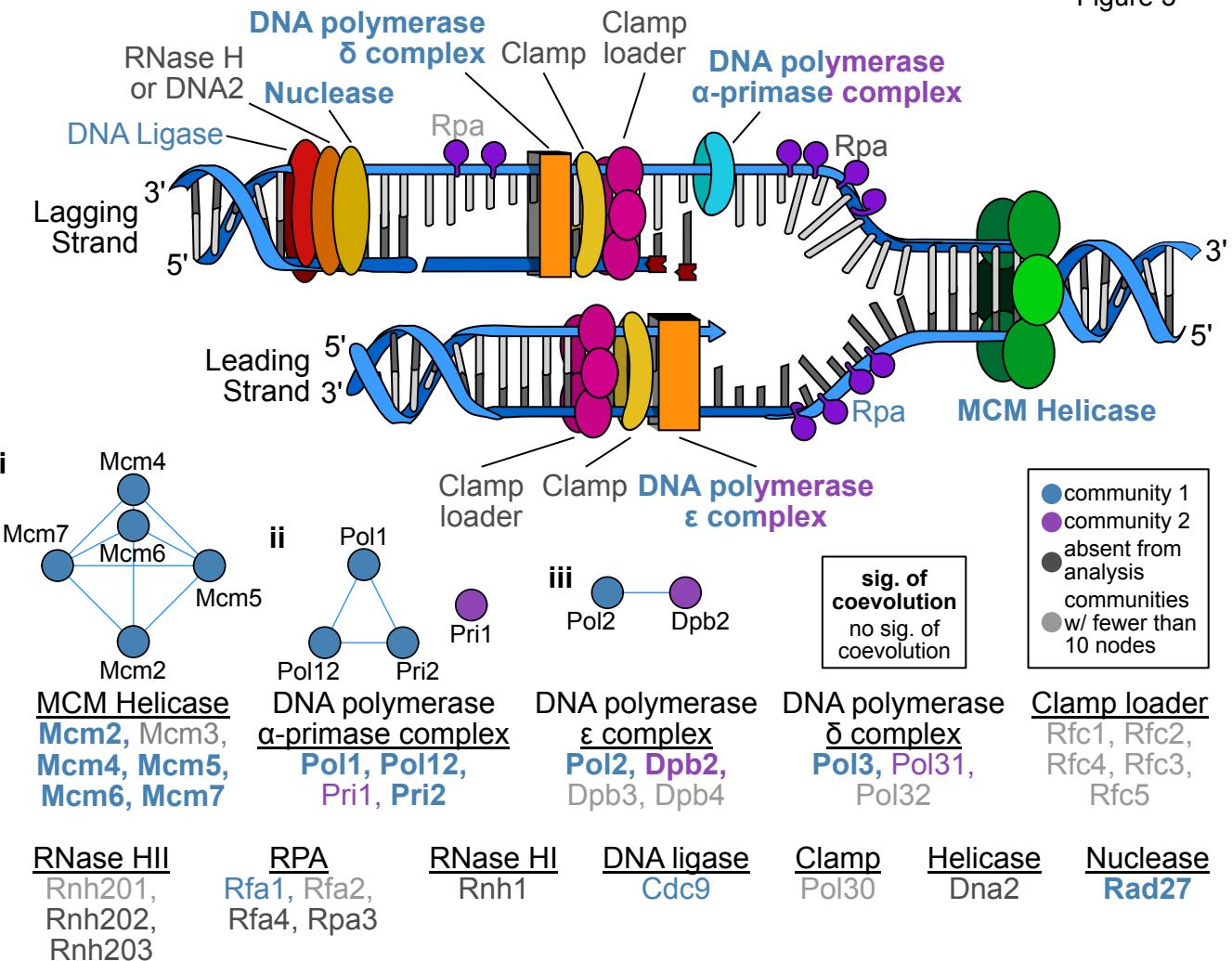
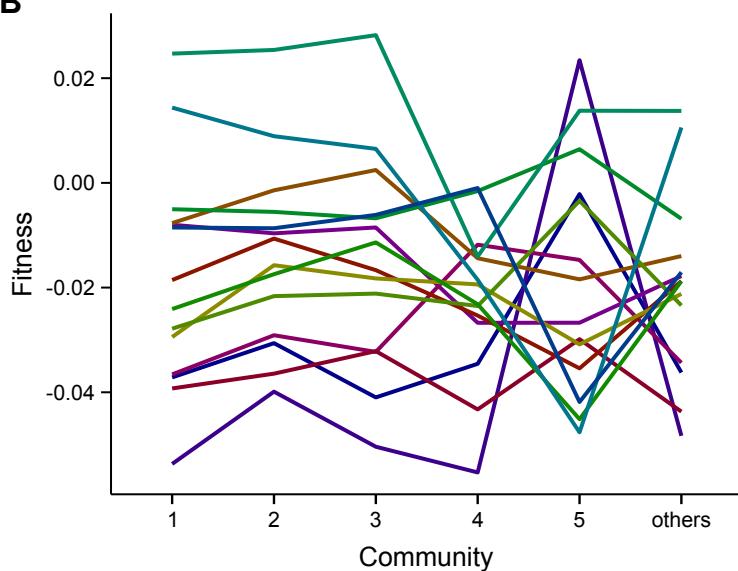
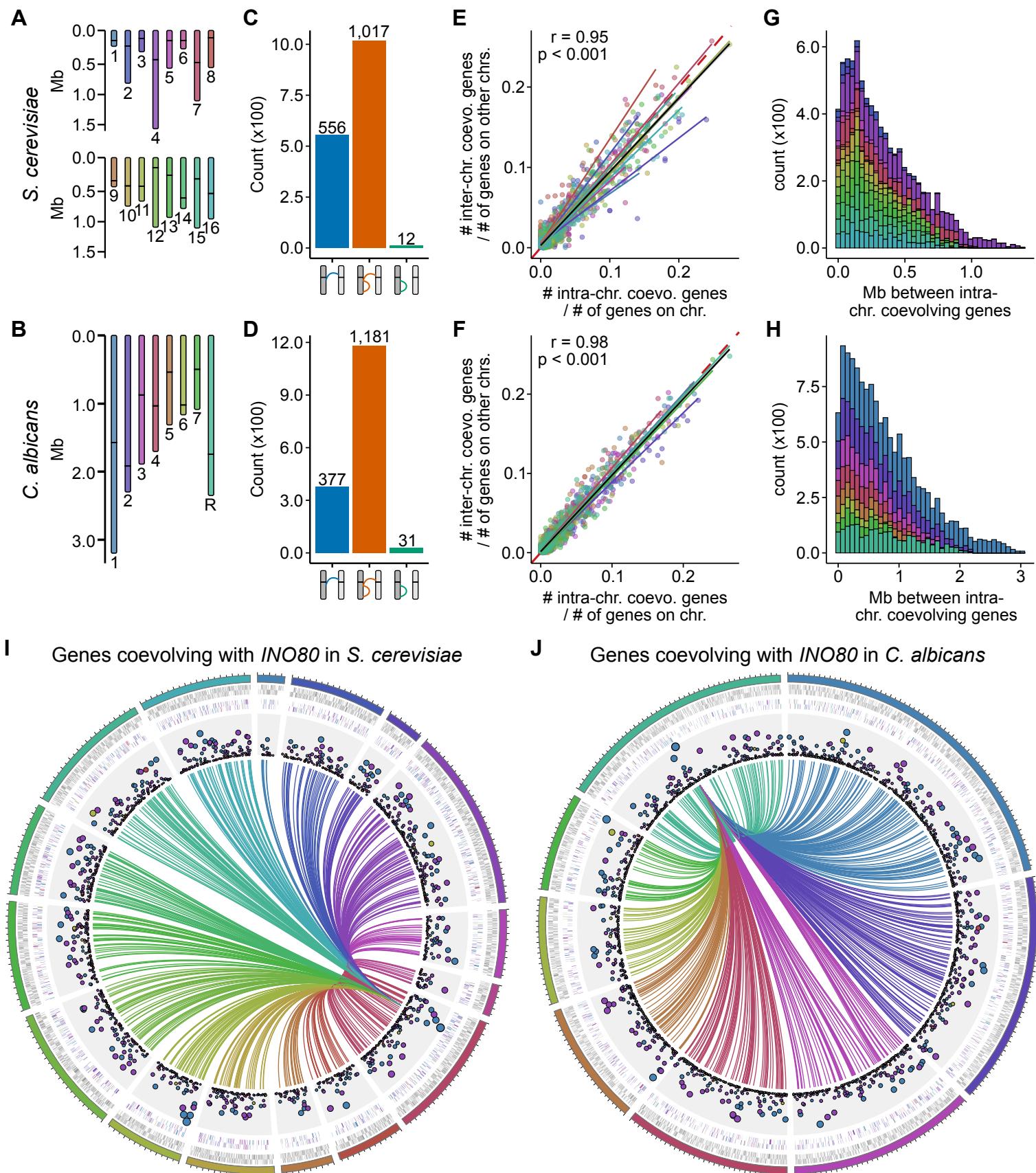



Figure 4

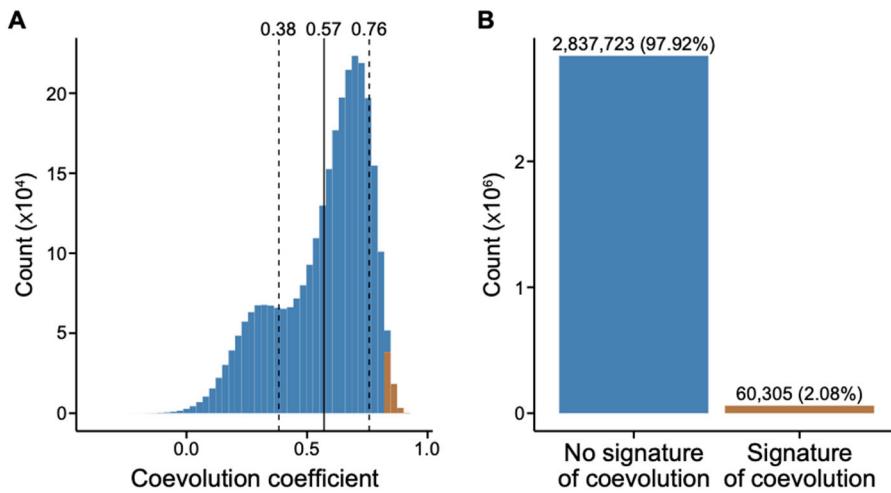

A

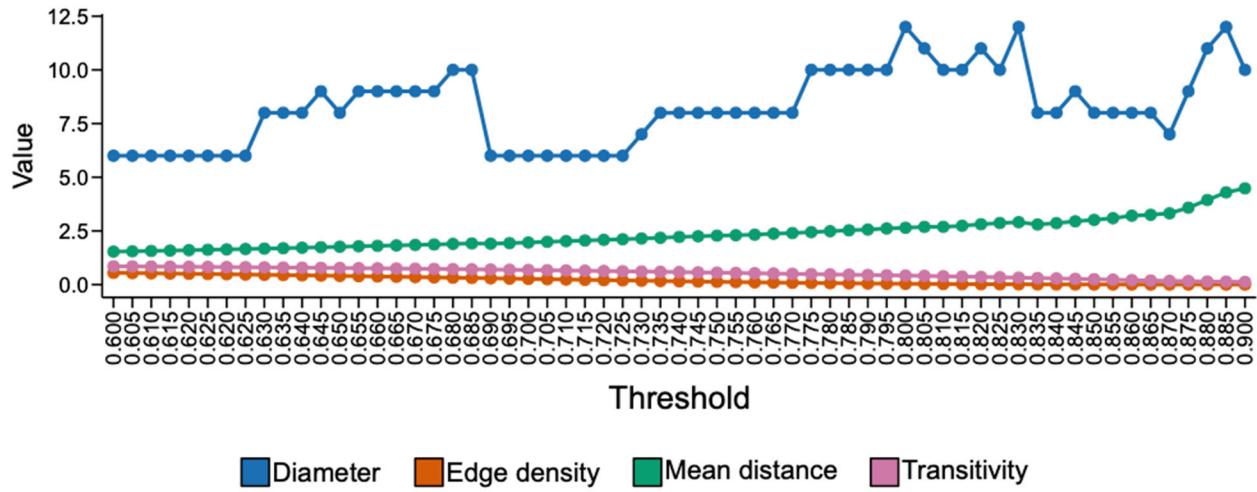
	Df	Sum of Sq.	Mean of Sq.	F value	P value	
Community	5	0.74	0.15	16.31	< 0.001	***
Environment	15	36.34	2.42	266.99	< 0.001	***
Number of coevolving genes	1	0.03	0.03	2.88	0.09	
Community:Environment	75	1.78	0.02	2.61	< 0.001	***
Community:Number of coevolving genes	2	0.13	0.03	2.82	0.02	
Environment:Number of coevolving genes	15	0.34	0.02	2.53	< 0.001	***
Community:Environment:Number of coevolving genes	75	0.58	0.01	0.85	0.82	

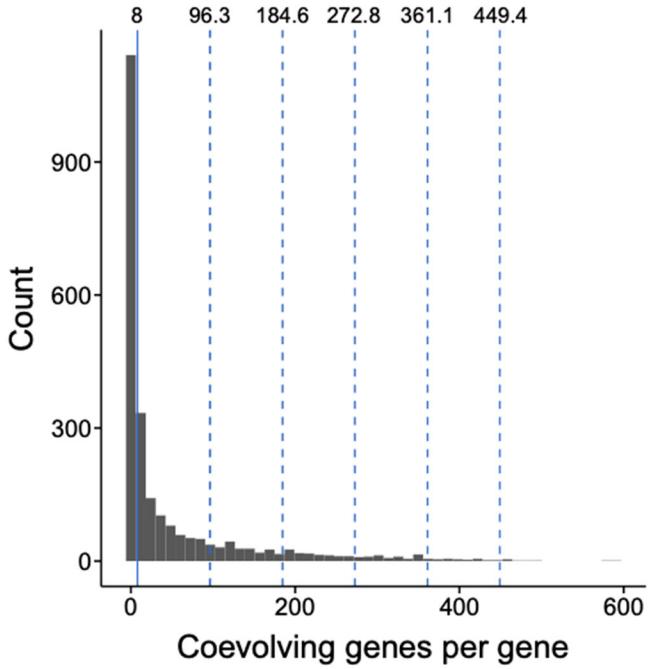
B



C

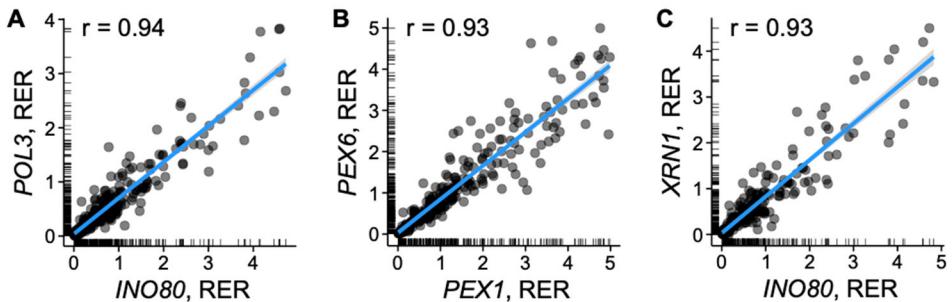

Actinomycin D	Caspofungin	Fluconazole	MMS	Sorbitol
Benomyl	Concanamycin A	Galactose	Monensin	Tunicamycin
Bortezomib	Cycloheximide	Geldenamycin	Rapamycin	

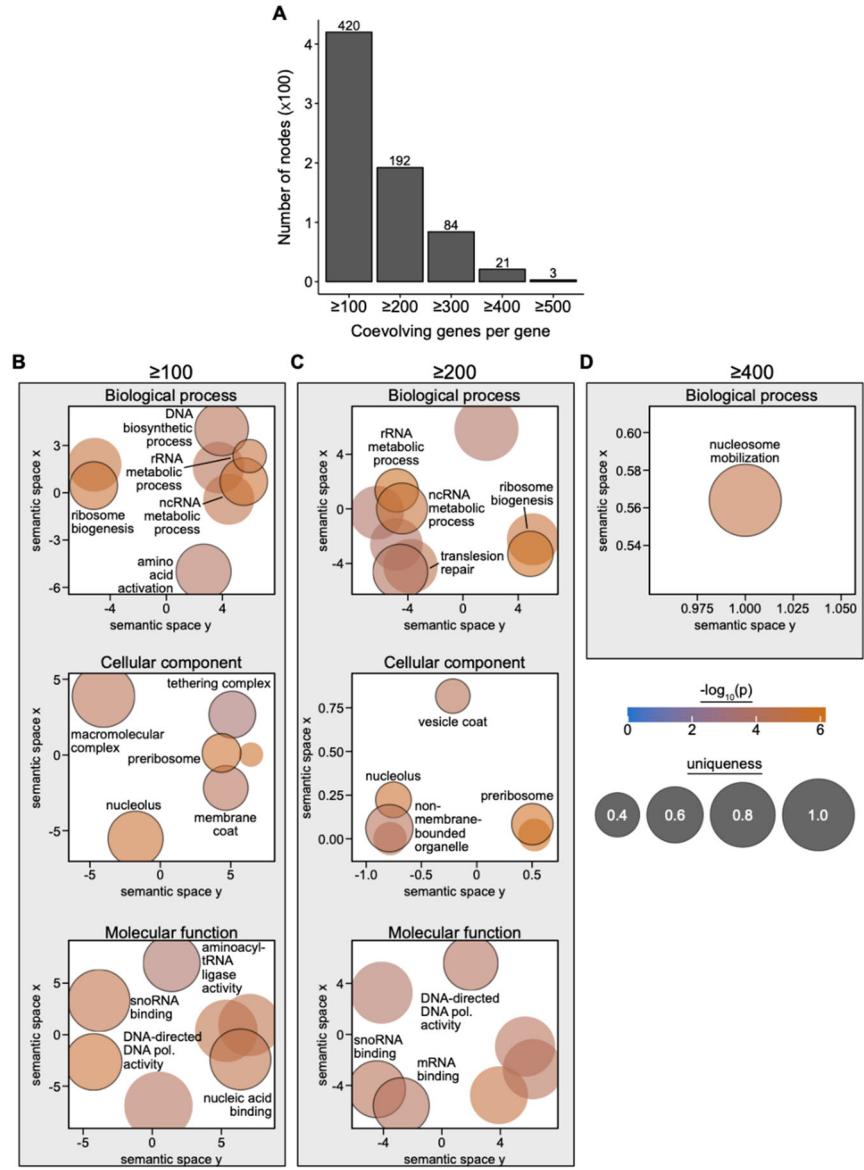

Figure 5


1 **Supplementary Figures**

2

12
13 **Figure S2. Various thresholds of significant gene coevolution had little impact on overall**
14 **network features.** To determine the impact of various thresholds of coevolution coefficients on
15 the resulting network, we examined network diameter, edge density, mean distance, and
16 transitivity. Network properties were similar regardless of the threshold used.
17

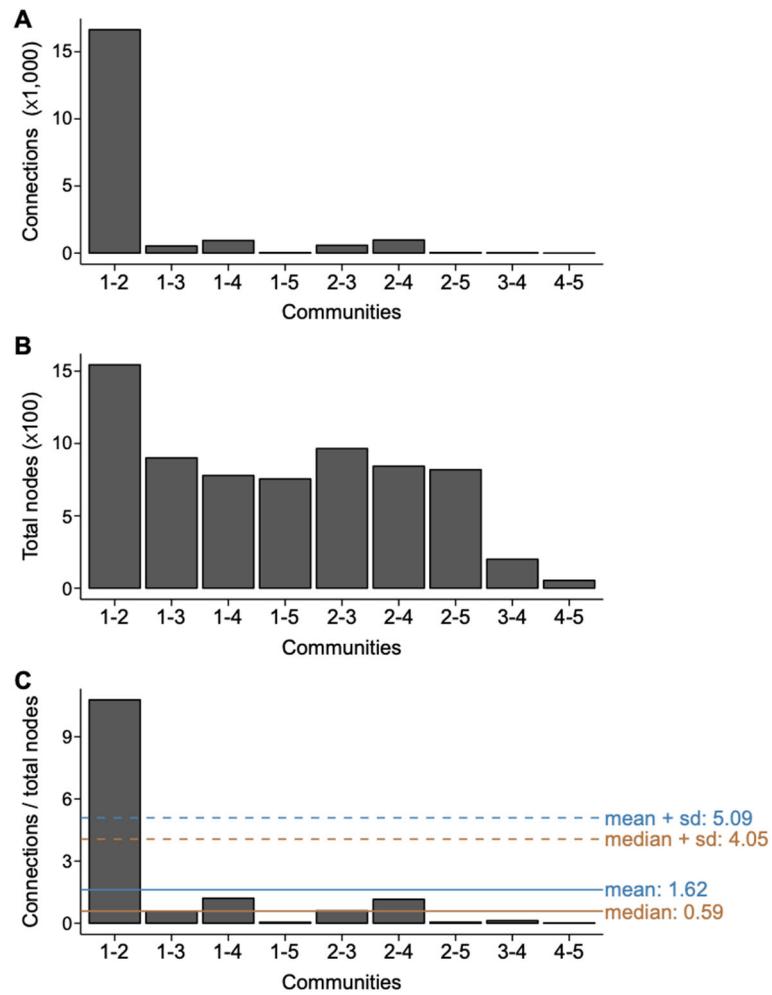

18


19 **Figure S3. Distribution of node degrees.** The median number of node degrees is eight (solid
20 line). The dashed lines represent the median plus one, two, three, four, or five standard
21 deviations.

22

23

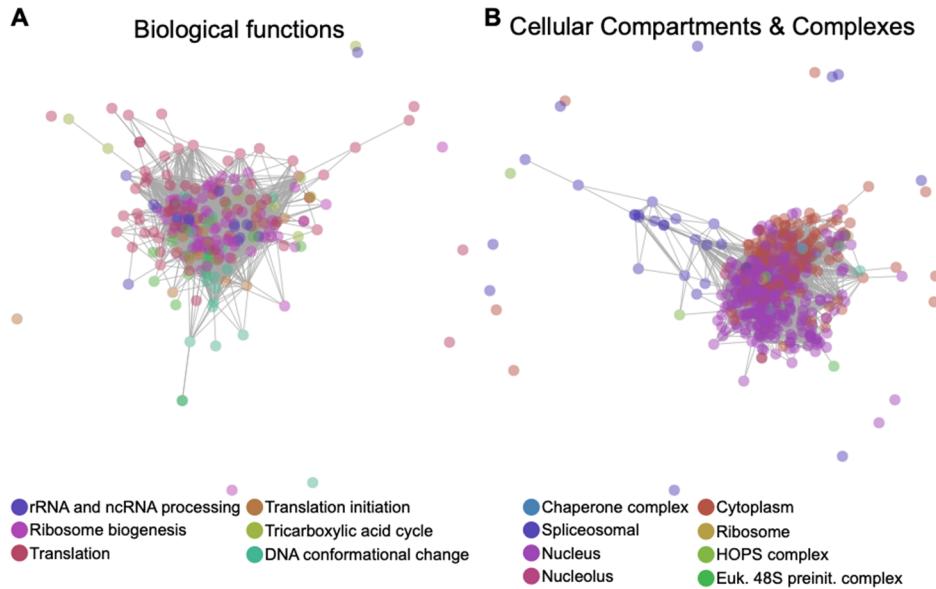
24 **Figure S4. Three gene pairs with the strongest signatures of gene coevolution.** (A) *INO80*, a
25 gene that encodes a nucleosome spacing factor, and *POL3*, a gene that encodes the catalytic
26 subunit of DNA polymerase delta, are significantly coevolving. *PEX1* and *PEX6*, which form a
27 heterodimer, are also coevolving. Similarly, *INO80* and *XRNI*, which encodes an
28 exoribonuclease, have significant signatures of evolution. Each dot represents a branch in the
29 gene tree phylogeny.


Figure S5. Gene ontology enrichment of genes with high degrees reveals functional categories associated with highlight coordinated processes. To determine what functional categories of genes are densely connected to other genes, we conducted GO enrichment analysis.

(A) To do so, we first binned genes into groups having ≥ 100 , ≥ 200 , ≥ 300 , ≥ 400 , and ≥ 500 coevolving genes per gene. (B, C, and D) Enriched terms were observed among genes coevolving with ≥ 100 , ≥ 200 , and ≥ 400 genes. Enriched terms among genes coevolving with ≥ 100 and ≥ 200 genes included those involved in ribosome biogenesis and processes involving nucleic acids such as their binding and synthesis. (D) Among genes coevolving with ≥ 400 genes, there was one enriched term, nucleosome mobilization, which is associated with chromatin remodelling. In B-D, significantly enriched terms ($\alpha = 0.05$) are represented as circles in

41 semantic space. Uniqueness, a measure of GO term dissimilarity to all other enriched terms, is
42 represented by circle size. Circle color is representative of $-\log_{10}$ transformed p-value.

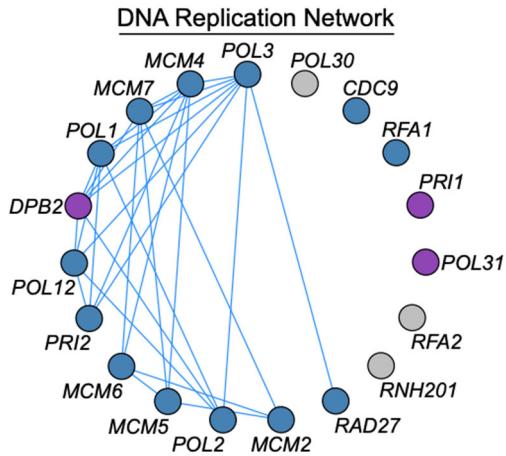
43 Highlighted enriched terms are written within the figure and their corresponding circle has a
44 black outline. Complete GO enrichment analyses are reported in Table S1.

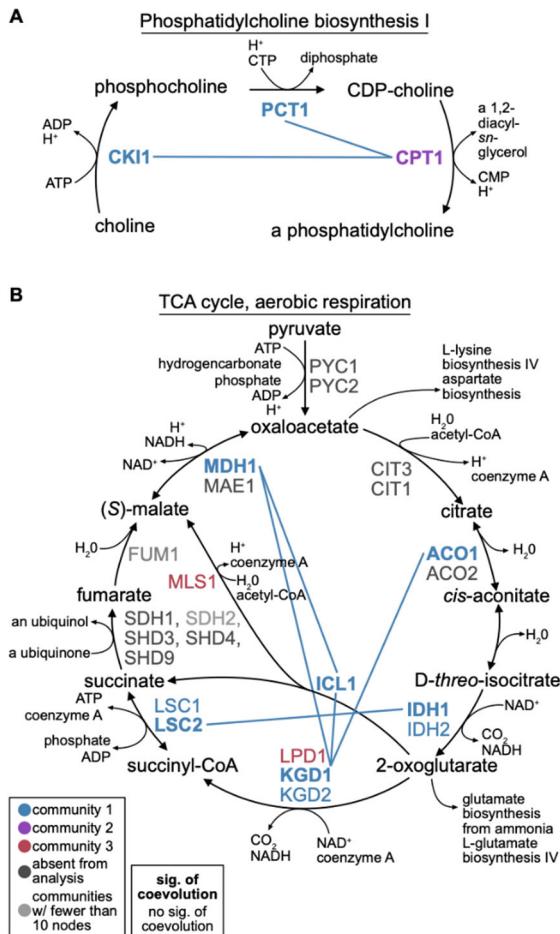

45

46

47 **Figure S6. Orthologous gene communities one and two are highly connected. (A)**
48 Examination of the total number of connections between orthologous gene communities reveals
49 orthologous gene community one and two are highly connected. Correcting the number of
50 connections between orthologous gene communities by (B) the total number of genes in each
51 orthologous gene community reveals that (C) orthologous gene communities one and two are
52 exceptionally interconnected. Mean and median connections between orthologous gene
53 communities corrected by the total number of genes in each orthologous gene community is
54 represented in a blue and orange solid line, respectively. The mean or median plus one standard
55 deviation is shown in a dashed line.

56

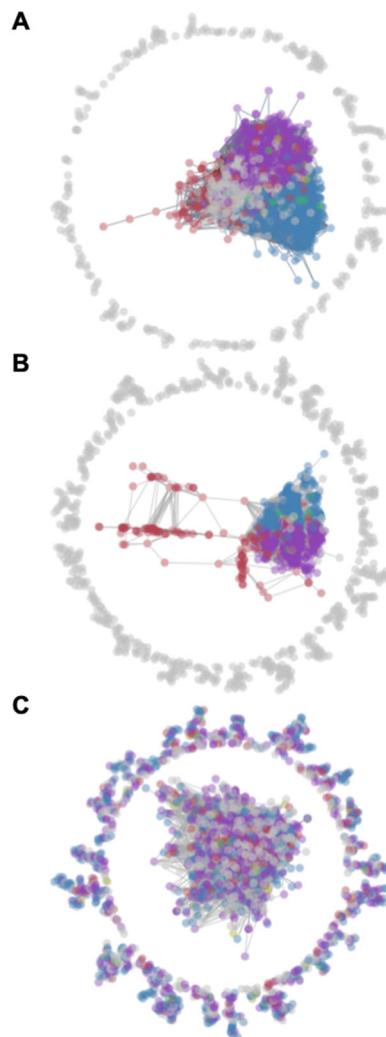

57

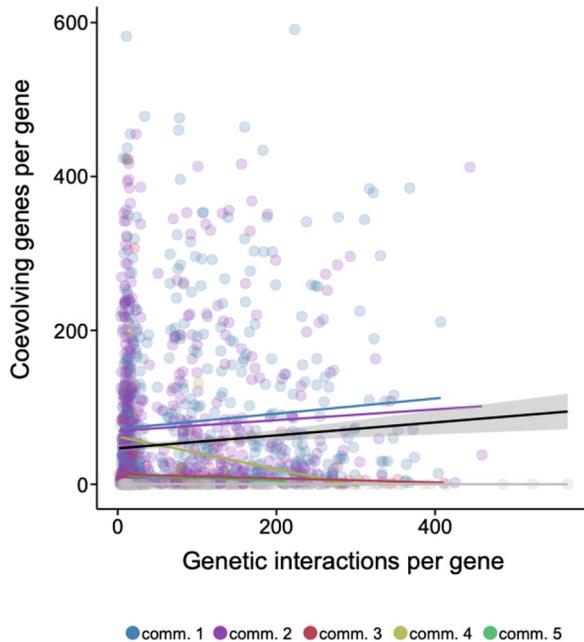

58 **Figure S7. Subnetworks of broad categories reveal connections and bridges between**
 59 **biological functions and cellular compartments and complexes.** (A) Diverse biological
 60 functions derived from enriched terms across orthologous gene communities reveal a high degree
 61 of interconnectedness. (B) Examination of cellular compartments and complexes uncovers
 62 cellular structure. For example, the nucleus (purple) and cytoplasm (red) are adjacent and
 63 intertwined in the network and are bridged by genes that perform spliceosome-related functions
 64 (dark blue). Similarly, transcripts are created and processed by the spliceosome in the nucleus
 65 and before being transported to the cytoplasm for translation.

66

67

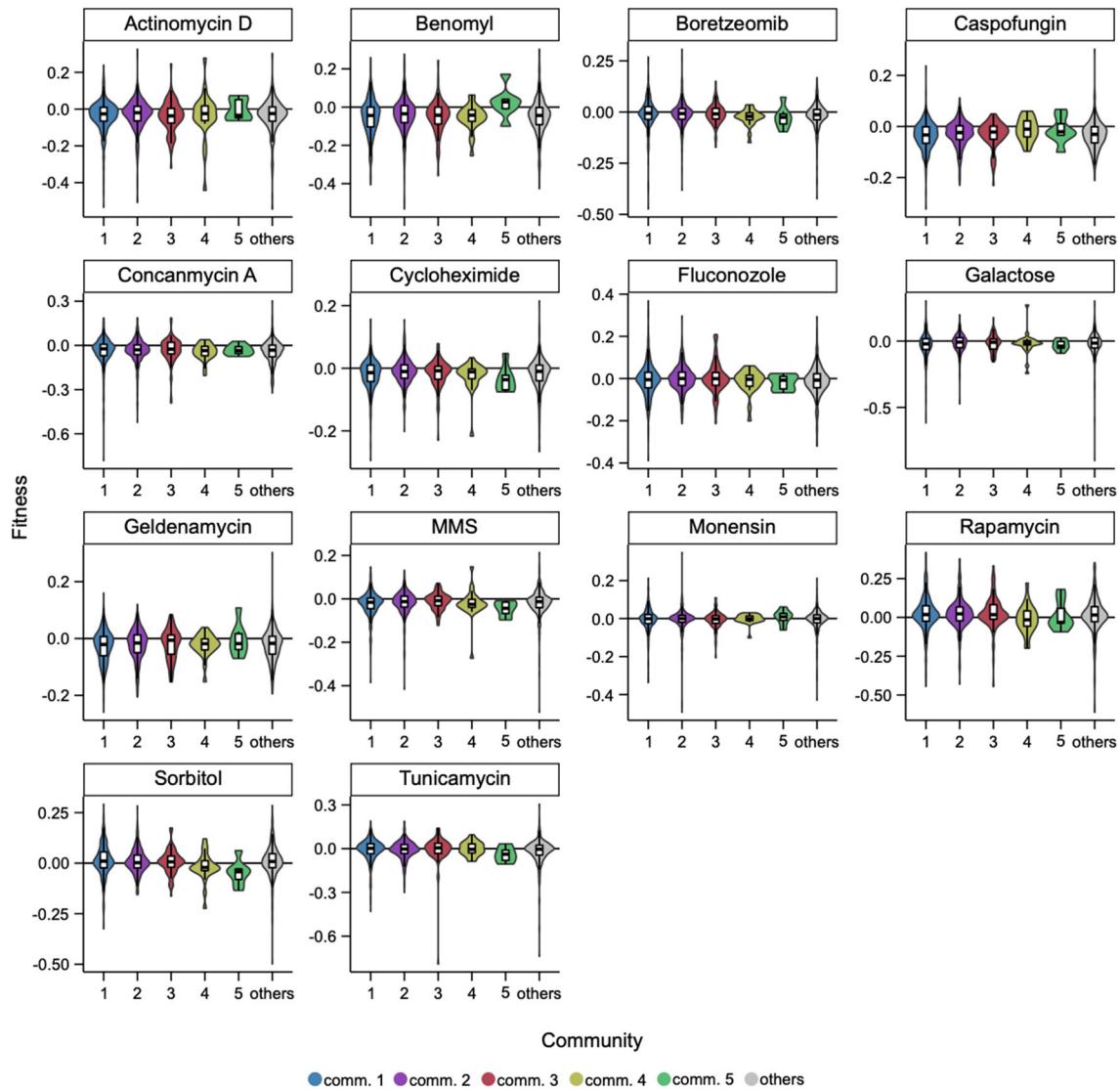
68 **Figure S8. DNA replication as an exemplary pathway with signatures of gene-gene
69 coevolution.** Gene-gene coevolution network among genes involved in DNA replication. Nodes
70 represent genes and edges connect coevolving genes. Genes are arranged counter-clockwise
71 according to decreasing numbers of degrees, or coevolving genes per gene, in the subnetwork.
72




73

74 **Figure S9. Exemplary pathways that are coevolving.** (A) Phosphatidylcholine, the major
 75 phospholipid in organelle membranes, is synthesized by the genes *CK1*, *PCT1*, and *CPT1*.
 76 *CPT1* is coevolving with *CK1* and *PCT1*. (B) The tricarboxylic acid cycle (TCA cycle; also
 77 referred to as the Krebs cycle or citric acid cycle) is a key component of aerobic respiration in
 78 cells. Many genes in the TCA cycle are coevolving with one another.

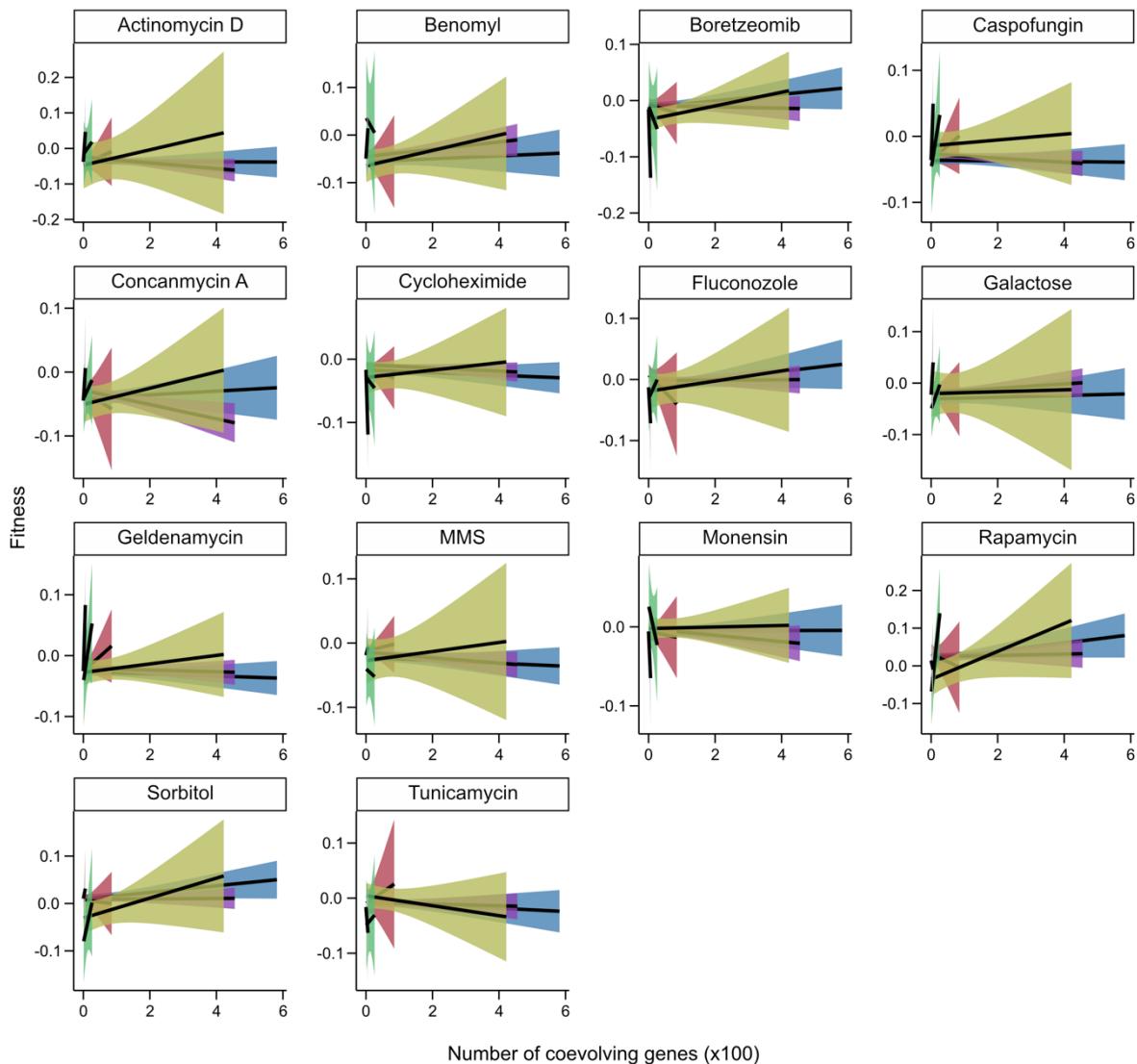
79


80
81 **Figure S10. The coevolution genetic network and genetic interaction network differ.** (A)
82 Edges identified in the coevolution genetic network and genetic interaction network are
83 combined into one super network. (B) The global network inferred using gene-gene coevolution.
84 (C) The genetic interaction network among only significant genetic interaction scores. Nodes are
85 genes and edges connect genes with significant signatures of coevolution or genetic interactions.
86 Genes in orthologous gene community one, two, three, four, five, and all other small orthologous
87 gene communities are depicted in blue, purple, red, yellow, green, and grey respectively.
88

89

90 **Figure S11. The coevolution genetic network and genetic interaction network differ in gene**
 91 **connectivity.** Degrees in the coevolutionary network and the genetic interaction network are not
 92 related to one another. Each circle represents a gene and their color reflects the orthologous gene
 93 community they belong to. Lines represent linear model regressions between the degrees of each
 94 network and their color reflects the orthologous gene community they represent; a black line
 95 with a 95% confidence in grey represents the linear model regression across all orthologous gene
 96 communities.

97



98

99 **Figure S12. Orthologous gene community-dependent variation in fitness of single-gene**

100 **knockouts across environments.** Fitness (y-axis) among single-gene knockouts is in part
 101 dependent on the orthologous gene community (x-axis) to which the gene belongs to across 14
 102 environments.

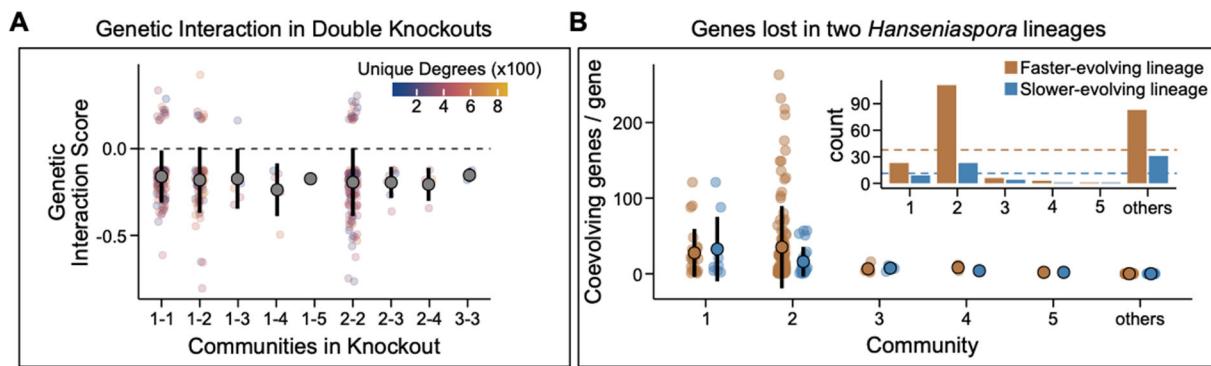
103

104

105

106

107


108

109

110

Figure S13. Orthologous gene community-dependent variation in fitness of single-gene knockouts is in part dependent on gene connectivity across environments. Fitness (y-axis) among single-gene knockouts is in part dependent on the orthologous gene community to which the gene belongs to across 14 environments as well as gene connectivity as measured by the number of coevolving genes per gene (x-axis).

111

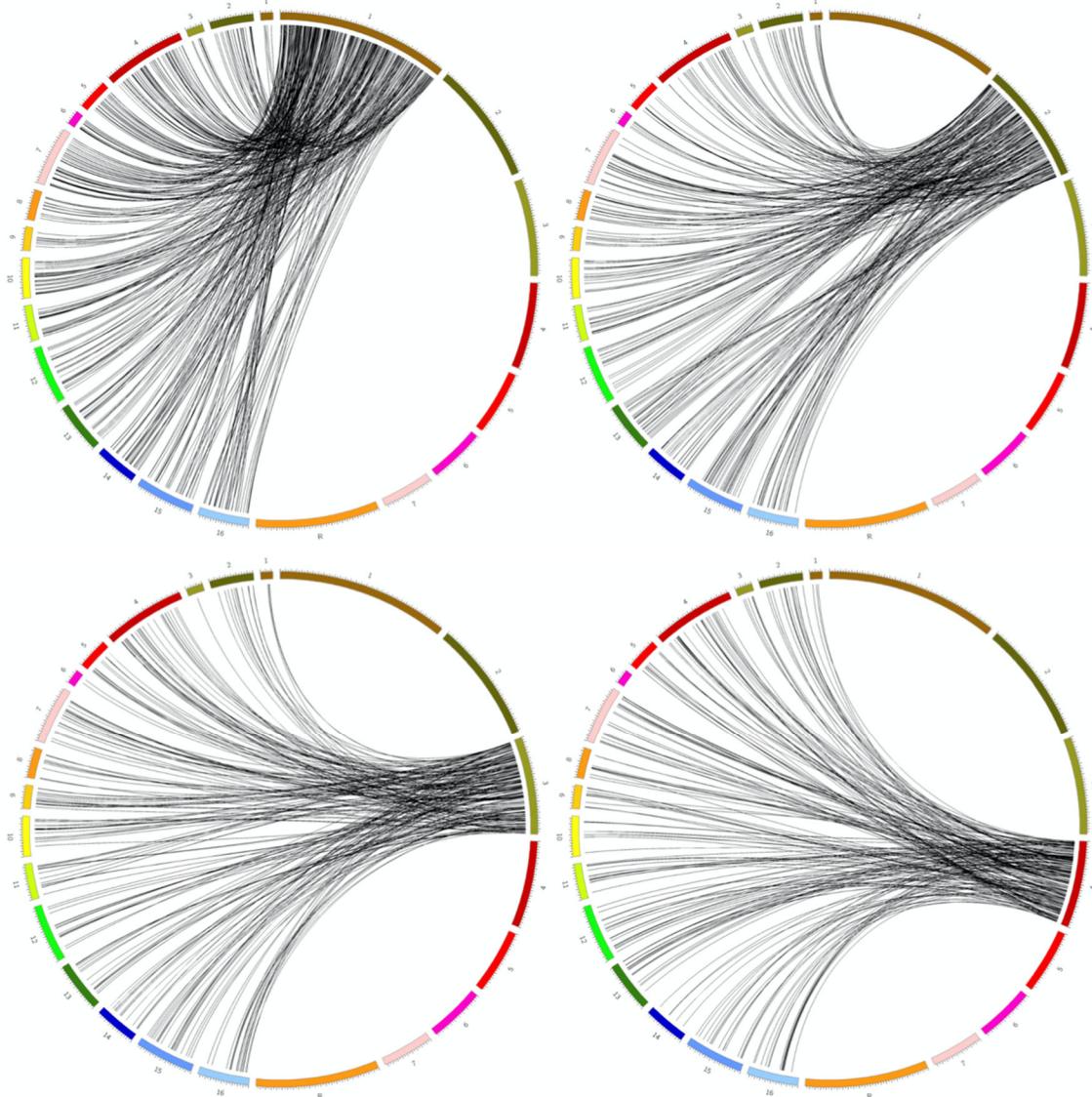
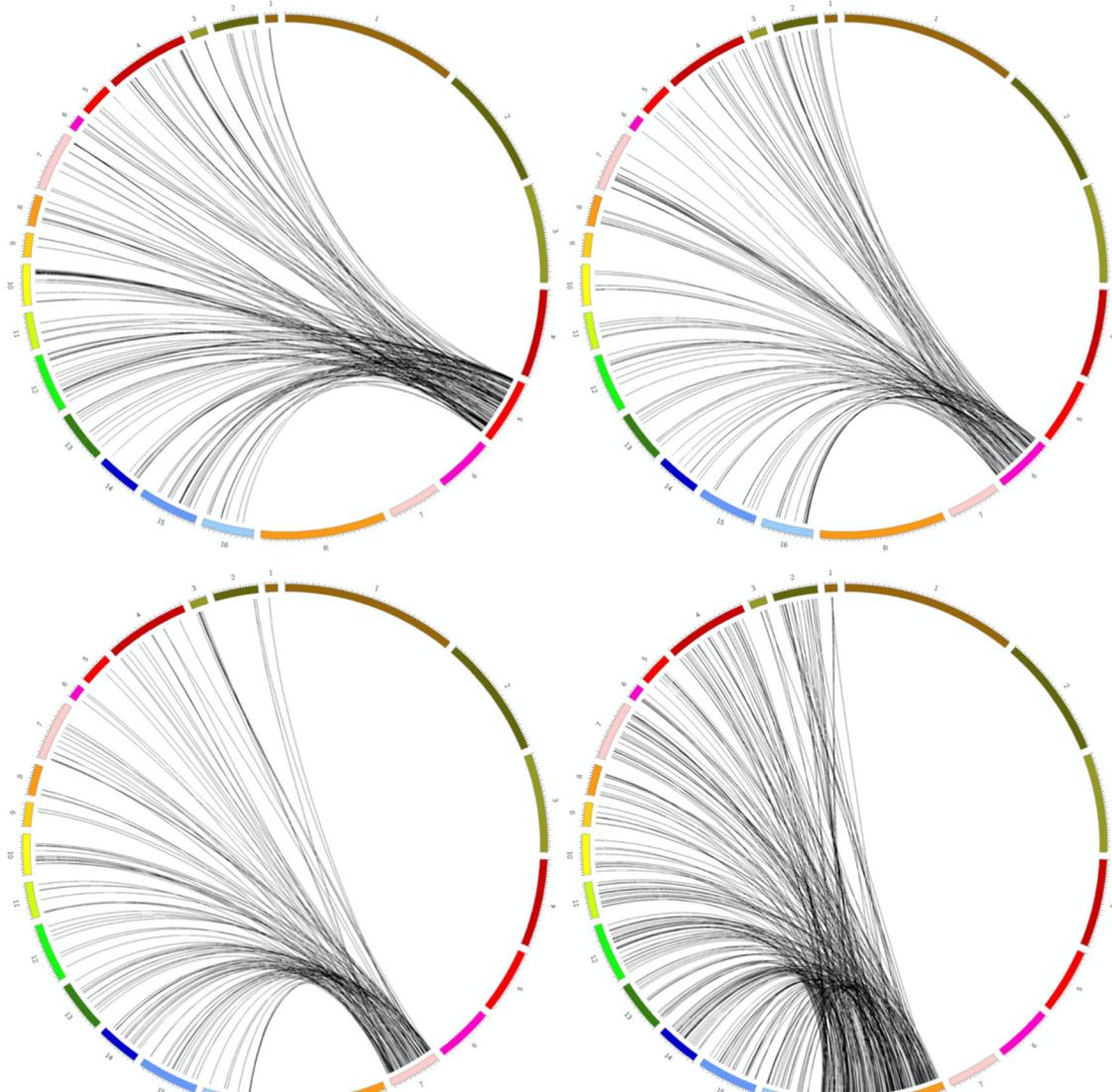
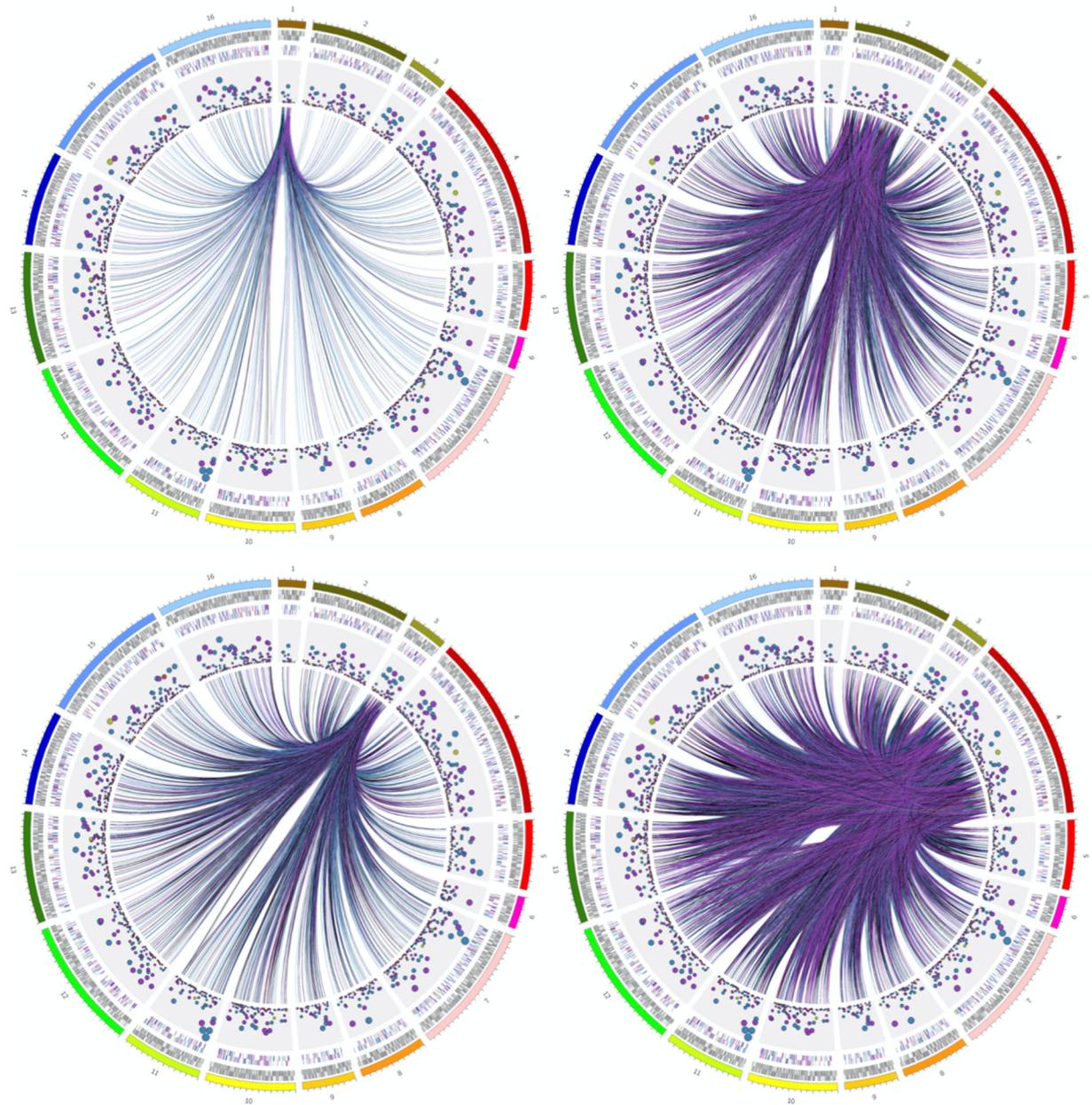

112

Figure S14. Digenic gene losses greatly impact cellular fitness and genes lost in the yeast genus *Hanseniaspora* are lost asymmetrically across orthologous gene communities. (A)


113 Negative genetic interaction scores reflecting a worse phenotypic impact when two genes are
 114 deleted are more frequently observed across double knockouts. Genetic interaction scores on
 115 double knockouts of genes from different orthologous gene community combinations were not
 116 significantly different (p -value > 0.05 ; Kruskal-Wallis rank sum test). (B) Gene loss occurs
 117 asymmetrically across orthologous gene communities in two *Hanseniaspora* lineages. The inset
 118 depicts total counts of losses per orthologous gene community and dashed lines reflect average
 119 losses for each lineage.

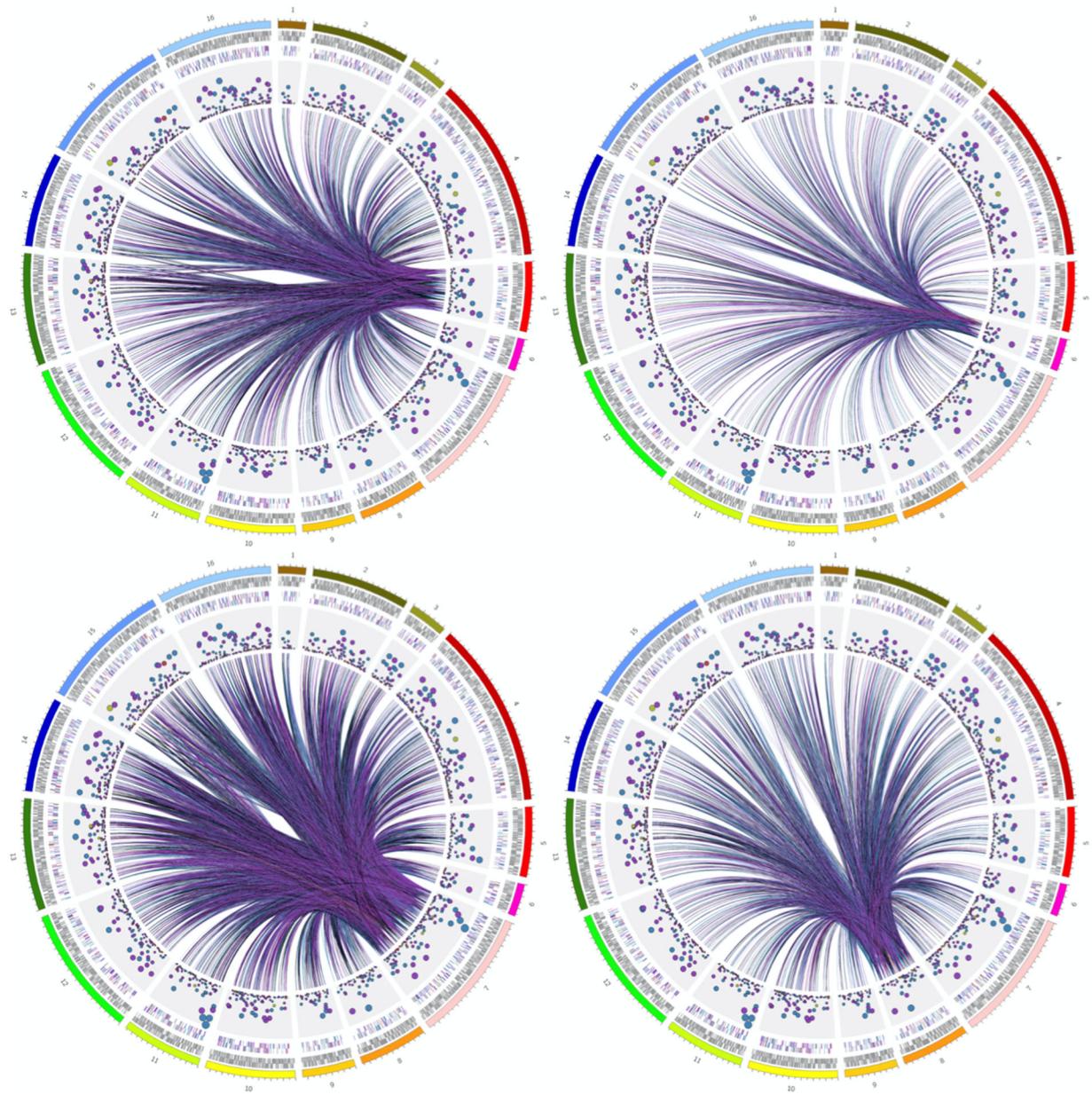
120

122



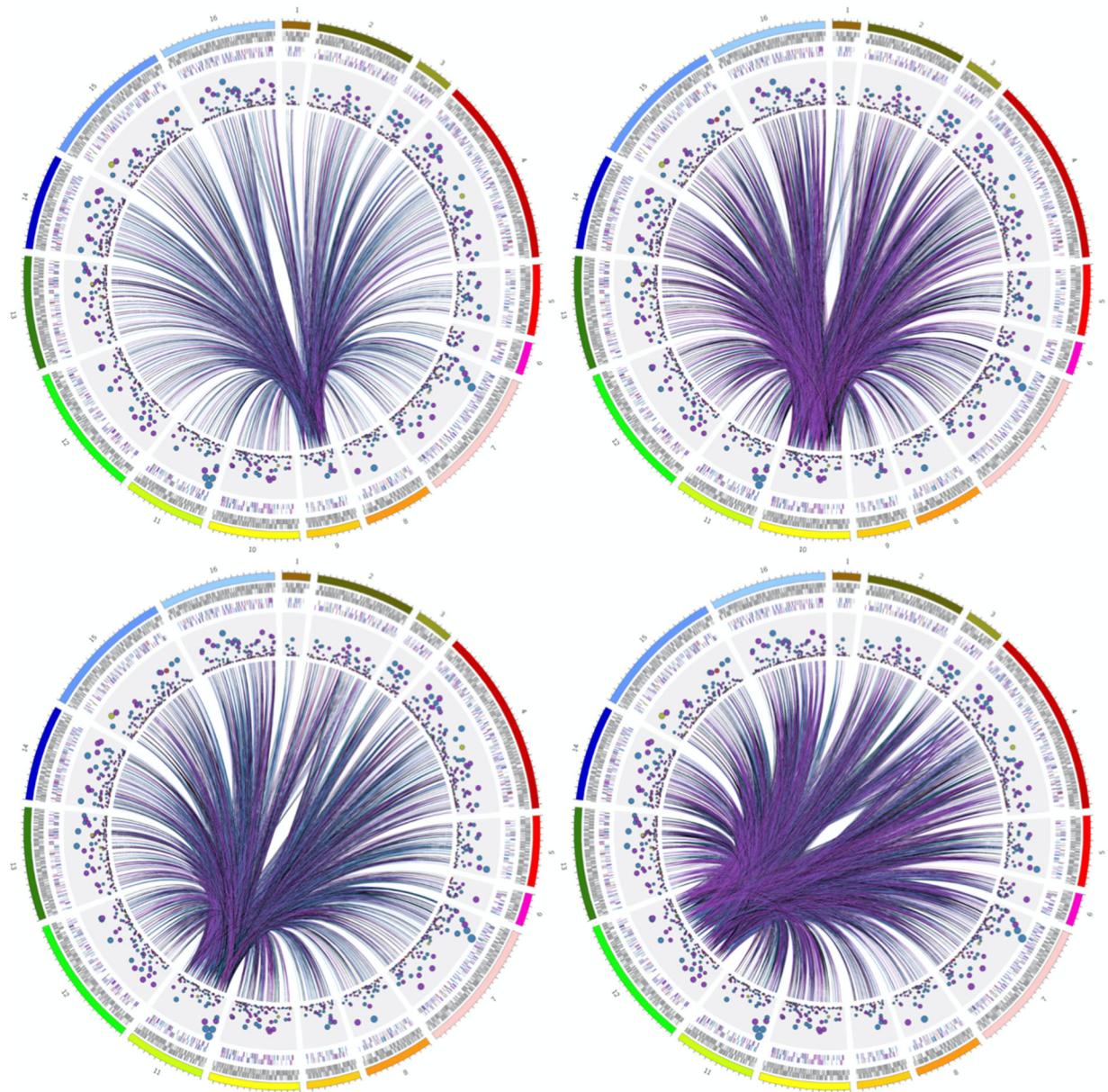
123
 124 **Figure S15. Lack of synteny between the *Candida albicans* chromosomes 1, 2, 3, and 4 and**
 125 ***Saccharomyces cerevisiae* chromosomes.** The left 16 chromosomes are the *S. cerevisiae*
 126 chromosomes. The right eight chromosomes are the *C. albicans* chromosomes. Links start from a
 127 specific *C. albicans* chromosome and are connected to their orthologous gene in the *S. cerevisiae*
 128 genome. Gene orthology reveals a lack of synteny between the two genomes. Gene orthology
 129 information was obtained from the *Candida* genome browser
 130 http://www.candidagenome.org/download/homology/orthologs/C_albicans_SC5314_S_cerevisiae_by_CGOB/.
 131

132


133 **Figure S16. Lack of synteny between the *Candida albicans* chromosomes 5, 6, 7, and R and**
 134 ***Saccharomyces cerevisiae* chromosomes.** The left 16 chromosomes are the *S. cerevisiae*
 135 chromosomes. The right eight chromosomes are the *C. albicans* chromosomes. Links start from a
 136 specific *C. albicans* chromosome and are connected to their orthologous gene in the *S. cerevisiae*
 137 genome. Gene orthology reveals a lack of synteny between the two genomes Gene orthology
 138 information was obtained from the *Candida* genome browser
 139 http://www.candidagenome.org/download/homology/orthologs/C_albicans_SC5314_S_cerevisiae_by_CGOB/.
 140

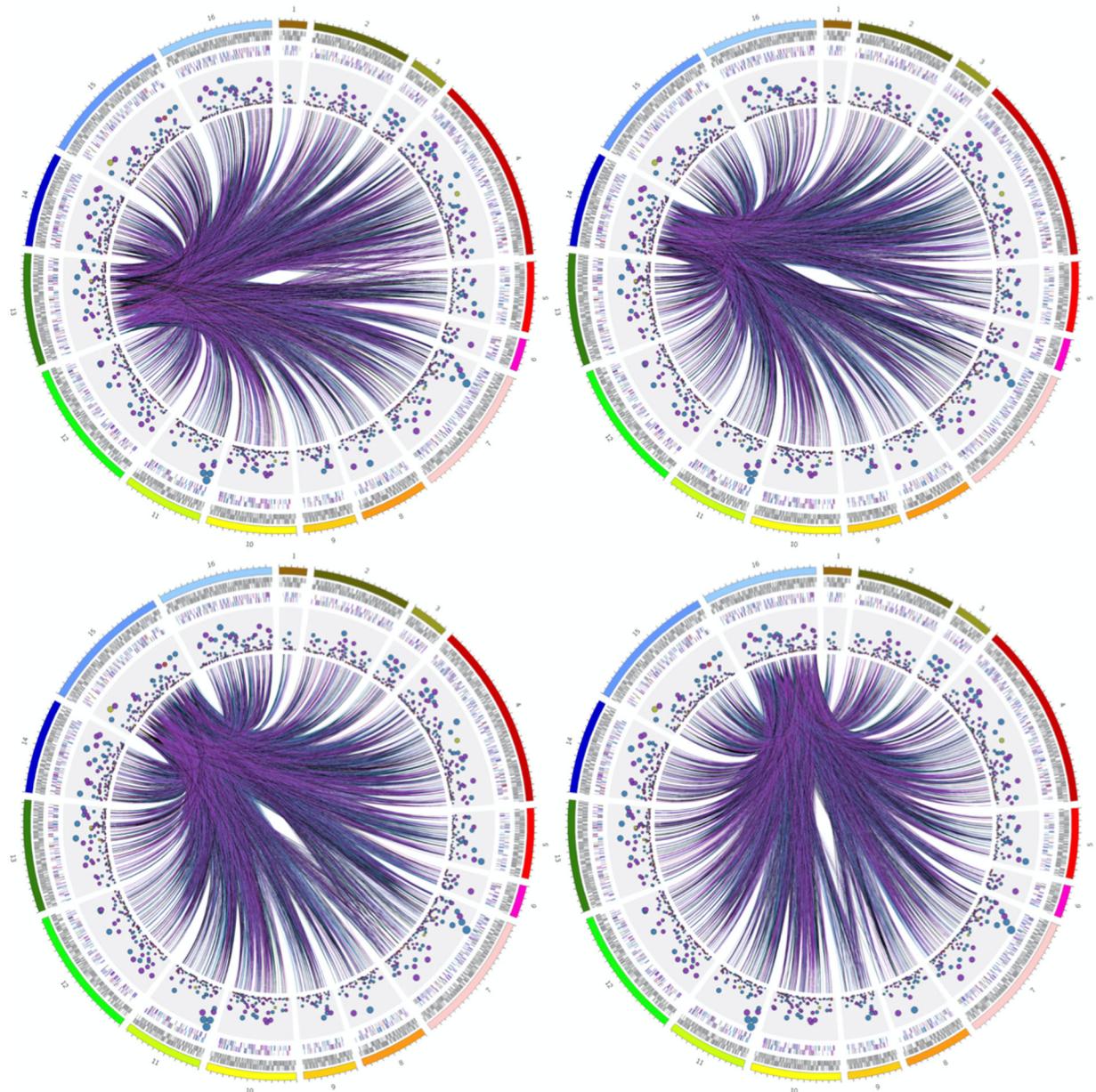
141

142 **Figure S17. Genes on chromosomes one through four are coevolving with genes on all other**
 143 **chromosomes in *Saccharomyces cerevisiae*.** The first track depicts the 16 chromosomes of *S.*
 144 *cerevisiae*. The next track depicts the location of all genes on the plus strand followed by the
 145 minus strand. The next tracks depict genes present in the dataset and are colored according to the
 146 orthologous gene community they belong. The scatter plot depicts the number of coevolving
 147 genes a gene has and the larger the circle represents more coevolving genes. The last track
 148 depicts links between genes on a highlighted chromosome that are coevolving with other genes


149 across all chromosomes. Plots are arranged in ascending chromosome order from top left to
150 bottom right.

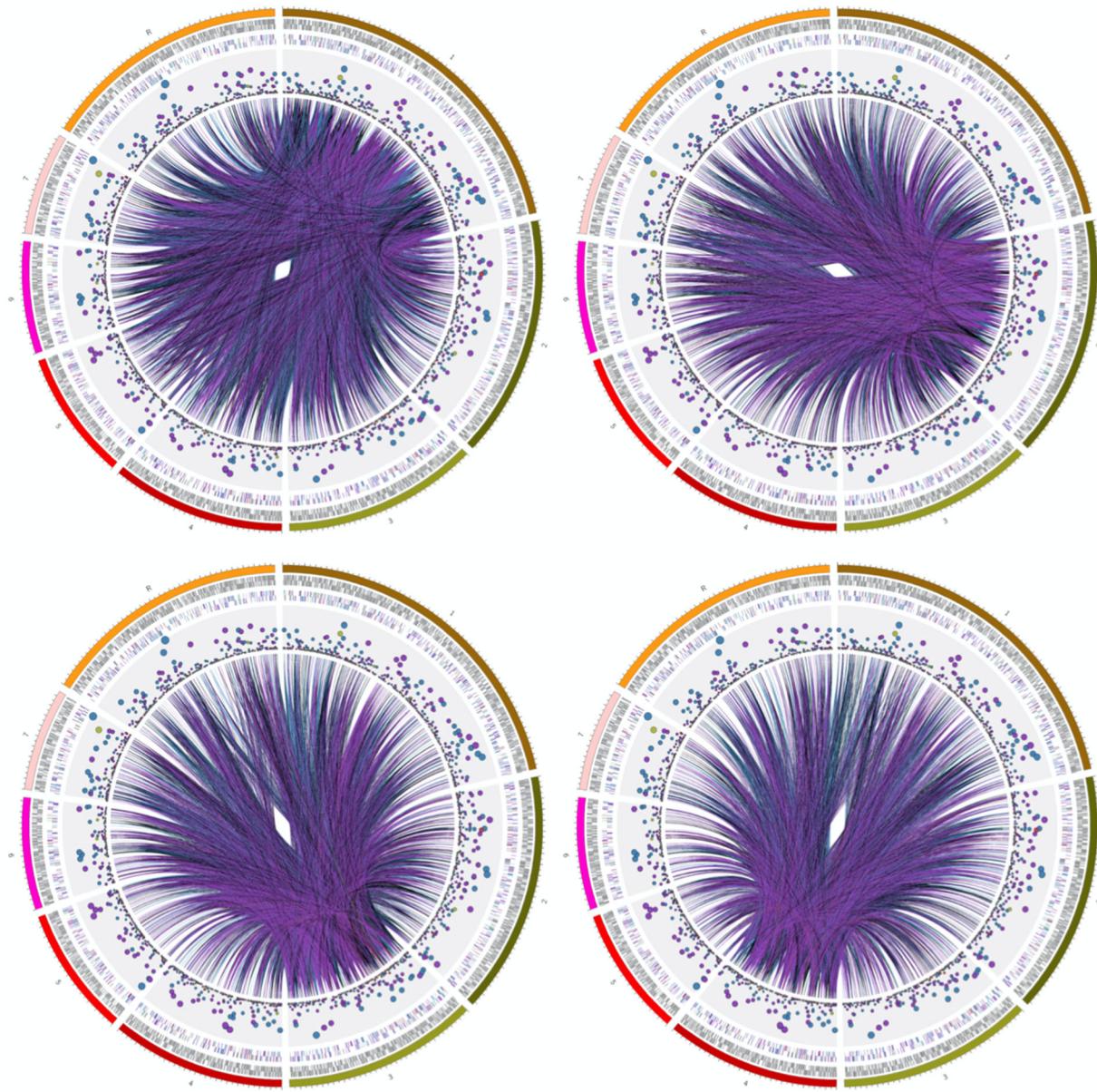
151

152 **Figure S18. Genes on chromosomes five through eight are coevolving with genes on all**
 153 **other chromosomes in *Saccharomyces cerevisiae*.** The first six tracks depict the same data as in
 154 Figure N (Genes on chromosomes one through four are coevolving with genes on all other
 155 chromosomes). Links depict genes that are coevolving with genes on a highlighted chromosome.
 156 Plots are arranged in ascending chromosome order from top left to bottom right.


157

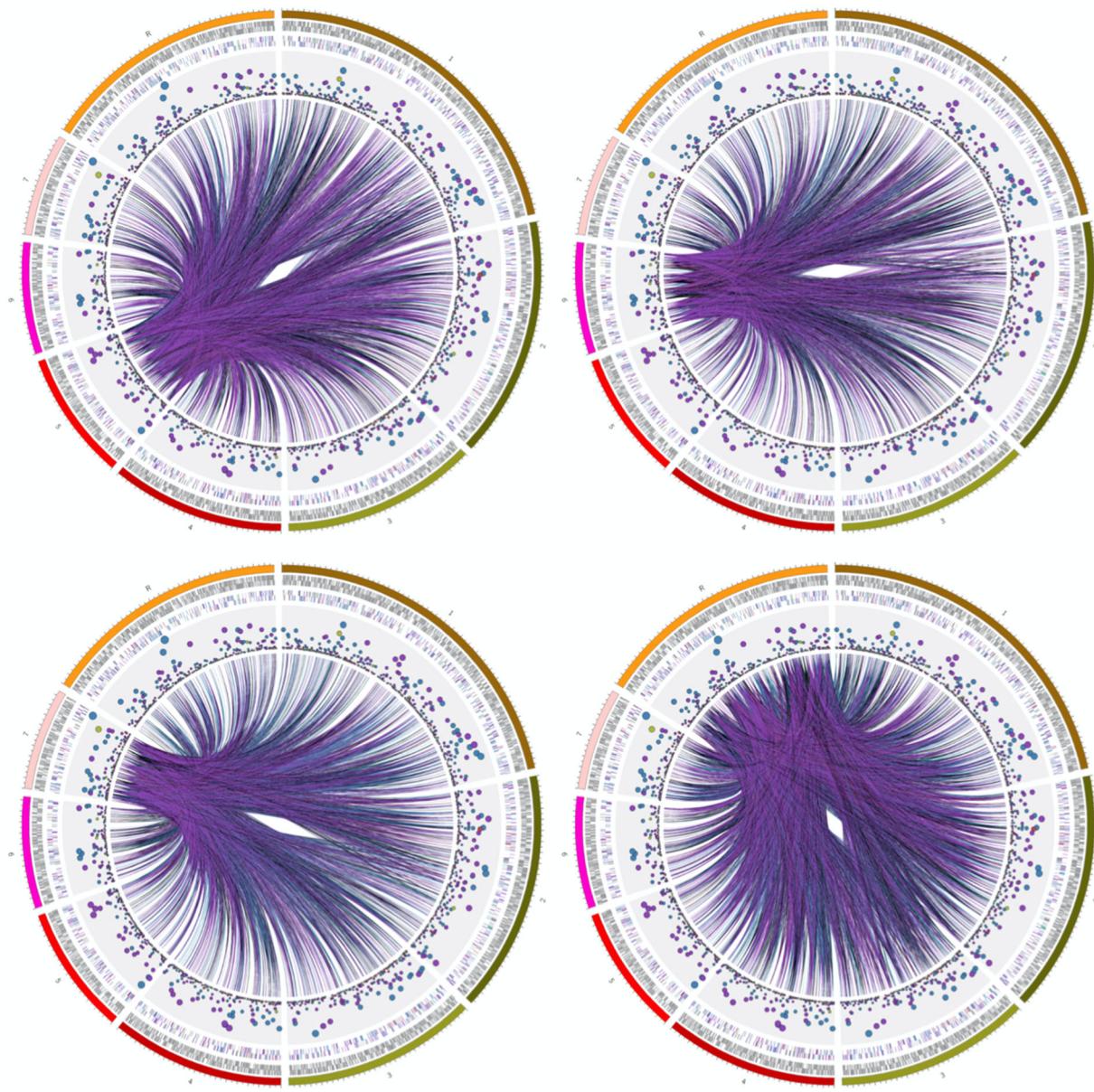
158

159 **Figure S19. Genes on chromosomes nine through twelve are coevolving with genes on all**
 160 **other chromosomes in *Saccharomyces cerevisiae*.** The first six tracks depict the same data as in
 161 Figure N (Genes on chromosomes one through four are coevolving with genes on all other
 162 chromosomes). Links depict genes that are coevolving with genes on a highlighted chromosome.
 163 Plots are arranged in ascending chromosome order from top left to bottom right.

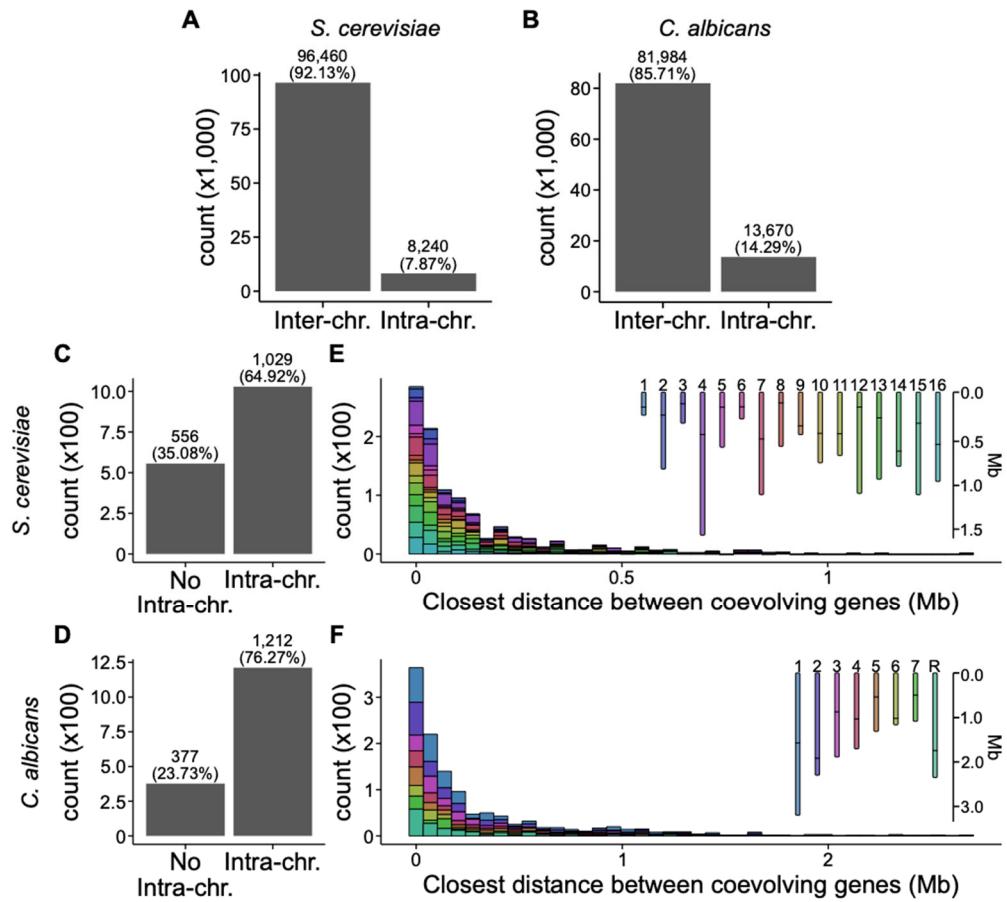

164

165

166 **Figure S20. Genes on chromosomes thirteen through sixteen are coevolving with genes on**
 167 **all other chromosomes in *Saccharomyces cerevisiae*.** The first six tracks depict the same data
 168 as in Figure N (Genes on chromosomes one through four are coevolving with genes on all other
 169 chromosomes). Links depict genes that are coevolving with genes on a highlighted chromosome.
 170 Plots are arranged in ascending chromosome order from top left to bottom right.

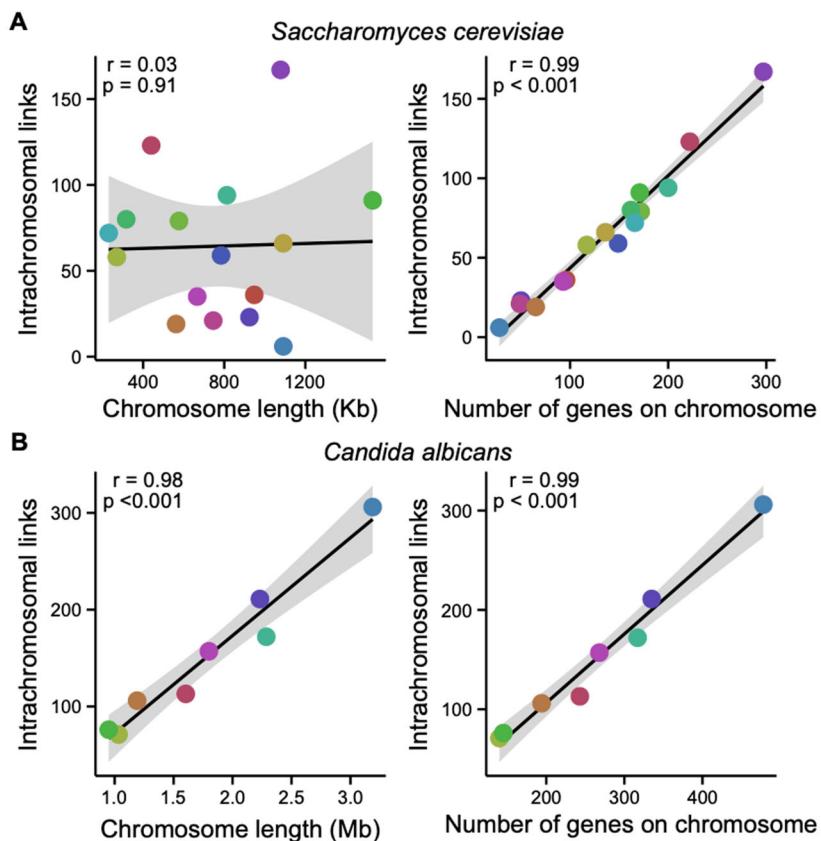

171

172


173 **Figure S21. Genes on chromosomes one through four are coevolving with genes on all other**
174 **chromosomes in *Candida albicans*.** The first six tracks depict the same data as in Figure N
175 (Genes on chromosomes one through four are coevolving with genes on all other chromosomes).
176 Links depict genes that are coevolving with genes on a highlighted chromosome. Plots are
177 arranged in ascending chromosome order from top left to bottom right.

178

179
180
181
182
183
184
185

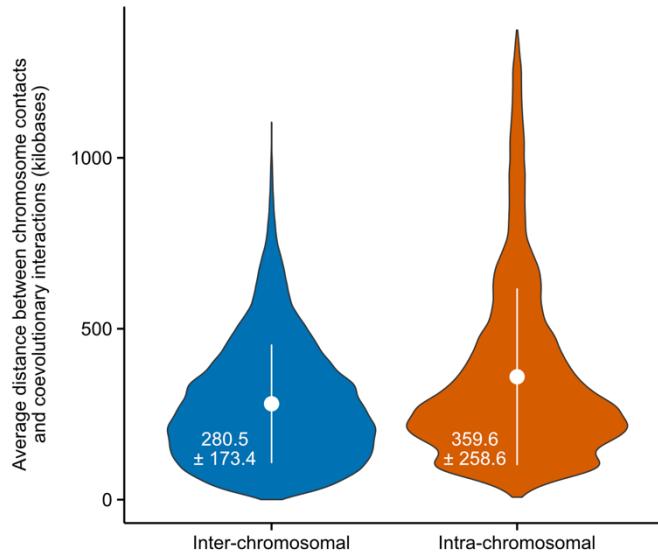

Figure S22. Genes on chromosomes five through seven and chromosome R are coevolving with genes on all other chromosomes in *Candida albicans*. The first six tracks depict the same data as in Figure N (Genes on chromosomes one through four are coevolving with genes on all other chromosomes). Links depict genes that are coevolving with genes on a highlighted chromosome. Plots are arranged in ascending chromosome order from top left to bottom right.

186

187 **Figure S23. There are many inter-chromosomal associations and intra-chromosomal**
 188 **associations can be long range. (A and B)** The total number of inter- and intra-chromosomal
 189 gene coevolutionary signatures reveal substantially more inter-chromosomal coevolution in
 190 comparison to intra-chromosomal coevolution in *S. cerevisiae* and *C. albicans*. (C and D)
 191 Examination of the number of genes that have no signatures of intra-chromosomal evolution and
 192 the number of genes with signatures of intra-chromosomal coevolution reveal a substantial
 193 portion of genes are not coevolving with genes on the same chromosome in either species of
 194 yeast. (E and F) The distribution of every gene and their closest coevolving partner among genes
 195 with evidence of intra-chromosomal coevolution reveals some genes may be coevolving despite
 196 substantial distances between them.

197

200 **Figure S24. The number of genes on a chromosome is the primary driver of the number of**
 201 **intrachromosomal links.** (A and B left panels) Chromosome length (x-axis) and the number of
 202 signatures of intrachromosomal gene coevolution (y-axis) are not significantly associated in (A)
 203 *S. cerevisiae* but are in (B) *C. albicans* ($r = 0.03$, $p = 0.91$ and $r = 0.98$, $p < 0.001$, respectively;
 204 Pearson Correlation). (A and B right panels) The number of genes on a chromosome (x-axis) and
 205 the number of signatures of intrachromosomal gene-gene coevolution (y-axis) are significantly
 206 associated for both (A) *S. cerevisiae* and (B) *C. albicans* ($r = 0.99$, $p < 0.001$ for both species;
 207 Pearson Correlation). Colors of each dot correspond to one chromosome. The color scheme is the
 208 same as depicted in Figure S21.



209

210 **Figure S25. The genomic distribution of orthologous genes is not driving the signature of**
 211 **long distance intra-chromosomal coevolution.** (A) In the genome of *S. cerevisiae*, there is no
 212 substantial association between a gene and the gene that it is most closely coevolving with (y-
 213 axis) and the closest gene in the data set (x-axis) ($r = 0.09$, $p=0.004$; Pearson Correlation). (B)
 214 Similarly, in *C. albicans*, there is not a significant association between the closest distance of a
 215 gene and an intra-chromosomal coevolving gene (y-axis) and the distance between the closest
 216 gene in the dataset (x-axis). Each data point represents a gene and the distance between either the
 217 closest intra-chromosomal gene that it is coevolving with (y-axis) and the distance between it
 218 and the closest gene in the data set (x-axis). Colors of each dot correspond to one chromosome.
 219 The color scheme is the same as depicted in Figure S21.

220

221

222

223 **Figure S26. Chromosome interactions do not influence signatures of coevolution.** For every
 224 chromosomal interaction in *Saccharomyces cerevisiae*, the closest gene pair with a
 225 coevolutionary signature was identified. The average distance of the closest chromosomal
 226 interaction and coevolutionary signature was calculated and that distribution is shown here for
 227 interchromosomal (left) and intrachromosomal (right) interactions. White circles depict the mean
 228 and error bars are plus or minus one standard deviation. Mean and standard deviation values are
 229 shown in white text. Although some distances between chromosomal interactions and coevolving
 230 genes can be small, the average values observed are so great that chromosomal interactions do
 231 not appear to influence signatures of gene-gene coevolution.

232

233 **Supplementary Table Legends**

234

235 **Table S1. GO enrichment analysis for highly connected genes.**

236 BP = biological processes; CC = cellular component; MF = molecular functions; e = enrichment;

237 p = purifying; fdr_bh = false discovery rate, Benjamini-Hochberg.

238

239 **Table S2. GO enrichment analysis across orthologous gene communities 1, 2, 3, and 4.**

240 BP = biological processes; CC = cellular component; MF = molecular functions; e = enrichment;

241 p = purifying; fdr_bh = false discovery rate, Benjamini-Hochberg.

242

243 **Table S3. GO enrichment analysis per orthologous gene community.**

244 BP = biological processes; CC = cellular component; MF = molecular functions; e = enrichment;

245 p = purifying; fdr_bh = false discovery rate, Benjamini-Hochberg.

246

247 **Table S4. Genes with only signatures of intra-chromosomal evolution.**

248

249 **Table S5. GO enrichment analysis of the 2,408 orthologous genes using *S. cerevisiae* and *C. albicans*.**

250 BP = biological processes; CC = cellular component; MF = molecular functions; e = enrichment;

251 p = purifying; fdr_bh = false discovery rate, Benjamini-Hochberg. Background is either

252 *Saccharomyces cerevisiae* or *Candida albicans* genes, as specified by the column "Species."

253

254 **Table S6. Enrichment of gene representation per chromosome in *S. cerevisiae* and *C. albicans*.**

255 Benjamini-Hochberg multi-test correction was used for multi-test correction.