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Abstract

The evolutionary rates of functionally related genes often covary. We present a gene coevolution
network inferred from examining nearly three million orthologous gene pairs from 332 budding
yeast species spanning ~400 million years of evolution. Network modules provide insight into
cellular and genomic structure and function. Examination of the phenotypic impact of network
perturbation using deletion mutant data from the baker’s yeast Saccharomyces cerevisiae, which
were obtained from previously published studies, suggests that fitness in diverse environments is
impacted by orthologous gene neighborhood and connectivity. Mapping the network onto the
chromosomes of S. cerevisiae and Candida albicans revealed coevolving orthologous genes are
not physically clustered in either species; rather, they are often located on different chromosomes
or far apart on the same chromosome. The coevolution network captures the hierarchy of cellular
structure and function, provides a roadmap for genotype-to-phenotype discovery, and portrays

the genome as a linked ensemble of genes.
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Introduction

Genetic networks—diagrams wherein nodes represent genes and edges represent measured
functional relationships between nodes—can elucidate how genes are organized into pathways
and contribute to cellular functions, shedding light onto the relationship between genotype and
phenotype (/—4). Given the rich information contained in or derived from genetic networks,
numerous approaches that aim to capture some aspect(s) of functional relationships among genes
in a genome (e.g., gene coexpression, genetic interaction) have been developed (5—7). While
these networks are highly informative, their availability and applicability is typically limited to
select model organisms and single extant species or strains. Application of information from the
genetic network of one organism to understand the biology of another requires assuming that the

networks of the two organisms are conserved, which is not always the case (8, 9, 18, 10-17).

One complementary, but poorly studied, method for constructing genetic networks is by
measuring the coevolution of orthologous genes, which can be done by calculating the
covariation of relative evolutionary rates among orthologous genes (/9-22). Briefly, by
estimating an orthologous gene’s phylogeny, one infers the rate (and changes in rate) of its
evolution across the phylogeny; if the evolutionary rate values estimated for each branch of an
orthologous gene’s phylogeny are significantly correlated with those of another gene’s
phylogeny, the two orthologs are said to be coevolving. Note, coevolution of orthologous genes
is distinct from organismal coevolution in which reciprocal evolutionary changes occur between
interacting lineages—for example, insect pollinators impacting flowering plant diversification
(23, 24). By estimating coevolution for all pairs of orthologous genes in a clade, one can infer the
clade’s orthologous gene coevolution network, where nodes correspond to orthologs and edges
correspond to the degree to which two orthologs coevolve (22). Genetic networks based on gene
coevolution leverage evolutionary information, whereas standard genetic networks rely on the
correlation of functional data such as gene expression or the presence of genetic interactions

among genes within a single extant species or strain.

Orthologous gene coevolution is often observed among genes that share functions, are
coexpressed, or whose protein products are subunits in a multimeric protein structure, and can

yield insights into the genotype-to-phenotype map (235, 26). For example, screening for genes
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that have coevolved with genes in known DNA repair pathways across 33 mammals led to the
identification of DDIAS, whose involvement in DNA repair was subsequently functionally
validated (26). Furthermore, among 918 pairs of interacting proteins in the protein structural
interactome map, a database of structural domain-domain interactions in the protein data bank

(https://www.rcsb.org/), four out of five proteins exhibit signatures of gene coevolution (27).

Although these and other studies have demonstrated that signatures of coevolution are a
powerful method to detect functional associations among genes in the absence of functional data
(20, 25, 26, 28—30), the network biology principles of gene coevolution, especially between

genes that have coevolved for hundreds of millions of years, remain unexplored.

To unravel general principles of orthologous gene coevolutionary networks, we constructed the
coevolution network of a densely sampled set of orthologs from one-third of known budding
yeast species (332 species) that diversified over ~400 million years. The inferred network
provides a hierarchical view of cellular function from broad bioprocesses to specific pathways.
Interpolation of the gene coevolution network with of fitness assay data from single- and digenic
S. cerevisiae mutants (1, 2, 31, 32) provides insight into subnetwork- and ortholog-specific
potential to buffer genetic perturbations. Surprisingly, comparisons of genetic networks inferred
from gene coevolution and genetic interactions yield similar functional insights; for example,
hubs of genes tend to be functionally related and gene essentiality impacts gene connectivity
wherein essential genes are more densely connected than non-essential genes. Unlike genetic
interaction networks, gene coevolution networks can also provide evolutionary insights; for
example, mapping the orthologous gene coevolution network onto the chromosomes of two
model yeast genomes uncovers extensive inter-chromosomal and long-range intra-chromosomal
associations, providing an ‘entangled’ view of the genome across evolutionary timescales. We
anticipate these results will facilitate the generation, interpretation, and utility of these networks

among other lineages in the tree of life.

Results
A gene coevolution network
We examined 2,898,028 pairs of orthologous genes from a dataset of 2,408 orthologous genes in

332 budding yeast species. Broad network properties were stable across a range of thresholds for
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“significant” orthologous gene coevolution (Fig. S2). To conservatively define “significant”
coevolution and therefore examine orthologous gene pairs with only robust signatures of
coevolution, we implemented a high correlation coefficient threshold for significant orthologous
gene coevolution (r > 0.825; Pearson correlation among relative evolutionary rates). This
resulted in 60,305 significant signatures of orthologous gene coevolution; Fig 1A, 1B, and S1),
which were used to construct a network where nodes are orthologous genes and edges connect

orthologous genes that are significantly coevolving (Fig. 1C).

To determine how orthologous gene connectivity varied in the network, we examined patterns of
dense and sparse connections for individual orthologous genes. Individual orthologous genes
coevolved with a median of eight other orthologous genes, but connectivity varied substantially
across the network (Fig. S3). For example, 1,091 orthologous genes have signatures of
coevolution with five or fewer other orthologous genes and 601 orthologous genes are
singletons, which we define as orthologous genes that are not significantly coevolving with any
other orthologous genes in the dataset. In contrast, 420 orthologous genes have signatures of
coevolution with 100 or more other orthologous genes, and 21 orthologous genes coevolve with

400 or more others.

Coevolving orthologous genes in the network tend to be functionally related. For example, PEX]
and PEX6 are one of the pairs of genes with the highest observed correlation coefficient in
evolutionary rates (Fig. S4). In S. cerevisiae, the two orthologous genes encode a
heterohexameric complex responsible for protein transport across peroxisomal membranes (33)
and mutations in either gene can lead to severe peroxisomal disorders in humans (34). Functional
enrichment among densely connected orthologous genes revealed that complex bioprocesses that
require coordination among polygenic protein products are overrepresented (Fig. S5, Table S1).
For example, CHD1, INOS0, and ARPS5, which encode proteins responsible for chromatin
remodelling processes such as nucleosome sliding and spacing (335), are coevolving with 400 or
more other orthologous genes (Fig. S5, Table S1). Taken together, these findings highlight that
coevolution may be observed among orthologous genes that physically interact (e.g., PEX] and
PEX®6) or contribute to highly intricate biological processes (e.g., INO80). More broadly, these

data support the hypothesis that coevolving orthologous genes tend to have similar functions.
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To determine how connectivity varied within the network, we examined the properties of
subnetworks across orthologous genes considered essential and nonessential in the model yeast
S. cerevisiae or the opportunistic pathogen C. albicans (36, 37). Essential genes are densely
connected in the orthologous gene coevolutionary network, whereas nonessential genes exhibit
sparser connections (Fig. 2A-D). To infer network orthologous gene communities—clusters of
orthologous genes that have more connections between them than between orthologous genes of
different clusters—we used a hierarchical agglomeration algorithm (Fig. 2A). Five large
orthologous gene communities (clusters of more than 10 orthologous genes) were identified.
Each orthologous gene community varied in size, orthologous gene community-to-orthologous
gene community connectivity, and essential/nonessential orthologous gene composition.
Specifically, the two largest orthologous gene communities, communities 1 and 2, share the most
connections and belong to a higher-order cluster with the next two largest orthologous gene
communities, communities 3 and 4 (Fig. 2E and S6). In contrast, the smallest orthologous gene
community, community 5, does not cluster with the other orthologous gene communities.
Similarly, essential genes are overrepresented in orthologous gene community 1 but are
underrepresented in orthologous gene communities 2, 3, and in smaller communities of 10 or
fewer orthologous genes (Fig. 2F; p < 0.01 for all tests; Fisher’s exact test). The result that S.
cerevisiae and C. albicans essential genes are central hubs in coevolution network constructed
from orthologous genes that represent 400 million years of budding yeast evolution mirrors the

finding that essential genes are central hubs in the S. cerevisiae genetic interaction network (2).

From processes to pathways: the budding yeast coevolution network captures the
hierarchy of cellular function

To gain insight into the functional neighborhoods of the orthologous gene coevolution network,
we examined via gene ontology (GO) enrichment analysis (38) the composition of each
orthologous gene community. Among the highest-order cluster of orthologous gene communities
(i.e., communities 1 through 4), we found that higher-order cellular processes including nucleic
acid metabolism (p = 0.040; Fisher’s exact test multi-test corrected using false discovery rate
correction with Benjamini/Hochberg (FDR-BH)) and cellular anatomical entities (p = 0.020;

Fisher’s exact test multi-test corrected using FDR-BH) are enriched. At the individual
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orthologous gene community level, we found that orthologous gene community 1 is enriched in
orthologous genes with helicase activity (p = 0.005; Fisher’s exact test multi-test corrected using
FDR-BH), ligase activity (p = 0.004; Fisher’s exact test multi-test corrected using FDR-BH), and
translation initiation factors (p = 0.024; Fisher’s exact test multi-test corrected using FDR-BH);
orthologous gene community 2 is enriched in Golgi vesicle transport orthologous genes (p =
0.009; Fisher’s exact test multi-test corrected using FDR-BH); whereas singletons are enriched
in GTPase activity (p = 0.016; Fisher’s exact test multi-test corrected using FDR-BH) and
peroxiredoxin activity (p = 0.036; Fisher’s exact test multi-test corrected using FDR-BH) (Fig.
2G-1, Table S3).

Functional neighborhoods of coevolving orthologous genes within and between biological
functions as well as cellular compartments and complex categories are also captured by the
network. For example, orthologous genes involved in the biological functions of ribosome
biogenesis, rRNA processing, and translation, which represent different functional categories, are
extensively coevolving with one another (Fig. S7A). This finding suggests that the complexity of
protein biosynthesis, a process that requires coordination among diverse biochemical functions,
is captured in the coevolution of the underlying orthologous genes. Similarly, orthologous genes
involved in nuclear processes or located in the cytoplasm tend to coevolve with orthologous
genes in the same cellular compartment, however, substantial signatures of coevolution between

orthologous genes from different cellular compartments are also observed (Fig. S7B).

Finally, our network captures functional neighborhoods of coevolving orthologous genes at the
level of pathways and complexes. We found strong signatures of coevolution among orthologous
genes from specific pathways and complexes. For example, orthologous genes that encode
proteins responsible for DNA replication coevolve with a larger number of other DNA
replication orthologous genes than expected by random chance (p < 0.001; permutation test)
(Fig. S8). Orthologous genes involved in DNA mismatch repair and nucleotide excision repair
pathways, which participate in the repair of DNA lesions, have more signatures of coevolution
than expected by random chance (p < 0.001 for each pathway; permutation test). Orthologous
genes in the phosphatidylcholine biosynthesis pathway, which is responsible for the biosynthesis

of the major phospholipid in organelle membranes, and orthologous genes in the tricarboxylic
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acid cycle (also known as the Krebs cycle or citric acid cycle), a key component of aerobic
respiration (Fig. S9), also have more signatures of coevolution than expected by random chance
(p <0.001 for each pathway; permutation test). Among complexes, orthologous genes that
encode the minichromosome maintenance protein complex that functions as a DNA helicase, the
DNA polymerase a-primase complex that assembles RNA-DNA primers required for replication,
and DNA polymerase ¢ that serves as a leading strand DNA polymerase (Fig. 3) also coevolve
with larger numbers of orthologs from the same complex than expected by random chance (p <
0.001 for each multimeric complex; permutation test). Note, certain gene categories (e.g.,
transposons and hexose transporters) are not represented in our dataset of orthologous genes and

could not be examined (see Methods).

In summary, these findings reveal that functional aspects of the network can be viewed with
varying degrees of specificity. For example, the highest-order insights (i.e., GO enrichment
across orthologous gene communities 1, 2, 3, and 4) revealed coevolution among cellular
anatomical entities whereas greater specificity—such as coevolution among orthologous genes
responsible for Golgi vesicle transport—can be obtained by examining lower-order hubs of
genes (e.g., GO enrichment in orthologous gene community 2). Furthermore, coevolutionary
signatures can bridge distinct but related functional categories such as cellular compartments and
complexes, highlighting the complex interplay of distinct functional modules over evolutionary
time. Thus, the budding yeast coevolution network captures the hierarchy of cellular function

from broad bioprocesses to specific pathways or multimeric complexes.

The coevolution network constructed from budding yeast orthologous genes is distinct, but
complementary, to the S. cerevisiae genetic interaction network

To determine similarities and differences between our coevolution network inferred from
orthologous genes in the budding yeast subphylum and the genetic interaction network inferred
from digenic null mutants in the model organism S. cerevisiae (1, 31), both data types were
integrated into a single supernetwork (Fig. S10 and S11). In the genetic interaction network,
nodes represent genes and edges represent non-additive genetic interactions between genes; in
the supernetwork, nodes represent genes and edges connect two genes that have a significant

signature of coevolution, of genetic interaction, or both. We hypothesize that there will be broad
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similarities between the networks because they both capture functional associations; however,
we also hypothesize that the connectivity of individual nodes between the networks will
sometimes differ because one network is built from ~400 million years of orthologous gene

coevolution whereas the other from genetic interactions in a single extant species.

Supporting this hypothesis, the orthologous gene community clustering observed in the gene
coevolution network was also evident in the supernetwork and the two networks were found to
be more similar for all metrics examined (i.e., mean distance and transitivity) than expected by
random chance (p < 0.001 for both tests; permutation test); however, gene- / ortholog-wise
connectivity at times differed suggesting each network harbors distinct and complementary
insights (Fig. S10). For example, connectivity is similar for the gene / ortholog CDC6, which is
required for DNA replication (39), between the two networks. Specifically, CDC6 is connected
to 96 genes / orthologs in both networks and 56 of the genes / orthologs are the same. This result
suggests that the connectivity of the CDC6 gene in S. cerevisiae is broadly conserved across
species from the budding yeast subphylum. In contrast, different gene- / ortholog-wise
connectivity was observed for the choline kinase CKI1 (40, 41); CKI1 is coevolving with 87
orthologs, has a significant genetic interaction with 10 genes, and seven of these genes /
orthologs are shared by both networks. This result suggests that the connectivity of the CK//
gene observed in S. cerevisiae is not broadly conserved across species from the budding yeast
subphylum. This difference may be partially explained by the fact that CK// has a paralog, EKI1,
which arose from an ancient whole genome duplication event that affected some, but not all,
species in the subphylum (42, 43). These results reveal that orthologous gene coevolution
networks inferred over macroevolutionary timescales and networks inferred from genetic
interactions in single organisms offer complementary insights into functional relationships

between genes.

Orthologous gene communities differ in capacity to compensate for perturbation
Examinations of gene dispensability in the model budding yeast S. cerevisiae and the
opportunistic pathogen Candida albicans (36, 37) suggest that single-organism genetic networks
can buffer single gene losses as evidenced by the ability to maintain organismal viability. Thus,

we sought to determine whether a gene’s dispensability varies in an orthologous gene
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community-dependent manner. To address this, we integrated information from the budding
yeast orthologous gene coevolution network and genome-wide single-gene deletion fitness
assays (or, in the case of essential genes, expression suppression) of S. cerevisiae in 14 diverse
environments (32) (Fig. S12 and S13). Here, single-gene deletion fitness assays serve as a proxy
for network perturbation in which deletion of a single gene is analogous to removing a node from
the network. We found that fitness of S. cerevisiae gene knockouts in different environments was
significantly dependent on orthologous gene community and the number of coevolving genes per
gene (Fig. 4; p <0.001 for both comparisons of an interaction between orthologous gene
community:environment interaction and environment:number of coevolving genes, Multi-factor
ANOVA). We also observed a significant fixed effect for orthologous gene community and
environment (p < 0.001, Multi-factor ANOVA). These observations highlight the importance and
role of the environment and the architecture of the underlying genetic network when evaluating

the consequences of single-gene deletions on organismal fitness.

To further investigate the relationship between S. cerevisiae gene dispensability and structure of
the coevolution network, we integrated S. cerevisiae genetic interaction data from double-gene or
digenic deletion fitness assays, wherein positive and negative genetic interactions refer to
positive and negative fitness effects in the digenic deletion mutants relative to those expected
from the combined effects of the individual single-gene deletion mutants, respectively (/, 2, 31).
We found that most gene pairs were associated with negative genetic interactions (Fig. S14).
Furthermore, genetic interactions scores among different orthologous gene community
combinations were not significantly different (p-value > 0.05; Kruskal-Wallis rank sum test)
suggesting digenic losses negatively impacted fitness irrespective of orthologous gene

community.

Finally, to examine evolutionary gene loss in the context of the gene coevolution network, we
investigated orthologous gene community-wide patterns of gene losses among genes lost in a
lineage of budding yeasts previously reported to have undergone extensive gene losses (44).
These analyses revealed orthologous gene community 2 and singleton orthologs are more likely

to be lost (Fig. S14B), which supports the hypothesis that gene losses do not occur stochastically
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(45). In summary, the architecture of the coevolution network is significantly associated with a

gene’s dispensability.

An entangled genome: extensive inter- and long-range intra-chromosomal coevolution
Gene order is not random among eukaryotes and physically linked genes tend to be involved in
the same metabolic pathway or protein-protein complex (46, 47). Thus, we hypothesized that
coevolving orthologous genes will likely be physically linked or clustered onto yeast
chromosomes. To test this hypothesis, we projected the budding yeast gene coevolution network
onto the one-dimensional genome structure of S. cerevisiae and C. albicans, which diverged
~235 million years ago (48). We chose the genomes of these two organisms because they both
have complete and high-quality chromosome-level assemblies. The two organisms also have
distinct evolutionary histories; the lineage that includes S. cerevisiae underwent whole-genome
duplication, whereas C. albicans underwent intra-species hybridization (42, 49). These processes
have contributed to differences in chromosome number (16 in S. cerevisiae vs. eight in C.

albicans) and a lack of macrosynteny (50—54) (Fig. 5A-B and Fig. S15-S16).

Contrary to our hypothesis, we observed extensive inter-chromosomal and long-range intra-
chromosomal orthologous gene coevolution (Fig. 5 and Fig. S17-S23). Specifically, co-evolving
orthologous gene pairs were commonly located on different chromosomes (Fig. SC-D and Table
S4). There was a near-perfect correlation between the number of intra-chromosomal signatures
of coevolution (corrected by the number of genes on that chromosome in the dataset) and the
number of inter-chromosomal signatures of coevolution (corrected by the number of genes on all
other chromosomes in the dataset) (r = 0.95, p < 0.001 for S. cerevisiae; r = 0.98, p < 0.001 for
C. albicans; Spearman correlation). This result suggests that orthologous genes located on the
same or different chromosomes are equally like to be coevolving. Given the extensive
coevolution among orthologous genes in the same or similar functional categories, these results
support the notion that function, not chromosome structure, is the primary driver of coevolution

over macroevolutionary timescales.

Examination of intra-chromosomal coevolution revealed variation in orthologous gene pair

distances along the genome. Two coevolving orthologous genes on the same chromosome can be
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kilobase-to-megabase distances from one another (Fig. 5G-H). The distribution of the closest
distance between an orthologous gene and its coevolving partners revealed a positively skewed
distribution with a similar range of kilobase-to-megabase associations (Fig. S23). In S.
cerevisiae, the number of intra-chromosomal signatures of coevolution is correlated with the
number of genes on a chromosome represented in the dataset, whereas in C. albicans the number
of intra-chromosomal signatures of coevolution is correlated both with chromosome length and
with the number of genes on a chromosome represented in the dataset (Fig. S24). Examination of
the distances between orthologous genes in our dataset and their coevolving partners revealed
that long-range intra-chromosomal coevolution was not an artifact of gene sampling (Fig. S24).
Investigation of the interplay between orthologous gene coevolution and chromosomal contacts
using a three-dimensional model of the S. cerevisiae genome (55) revealed signatures of

coevolution occur independent of chromosomal contacts (Fig. S26).

Extensive inter- and intra-chromosomal associations are exemplified by /INO80, which encodes a
chromatin remodeler and has coevolved with 591 orthologous genes on all other chromosomes in
both S. cerevisiae and C. albicans (Fig. 51-J). To date, few examples of inter-chromosomal
associations between loci are known. One example includes concerted copy number variation
between 45S and 5S rDNA loci in humans; imbalance in copy number is thought to be associated
with disease (56, 57). Our observations suggest extensive inter-chromosomal and long-range

intra-chromosomal functional associations may be more common than previously appreciated.

Discussion

We constructed a genetic network based on orthologous gene coevolution from a densely
sampled set of orthologs across the budding yeast subphylum. These analyses are distinct from
genetic interaction- and gene expression-based genetic networks in that they leverage
evolutionary, rather than functional, data. Thus, coevolution networks infer functionally
conserved relationships among orthologous genes across entire lineages, whereas genetic
networks infer functional relationships among genes in a single extant species or strain
(irrespective of whether these relationships are conserved in other species or not). Gene
coevolution networks are also distinct from networks constructed from correlated presence and

absence patterns of orthologs across a lineage (an approach known as phylogenetic profiling (58,
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59)) in that coevolutionary networks depict relationships among orthologs conserved in the
majority of taxa. Examination of the global coevolution network, orthologous gene communities
therein, and signatures of orthologous gene coevolution among bioprocesses, complexes, and
pathways reveals that the network reflects the hierarchy of cellular function. Moreover, the
integration of network-based approaches provides new insights into coevolution among
orthologous genes—for example, orthologous genes coevolving with hundreds of other
orthologous genes, such as INOS80 (Figure 51 and 5J), are enriched in nucleosome mobilization

(Figure S5).

Comparison of the budding yeast coevolution network to the genetic interaction-based network
of S. cerevisiae revealed numerous notable similarities and differences. For example, both
methods found that gene essentiality significantly impacts connectivity wherein essential genes /
orthologous genes are more densely connected than nonessential genes / orthologous genes (Fig.
2). This finding suggests that genes with more essential cellular functions are more likely central
hubs in the coevolution network (17, 2, 5, 32, 60). Similarities were also observed among genes
with broadly conserved functions. For example, the majority of genes / orthologs connected to
CDCb6, a gene required for the fundamental and widely conserved process of DNA replication
(39), in the orthologous gene coevolution network and the genetic interaction-based network

were the same (/, 31).

Similarities between genetic interaction and gene coevolution networks were also observed when
examining the impact of gene deletion(s) on fitness in diverse environments. For example,
integrating fitness data with data from the orthologous gene coevolution network revealed
significant interactions between community and environment, environment and the number of
coevolving genes, as well as fixed effects of community and environment (Figure 4). These
results suggest that phenotype can be affected by genes coevolving with other genes and the
environment—a finding that, to our knowledge, represents the first integration of orthologous
gene coevolution information and cellular fitness across diverse environments. A similar
observation was made in the genetic interaction network wherein phenotype was affected by
genes interacting with other genes and the environment, a phenomenon known as differential

genetic interaction (32). Taken together with insights discussed in the previous paragraph, these
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striking similarities suggest that, despite using different data types to infer genetic interaction
networks and gene coevolutionary networks (i.e., functional and evolutionary data, respectively),
functional associations between genes, even those affected by environmental contexts, can be
encoded in their coevolutionary histories; thus, functional insights can be inferred from gene
coevolution networks. We find this observation particularly exciting because compared to
genetic interaction analysis, which requires generating and phenotyping single and digenic
knockouts for all pairwise gene combinations, orthologous gene coevolution analysis is
potentially far less challenging technically and requires fewer resources. Notwithstanding these
benefits, orthologous gene coevolution analysis does require the availability of well-annotated
genome sequences of multiple species and knowledge of orthology relationships of their genes.
Nonetheless, in the absence of physical interaction and genetic interaction data, co-evolution

networks can provide similar insights into functional relationships among genes.

In contrast, differences between the two networks are likely driven by the fact that not all parts of
the genetic interaction-based network of any single organism are conserved across an entire
lineage (8, 9, 18, 10—17). The more distinct the evolutionary histories of genes or pathways of
species used to construct an orthologous gene coevolution network, the more divergent the
topologies of the genetic interaction-based network of a species in that lineage will be from the
coevolution network of the entire lineage. For example, CK/!, a choline kinase, gene
connectivity substantially differed in the two networks. This may be in part driven by an ancient
whole genome duplication event and retention of the duplicate gene copy in some, but not all,
budding yeast species (42, 43). Taken together, these results indicate that similarities and
differences between networks inferred using orthologous gene coevolution from a lineage and
networks inferred based on genetic interactions from a single organism are driven by divergence
in individual organisms’ genetic networks; thus, these methods offer distinct insights into

functional associations among genes.

Another difference between the two networks is that the budding yeast coevolution network
offers novel evolutionary insights, which cannot be inferred from genetic interaction networks in
a single species. For example, hubs of genes do not only represent functionally related genes but

also genes whose function has been maintained across long evolutionary timescales.
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Furthermore, interpolation of the gene coevolution network and one-dimensional and three-
dimensional chromosome structure offers novel insights into the interplay of chromosome
structure and coevolution. Despite there being few known examples of inter-chromosomal gene
associations (56), we find extensive signatures of inter- and long-range intra-chromosomal
coevolution (Fig. 5, S21-S22), which suggests that gene function, not location, drives
orthologous gene coevolution over macroevolutionary timescales. These results uncover a
previously underappreciated degree of genome-wide coevolution that has been maintained over
millions of years of budding yeast evolution, suggesting that the evolution and function of

eukaryotic genomes is best viewed as extensively linked ensembles of genes.

The analyses presented herein enabled us to synthesize information from orthologous gene
coevolution, genetic interactions, and cellular fitness among digenic knockout strains in a diverse
panel of environments. Importantly, this data-rich case study of orthologous gene coevolution
can be thought of as a proof-of-principle report that sets the stage for numerous exciting research
opportunities and questions—such as comparisons of orthologous gene coevolutionary networks
between lineages that exhibit key evolutionary differences. For example, in budding yeasts, such
comparisons of orthologous gene coevolutionary networks could be performed for lineages that
differ in their evolutionary rates (44), levels of horizontally acquired genes (48, 61, 62), genetic
code (63, 64), whole-genome duplication (43), or ecological niche (65). This approach may also
be particularly powerful in lineages where genetically tractable models have yet to be established

or in emerging model organisms that are ripe for functional examination.

In summary, we highlight complementary and novel insights that can be inferred using
coevolutionary networks compared to other methods to infer genetic networks. Insights and
methods used herein will facilitate the generation, interpretation, and utility of these networks for

other lineages in the tree of life.
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Methods

Inferring gene coevolution

To infer gene coevolution across ~400 million years of budding yeast evolution, we first
obtained 2,408 orthologous sets of genes (hereafter referred to OGs) from 332 species (46).
These 2,408 orthologous genes are from diverse GO bioprocesses but are underrepresented for
gene functions known to be present in multiple copies, such as transposons and hexose
transporters (Table S5). Thus, we conclude that the 2,408 orthologous sets of genes span a broad
range of cellular and molecular functions. Examination of over and underrepresentation of genes
from the various chromosomes of S. cerevisiae and C. albicans revealed no chromosome was
over or underrepresented in the 2,408 orthologs (Table S6), suggesting each chromosome is

equally represented in our dataset.

Next, we calculated covariation of relative evolutionary rates of all 2,898,028 pairs from the
2,408 orthologous sets of genes. To do so, we developed the CovER (Covarying Evolutionary
Rates) pipeline for high-throughput genome-scale analyses of orthologous gene covariation
based on the mirror tree principle (Fig. 1). The mirror tree principle is conceptually similar to
phylogenetic profiling—wherein correlations in gene presence/absence patterns across a
phylogeny are used to identify functionally related genes (66)—but instead uses correlations in

orthologous genes’ relative evolutionary rates (20, 67, 68).

To implement the CovER pipeline, single gene trees constrained to the species topology were
first inferred using IQ-TREE, v1.6.11 (69) (Fig. 1). Thereafter, all pairwise combinations of gene
trees were examined for significant signatures of coevolution (Fig. 1B). Differences in taxon
occupancy between gene trees are accounted for by pruning both phylogenies to the set of
maximally shared taxa. To mitigate the influence of factors that can lead to high false positive
rates, such as time since speciation and mutation rate, and increase the statistical power of
calculating gene coevolution, branch lengths were transformed into relative rates by correcting
the gene tree branch length by the corresponding branch length in the species phylogeny (79, 20,
70). Single data point outliers (defined as having corrected branch lengths greater than five) are
known to cause false positive correlations and were removed (20). Branch lengths were then Z-

transformed and a Pearson correlation coefficient was calculated for each pair of orthologs. The



466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496

CovER algorithm has been integrated into PhyKIT, a UNIX toolkit for phylogenomic analysis
(22).

Network construction

Complex interactions between orthologous gene pairs were further examined using a network
wherein nodes represent orthologs and edges connect orthologs that are coevolving. Following
our previous work (22), we considered orthologous gene pairs with a covariation coefficient of
0.825 or greater to have a significant signature of coevolution. This threshold resulted in 60,305 /
2,898,026 (2.08%) significant signatures of coevolution (Fig. S1). To explore the impact of our
choice of a covariation coefficient threshold, we examined two measures that describe how
densely the network is connected: edge density (the proportion of present edges out of all
possible edges) and transitivity (ratio of triangles that are connected to triples); as well as two
measures that describe how diffuse the network is: mean distance (average path length among
pairs of nodes) and diameter (the longest geodesic distance). Across a wide range of thresholds
of significant orthologous gene coevolution (Pearson correlation coefficient range of [0.600-
0.900] with a step of 0.005), we found that the choice of threshold had little impact on network
structure (Fig. S2).

Network substructure is commonly referred to as orthologous gene community structure and
describes a set of orthologs that are more densely connected with each other but more sparsely
connected with other sets (or orthologous gene communities) of orthologs. To identify the
orthologous gene community structure of our global orthologous gene coevolution network, a
hierarchical agglomeration algorithm that conducts greedy optimization of modularity was

implemented (71).

To determine if the orthologous gene coevolutionary network and genetic interaction network
were more similar than expected by random chance, we conducted a permutation test. To do so,
we generated a null expectation of similarity between the orthologous gene coevolutionary
network and 10,000 random networks. Random networks were generated by shuffling the edges
of the genetic interaction network. In this way, the edge density (the ratio of the number of edges

and the number of possible edges) is the same between the randomly generated network and the
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genetic interaction network. This is a more conservative than a completely random (null)
network that also alters edge density. Next, we took the absolute values of the differences
between the descriptive statistics of the orthologous coevolutionary network and the 10,000
random networks to generate the null distribution. The absolute difference between the
descriptive statistics of the orthologous coevolutionary network and the observed genetic

interaction network were then examined along the null distribution to determine a p-value.

Enrichment analysis

To determine functional category enrichment among sets of orthologs, gene ontology (GO)
enrichment analysis was conducted. To do so, a background set of GO annotations were curated
from the 2,408 orthologous genes (48). Specifically, for an orthologous group of genes, GO
associations were mapped from the representative gene from S. cerevisiae (72). If an S.
cerevisiae gene was not present, the annotation from the representative gene from C. albicans
was chosen (73). When neither species was represented in an orthologous group, we considered
the function of the orthologous group to be uncertain and did not assign a GO term. Significance
in functional enrichment was assessed using a Fischer’s exact test with Benjamini Hochberg
multi-test correction (o = 0.05) using goatools, v1.0.11 (74). GO annotations were obtained from

the Gene Ontology Consortium (http://geneontology.org/; release date: 2020-10-09). Higher-

order summaries of GO term lists were constructed using GO slim annotations and REVIGO
(75). Over and underrepresentation of essential genes across orthologous gene communities and
genes on the various chromosomes were examined using the same approach in R, v4.0.2

(https://cran.r-project.org/).

Pathway analysis
To examine coevolution between genes in pathways, we first determined the genes belonging to
pathways of interest. To do so, we leveraged pathway information in the KEGG database (76)

and the Saccharomyces Genome Database (SGD; https://www.yeastgenome.org/). To determine

if there are more signatures of coevolution within a pathway than expected by random chance,
we conducted permutation tests. The null distribution was generated by randomly shuffling

coevolution coefficients across all ~3 million orthologous gene pairs 10,000 times and then
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determining the number of coevolving pairs among the pairs of the pathway of interest for each

iteration.

Integrating gene loss information

To estimate the impact of network perturbation, fitness of single-gene deletions and genetic
interaction scores inferred from digenic deletions from were combined with information from the
orthologous gene coevolution network (7, 2, 31, 32). For example, the relationship between
gene-/ortholog-wise community, connectivity, and fitness in diverse environments was
evaluated. To determine if genes / orthologs were equally likely to be lost across orthologous
gene communities, we examined patterns of gene losses in Hanseniaspora spp., which have

undergone extensive gene loss compared to other budding yeasts (44).

Projecting the network onto genome structure and organization

To gain insight into the relationship between genome structure and the orthologous gene
coevolution network, we projected the network onto the complete chromosome genome
assemblies of S. cerevisiae and C. albicans (72, 73, 77, 78). Prior to mapping the network onto
the genome assemblies, we investigated genome-wide synteny using orthology information from
the Candida Gene Order Browser (50). Thereafter, the network was projected onto each genome
assembly using Circos, v0.69 (79). Examination of the distance between coevolving orthologous
genes and chromosomal contacts was conducted using a three-dimensional model of the S.

cerevisiae genome (55).
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Figure legends

Figure 1. Constructing the budding yeast orthologous gene coevolution network. (A) We
determined coevolution in a set of 2,408 single gene trees in which branch lengths were inferred
along the species tree topology. (B) Coevolution of orthologous genes was evaluated across all
pairwise combinations of orthologous genes using the CovER function in PhyKIT, v0.1 (22). (C)
Significantly coevolving pairs of orthologous genes were used to construct a global network of
orthologous gene coevolution where nodes correspond to orthologous genes and edges connect
orthologous genes that are significantly coevolving. The “ring” of nodes corresponds to the
orthologous genes found to be coevolving with very few or no other (i.e., singletons) orthologous

genes in our dataset.

Figure 2. Network modules reflect modules of bioprocesses. (A) Global network of
orthologous gene coevolution and essential (B) and nonessential (C) orthologous gene networks
in S. cerevisiae and C. albicans. The “ring” of nodes in each plot is comprised of orthologous
genes that coevolve with very few or no other genes. (D) The essential gene subnetwork has
higher transitivity and edge density values. The nonessential gene network has higher mean
distance and diameter values. (E) There are five major subnetworks or orthologous gene
communities illustrated by different colors; small communities (<10 orthologous genes) are in
gray. Edge width: number of co-evolving orthologous gene pairs between communities; node
size: number of orthologous genes in a community. Orthologous gene communities 1—4 cluster
together; community 5 is a singleton. (F) Orthologous gene community 1 is overrepresented with
essential orthologous genes. (G-1) Orthologous gene communities differ in enriched terms. MF:
molecular functions; BP: biological processes; circles: enriched GO terms; colors: -logio p-
values; size of circles: GO term uniqueness. Enrichment results for each orthologous gene

community are reported in Table S3. The figure legend is to the right of panel F.

Figure 3. Extensive coevolution in DNA replication genes. Cartoon representation of DNA
replication. Exemplary complex specific subnetworks are depicted in i, ii, and iii. (i) Extensive
coevolution between orthologous genes that encode the helicase, minichromosome maintenance
(MCM) complex, which functions as a helicase. (i1) Coevolution in the orthologous genes that

encode the DNA polymerase a-primase complex and (iii) DNA polymerase € complex, which
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are responsible for RNA primer synthesis and leading strand DNA synthesis, respectively. Edges
in blue connect orthologous genes that are significantly coevolving. Orthologous genes and
complexes in bold have signatures of coevolution. Orthologous genes and complexes are colored
according to orthologous gene community assignment. Complexes, such as the DNA polymerase
a-primase complex, are depicted in multiple colors reflecting the multiple orthologous gene
communities represented within the complex. There is significant coevolution across all DNA
replication orthologous genes (p < 0.001; permutation test) as well as the multimeric complexes

such as the MCM complex (p < 0.001 for each pathway; permutation test).

Figure 4. The impact of perturbing the orthologous gene coevolutionary network through
single-gene deletion in diverse environments is dependent on orthologous gene community
and gene connectivity. (A) Multi-factor ANOVA results indicate orthologous gene community,
environment, the interaction between orthologous gene community and environment, and the
interaction between environment and the number of coevolving orthologous genes per
orthologous gene are significantly associated with the fitness of a single-gene deletion strain
(relative to the wild-type strain). (B) Fitness of single-gene deletion strains in diverse
environments is impacted by orthologous gene community. Here, the y-axis indicates mean
fitness across all genes in a community (x-axis) regardless of node degree. (C) Fitness of single-
gene deletion strains in diverse environments is impacted by the number of coevolving
orthologous genes the deleted node is connected to. Here, the y-axis indicates fitness of all genes
with a given node degree (x-axis) regardless of community status. These results indicate that
fitness in diverse environments is impacted by orthologous gene neighborhood and connectivity
in the network. In both panels, colors correspond to different environments that fitness was
measured in. Df represents degrees of freedom; Sum of Sq. represents sum of squares; Mean of

Sq. represents Mean of squares.

Figure 5. Extensive long range and inter-chromosomal gene coevolution. (A) S. cerevisiae
and (B) C. albicans differ in chromosome number and size. (C & D) Numbers of genes with
inter-chromosomal orthologous gene coevolution (blue), intra-chromosomal (green), or both
(orange). (E & F) Intra-chromosomal signatures of orthologous gene coevolution corrected by

number of genes on chromosome (x-axis) and number of inter-chromosomal signatures of
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orthologous gene coevolution corrected by number of genes on other chromosomes (y-axis).
Colors represent different chromosomes and the regression line of all chromosomes is in black.
(G & H) Distances among intra-chromosomal signatures of orthologous gene coevolution. (I &
J) INOS0, an example of how orthologous genes can coevolve with others across the genome.
Outermost track: chromosomes of either yeast with chromosome 1 at the 12 o’clock position;
second track: genes on plus/minus strand; third track: genes colored according to orthologous
gene community. Scatter plot shows the number of coevolving orthologous genes per
orthologous gene; size reflects higher values. Links depict orthologous genes coevolving with
INOGS0 and are colored according to chromosomal location of the other orthologous gene. Colors

in E-H and ideogram and link colors in J correspond to chromosomes (see panels A and B).
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Figure S1. A conservative threshold for signatures of gene coevolution was used to
construct the gene coevolution network. (A) Distribution of coevolution coefficients. The
average coevolution coefficient is 0.57 and is represented by a solid line. One standard deviation
away from the average is depicted using a dashed line. Insignificant coevolution coefficients are
shown in blue whereas significant coevolution coefficients, which are defined as having values
greater than or equal to 0.825, are shown in gold. (B) There are 60,305 significant signatures of

gene coevolution whereas there are 2,837,723 insignificant signatures of gene coevolution.
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transitivity. Network properties were similar regardless of the threshold used.
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Figure S3. Distribution of node degrees. The median number of node degrees is eight (solid
line). The dashed lines represent the median plus one, two, three, four, or five standard

deviations.
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Figure S4. Three gene pairs with the strongest signatures of gene coevolution. (A) INOS80, a
gene that encodes a nucleosome spacing factor, and POL3, a gene that encodes the catalytic
subunit of DNA polymerase delta, are significantly coevolving. PEX] and PEX6, which form a
heterodimer, are also coevolving. Similarly, INO80 and XRN1, which encodes an

exoribonuclease, have significant signatures of evolution. Each dot represents a branch in the

gene tree phylogeny.
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Figure S5. Gene ontology enrichment of genes with high degrees reveals functional
categories associated with highlight coordinated processes. To determine what functional
categories of genes are densely connected to other genes, we conducted GO enrichment analysis.
(A) To do so, we first binned genes into groups having >100, >200, >300, >400, and >500
coevolving genes per gene. (B, C, and D) Enriched terms were observed among genes
coevolving with >100, >200, and >400 genes. Enriched terms among genes coevolving with
>100 and >200 genes included those involved in ribosome biogenesis and processes involving
nucleic acids such as their binding and synthesis. (D) Among genes coevolving with >400 genes,
there was one enriched term, nucleosome mobilization, which is associated with chromatin

remodelling. In B-D, significantly enriched terms (o = 0.05) are represented as circles in
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semantic space. Uniqueness, a measure of GO term dissimilarity to all other enriched terms, is
represented by circle size. Circle color is representative of -logio transformed p-value.
Highlighted enriched terms are written within the figure and their corresponding circle has a

black outline. Complete GO enrichment analyses are reported in Table S1.
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Figure S6. Orthologous gene communities one and two are highly connected. (A)
Examination of the total number of connections between orthologous gene communities reveals
orthologous gene community one and two are highly connected. Correcting the number of
connections between orthologous gene communities by (B) the total number of genes in each
orthologous gene community reveals that (C) orthologous gene communities one and two are
exceptionally interconnected. Mean and median connections between orthologous gene
communities corrected by the total number of genes in each orthologous gene community is
represented in a blue and orange solid line, respectively. The mean or median plus one standard

deviation is shown in a dashed line.
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Figure S7. Subnetworks of broad categories reveal connections and bridges between
biological functions and cellular compartments and complexes. (A) Diverse biological
functions derived from enriched terms across orthologous gene communities reveal a high degree
of interconnectedness. (B) Examination of cellular compartments and complexes uncovers
cellular structure. For example, the nucleus (purple) and cytoplasm (red) are adjacent and
intertwined in the network and are bridged by genes that perform spliceosome-related functions
(dark blue). Similarly, transcripts are created and processed by the spliceosome in the nucleus

and before being transported to the cytoplasm for translation.
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Figure S8. DNA replication as an exemplary pathway with signatures of gene-gene
coevolution. Gene-gene coevolution network among genes involved in DNA replication. Nodes
represent genes and edges connect coevolving genes. Genes are arranged counter-clockwise

according to decreasing numbers of degrees, or coevolving genes per gene, in the subnetwork.
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Figure S9. Exemplary pathways that are coevolving. (A) Phosphatidylcholine, the major
phospholipid in organelle membranes, is synthesized by the genes CK/I, PCT1, and CPT1I.
CPT1 is coevolving with CKII and PCTI. (B) The tricarboxylic acid cycle (TCA cycle; also
referred to as the Krebs cycle or citric acid cycle) is a key component of aerobic respiration in

cells. Many genes in the TCA cycle are coevolving with one another.



80
81

82
83
84
85
86
87
88

Figure S10. The coevolution genetic network and genetic interaction network differ. (A)
Edges identified in the coevolution genetic network and genetic interaction network are
combined into one super network. (B) The global network inferred using gene-gene coevolution.
(C) The genetic interaction network among only significant genetic interaction scores. Nodes are
genes and edges connect genes with significant signatures of coevolution or genetic interactions.
Genes in orthologous gene community one, two, three, four, five, and all other small orthologous

gene communities are depicted in blue, purple, red, yellow, green, and grey respectively.
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Figure S11. The coevolution genetic network and genetic interaction network differ in gene
connectivity. Degrees in the coevolutionary network and the genetic interaction network are not
related to one another. Each circle represents a gene and their color reflects the orthologous gene
community they belong to. Lines represent linear model regressions between the degrees of each
network and their color reflects the orthologous gene community they represent; a black line
with a 95% confidence in grey represents the linear model regression across all orthologous gene

communities.
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99  Figure S12. Orthologous gene community-dependent variation in fitness of single-gene
100
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knockouts across environments. Fitness (y-axis) among single-gene knockouts is in part
dependent on the orthologous gene community (x-axis) to which the gene belongs to across 14

environments.
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Figure S13. Orthologous gene community-dependent variation in fitness of single-gene
knockouts is in part dependent on gene connectivity across environments. Fitness (y-axis)
among single-gene knockouts is in part dependent on the orthologous gene community to which
the gene belongs to across 14 environments as well as gene connectivity as measured by the

number of coevolving genes per gene (X-axis).
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Figure S14. Digenic gene losses greatly impact cellular fitness and genes lost in the yeast

genus Hanseniaspora are lost asymmetrically across orthologous gene communities. (A)

Negative genetic interaction scores reflecting a worse phenotypic impact when two genes are

deleted are more frequently observed across double knockouts. Genetic interaction scores on

double knockouts of genes from different orthologous gene community combinations were not

significantly different (p-value > 0.05; Kruskal-Wallis rank sum test). (B) Gene loss occurs

asymmetrically across orthologous gene communities in two Hanseniaspora lineages. The inset

depicts total counts of losses per orthologous gene community and dashed lines reflect average

losses for each lineage.
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Figure S15. Lack of synteny between the Candida albicans chromosomes 1, 2, 3, and 4 and
Saccharomyces cerevisiae chromosomes. The left 16 chromosomes are the S. cerevisiae
chromosomes. The right eight chromosomes are the C. albicans chromosomes. Links start from a
specific C. albicans chromosome and are connected to their orthologous gene in the S. cerevisiae
genome. Gene orthology reveals a lack of synteny between the two genomes. Gene orthology
information was obtained from the Candida genome browser

http://www.candidagenome.org/download/homology/orthologs/C_albicans_SC5314 S _cerevisia

e_by CGOB/.
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Figure S16. Lack of synteny between the Candida albicans chromosomes 5, 6, 7, and R and
Saccharomyces cerevisiae chromosomes. The left 16 chromosomes are the S. cerevisiae
chromosomes. The right eight chromosomes are the C. albicans chromosomes. Links start from a
specific C. albicans chromosome and are connected to their orthologous gene in the S. cerevisiae
genome. Gene orthology reveals a lack of synteny between the two genomes Gene orthology
information was obtained from the Candida genome browser

http://www.candidagenome.org/download/homology/orthologs/C albicans SC5314 S cerevisia

e_by_CGOB/.
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Figure S17. Genes on chromosomes one through four are coevolving with genes on all other

i ';.’15,/,'1':&. 1 3
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et
gt

chromosomes in Saccharomyces cerevisiae. The first track depicts the 16 chromosomes of S.
cerevisiae. The next track depicts the location of all genes on the plus strand followed by the
minus strand. The next tracks depict genes present in the dataset and are colored according to the
orthologous gene community they belong. The scatter plot depicts the number of coevolving
genes a gene has and the larger the circle represents more coevolving genes. The last track

depicts links between genes on a highlighted chromosome that are coevolving with other genes



149  across all chromosomes. Plots are arranged in ascending chromosome order from top left to

150  bottom right.
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Figure S18. Genes on chromosomes five through eight are coevolving with genes on all
other chromosomes in Saccharomyces cerevisiae. The first six tracks depict the same data as in
Figure N (Genes on chromosomes one through four are coevolving with genes on all other
chromosomes). Links depict genes that are coevolving with genes on a highlighted chromosome.

Plots are arranged in ascending chromosome order from top left to bottom right.
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Figure S19. Genes on chromosomes nine through twelve are coevolving with genes on all
other chromosomes in Saccharomyces cerevisiae. The first six tracks depict the same data as in
Figure N (Genes on chromosomes one through four are coevolving with genes on all other
chromosomes). Links depict genes that are coevolving with genes on a highlighted chromosome.

Plots are arranged in ascending chromosome order from top left to bottom right.
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Figure S20. Genes on chromosomes thirteen through sixteen are coevolving with genes on
all other chromosomes in Saccharomyces cerevisiae. The first six tracks depict the same data
as in Figure N (Genes on chromosomes one through four are coevolving with genes on all other
chromosomes). Links depict genes that are coevolving with genes on a highlighted chromosome.

Plots are arranged in ascending chromosome order from top left to bottom right.
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Figure S21. Genes on chromosomes one through four are coevolving with genes on all other
chromosomes in Candida albicans. The first six tracks depict the same data as in Figure N
(Genes on chromosomes one through four are coevolving with genes on all other chromosomes).
Links depict genes that are coevolving with genes on a highlighted chromosome. Plots are

arranged in ascending chromosome order from top left to bottom right.
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Figure S22. Genes on chromosomes five through seven and chromosome R are coevolving
with genes on all other chromosomes in Candida albicans. The first six tracks depict the same
data as in Figure N (Genes on chromosomes one through four are coevolving with genes on all
other chromosomes). Links depict genes that are coevolving with genes on a highlighted

chromosome. Plots are arranged in ascending chromosome order from top left to bottom right.
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187  Figure S23. There are many inter-chromosomal associations and intra-chromosomal

188  associations can be long range. (A and B) The total number of inter- and intra-chromosomal
189  gene coevolutionary signatures reveal substantially more inter-chromosomal coevolution in

190  comparison to intra-chromosomal coevolution in S. cerevisiae and C. albicans. (C and D)

191  Examination of the number of genes that have no signatures of intra-chromosomal evolution and
192 the number of genes with signatures of intra-chromosomal coevolution reveal a substantial

193 portion of genes are not coevolving with genes on the same chromosome in either species of
194  yeast. (E and F) The distribution of every gene and their closest coevolving partner among genes
195  with evidence of intra-chromosomal coevolution reveals some genes may be coevolving despite
196  substantial distances between them.
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Figure S24. The number of genes on a chromosome is the primary driver of the number of
intrachromosomal links. (A and B left panels) Chromosome length (x-axis) and the number of
signatures of intrachromosomal gene coevolution (y-axis) are not significantly associated in (A)
S. cerevisiae but are in (B) C. albicans (r =0.03, p=0.91 and r=0.98, p<0.001, respectively;
Pearson Correlation). (A and B right panels) The number of genes on a chromosome (x-axis) and
the number of signatures of intrachromosomal gene-gene coevolution (y-axis) are significantly
associated for both (A) S. cerevisiae and (B) C. albicans (r =0.99, p < 0.001 for both species;
Pearson Correlation). Colors of each dot correspond to one chromosome. The color scheme is the

same as depicted in Figure S21.
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Figure S25. The genomic distribution of orthologous genes is not driving the signature of
long distance intra-chromosomal coevolution. (A) In the genome of S. cerevisiae, there is no
substantial association between a gene and the gene that it is most closely coevolving with (y-
axis) and the closest gene in the data set (x-axis) (r = 0.09, p=0.004; Pearson Correlation). (B)
Similarly, in C. albicans, there is not a significant association between the closest distance of a
gene and an intra-chromosomal coevolving gene (y-axis) and the distance between the closest
gene in the dataset (x-axis). Each data point represents a gene and the distance between either the
closest intra-chromosomal gene that it is coevolving with (y-axis) and the distance between it
and the closest gene in the data set (x-axis). Colors of each dot correspond to one chromosome.

The color scheme is the same as depicted in Figure S21.
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Figure S26. Chromosome interactions do not influence signatures of coevolution. For every
chromosomal interaction in Saccharomyces cerevisiae, the closest gene pair with a
coevolutionary signature was identified. The average distance of the closest chromosomal
interaction and coevolutionary signature was calculated and that distribution is shown here for
interchromosomal (left) and intrachromosomal (right) interactions. White circles depict the mean
and error bars are plus or minus one standard deviation. Mean and standard deviation values are
shown in white text. Although some distances between chromosomal interactions and coevolving
genes can be small, the average values observed are so great that chromosomal interactions do

not appear to influence signatures of gene-gene coevolution.
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Supplementary Table Legends

Table S1. GO enrichment analysis for highly connected genes.
BP = biological processes; CC = cellular component; MF = molecular functions; e = enrichment;

p = purifying; fdr_bh = false discovery rate, Benjamini-Hochberg.

Table S2. GO enrichment analysis across orthologous gene communities 1, 2, 3, and 4.
BP = biological processes; CC = cellular component; MF = molecular functions; e = enrichment;

p = purifying; fdr_bh = false discovery rate, Benjamini-Hochberg.

Table S3. GO enrichment analysis per orthologous gene community.
BP = biological processes; CC = cellular component; MF = molecular functions; e = enrichment;

p = purifying; fdr_bh = false discovery rate, Benjamini-Hochberg.

Table S4. Genes with only signatures of intra-chromosomal evolution.

Table S5. GO enrichment analysis of the 2,408 orthologous genes using S. cerevisiae and C.
albicans.

BP = biological processes; CC = cellular component; MF = molecular functions; e = enrichment;
p = purifying; fdr_bh = false discovery rate, Benjamini-Hochberg. Background is either

Saccharomyces cerevisiae or Candida albicans genes, as specified by the column "Species."

Table S6. Enrichment of gene representation per chromosome in S. cerevisiae and C.
albicans.

Benjamini-Hochberg multi-test correction was used for multi-test correction.



