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Abstract 25 

The evolutionary rates of functionally related genes often covary. We present a gene coevolution 26 

network inferred from examining nearly three million orthologous gene pairs from 332 budding 27 

yeast species spanning ~400 million years of evolution. Network modules provide insight into 28 

cellular and genomic structure and function. Examination of the phenotypic impact of network 29 

perturbation using deletion mutant data from the baker’s yeast Saccharomyces cerevisiae, which 30 

were obtained from previously published studies, suggests that fitness in diverse environments is 31 

impacted by orthologous gene neighborhood and connectivity. Mapping the network onto the 32 

chromosomes of S. cerevisiae and Candida albicans revealed coevolving orthologous genes are 33 

not physically clustered in either species; rather, they are often located on different chromosomes 34 

or far apart on the same chromosome. The coevolution network captures the hierarchy of cellular 35 

structure and function, provides a roadmap for genotype-to-phenotype discovery, and portrays 36 

the genome as a linked ensemble of genes.  37 



Introduction 38 

Genetic networks—diagrams wherein nodes represent genes and edges represent measured 39 

functional relationships between nodes—can elucidate how genes are organized into pathways 40 

and contribute to cellular functions, shedding light onto the relationship between genotype and 41 

phenotype (1–4). Given the rich information contained in or derived from genetic networks, 42 

numerous approaches that aim to capture some aspect(s) of functional relationships among genes 43 

in a genome (e.g., gene coexpression, genetic interaction) have been developed (5–7). While 44 

these networks are highly informative, their availability and applicability is typically limited to 45 

select model organisms and single extant species or strains. Application of information from the 46 

genetic network of one organism to understand the biology of another requires assuming that the 47 

networks of the two organisms are conserved, which is not always the case (8, 9, 18, 10–17).  48 

 49 

One complementary, but poorly studied, method for constructing genetic networks is by 50 

measuring the coevolution of orthologous genes, which can be done by calculating the 51 

covariation of relative evolutionary rates among orthologous genes (19–22). Briefly, by 52 

estimating an orthologous gene’s phylogeny, one infers the rate (and changes in rate) of its 53 

evolution across the phylogeny; if the evolutionary rate values estimated for each branch of an 54 

orthologous gene’s phylogeny are significantly correlated with those of another gene’s 55 

phylogeny, the two orthologs are said to be coevolving. Note, coevolution of orthologous genes 56 

is distinct from organismal coevolution in which reciprocal evolutionary changes occur between 57 

interacting lineages—for example, insect pollinators impacting flowering plant diversification 58 

(23, 24). By estimating coevolution for all pairs of orthologous genes in a clade, one can infer the 59 

clade’s orthologous gene coevolution network, where nodes correspond to orthologs and edges 60 

correspond to the degree to which two orthologs coevolve (22). Genetic networks based on gene 61 

coevolution leverage evolutionary information, whereas standard genetic networks rely on the 62 

correlation of functional data such as gene expression or the presence of genetic interactions 63 

among genes within a single extant species or strain.  64 

 65 

Orthologous gene coevolution is often observed among genes that share functions, are 66 

coexpressed, or whose protein products are subunits in a multimeric protein structure, and can 67 

yield insights into the genotype-to-phenotype map (25, 26). For example, screening for genes 68 



that have coevolved with genes in known DNA repair pathways across 33 mammals led to the 69 

identification of DDIAS, whose involvement in DNA repair was subsequently functionally 70 

validated (26). Furthermore, among 918 pairs of interacting proteins in the protein structural 71 

interactome map, a database of structural domain-domain interactions in the protein data bank 72 

(https://www.rcsb.org/), four out of five proteins exhibit signatures of gene coevolution (27). 73 

Although these and other studies have demonstrated that signatures of coevolution are a 74 

powerful method to detect functional associations among genes in the absence of functional data 75 

(20, 25, 26, 28–30), the network biology principles of gene coevolution, especially between 76 

genes that have coevolved for hundreds of millions of years, remain unexplored. 77 

 78 

To unravel general principles of orthologous gene coevolutionary networks, we constructed the 79 

coevolution network of a densely sampled set of orthologs from one-third of known budding 80 

yeast species (332 species) that diversified over ~400 million years. The inferred network 81 

provides a hierarchical view of cellular function from broad bioprocesses to specific pathways. 82 

Interpolation of the gene coevolution network with of fitness assay data from single- and digenic 83 

S. cerevisiae mutants (1, 2, 31, 32) provides insight into subnetwork- and ortholog-specific 84 

potential to buffer genetic perturbations. Surprisingly, comparisons of genetic networks inferred 85 

from gene coevolution and genetic interactions yield similar functional insights; for example, 86 

hubs of genes tend to be functionally related and gene essentiality impacts gene connectivity 87 

wherein essential genes are more densely connected than non-essential genes. Unlike genetic 88 

interaction networks, gene coevolution networks can also provide evolutionary insights; for 89 

example, mapping the orthologous gene coevolution network onto the chromosomes of two 90 

model yeast genomes uncovers extensive inter-chromosomal and long-range intra-chromosomal 91 

associations, providing an ‘entangled’ view of the genome across evolutionary timescales. We 92 

anticipate these results will facilitate the generation, interpretation, and utility of these networks 93 

among other lineages in the tree of life. 94 

 95 

Results 96 

A gene coevolution network 97 

We examined 2,898,028 pairs of orthologous genes from a dataset of 2,408 orthologous genes in 98 

332 budding yeast species. Broad network properties were stable across a range of thresholds for 99 



“significant” orthologous gene coevolution (Fig. S2). To conservatively define “significant” 100 

coevolution and therefore examine orthologous gene pairs with only robust signatures of 101 

coevolution, we implemented a high correlation coefficient threshold for significant orthologous 102 

gene coevolution (r ≥ 0.825; Pearson correlation among relative evolutionary rates). This 103 

resulted in 60,305 significant signatures of orthologous gene coevolution; Fig 1A, 1B, and S1), 104 

which were used to construct a network where nodes are orthologous genes and edges connect 105 

orthologous genes that are significantly coevolving (Fig. 1C). 106 

 107 

To determine how orthologous gene connectivity varied in the network, we examined patterns of 108 

dense and sparse connections for individual orthologous genes. Individual orthologous genes 109 

coevolved with a median of eight other orthologous genes, but connectivity varied substantially 110 

across the network (Fig. S3). For example, 1,091 orthologous genes have signatures of 111 

coevolution with five or fewer other orthologous genes and 601 orthologous genes are 112 

singletons, which we define as orthologous genes that are not significantly coevolving with any 113 

other orthologous genes in the dataset. In contrast, 420 orthologous genes have signatures of 114 

coevolution with 100 or more other orthologous genes, and 21 orthologous genes coevolve with 115 

400 or more others.  116 

 117 

Coevolving orthologous genes in the network tend to be functionally related. For example, PEX1 118 

and PEX6 are one of the pairs of genes with the highest observed correlation coefficient in 119 

evolutionary rates (Fig. S4). In S. cerevisiae, the two orthologous genes encode a 120 

heterohexameric complex responsible for protein transport across peroxisomal membranes (33) 121 

and mutations in either gene can lead to severe peroxisomal disorders in humans (34). Functional 122 

enrichment among densely connected orthologous genes revealed that complex bioprocesses that 123 

require coordination among polygenic protein products are overrepresented (Fig. S5, Table S1). 124 

For example, CHD1, INO80, and ARP5, which encode proteins responsible for chromatin 125 

remodelling processes such as nucleosome sliding and spacing (35), are coevolving with 400 or 126 

more other orthologous genes (Fig. S5, Table S1). Taken together, these findings highlight that 127 

coevolution may be observed among orthologous genes that physically interact (e.g., PEX1 and 128 

PEX6) or contribute to highly intricate biological processes (e.g., INO80). More broadly, these 129 

data support the hypothesis that coevolving orthologous genes tend to have similar functions.   130 



 131 

To determine how connectivity varied within the network, we examined the properties of 132 

subnetworks across orthologous genes considered essential and nonessential in the model yeast 133 

S. cerevisiae or the opportunistic pathogen C. albicans (36, 37). Essential genes are densely 134 

connected in the orthologous gene coevolutionary network, whereas nonessential genes exhibit 135 

sparser connections (Fig. 2A-D). To infer network orthologous gene communities—clusters of 136 

orthologous genes that have more connections between them than between orthologous genes of 137 

different clusters—we used a hierarchical agglomeration algorithm (Fig. 2A). Five large 138 

orthologous gene communities (clusters of more than 10 orthologous genes) were identified. 139 

Each orthologous gene community varied in size, orthologous gene community-to-orthologous 140 

gene community connectivity, and essential/nonessential orthologous gene composition. 141 

Specifically, the two largest orthologous gene communities, communities 1 and 2, share the most 142 

connections and belong to a higher-order cluster with the next two largest orthologous gene 143 

communities, communities 3 and 4 (Fig. 2E and S6). In contrast, the smallest orthologous gene 144 

community, community 5, does not cluster with the other orthologous gene communities. 145 

Similarly, essential genes are overrepresented in orthologous gene community 1 but are 146 

underrepresented in orthologous gene communities 2, 3, and in smaller communities of 10 or 147 

fewer orthologous genes (Fig. 2F; p < 0.01 for all tests; Fisher’s exact test). The result that S. 148 

cerevisiae and C. albicans essential genes are central hubs in coevolution network constructed 149 

from orthologous genes that represent 400 million years of budding yeast evolution mirrors the 150 

finding that essential genes are central hubs in the S. cerevisiae genetic interaction network (2).  151 

 152 

From processes to pathways: the budding yeast coevolution network captures the 153 

hierarchy of cellular function 154 

To gain insight into the functional neighborhoods of the orthologous gene coevolution network, 155 

we examined via gene ontology (GO) enrichment analysis (38) the composition of each 156 

orthologous gene community. Among the highest-order cluster of orthologous gene communities 157 

(i.e., communities 1 through 4), we found that higher-order cellular processes including nucleic 158 

acid metabolism (p = 0.040; Fisher’s exact test multi-test corrected using false discovery rate 159 

correction with Benjamini/Hochberg (FDR-BH)) and cellular anatomical entities (p = 0.020; 160 

Fisher’s exact test multi-test corrected using FDR-BH) are enriched. At the individual 161 



orthologous gene community level, we found that orthologous gene community 1 is enriched in 162 

orthologous genes with helicase activity (p = 0.005; Fisher’s exact test multi-test corrected using 163 

FDR-BH), ligase activity (p = 0.004; Fisher’s exact test multi-test corrected using FDR-BH), and 164 

translation initiation factors (p = 0.024; Fisher’s exact test multi-test corrected using FDR-BH); 165 

orthologous gene community 2 is enriched in Golgi vesicle transport orthologous genes (p = 166 

0.009; Fisher’s exact test multi-test corrected using FDR-BH); whereas singletons are enriched 167 

in GTPase activity (p = 0.016; Fisher’s exact test multi-test corrected using FDR-BH) and 168 

peroxiredoxin activity (p = 0.036; Fisher’s exact test multi-test corrected using FDR-BH) (Fig. 169 

2G-I, Table S3).  170 

 171 

Functional neighborhoods of coevolving orthologous genes within and between biological 172 

functions as well as cellular compartments and complex categories are also captured by the 173 

network. For example, orthologous genes involved in the biological functions of ribosome 174 

biogenesis, rRNA processing, and translation, which represent different functional categories, are 175 

extensively coevolving with one another (Fig. S7A). This finding suggests that the complexity of 176 

protein biosynthesis, a process that requires coordination among diverse biochemical functions, 177 

is captured in the coevolution of the underlying orthologous genes. Similarly, orthologous genes 178 

involved in nuclear processes or located in the cytoplasm tend to coevolve with orthologous 179 

genes in the same cellular compartment, however, substantial signatures of coevolution between 180 

orthologous genes from different cellular compartments are also observed (Fig. S7B).  181 

 182 

Finally, our network captures functional neighborhoods of coevolving orthologous genes at the 183 

level of pathways and complexes. We found strong signatures of coevolution among orthologous 184 

genes from specific pathways and complexes. For example, orthologous genes that encode 185 

proteins responsible for DNA replication coevolve with a larger number of other DNA 186 

replication orthologous genes than expected by random chance (p < 0.001; permutation test) 187 

(Fig. S8). Orthologous genes involved in DNA mismatch repair and nucleotide excision repair 188 

pathways, which participate in the repair of DNA lesions, have more signatures of coevolution 189 

than expected by random chance (p < 0.001 for each pathway; permutation test). Orthologous 190 

genes in the phosphatidylcholine biosynthesis pathway, which is responsible for the biosynthesis 191 

of the major phospholipid in organelle membranes, and orthologous genes in the tricarboxylic 192 



acid cycle (also known as the Krebs cycle or citric acid cycle), a key component of aerobic 193 

respiration (Fig. S9), also have more signatures of coevolution than expected by random chance 194 

(p < 0.001 for each pathway; permutation test). Among complexes, orthologous genes that 195 

encode the minichromosome maintenance protein complex that functions as a DNA helicase, the 196 

DNA polymerase α-primase complex that assembles RNA-DNA primers required for replication, 197 

and DNA polymerase ε that serves as a leading strand DNA polymerase (Fig. 3) also coevolve 198 

with larger numbers of orthologs from the same complex than expected by random chance (p < 199 

0.001 for each multimeric complex; permutation test). Note, certain gene categories (e.g., 200 

transposons and hexose transporters) are not represented in our dataset of orthologous genes and 201 

could not be examined (see Methods).  202 

 203 

In summary, these findings reveal that functional aspects of the network can be viewed with 204 

varying degrees of specificity. For example, the highest-order insights (i.e., GO enrichment 205 

across orthologous gene communities 1, 2, 3, and 4) revealed coevolution among cellular 206 

anatomical entities whereas greater specificity—such as coevolution among orthologous genes 207 

responsible for Golgi vesicle transport—can be obtained by examining lower-order hubs of 208 

genes (e.g., GO enrichment in orthologous gene community 2). Furthermore, coevolutionary 209 

signatures can bridge distinct but related functional categories such as cellular compartments and 210 

complexes, highlighting the complex interplay of distinct functional modules over evolutionary 211 

time. Thus, the budding yeast coevolution network captures the hierarchy of cellular function 212 

from broad bioprocesses to specific pathways or multimeric complexes. 213 

 214 

The coevolution network constructed from budding yeast orthologous genes is distinct, but 215 

complementary, to the S. cerevisiae genetic interaction network 216 

To determine similarities and differences between our coevolution network inferred from 217 

orthologous genes in the budding yeast subphylum and the genetic interaction network inferred 218 

from digenic null mutants in the model organism S. cerevisiae (1, 31), both data types were 219 

integrated into a single supernetwork (Fig. S10 and S11). In the genetic interaction network, 220 

nodes represent genes and edges represent non-additive genetic interactions between genes; in 221 

the supernetwork, nodes represent genes and edges connect two genes that have a significant 222 

signature of coevolution, of genetic interaction, or both. We hypothesize that there will be broad 223 



similarities between the networks because they both capture functional associations; however, 224 

we also hypothesize that the connectivity of individual nodes between the networks will 225 

sometimes differ because one network is built from ~400 million years of orthologous gene 226 

coevolution whereas the other from genetic interactions in a single extant species.  227 

 228 

Supporting this hypothesis, the orthologous gene community clustering observed in the gene 229 

coevolution network was also evident in the supernetwork and the two networks were found to 230 

be more similar for all metrics examined (i.e., mean distance and transitivity) than expected by 231 

random chance (p < 0.001 for both tests; permutation test); however, gene- / ortholog-wise 232 

connectivity at times differed suggesting each network harbors distinct and complementary 233 

insights (Fig. S10). For example, connectivity is similar for the gene / ortholog CDC6, which is 234 

required for DNA replication (39), between the two networks. Specifically, CDC6 is connected 235 

to 96 genes / orthologs in both networks and 56 of the genes / orthologs are the same. This result 236 

suggests that the connectivity of the CDC6 gene in S. cerevisiae is broadly conserved across 237 

species from the budding yeast subphylum. In contrast, different gene- / ortholog-wise 238 

connectivity was observed for the choline kinase CKI1 (40, 41); CKI1 is coevolving with 87 239 

orthologs, has a significant genetic interaction with 10 genes, and seven of these genes / 240 

orthologs are shared by both networks. This result suggests that the connectivity of the CKI1 241 

gene observed in S. cerevisiae is not broadly conserved across species from the budding yeast 242 

subphylum. This difference may be partially explained by the fact that CKI1 has a paralog, EKI1, 243 

which arose from an ancient whole genome duplication event that affected some, but not all, 244 

species in the subphylum (42, 43). These results reveal that orthologous gene coevolution 245 

networks inferred over macroevolutionary timescales and networks inferred from genetic 246 

interactions in single organisms offer complementary insights into functional relationships 247 

between genes.  248 

 249 

Orthologous gene communities differ in capacity to compensate for perturbation 250 

Examinations of gene dispensability in the model budding yeast S. cerevisiae and the 251 

opportunistic pathogen Candida albicans (36, 37) suggest that single-organism genetic networks 252 

can buffer single gene losses as evidenced by the ability to maintain organismal viability. Thus, 253 

we sought to determine whether a gene’s dispensability varies in an orthologous gene 254 



community-dependent manner. To address this, we integrated information from the budding 255 

yeast orthologous gene coevolution network and genome-wide single-gene deletion fitness 256 

assays (or, in the case of essential genes, expression suppression) of S. cerevisiae in 14 diverse 257 

environments (32) (Fig. S12 and S13). Here, single-gene deletion fitness assays serve as a proxy 258 

for network perturbation in which deletion of a single gene is analogous to removing a node from 259 

the network. We found that fitness of S. cerevisiae gene knockouts in different environments was 260 

significantly dependent on orthologous gene community and the number of coevolving genes per 261 

gene (Fig. 4; p < 0.001 for both comparisons of an interaction between orthologous gene 262 

community:environment interaction and environment:number of coevolving genes, Multi-factor 263 

ANOVA). We also observed a significant fixed effect for orthologous gene community and 264 

environment (p < 0.001, Multi-factor ANOVA). These observations highlight the importance and 265 

role of the environment and the architecture of the underlying genetic network when evaluating 266 

the consequences of single-gene deletions on organismal fitness. 267 

 268 

To further investigate the relationship between S. cerevisiae gene dispensability and structure of 269 

the coevolution network, we integrated S. cerevisiae genetic interaction data from double-gene or 270 

digenic deletion fitness assays, wherein positive and negative genetic interactions refer to 271 

positive and negative fitness effects in the digenic deletion mutants relative to those expected 272 

from the combined effects of the individual single-gene deletion mutants, respectively (1, 2, 31). 273 

We found that most gene pairs were associated with negative genetic interactions (Fig. S14). 274 

Furthermore, genetic interactions scores among different orthologous gene community 275 

combinations were not significantly different (p-value > 0.05; Kruskal-Wallis rank sum test) 276 

suggesting digenic losses negatively impacted fitness irrespective of orthologous gene 277 

community. 278 

 279 

Finally, to examine evolutionary gene loss in the context of the gene coevolution network, we 280 

investigated orthologous gene community-wide patterns of gene losses among genes lost in a 281 

lineage of budding yeasts previously reported to have undergone extensive gene losses (44). 282 

These analyses revealed orthologous gene community 2 and singleton orthologs are more likely 283 

to be lost (Fig. S14B), which supports the hypothesis that gene losses do not occur stochastically 284 



(45). In summary, the architecture of the coevolution network is significantly associated with a 285 

gene’s dispensability. 286 

 287 

An entangled genome: extensive inter- and long-range intra-chromosomal coevolution 288 

Gene order is not random among eukaryotes and physically linked genes tend to be involved in 289 

the same metabolic pathway or protein-protein complex (46, 47). Thus, we hypothesized that 290 

coevolving orthologous genes will likely be physically linked or clustered onto yeast 291 

chromosomes. To test this hypothesis, we projected the budding yeast gene coevolution network 292 

onto the one-dimensional genome structure of S. cerevisiae and C. albicans, which diverged 293 

~235 million years ago (48). We chose the genomes of these two organisms because they both 294 

have complete and high-quality chromosome-level assemblies. The two organisms also have 295 

distinct evolutionary histories; the lineage that includes S. cerevisiae underwent whole-genome 296 

duplication, whereas C. albicans underwent intra-species hybridization (42, 49). These processes 297 

have contributed to differences in chromosome number (16 in S. cerevisiae vs. eight in C. 298 

albicans) and a lack of macrosynteny (50–54) (Fig. 5A-B and Fig. S15-S16). 299 

 300 

Contrary to our hypothesis, we observed extensive inter-chromosomal and long-range intra-301 

chromosomal orthologous gene coevolution (Fig. 5 and Fig. S17-S23). Specifically, co-evolving 302 

orthologous gene pairs were commonly located on different chromosomes (Fig. 5C-D and Table 303 

S4). There was a near-perfect correlation between the number of intra-chromosomal signatures 304 

of coevolution (corrected by the number of genes on that chromosome in the dataset) and the 305 

number of inter-chromosomal signatures of coevolution (corrected by the number of genes on all 306 

other chromosomes in the dataset) (r = 0.95, p < 0.001 for S. cerevisiae; r = 0.98, p < 0.001 for 307 

C. albicans; Spearman correlation). This result suggests that orthologous genes located on the 308 

same or different chromosomes are equally like to be coevolving. Given the extensive 309 

coevolution among orthologous genes in the same or similar functional categories, these results 310 

support the notion that function, not chromosome structure, is the primary driver of coevolution 311 

over macroevolutionary timescales. 312 

 313 

Examination of intra-chromosomal coevolution revealed variation in orthologous gene pair 314 

distances along the genome. Two coevolving orthologous genes on the same chromosome can be 315 



kilobase-to-megabase distances from one another (Fig. 5G-H). The distribution of the closest 316 

distance between an orthologous gene and its coevolving partners revealed a positively skewed 317 

distribution with a similar range of kilobase-to-megabase associations (Fig. S23). In S. 318 

cerevisiae, the number of intra-chromosomal signatures of coevolution is correlated with the 319 

number of genes on a chromosome represented in the dataset, whereas in C. albicans the number 320 

of intra-chromosomal signatures of coevolution is correlated both with chromosome length and 321 

with the number of genes on a chromosome represented in the dataset (Fig. S24). Examination of 322 

the distances between orthologous genes in our dataset and their coevolving partners revealed 323 

that long-range intra-chromosomal coevolution was not an artifact of gene sampling (Fig. S24). 324 

Investigation of the interplay between orthologous gene coevolution and chromosomal contacts 325 

using a three-dimensional model of the S. cerevisiae genome (55) revealed signatures of 326 

coevolution occur independent of chromosomal contacts (Fig. S26). 327 

 328 

Extensive inter- and intra-chromosomal associations are exemplified by INO80, which encodes a 329 

chromatin remodeler and has coevolved with 591 orthologous genes on all other chromosomes in 330 

both S. cerevisiae and C. albicans (Fig. 5I-J). To date, few examples of inter-chromosomal 331 

associations between loci are known. One example includes concerted copy number variation 332 

between 45S and 5S rDNA loci in humans; imbalance in copy number is thought to be associated 333 

with disease (56, 57). Our observations suggest extensive inter-chromosomal and long-range 334 

intra-chromosomal functional associations may be more common than previously appreciated. 335 

 336 

Discussion 337 

We constructed a genetic network based on orthologous gene coevolution from a densely 338 

sampled set of orthologs across the budding yeast subphylum. These analyses are distinct from 339 

genetic interaction- and gene expression-based genetic networks in that they leverage 340 

evolutionary, rather than functional, data. Thus, coevolution networks infer functionally 341 

conserved relationships among orthologous genes across entire lineages, whereas genetic 342 

networks infer functional relationships among genes in a single extant species or strain 343 

(irrespective of whether these relationships are conserved in other species or not). Gene 344 

coevolution networks are also distinct from networks constructed from correlated presence and 345 

absence patterns of orthologs across a lineage (an approach known as phylogenetic profiling (58, 346 



59)) in that coevolutionary networks depict relationships among orthologs conserved in the 347 

majority of taxa. Examination of the global coevolution network, orthologous gene communities 348 

therein, and signatures of orthologous gene coevolution among bioprocesses, complexes, and 349 

pathways reveals that the network reflects the hierarchy of cellular function. Moreover, the 350 

integration of network-based approaches provides new insights into coevolution among 351 

orthologous genes—for example, orthologous genes coevolving with hundreds of other 352 

orthologous genes, such as INO80 (Figure 5I and 5J), are enriched in nucleosome mobilization 353 

(Figure S5).  354 

 355 

Comparison of the budding yeast coevolution network to the genetic interaction-based network 356 

of S. cerevisiae revealed numerous notable similarities and differences. For example, both 357 

methods found that gene essentiality significantly impacts connectivity wherein essential genes / 358 

orthologous genes are more densely connected than nonessential genes / orthologous genes (Fig. 359 

2). This finding suggests that genes with more essential cellular functions are more likely central 360 

hubs in the coevolution network (1, 2, 5, 32, 60). Similarities were also observed among genes 361 

with broadly conserved functions. For example, the majority of genes / orthologs connected to 362 

CDC6, a gene required for the fundamental and widely conserved process of DNA replication 363 

(39), in the orthologous gene coevolution network and the genetic interaction-based network 364 

were the same (1, 31).  365 

 366 

Similarities between genetic interaction and gene coevolution networks were also observed when 367 

examining the impact of gene deletion(s) on fitness in diverse environments. For example, 368 

integrating fitness data with data from the orthologous gene coevolution network revealed 369 

significant interactions between community and environment, environment and the number of 370 

coevolving genes, as well as fixed effects of community and environment (Figure 4). These 371 

results suggest that phenotype can be affected by genes coevolving with other genes and the 372 

environment—a finding that, to our knowledge, represents the first integration of orthologous 373 

gene coevolution information and cellular fitness across diverse environments. A similar 374 

observation was made in the genetic interaction network wherein phenotype was affected by 375 

genes interacting with other genes and the environment, a phenomenon known as differential 376 

genetic interaction (32). Taken together with insights discussed in the previous paragraph, these 377 



striking similarities suggest that, despite using different data types to infer genetic interaction 378 

networks and gene coevolutionary networks (i.e., functional and evolutionary data, respectively), 379 

functional associations between genes, even those affected by environmental contexts, can be 380 

encoded in their coevolutionary histories; thus, functional insights can be inferred from gene 381 

coevolution networks. We find this observation particularly exciting because compared to 382 

genetic interaction analysis, which requires generating and phenotyping single and digenic 383 

knockouts for all pairwise gene combinations, orthologous gene coevolution analysis is 384 

potentially far less challenging technically and requires fewer resources. Notwithstanding these 385 

benefits, orthologous gene coevolution analysis does require the availability of well-annotated 386 

genome sequences of multiple species and knowledge of orthology relationships of their genes. 387 

Nonetheless, in the absence of physical interaction and genetic interaction data, co-evolution 388 

networks can provide similar insights into functional relationships among genes.     389 

 390 

In contrast, differences between the two networks are likely driven by the fact that not all parts of 391 

the genetic interaction-based network of any single organism are conserved across an entire 392 

lineage (8, 9, 18, 10–17). The more distinct the evolutionary histories of genes or pathways of 393 

species used to construct an orthologous gene coevolution network, the more divergent the 394 

topologies of the genetic interaction-based network of a species in that lineage will be from the 395 

coevolution network of the entire lineage. For example, CKI1, a choline kinase, gene 396 

connectivity substantially differed in the two networks. This may be in part driven by an ancient 397 

whole genome duplication event and retention of the duplicate gene copy in some, but not all, 398 

budding yeast species (42, 43). Taken together, these results indicate that similarities and 399 

differences between networks inferred using orthologous gene coevolution from a lineage and 400 

networks inferred based on genetic interactions from a single organism are driven by divergence 401 

in individual organisms’ genetic networks; thus, these methods offer distinct insights into 402 

functional associations among genes. 403 

 404 

Another difference between the two networks is that the budding yeast coevolution network 405 

offers novel evolutionary insights, which cannot be inferred from genetic interaction networks in 406 

a single species. For example, hubs of genes do not only represent functionally related genes but 407 

also genes whose function has been maintained across long evolutionary timescales. 408 



Furthermore, interpolation of the gene coevolution network and one-dimensional and three-409 

dimensional chromosome structure offers novel insights into the interplay of chromosome 410 

structure and coevolution. Despite there being few known examples of inter-chromosomal gene 411 

associations (56), we find extensive signatures of inter- and long-range intra-chromosomal 412 

coevolution (Fig. 5, S21-S22), which suggests that gene function, not location, drives 413 

orthologous gene coevolution over macroevolutionary timescales. These results uncover a 414 

previously underappreciated degree of genome-wide coevolution that has been maintained over 415 

millions of years of budding yeast evolution, suggesting that the evolution and function of 416 

eukaryotic genomes is best viewed as extensively linked ensembles of genes. 417 

 418 

The analyses presented herein enabled us to synthesize information from orthologous gene 419 

coevolution, genetic interactions, and cellular fitness among digenic knockout strains in a diverse 420 

panel of environments. Importantly, this data-rich case study of orthologous gene coevolution 421 

can be thought of as a proof-of-principle report that sets the stage for numerous exciting research 422 

opportunities and questions—such as comparisons of orthologous gene coevolutionary networks 423 

between lineages that exhibit key evolutionary differences. For example, in budding yeasts, such 424 

comparisons of orthologous gene coevolutionary networks could be performed for lineages that 425 

differ in their evolutionary rates (44), levels of horizontally acquired genes (48, 61, 62), genetic 426 

code (63, 64), whole-genome duplication (43), or ecological niche (65). This approach may also 427 

be particularly powerful in lineages where genetically tractable models have yet to be established 428 

or in emerging model organisms that are ripe for functional examination. 429 

 430 

In summary, we highlight complementary and novel insights that can be inferred using 431 

coevolutionary networks compared to other methods to infer genetic networks. Insights and 432 

methods used herein will facilitate the generation, interpretation, and utility of these networks for 433 

other lineages in the tree of life.  434 



Methods 435 

Inferring gene coevolution 436 

To infer gene coevolution across ~400 million years of budding yeast evolution, we first 437 

obtained 2,408 orthologous sets of genes (hereafter referred to OGs) from 332 species (48). 438 

These 2,408 orthologous genes are from diverse GO bioprocesses but are underrepresented for 439 

gene functions known to be present in multiple copies, such as transposons and hexose 440 

transporters (Table S5). Thus, we conclude that the 2,408 orthologous sets of genes span a broad 441 

range of cellular and molecular functions. Examination of over and underrepresentation of genes 442 

from the various chromosomes of S. cerevisiae and C. albicans revealed no chromosome was 443 

over or underrepresented in the 2,408 orthologs (Table S6), suggesting each chromosome is 444 

equally represented in our dataset. 445 

 446 

Next, we calculated covariation of relative evolutionary rates of all 2,898,028 pairs from the 447 

2,408 orthologous sets of genes. To do so, we developed the CovER (Covarying Evolutionary 448 

Rates) pipeline for high-throughput genome-scale analyses of orthologous gene covariation 449 

based on the mirror tree principle (Fig. 1). The mirror tree principle is conceptually similar to 450 

phylogenetic profiling—wherein correlations in gene presence/absence patterns across a 451 

phylogeny are used to identify functionally related genes (66)—but instead uses correlations in 452 

orthologous genes’ relative evolutionary rates (20, 67, 68).  453 

 454 

To implement the CovER pipeline, single gene trees constrained to the species topology were 455 

first inferred using IQ-TREE, v1.6.11 (69) (Fig. 1). Thereafter, all pairwise combinations of gene 456 

trees were examined for significant signatures of coevolution (Fig. 1B). Differences in taxon 457 

occupancy between gene trees are accounted for by pruning both phylogenies to the set of 458 

maximally shared taxa. To mitigate the influence of factors that can lead to high false positive 459 

rates, such as time since speciation and mutation rate, and increase the statistical power of 460 

calculating gene coevolution, branch lengths were transformed into relative rates by correcting 461 

the gene tree branch length by the corresponding branch length in the species phylogeny (19, 20, 462 

70). Single data point outliers (defined as having corrected branch lengths greater than five) are 463 

known to cause false positive correlations and were removed (20). Branch lengths were then Z-464 

transformed and a Pearson correlation coefficient was calculated for each pair of orthologs. The 465 



CovER algorithm has been integrated into PhyKIT, a UNIX toolkit for phylogenomic analysis 466 

(22). 467 

 468 

Network construction 469 

Complex interactions between orthologous gene pairs were further examined using a network 470 

wherein nodes represent orthologs and edges connect orthologs that are coevolving. Following 471 

our previous work (22), we considered orthologous gene pairs with a covariation coefficient of 472 

0.825 or greater to have a significant signature of coevolution. This threshold resulted in 60,305 / 473 

2,898,026 (2.08%) significant signatures of coevolution (Fig. S1). To explore the impact of our 474 

choice of a covariation coefficient threshold, we examined two measures that describe how 475 

densely the network is connected: edge density (the proportion of present edges out of all 476 

possible edges) and transitivity (ratio of triangles that are connected to triples); as well as two 477 

measures that describe how diffuse the network is: mean distance (average path length among 478 

pairs of nodes) and diameter (the longest geodesic distance). Across a wide range of thresholds 479 

of significant orthologous gene coevolution (Pearson correlation coefficient range of [0.600-480 

0.900] with a step of 0.005), we found that the choice of threshold had little impact on network 481 

structure (Fig. S2). 482 

 483 

Network substructure is commonly referred to as orthologous gene community structure and 484 

describes a set of orthologs that are more densely connected with each other but more sparsely 485 

connected with other sets (or orthologous gene communities) of orthologs. To identify the 486 

orthologous gene community structure of our global orthologous gene coevolution network, a 487 

hierarchical agglomeration algorithm that conducts greedy optimization of modularity was 488 

implemented (71). 489 

 490 

To determine if the orthologous gene coevolutionary network and genetic interaction network 491 

were more similar than expected by random chance, we conducted a permutation test. To do so, 492 

we generated a null expectation of similarity between the orthologous gene coevolutionary 493 

network and 10,000 random networks. Random networks were generated by shuffling the edges 494 

of the genetic interaction network. In this way, the edge density (the ratio of the number of edges 495 

and the number of possible edges) is the same between the randomly generated network and the 496 



genetic interaction network. This is a more conservative than a completely random (null) 497 

network that also alters edge density. Next, we took the absolute values of the differences 498 

between the descriptive statistics of the orthologous coevolutionary network and the 10,000 499 

random networks to generate the null distribution. The absolute difference between the 500 

descriptive statistics of the orthologous coevolutionary network and the observed genetic 501 

interaction network were then examined along the null distribution to determine a p-value. 502 

 503 

Enrichment analysis 504 

To determine functional category enrichment among sets of orthologs, gene ontology (GO) 505 

enrichment analysis was conducted. To do so, a background set of GO annotations were curated 506 

from the 2,408 orthologous genes (48). Specifically, for an orthologous group of genes, GO 507 

associations were mapped from the representative gene from S. cerevisiae (72). If an S. 508 

cerevisiae gene was not present, the annotation from the representative gene from C. albicans 509 

was chosen (73). When neither species was represented in an orthologous group, we considered 510 

the function of the orthologous group to be uncertain and did not assign a GO term. Significance 511 

in functional enrichment was assessed using a Fischer’s exact test with Benjamini Hochberg 512 

multi-test correction (α = 0.05) using goatools, v1.0.11 (74). GO annotations were obtained from 513 

the Gene Ontology Consortium (http://geneontology.org/; release date: 2020-10-09). Higher-514 

order summaries of GO term lists were constructed using GO slim annotations and REVIGO 515 

(75). Over and underrepresentation of essential genes across orthologous gene communities and 516 

genes on the various chromosomes were examined using the same approach in R, v4.0.2 517 

(https://cran.r-project.org/). 518 

 519 

Pathway analysis 520 

To examine coevolution between genes in pathways, we first determined the genes belonging to 521 

pathways of interest. To do so, we leveraged pathway information in the KEGG database (76) 522 

and the Saccharomyces Genome Database (SGD; https://www.yeastgenome.org/). To determine 523 

if there are more signatures of coevolution within a pathway than expected by random chance, 524 

we conducted permutation tests. The null distribution was generated by randomly shuffling 525 

coevolution coefficients across all ~3 million orthologous gene pairs 10,000 times and then 526 



determining the number of coevolving pairs among the pairs of the pathway of interest for each 527 

iteration. 528 

 529 

Integrating gene loss information 530 

To estimate the impact of network perturbation, fitness of single-gene deletions and genetic 531 

interaction scores inferred from digenic deletions from were combined with information from the 532 

orthologous gene coevolution network (1, 2, 31, 32). For example, the relationship between 533 

gene-/ortholog-wise community, connectivity, and fitness in diverse environments was 534 

evaluated. To determine if genes / orthologs were equally likely to be lost across orthologous 535 

gene communities, we examined patterns of gene losses in Hanseniaspora spp., which have 536 

undergone extensive gene loss compared to other budding yeasts (44). 537 

 538 

Projecting the network onto genome structure and organization 539 

To gain insight into the relationship between genome structure and the orthologous gene 540 

coevolution network, we projected the network onto the complete chromosome genome 541 

assemblies of S. cerevisiae and C. albicans (72, 73, 77, 78). Prior to mapping the network onto 542 

the genome assemblies, we investigated genome-wide synteny using orthology information from 543 

the Candida Gene Order Browser (50). Thereafter, the network was projected onto each genome 544 

assembly using Circos, v0.69 (79). Examination of the distance between coevolving orthologous 545 

genes and chromosomal contacts was conducted using a three-dimensional model of the S. 546 

cerevisiae genome (55). 547 
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Figure legends 843 

Figure 1. Constructing the budding yeast orthologous gene coevolution network. (A) We 844 

determined coevolution in a set of 2,408 single gene trees in which branch lengths were inferred 845 

along the species tree topology. (B) Coevolution of orthologous genes was evaluated across all 846 

pairwise combinations of orthologous genes using the CovER function in PhyKIT, v0.1 (22). (C) 847 

Significantly coevolving pairs of orthologous genes were used to construct a global network of 848 

orthologous gene coevolution where nodes correspond to orthologous genes and edges connect 849 

orthologous genes that are significantly coevolving. The “ring” of nodes corresponds to the 850 

orthologous genes found to be coevolving with very few or no other (i.e., singletons) orthologous 851 

genes in our dataset.  852 

 853 

Figure 2. Network modules reflect modules of bioprocesses. (A) Global network of 854 

orthologous gene coevolution and essential (B) and nonessential (C) orthologous gene networks 855 

in S. cerevisiae and C. albicans. The “ring” of nodes in each plot is comprised of orthologous 856 

genes that coevolve with very few or no other genes. (D) The essential gene subnetwork has 857 

higher transitivity and edge density values. The nonessential gene network has higher mean 858 

distance and diameter values. (E) There are five major subnetworks or orthologous gene 859 

communities illustrated by different colors; small communities (≤10 orthologous genes) are in 860 

gray. Edge width: number of co-evolving orthologous gene pairs between communities; node 861 

size: number of orthologous genes in a community. Orthologous gene communities 1–4 cluster 862 

together; community 5 is a singleton. (F) Orthologous gene community 1 is overrepresented with 863 

essential orthologous genes. (G-I) Orthologous gene communities differ in enriched terms. MF: 864 

molecular functions; BP: biological processes; circles: enriched GO terms; colors: -log10 p-865 

values; size of circles: GO term uniqueness. Enrichment results for each orthologous gene 866 

community are reported in Table S3. The figure legend is to the right of panel F. 867 

 868 

Figure 3. Extensive coevolution in DNA replication genes. Cartoon representation of DNA 869 

replication. Exemplary complex specific subnetworks are depicted in i, ii, and iii. (i) Extensive 870 

coevolution between orthologous genes that encode the helicase, minichromosome maintenance 871 

(MCM) complex, which functions as a helicase. (ii) Coevolution in the orthologous genes that 872 

encode the DNA polymerase α-primase complex and (iii) DNA polymerase ε complex, which 873 



are responsible for RNA primer synthesis and leading strand DNA synthesis, respectively. Edges 874 

in blue connect orthologous genes that are significantly coevolving. Orthologous genes and 875 

complexes in bold have signatures of coevolution. Orthologous genes and complexes are colored 876 

according to orthologous gene community assignment. Complexes, such as the DNA polymerase 877 

α-primase complex, are depicted in multiple colors reflecting the multiple orthologous gene 878 

communities represented within the complex. There is significant coevolution across all DNA 879 

replication orthologous genes (p < 0.001; permutation test) as well as the multimeric complexes 880 

such as the MCM complex (p < 0.001 for each pathway; permutation test). 881 

 882 

Figure 4. The impact of perturbing the orthologous gene coevolutionary network through 883 

single-gene deletion in diverse environments is dependent on orthologous gene community 884 

and gene connectivity. (A) Multi-factor ANOVA results indicate orthologous gene community, 885 

environment, the interaction between orthologous gene community and environment, and the 886 

interaction between environment and the number of coevolving orthologous genes per 887 

orthologous gene are significantly associated with the fitness of a single-gene deletion strain 888 

(relative to the wild-type strain). (B) Fitness of single-gene deletion strains in diverse 889 

environments is impacted by orthologous gene community. Here, the y-axis indicates mean 890 

fitness across all genes in a community (x-axis) regardless of node degree. (C) Fitness of single-891 

gene deletion strains in diverse environments is impacted by the number of coevolving 892 

orthologous genes the deleted node is connected to. Here, the y-axis indicates fitness of all genes 893 

with a given node degree (x-axis) regardless of community status. These results indicate that 894 

fitness in diverse environments is impacted by orthologous gene neighborhood and connectivity 895 

in the network. In both panels, colors correspond to different environments that fitness was 896 

measured in. Df represents degrees of freedom; Sum of Sq. represents sum of squares; Mean of 897 

Sq. represents Mean of squares. 898 

 899 

Figure 5. Extensive long range and inter-chromosomal gene coevolution. (A) S. cerevisiae 900 

and (B) C. albicans differ in chromosome number and size. (C & D) Numbers of genes with 901 

inter-chromosomal orthologous gene coevolution (blue), intra-chromosomal (green), or both 902 

(orange). (E & F) Intra-chromosomal signatures of orthologous gene coevolution corrected by 903 

number of genes on chromosome (x-axis) and number of inter-chromosomal signatures of 904 



orthologous gene coevolution corrected by number of genes on other chromosomes (y-axis). 905 

Colors represent different chromosomes and the regression line of all chromosomes is in black. 906 

(G & H) Distances among intra-chromosomal signatures of orthologous gene coevolution. (I & 907 

J) INO80, an example of how orthologous genes can coevolve with others across the genome. 908 

Outermost track: chromosomes of either yeast with chromosome 1 at the 12 o’clock position; 909 

second track: genes on plus/minus strand; third track: genes colored according to orthologous 910 

gene community. Scatter plot shows the number of coevolving orthologous genes per 911 

orthologous gene; size reflects higher values. Links depict orthologous genes coevolving with 912 

INO80 and are colored according to chromosomal location of the other orthologous gene. Colors 913 

in E-H and ideogram and link colors in J correspond to chromosomes (see panels A and B). 914 
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Supplementary Figures 1 

 2 

 3 

Figure S1. A conservative threshold for signatures of gene coevolution was used to 4 

construct the gene coevolution network. (A) Distribution of coevolution coefficients. The 5 

average coevolution coefficient is 0.57 and is represented by a solid line. One standard deviation 6 

away from the average is depicted using a dashed line. Insignificant coevolution coefficients are 7 

shown in blue whereas significant coevolution coefficients, which are defined as having values 8 

greater than or equal to 0.825, are shown in gold. (B) There are 60,305 significant signatures of 9 

gene coevolution whereas there are 2,837,723 insignificant signatures of gene coevolution.  10 

  11 



 12 

Figure S2. Various thresholds of significant gene coevolution had little impact on overall 13 

network features. To determine the impact of various thresholds of coevolution coefficients on 14 

the resulting network, we examined network diameter, edge density, mean distance, and 15 

transitivity. Network properties were similar regardless of the threshold used. 16 

17 



 18 

Figure S3. Distribution of node degrees. The median number of node degrees is eight (solid 19 

line). The dashed lines represent the median plus one, two, three, four, or five standard 20 

deviations. 21 

  22 



 23 

Figure S4. Three gene pairs with the strongest signatures of gene coevolution. (A) INO80, a 24 

gene that encodes a nucleosome spacing factor, and POL3, a gene that encodes the catalytic 25 

subunit of DNA polymerase delta, are significantly coevolving. PEX1 and PEX6, which form a 26 

heterodimer, are also coevolving. Similarly, INO80 and XRN1, which encodes an 27 

exoribonuclease, have significant signatures of evolution. Each dot represents a branch in the 28 

gene tree phylogeny.  29 



 30 

Figure S5. Gene ontology enrichment of genes with high degrees reveals functional 31 

categories associated with highlight coordinated processes. To determine what functional 32 

categories of genes are densely connected to other genes, we conducted GO enrichment analysis. 33 

(A) To do so, we first binned genes into groups having ≥100, ≥200, ≥300, ≥400, and ≥500 34 

coevolving genes per gene. (B, C, and D) Enriched terms were observed among genes 35 

coevolving with ≥100, ≥200, and ≥400 genes. Enriched terms among genes coevolving with 36 

≥100 and ≥200 genes included those involved in ribosome biogenesis and processes involving 37 

nucleic acids such as their binding and synthesis. (D) Among genes coevolving with ≥400 genes, 38 

there was one enriched term, nucleosome mobilization, which is associated with chromatin 39 

remodelling. In B-D, significantly enriched terms (α = 0.05) are represented as circles in 40 



semantic space. Uniqueness, a measure of GO term dissimilarity to all other enriched terms, is 41 

represented by circle size. Circle color is representative of -log10 transformed p-value. 42 

Highlighted enriched terms are written within the figure and their corresponding circle has a 43 

black outline. Complete GO enrichment analyses are reported in Table S1.  44 
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 46 

Figure S6. Orthologous gene communities one and two are highly connected. (A) 47 

Examination of the total number of connections between orthologous gene communities reveals 48 

orthologous gene community one and two are highly connected. Correcting the number of 49 

connections between orthologous gene communities by (B) the total number of genes in each 50 

orthologous gene community reveals that (C) orthologous gene communities one and two are 51 

exceptionally interconnected. Mean and median connections between orthologous gene 52 

communities corrected by the total number of genes in each orthologous gene community is 53 

represented in a blue and orange solid line, respectively. The mean or median plus one standard 54 

deviation is shown in a dashed line. 55 
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 57 

Figure S7. Subnetworks of broad categories reveal connections and bridges between 58 

biological functions and cellular compartments and complexes. (A) Diverse biological 59 

functions derived from enriched terms across orthologous gene communities reveal a high degree 60 

of interconnectedness. (B) Examination of cellular compartments and complexes uncovers 61 

cellular structure. For example, the nucleus (purple) and cytoplasm (red) are adjacent and 62 

intertwined in the network and are bridged by genes that perform spliceosome-related functions 63 

(dark blue). Similarly, transcripts are created and processed by the spliceosome in the nucleus 64 

and before being transported to the cytoplasm for translation. 65 
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 67 

Figure S8. DNA replication as an exemplary pathway with signatures of gene-gene 68 

coevolution. Gene-gene coevolution network among genes involved in DNA replication. Nodes 69 

represent genes and edges connect coevolving genes. Genes are arranged counter-clockwise 70 

according to decreasing numbers of degrees, or coevolving genes per gene, in the subnetwork.  71 
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 73 

Figure S9. Exemplary pathways that are coevolving. (A) Phosphatidylcholine, the major 74 

phospholipid in organelle membranes, is synthesized by the genes CKI1, PCT1, and CPT1. 75 

CPT1 is coevolving with CKI1 and PCT1. (B) The tricarboxylic acid cycle (TCA cycle; also 76 

referred to as the Krebs cycle or citric acid cycle) is a key component of aerobic respiration in 77 

cells. Many genes in the TCA cycle are coevolving with one another. 78 
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 80 

Figure S10. The coevolution genetic network and genetic interaction network differ. (A) 81 

Edges identified in the coevolution genetic network and genetic interaction network are 82 

combined into one super network. (B) The global network inferred using gene-gene coevolution. 83 

(C) The genetic interaction network among only significant genetic interaction scores. Nodes are 84 

genes and edges connect genes with significant signatures of coevolution or genetic interactions. 85 

Genes in orthologous gene community one, two, three, four, five, and all other small orthologous 86 

gene communities are depicted in blue, purple, red, yellow, green, and grey respectively. 87 
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 89 

Figure S11. The coevolution genetic network and genetic interaction network differ in gene 90 

connectivity. Degrees in the coevolutionary network and the genetic interaction network are not 91 

related to one another. Each circle represents a gene and their color reflects the orthologous gene 92 

community they belong to. Lines represent linear model regressions between the degrees of each 93 

network and their color reflects the orthologous gene community they represent; a black line 94 

with a 95% confidence in grey represents the linear model regression across all orthologous gene 95 

communities. 96 
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 98 
Figure S12. Orthologous gene community-dependent variation in fitness of single-gene 99 

knockouts across environments. Fitness (y-axis) among single-gene knockouts is in part 100 

dependent on the orthologous gene community (x-axis) to which the gene belongs to across 14 101 

environments. 102 
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 104 
Figure S13. Orthologous gene community-dependent variation in fitness of single-gene 105 

knockouts is in part dependent on gene connectivity across environments. Fitness (y-axis) 106 

among single-gene knockouts is in part dependent on the orthologous gene community to which 107 

the gene belongs to across 14 environments as well as gene connectivity as measured by the 108 

number of coevolving genes per gene (x-axis). 109 
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 112 

Figure S14. Digenic gene losses greatly impact cellular fitness and genes lost in the yeast 113 

genus Hanseniaspora are lost asymmetrically across orthologous gene communities. (A) 114 

Negative genetic interaction scores reflecting a worse phenotypic impact when two genes are 115 

deleted are more frequently observed across double knockouts. Genetic interaction scores on 116 

double knockouts of genes from different orthologous gene community combinations were not 117 

significantly different (p-value > 0.05; Kruskal-Wallis rank sum test). (B) Gene loss occurs 118 

asymmetrically across orthologous gene communities in two Hanseniaspora lineages. The inset 119 

depicts total counts of losses per orthologous gene community and dashed lines reflect average 120 

losses for each lineage. 121 
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 123 

Figure S15. Lack of synteny between the Candida albicans chromosomes 1, 2, 3, and 4 and 124 

Saccharomyces cerevisiae chromosomes. The left 16 chromosomes are the S. cerevisiae 125 

chromosomes. The right eight chromosomes are the C. albicans chromosomes. Links start from a 126 

specific C. albicans chromosome and are connected to their orthologous gene in the S. cerevisiae 127 

genome. Gene orthology reveals a lack of synteny between the two genomes. Gene orthology 128 

information was obtained from the Candida genome browser 129 

http://www.candidagenome.org/download/homology/orthologs/C_albicans_SC5314_S_cerevisia130 

e_by_CGOB/.  131 



 132 

Figure S16. Lack of synteny between the Candida albicans chromosomes 5, 6, 7, and R and 133 

Saccharomyces cerevisiae chromosomes. The left 16 chromosomes are the S. cerevisiae 134 

chromosomes. The right eight chromosomes are the C. albicans chromosomes. Links start from a 135 

specific C. albicans chromosome and are connected to their orthologous gene in the S. cerevisiae 136 

genome. Gene orthology reveals a lack of synteny between the two genomes Gene orthology 137 

information was obtained from the Candida genome browser 138 

http://www.candidagenome.org/download/homology/orthologs/C_albicans_SC5314_S_cerevisia139 

e_by_CGOB/.   140 



 141 

Figure S17. Genes on chromosomes one through four are coevolving with genes on all other 142 

chromosomes in Saccharomyces cerevisiae. The first track depicts the 16 chromosomes of S. 143 

cerevisiae. The next track depicts the location of all genes on the plus strand followed by the 144 

minus strand. The next tracks depict genes present in the dataset and are colored according to the 145 

orthologous gene community they belong. The scatter plot depicts the number of coevolving 146 

genes a gene has and the larger the circle represents more coevolving genes. The last track 147 

depicts links between genes on a highlighted chromosome that are coevolving with other genes 148 



across all chromosomes. Plots are arranged in ascending chromosome order from top left to 149 

bottom right.  150 



 151 

Figure S18. Genes on chromosomes five through eight are coevolving with genes on all 152 

other chromosomes in Saccharomyces cerevisiae. The first six tracks depict the same data as in 153 

Figure N (Genes on chromosomes one through four are coevolving with genes on all other 154 

chromosomes). Links depict genes that are coevolving with genes on a highlighted chromosome. 155 

Plots are arranged in ascending chromosome order from top left to bottom right. 156 
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 158 

Figure S19. Genes on chromosomes nine through twelve are coevolving with genes on all 159 

other chromosomes in Saccharomyces cerevisiae. The first six tracks depict the same data as in 160 

Figure N (Genes on chromosomes one through four are coevolving with genes on all other 161 

chromosomes). Links depict genes that are coevolving with genes on a highlighted chromosome. 162 

Plots are arranged in ascending chromosome order from top left to bottom right. 163 
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 165 

Figure S20. Genes on chromosomes thirteen through sixteen are coevolving with genes on 166 

all other chromosomes in Saccharomyces cerevisiae. The first six tracks depict the same data 167 

as in Figure N (Genes on chromosomes one through four are coevolving with genes on all other 168 

chromosomes). Links depict genes that are coevolving with genes on a highlighted chromosome. 169 

Plots are arranged in ascending chromosome order from top left to bottom right. 170 
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 172 

Figure S21. Genes on chromosomes one through four are coevolving with genes on all other 173 

chromosomes in Candida albicans. The first six tracks depict the same data as in Figure N 174 

(Genes on chromosomes one through four are coevolving with genes on all other chromosomes). 175 

Links depict genes that are coevolving with genes on a highlighted chromosome. Plots are 176 

arranged in ascending chromosome order from top left to bottom right. 177 
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 179 

Figure S22. Genes on chromosomes five through seven and chromosome R are coevolving 180 

with genes on all other chromosomes in Candida albicans. The first six tracks depict the same 181 

data as in Figure N (Genes on chromosomes one through four are coevolving with genes on all 182 

other chromosomes). Links depict genes that are coevolving with genes on a highlighted 183 

chromosome. Plots are arranged in ascending chromosome order from top left to bottom right. 184 
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 186 

Figure S23. There are many inter-chromosomal associations and intra-chromosomal 187 

associations can be long range. (A and B) The total number of inter- and intra-chromosomal 188 

gene coevolutionary signatures reveal substantially more inter-chromosomal coevolution in 189 

comparison to intra-chromosomal coevolution in S. cerevisiae and C. albicans. (C and D) 190 

Examination of the number of genes that have no signatures of intra-chromosomal evolution and 191 

the number of genes with signatures of intra-chromosomal coevolution reveal a substantial 192 

portion of genes are not coevolving with genes on the same chromosome in either species of 193 

yeast. (E and F) The distribution of every gene and their closest coevolving partner among genes 194 

with evidence of intra-chromosomal coevolution reveals some genes may be coevolving despite 195 

substantial distances between them. 196 
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 199 

Figure S24. The number of genes on a chromosome is the primary driver of the number of 200 

intrachromosomal links. (A and B left panels) Chromosome length (x-axis) and the number of 201 

signatures of intrachromosomal gene coevolution (y-axis) are not significantly associated in (A) 202 

S. cerevisiae but are in (B) C. albicans (r = 0.03, p = 0.91 and r=0.98, p<0.001, respectively; 203 

Pearson Correlation). (A and B right panels) The number of genes on a chromosome (x-axis) and 204 

the number of signatures of intrachromosomal gene-gene coevolution (y-axis) are significantly 205 

associated for both (A) S. cerevisiae and (B) C. albicans (r = 0.99, p < 0.001 for both species; 206 

Pearson Correlation). Colors of each dot correspond to one chromosome. The color scheme is the 207 

same as depicted in Figure S21. 208 



 209 

Figure S25. The genomic distribution of orthologous genes is not driving the signature of 210 

long distance intra-chromosomal coevolution. (A) In the genome of S. cerevisiae, there is no 211 

substantial association between a gene and the gene that it is most closely coevolving with (y-212 

axis) and the closest gene in the data set (x-axis) (r = 0.09, p=0.004; Pearson Correlation). (B) 213 

Similarly, in C. albicans, there is not a significant association between the closest distance of a 214 

gene and an intra-chromosomal coevolving gene (y-axis) and the distance between the closest 215 

gene in the dataset (x-axis). Each data point represents a gene and the distance between either the 216 

closest intra-chromosomal gene that it is coevolving with (y-axis) and the distance between it 217 

and the closest gene in the data set (x-axis). Colors of each dot correspond to one chromosome. 218 

The color scheme is the same as depicted in Figure S21. 219 

 220 
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 222 

Figure S26. Chromosome interactions do not influence signatures of coevolution. For every 223 

chromosomal interaction in Saccharomyces cerevisiae, the closest gene pair with a 224 

coevolutionary signature was identified. The average distance of the closest chromosomal 225 

interaction and coevolutionary signature was calculated and that distribution is shown here for 226 

interchromosomal (left) and intrachromosomal (right) interactions. White circles depict the mean 227 

and error bars are plus or minus one standard deviation. Mean and standard deviation values are 228 

shown in white text. Although some distances between chromosomal interactions and coevolving 229 

genes can be small, the average values observed are so great that chromosomal interactions do 230 

not appear to influence signatures of gene-gene coevolution.  231 
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Supplementary Table Legends 233 

 234 

Table S1. GO enrichment analysis for highly connected genes. 235 

BP = biological processes; CC = cellular component; MF = molecular functions; e = enrichment; 236 

p = purifying; fdr_bh = false discovery rate, Benjamini-Hochberg. 237 

 238 

Table S2. GO enrichment analysis across orthologous gene communities 1, 2, 3, and 4. 239 

BP = biological processes; CC = cellular component; MF = molecular functions; e = enrichment; 240 

p = purifying; fdr_bh = false discovery rate, Benjamini-Hochberg. 241 

 242 

Table S3. GO enrichment analysis per orthologous gene community. 243 

BP = biological processes; CC = cellular component; MF = molecular functions; e = enrichment; 244 

p = purifying; fdr_bh = false discovery rate, Benjamini-Hochberg. 245 

 246 

Table S4. Genes with only signatures of intra-chromosomal evolution. 247 

 248 

Table S5. GO enrichment analysis of the 2,408 orthologous genes using S. cerevisiae and C. 249 

albicans. 250 

BP = biological processes; CC = cellular component; MF = molecular functions; e = enrichment; 251 

p = purifying; fdr_bh = false discovery rate, Benjamini-Hochberg. Background is either 252 

Saccharomyces cerevisiae or Candida albicans genes, as specified by the column "Species." 253 

 254 

Table S6. Enrichment of gene representation per chromosome in S. cerevisiae and C. 255 

albicans.  256 

Benjamini-Hochberg multi-test correction was used for multi-test correction. 257 


