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ARTICLE INFO ABSTRACT

Keywords: The genus Nomada Scopoli (Hymenoptera: Apidae) is the largest genus of brood parasitic bees with nearly 800
Bees species found across the globe and in nearly all biogeographic realms except Antarctica. There is no previous

Ultraconserved elements molecular phylogeny focused on Nomada despite their high species abundance nor is there an existing

Etzlgife::;ics comprehensive biogeography for the genus. Using ultraconserved element (UCE) phylogenomic data, we con-
Cleptogarasites structed the first molecular phylogeny for the genus Nomada and tested the monophyly of 16 morphologically

established species groups. We also estimated divergence dates using fossil calibration points and inferred the
geographic origin of this genus. Our phylogeny recovered 14 of the 16 previously established species groups as
monophyletic. The superba and ruficornis groups, however, were recovered as non-monophyletic and need to be
re-evaluated using morphology. Divergence dating and historic biogeographic analyses performed on the
phylogenetic reconstruction indicates that Nomada most likely originated in the Holarctic ~ 65 Mya. Geo-
dispersal into the southern hemisphere occurred three times: once during the Eocene into the Afrotropics, once
during the Oligocene into the Neotropics, and once during the Miocene into Australasia. Geodispersal across the
Holarctic was most frequent and occurred repeatedly throughout the Cenozoic era, using the De Geer, Thulean,
and the Bering Land Bridges. This is the first instance of a bee using both the Thulean and De Geer land bridges
and has implications of how early bee species dispersed throughout the Palearctic in the late Cretaceous and

Brood parasitism
Divergence dating

early Paleogene.

1. Introduction

Nearly 13% of all bee species globally and around 20% of all bee
species in the family Apidae exhibit the cleptoparasitic behavioral trait
known as brood parasitism (Danforth, Minckley, & Neff, 2019). An
ancient trait found within four different bee families (Cardinal, Straka, &
Danforth, 2010), brood parasites play important ecological roles within
their ecosystems. Brood parasites are known to be the main cause of
brood damage (Minckley & Danforth, 2019); however, the dependency
of brood parasites on their hosts make them important indicators of bee
community health (Odanaka & Rehan, 2019; Sheffield, Pindar, Packer,
& Kevan, 2013). Recent work indicates that the majority of brood
parasitic bees (excluding the genera Aglae and Exacerbate (Euglossini),
and Ctenoplectrina (Ctenoplectrini)) are found within the apid subfamily
Nomadinae (Bossert et al., 2019; Cardinal et al, 2010; Sless et al., 2022).

The genus Nomada is the largest genus of brood parasites with an
estimated 795 species found globally (Alexander & Schwarz, 1994;
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Litman et al., 2013). While members of the genus Andrena are common
hosts, Nomada are known to parasitize species from other bee families
including Apidae, Halictidae, Melittidae, and Colletidae. Nomada are
most species diverse across the Holarctic region and use a mode of
parasitism dubbed “open cell” or “larva-open strategy” (Litman et al.,
2013). Adult female Nomada seek out and deposit eggs into host nest
cells that are still being provisioned. After egg laying, a hospicidal larva
emerges and kills any remaining host eggs or larvae in the cell (Litman,
2019; Litman et al., 2013; Rozen, 1991).

Historically, Nomada taxonomy has been ambiguous; Snelling in the
1980's separated Nomada in the Western Hemisphere across three
genera and ten subgenera based off of genus group names that had been
proposed between 1880’s and 1940's (Snelling, 1986). Nomada was last
reorganized into 16 species groups by Alexander (1994) using
morphological cladistic methods (App. table 1). This revision of the
genus transferred some of Snelling’s subgenera into species groups and
created new groups for species that were formerly unplaced (=incertae
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sedis) (Alexander, 1994). Of the currently recognized 16 species groups,
the majority are found in either the Holarctic, Palearctic, or Nearctic
regions; however, every ecoregion except Antarctica is represented
(Alexander, 1994; Michener, 2007). Since the establishment of the 16
species groups there have been no subsequent studies, molecular or
morphological, to validate these groups or examine the phylogenetic
relationships among them.

There is currently no comprehensive assessment of the historical
biogeography of Nomada. Consequently, the age and origin of the genus
is rather uncertain. There are two putative hypotheses regarding the
region of origin. The first hypothesis suggests that the Neotropics might
be the region of origin for Nomada due to the diversity and abundance of
species found within South America (Michener, 1979, 2007). Despite
the high diversity and abundance, nearly all Nomada species found in
the Neotropics were sorted into what eventually became the vegana
species group (Alexander & Schwarz, 1994). From the Neotropics, it has
further been suggested that Nomada later dispersed northward into the
Holarctic and then outwards into the remaining ecoregions (Michener,
1979, 2007). The second hypothesis is based on cladistic results indi-
cating that the “basal” clade of the genus originated in the Afrotropics,
specifically South Africa (Alexander, 1989, 1991). This conclusion was
drawn primarily based on the finding that the gigas group was the most
plesiomorphic and had the least amount of shared characteristics with
any of the other species groups (Alexander, 1989, 1991). However,
Alexander (1991) also noted that there are not many apomorphic
characters shared by all the Nomada groups. It was further suggested by
Alexander (1991) that Nomada then dispersed northward from the
Afrotropics into the Palearctic and then into the remaining ecoregions.
Despite differences in region of origin, both hypotheses predicted a
tropical southern hemisphere origin of the genus with dispersal into the
northern hemisphere and then back into the remaining southern hemi-
sphere ecoregions.

Here we provide the first global molecular phylogeny of Nomada
representing all 16 species groups and all ecoregions where the genus
occurs. We also infer the group’s historical biogeography using diver-
gence dating and model-based biogeographic reconstruction methods.
The objectives are threefold: 1) construct the first global molecular
phylogeny of Nomada covering all known species groups, 2) determine
the age and origin of the genus, and 3) map the historical biogeography
of this genus including representation from all known ecoregions; in
doing so, we test the two competing hypotheses regarding the origin of
the genus.

2. Methods
2.1. Sample collection

A total of 144 individuals were used in the phylogenetic analyses for
this study. Of these individuals, 142 represent unique species. The
ingroup included 119 taxa, of which 114 were newly sequenced (App.
table 2). The sampled Nomada represented all 16 species groups and the
six biogeographic realms where the genus is found. For the outgroup, 23
taxa representing all four apid subfamilies (Anthophorinae, Apinae,
Nomadinae, Xylocopinae) were included (App. table 2), 16 of which are
newly sampled. Data for five ingroup and seven of the outgroup taxa
were retrieved from several recent publications (Freitas et al. 2020; Grab
et al. 2019; Sless et al. 2022). Samples used in this study were obtained
through loans from various institutions as well as recent field collections
from around the world. For rooting our phylogenetic trees we used the
apid subfamily Anthophorinae.

2.2. DNA extraction
DNA was extracted from pinned specimens using non-destructive

methods and Zymo Quick-DNA Miniprep Plus Kits (Zymo Research,
Irvine, CA, USA). Whole body specimens were carefully removed from
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the pins and placed into individual tubes with a Proteinase-K digestion
buffer solution. Tubes were then incubated overnight at 55°C and
extracted according to manufacturer protocols, with the modifications
noted in Branstetter et al. (2021). Following extraction, specimens were
washed in 95% ethanol, dried and re-mounted back on the pin. DNA
concentration was checked using a Qubit 3.0 fluorometer (Thermo
Fisher Scientific, Waltham, MA, USA) and quality was assessed using a
TapeStation instrument (Agilent, Santa Clara, CA, USA).

2.3. UCE library preparation and enrichment

We used UCE phylogenomics to generate our sequence data (Fair-
cloth et al., 2012) and followed the protocols outlined in Branstetter
et al. (2017). We used a bee-ant specific probe set (Grab et al., 2019),
which is just a subset version of the principal (Branstetter et al., 2017),
to enrich 2,545 UCE loci. The probes are synthesized and available
through Arbor Biosciences (Ann Arbor, MI, USA).

Extracted samples were first sheared to fragment sizes of ~ 400-600
bp using a Qsonica sonicator (Q800R2; Qsonica, Newton, CT, USA).
Older samples were not sheared due to their already degraded status; all
other samples were sonicated for either 30, 60, or 90 s depending on
their quality. llumina libraries were generated using KAPA HyperPrep
kits (Roche Sequencing, Pleasanton, CA, USA) and custom dual-indexing
adapters (Glenn et al., 2019). Fragmented DNA was purified and
concentrated using an in house paramagnetic-bead solution (Rohland &
Reich, 2012). Once the final bead cleaning was complete, sample DNA
concentration was measured using a Qubit 3 fluorometer and then
pooled into 12 groups containing 9-10 samples of equimolar
concentrations.

Enrichment of the samples followed protocols from both Arbor Bio-
sciences (v4 protocol; dayl) and a standard UCE protocol (Blumenstiel
et al., 2010; day 2) split over two consecutive days. After enrichment,
each pool was quantified using qPCR, combined into one sample and
then sent off for sequencing.

2.4. Sequencing and data processing

Sequencing, data processing, and phylogenetic analysis follow
similar methods outlined in (Branstetter, Muller, Griswold, Orr, & Zhu,
2021). A total of 116 samples were sent to Novogene Inc. (Sacramento,
CA, USA) for single lane multiplexed sequencing using Illumina HiSeq X.
Our newly generated UCE data were then combined with data from five
previously sequenced Nomada samples and 23 outgroup samples (Frei-
tas et al. 2020; Grab et al. 2019; Sless et al. 2022). All newly sequenced
data are available on NCBI (SRR18055085 — SRR18055199; App. table
2). We extracted UCE data from already published genomes using the
“Harvesting UCE Loci from Genomes’” tutorial found at
(https://phyluce.readthedocs.io/en/latest/tutorial-three.html) and
described in Faircloth (2017). Raw sequence reads were demultiplexed
using BBTools (Bushnell, 2014) and the reads were then cleaned, trim-
med, and assembled using the package Phyluce v1.6 (Faircloth, 2016)
and its associated programs. Specifically, raw reads were trimmed using
Mlumiprocessor v2.0 (Faircloth, 2013), a wrapper for the software
Trimmomatic (Bolger, Lohse, & Usadel, 2014) and then assembled using
Spades (Bankevich et al., 2012). Contigs matching UCE loci were iden-
tified and extracted using the program LastZ v1.0 (Harris, 2007) within
Phyluce and then aligned using MAFFT v7.130b (Katoh & Standley,
2013). Alignments were trimmed using Gblocks (Talavera & Castresana,
2007), with reduced stringency parameters (b1 = 0.5, b2 =0.5,b3 =12,
b4 = 7) and the publicly available program Spruceup (Borowiec, 2019),
which trims poorly aligned sequence from individual samples rather
than columns. For the Spruceup analysis we used Jukes-Cantor dis-
tances, a guide tree, and a lognormal cutoff of 0.88. All other settings
were left at default values. We then removed empty alignment columns
using a custom script and filtered alignments for 75% taxon occupancy.
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2.5. Phylogenetic trees

We analyzed our data using concatenated and species tree ap-
proaches. For the supermatrix we first examined the effects of parti-
tioning the data by testing several different partitioning schemes: no
partitioning, partitioning by locus, and partitioning using the Sliding
Window Site Characteristics based on Entropy method (SWSC-EN;
Tagliacollo & Lanfear, 2018). The SWSC-EN partitioning scheme divides
UCE loci into three separate regions, a main core and a right and left
flank (Tagliacollo & Lanfear, 2018). The core region of UCEs is more
conserved while the flanking regions are more variable (Faircloth et al.,
2012). The initial set of partitions identified by the SWSC-EN algorithm
were merged using ModelFinder2 (Kalyaanamoorthy, Minh, Wong, Von
Haeseler, & Jermiin, 2017), which is part of IQ-Tree v2.1.1 (Nguyen,
Schmidt, Von Haeseler, & Minh, 2015). For the analysis we used rclus-
terf, AICc, and the GTR + G model of sequence evolution. The resulting
best-fit partitioning scheme reduced the number of data subsets to 1601.
Maximum likelihood analyses were then conducted on each partitioning
scheme using IQ-tree v2.1.1 For each analysis we used the GTR + F + G4
model of sequence evolution and measured branch support by con-
ducting 1000 ultrafast bootstrap replicates (UFB; Hoang et al., 2018)
and 1000 replicates of the SH-like approximate likelihood ratio test
(Guindon et al., 2010; Hoang et al., 2018). To test the concatenated data
for potential biases, we converted the matrix to RY-coding using a
Phyluce script, and then analyzed the data in IQ-Tree using the SWSC-
EN partitioning scheme and the “-MFP’’ option for model testing.
Phylogenetic inference can be influenced by the potential negative
impact of data saturation and base composition bias (Phillips & Penny,
2003). RY coding has been shown to reduce these negative impacts and
the approach has been used to improve phylogenetic results in bees
(Praz & Packer, 2014).

For species tree inference, we estimated individual gene trees for all
loci using IQ-Tree and the standard DNA alignments, i.e. not converted
to RY coding. We used the “-m MFP’’ option for model selection and
estimated branch support by conducting 1000 UFB replicates. We
collapsed nodes receiving less than 10% support using Newick Utilities
(Junier & Zdobnov, 2010). Using the gene trees as input, we carried out
a standard species tree analysis using the summary-based method
implemented in the program Astral III (Zhang, Sayyari, & Mirarab,
2017). Species tree branch supports were assessed based on local pos-
terior probabilities.

2.6. Divergence dating and biogeography

We time dated the SWSC-EN partitioned tree from the above analyses
using the program MCMCTree v4.9j found in PAML (Yang, 1997, 2007)
and the R package MCMCTreeR (Puttick, 2019). The SWSC-EN tree was
selected for dating because the SWSC-EN partitioning scheme had the
best model fit and results among phylogenetic analyses were highly
congruent. We secondarily calibrated the root node of the tree using a
normal distribution prior with a mean age of 104.4 Mya + 10 Mya which
was previously found in Cardinal, Buchmann, & Russell (2018). For all
other calibrated nodes, we used fossil calibrations and applied skew
normal prior distributions. Nine different outgroup fossils were used to
calibrate the analysis, including one thought to be a brood parasite (App.
table 3). We tested three data matrices: all loci, 1000 clocklike loci, and
500 clocklike loci. Clocklikeness was assessed using the program Sor-
taDate (Smith et al. 2018), which measures root-to-tip variance within
gene trees and then sorts them from highest to lowest variance. The 500
most clocklike loci were thus the loci with the least root-to-tip variance.

In addition to our main dating analyses described above, we tested
an alternative fossil calibration scheme in which we replaced the fossil
Protomelecta brevipennis, Cockerell (calibrating crown Nomadinae) with
the fossil Paleoepeolus micheneri Dehon et al. (calibrating stem Epeolini).
Both of these fossils have somewhat uncertain placement within Apidae;
however, we ultimately favored the use of P. brevipennis due to recent
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criticism regarding the placement of P. micheneri within the Nomadinae
(Onuferko et al., 2019). We also tested several different prior distribu-
tions with the P. micheneri fossil calibration to see if changing the prior
produced a noticeable effect on ages. We tested uniform, skew normal,
Cauchy, and modified Cauchy distributions, all based on the same
minimum and maximum ages for the fossils. The results using
P. micheneri were very similar to the results using P. brevipennis and can
be found in the supplement (App. table 4; Supp images 1 h-k).

We carried out the approximate likelihood dating method imple-
mented in MCMCTree and used a relaxed lognormal clock model with
independent rates and a GTR + G model of sequence evolution. We did
not partition the data sets. Four independent runs were conducted on
each data matrix and once complete, Tracer v1.7 (Rambaut, Drummond,
Xie, Baele, & Suchard, 2018) was used to investigate convergence across
runs. Runs were then combined and a final summary tree with mean and
95% Highest Posterior Densities (HPD) was generated.

After dating the trees, we investigated the historical biogeography of
Nomada using the R program BioGeoBEARS (Matzke, 2013). Three
different biogeographic models were tested on each of the three main
data matrices: the dispersal, extinction, cladogenesis model (DEC; (Ree,
Moore, Webb, & Donoghue, 2005; Ree & Smith, 2008), a modified
version of the dispersal-vicariance model that uses maximum likelihood
(DIVA-like; Ronquist, 1997), and a derived version of the Bayesian
Analysis of Biogeography model (BayArea-like; Landis, Matzke, Moore,
& Huelsenbeck, 2013) that also uses maximum likelihood. We addi-
tionally tested the versions of each model that includes jump dispersal
(+j) however, based on current criticism of the + j parameter, we did not
include those results (Ree & Sanmartin, 2018). We do provide the results
in the supplement (App. table 5). We considered six ecoregions in our
models: Nearctic, Neotropics, Palearctic, Afrotropics, Indomalaya, and
Australasia. We set the maximum range size to six so that all ecoregions
were considered in analysis. Selection of the best fit model was done
using AIC scores within the program.

3. Results
3.1. Molecular phylogeny

We used a data matrix filtered for 75% taxon occupancy for our
downstream analysis which consisted of 2,014 loci, a total of 1,431,861
bp, and 752,356 bp informative sites. The mean locus length was 710.95
bp and the total amount of missing data was 30.1%. All five trees (no
partitioning, by locus partitioning, SWSC partitioning, ry-coding, and
species) tested were mostly congruent with only minor differences in
placement of various species within the clades (App. Fig. 1).

All generated phylogenies support the monophyly of the genus and
reveal that the sister group to all other Nomada is the odontophora spe-
cies group, a small species group found in the eastern Mediterranean
(Fig. 1). Trees indicated that 14 of the 16 previously established species
groups are monophyletic, providing molecular confirmation for the
majority of the morphological distinctions of the different groups
(Alexander, 1994). Two exceptions are the superba and basalis species
groups, which need to be merged into one monophyletic clade, and
paraphyly of the large ruficornis clade. For the superba and basalis
groups, the results indicate that the basalis species group is nested within
the superba, thus uniting them as a single monophyletic species group.
For the ruficornis group, analyses revealed that the group is paraphyletic,
with one large main clade and one smaller clade that is sister to the
bifasciata species group. Interestingly, while the largest main ruficornis
clade was composed of species found throughout the Holarctic, those
that clustered in the smaller clade are restricted to eastern North
America and therefore should be recognized as a new species group in
order to preserve monophyly.
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Fig. 1. Phylogram of Nomada with the outgroup in grey and each species
group. All support values are 100/100 unless indicated.

3.2. Dating analysis and historical biogeography

Of the three data matrices tested (all loci, 1000 clocklike loci, 500
clocklike loci), we selected the all loci analysis as the main result, given
that there was little variation in dates among trees, suggesting that our
analyses were not biased by the inclusion of less clocklike loci. Addi-
tionally, we found the most support for the DEC biogeographic model
(AIC: 339.28) performed on the all loci tree. Our dated chronogram with
biogeography focusing on the ingroup (Fig. 2; App. Fig. 2) reveals that
Nomada diverged from the rest of the Nomadinae in the late Cretaceous
(stem: 79 Mya, CI: 93-63 Mya) in the Nearctic. Our divergence dating
also supports a crown age for Nomada around 65 Mya (95% CI: 83-48
Mya) and DEC analysis places the most recent common ancestor (MRCA)
for the group originating in the Holarctic during the early Paleocene
(66-56 Mya). Nearly all Nomada species groups had crown ages between
the late Oligocene to the mid Miocene (28.1-13.8 Mya) with the

Molecular Phylogenetics and Evolution 170 (2022) 107453

exception of the younger belfragei group whose crown age was in the late
Miocene (11.6-7.2 Mya).

The two oldest species groups (odontophora and vincta) were found to
be confined to the Palearctic as early as ~ 65 Mya (CI: 83-48 Mya) and
to the Nearctic ~ 57 Mya (CL: 74-37 Mya) respectively. Dispersal into
the southern hemisphere was subsequently recorded in three species
groups: into the Afrotropics by gigas ~ 21 Mya (CI: 36-5 Mya), into the
Neotropics by vegana (CI: 36-20 Mya), and into the Indomalaya and
Australasian regions by furva (CI: 30-14 Mya). Three species groups
(adducta, erigeronis, belfragei) are confined to the Nearctic, however, our
analyses indicates that the MRCAs for both erigeronis and belfragei
reached the Nearctic independently around 33 Mya (CI: 46-25 Mya)
while the MRCA for adducta arrived much earlier, ~46 Mya (65-33
Mya) from somewhere across the Palearctic. Three species groups,
roberjeotiana, superba + basalis and ruficornis, all have Holarctic distri-
butions; our model suggests that both roberjeotiana and superba-+basalis
only dispersed once into the Nearctic ~15 Mya (CL: 26-8 Mya) and ~16
Mya (CL: 25-6 Mya) respectively, while ruficornis dispersed no less than
five times between ~ 19-10 Mya (CI: 27-4 Mya). The remaining four
species groups (integra, bifasciata, trispinosa, armata) are confined to the
Palearctic.

4. Discussion
4.1. Phylogeny

Here we provide the first comprehensive molecular phylogeny of
Nomada to date with representation of 119 species, all currently
recognized species groups, and all major biogeographic regions. We
propose that the crown age for Nomada is between 60 and 70 Mya. This
proposed age is older than previous estimates for the group which fall
anywhere from ~ 61 Mya (Bossert et al., 2020) and ~ 20-23 Mya
(Cardinal et al., 2010; Cardinal et al., 2018). However, recent phylo-
genetic analyses have pushed the crown age for all bees to between 130
and 100 Ma (Branstetter et al., 2017; Cardinal & Danforth, 2013; Sann
et al., 2018). Specifically Cardinal and Danforth (2013) and Sann et al
(2018) recovered an origin for bees between 123 and 128 Mya while
Branstetter et al (2020), using similar methods to the ones used in this
study, recovered a crown age closer to 100 Mya. The main difference
between our estimate for the crown age and those previously estimated
for the genus is most likely due to the depth of sampling; older analyses
included at most three Holarctic species of Nomada (Bossert et al., 2020;
Cardinal et al., 2010; Cardinal et al., 2018;) mostly found in the rufi-
cornis group. We used over 100 species and included all known species
groups and biogeographic realms where Nomada occurs. Interestingly,
because Cardinal et al., (2018) only included species from the ruficornis
group, their estimated age for Nomada matches the age we recovered for
the same species group, indicating that our results are comparable.

Our phylogeny showed strong support for all but two of the
morphologically defined species groups originally outlined by Alex-
ander (1994) and we identified the odontophora species group as sister to
the remaining groups in Nomada. Our finding that the odontophora group
is sister to all other species groups contrasts with the predictions made
by both Michener (2007) and Alexander (1994). Previously, Michener
(2007) predicted that the vegana group would be “basal” based on their
species diversity and location in the southern hemisphere; however, our
molecular phylogeny indicates that this group originated later when its
ancestor dispersed into the Neotropics from the Nearctic (~28 Mya).
Alternatively, Alexander (1994) predicted that the gigas species group
was sister to the remaining Nomada groups based primarily on male
genitalia characters. Our results place the gigas group as more derived
within the genus (Fig. 1).

In his detailed cladistic work, Alexander (1989, 1991) found little
support for the monophyly of superba as a group as well as little support
for a sister group relationship between superba and basalis, noting that
observable and clearly defining characters for superba were difficult to
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species found in the group (Alexander, 1989). In our analyses, ruficornis
was indeed found to be paraphyletic, however, not to the extent that

would be assumed for such a large clade composed of species that do not

belong in any other species group. Our analyses imply that there are only

two separate clades: one large main clade sister to the armata group, and

Molecular Phylogenetics and Evolution 170 (2022) 107453

Fig. 2. Biogeography of the ingroup Nomada repre-
sented in our dated phylogeny. Each pie represents
the probability of the ancestral region. The six
included regions in our analysis are Nearctic, Neo-
tropics, Palearctic, Afrotropics, Indomalaya, and
Australasia. Large letters indicate important biogeo-
graphic events: A) most recent common ancestor of
the sister stem group and Nomada emerges in the
Nearctic; B) odontophora originates in the Palearctic;
C) first instance of back geodispersal into the Near-
actic; D) gigas emerges in the Afrotropics and is first
dispersal into the southern hemisphere; E) movement
into the Neotropics and second dispersal into south-
ern hemisphere; F) new unnamed species group
emerges in the Nearctic; G) third southern hemi-
sphere dispersal into the Indomalaya; H) dispersal
into Australasia and last new biogeographical region.
Map image by Lokal Profil distributed under a CC
BY-SA 3.0 license.

a smaller second smaller clade more closely related to the bifasciata
group. Interestingly, this smaller group is composed solely of eastern
North American species and it should be further investigated such that
after revision, a new species group could be established.

4.2. Historical biogeography

Both Michener (2007) and Alexander (1994) proposed a southern

hemisphere origin for Nomada with subsequent dispersal northward into
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the remaining ecoregions. Specifically, Michener (2007) predicted an
origin in the Neotropics while Alexander (1994) predicted an Afro-
tropical origin. Our biogeographic results offer an alternative to these
predictions and we found strong support that the stem ancestor for
Nomada originally diverged from the sister clade consisting of Hex-
epeolini, Neolarrini, Townsendiellini and Biastini in the Nearctic ~ 79
Mya during the Late Cretaceous period. The brood parasitic bee genus
Epeolus, was also found to have most likely originated in the Nearctic
(Onuferko, Bogusch, Ferrari, & Packer, 2019) and distribution data for
the tribe Hexepeolini also indicate that they are confined to the Nearctic
region (Bossert et al., 2020), lending support for the origin being in the
New World. Furthermore, the cleptoparasitic tribe Neolarrini, like the
genus Epeolus most likely originated within the Nearctic as well (Sless
et al., 2022). The MRCA for Nomada had a Holarctic origin during the
early Paleocene with the ancestor dispersing into the Palearctic from the
Nearctic between 79 and 65 Mya, most likely via the northern De Geer
land bridge. The De Geer land bridge connected eastern North America
to Europe via a northern passage through Greenland and was exposed
between 71 and 63 Mya (Brikiatis, 2014). Around this same time, the
Turgai Strait was open to terrestrial organisms, allowing for geodispersal
(gene flow and dispersal that occurs once a physical barrier is removed)
across all of Eurasia (Akhmetiev et al., 2012). Although the Bering Land
Bridge (BLB) was exposed between 66 and 65.5 Mya and could have
been used as an alternate route, it is unlikely for two reasons. The first
reason is that around the Cretaceous-Paleogene boundary (66 Mya) the
BLB was located at a higher latitude than what is observed today and
therefore acted more as a filter route for organisms geodispersing across
it (Brikiatis, 2014; McKenna, 2003). Secondly, movement by Nomada
across the Holarctic region was most likely already happening prior to
the estimated first opening of the BLB since odontophora diverged from
the rest of Nomada ~ 65 Mya within the Palearctic.

The first instance of back geodispersal into the Nearctic occurred in
the vincta group ~ 57 Mya, most likely via the Thulean Land Bridge
(TLB) as the De Geer route closed ~ 6 Mya prior (Brikiatis, 2014) and the
presence of the Turgai Strait would have hindered movement across the
BLB (Brikiatis, 2014; Sanmartin, Enghoff, & Ronquist, 2001). The only
other recorded instance of bees using the TLB is found in the Ancylaini
(Praz & Packer, 2014) who are thought to have used the land bridge to
reach the Palearctic from North America ~ 57-56 Mya; however, the
TLB was an important connector between the Palearctic and Nearctic for
many other taxa including toads (Pramuk, Robertson, Sites, & Noonan,
2007), crocodilids (Puértolas, Canudo, & Cruzado-Caballero, 2011),
grasshoppers (Chintauan-Marquier et al., 2014), glass lizards (Lavin &
Girman, 2019), and magnolias (Hebda & Irving, 2004) around this time.

Our analysis indicates that Nomada geodispersed into the southern
hemisphere at least three times during the course of their evolutionary
history; each dispersal event resulting in a distinct species group (gigas,
vegana) or species (furva). The first instance of southward geodispersal
occurred during the middle Eocene (stem age: 45 Mya) when the MRCA
of the gigas species group diverged from the integra group and moved
into the Afrotropics. By the mid Cretacous, Africa had already been
isolated from the rest of Gondwana and Laurasia, but various intermit-
tent routes would reconnect it to the other landmasses, allowing for
faunal and floral exchange (Gheerbrant & Rage, 2006). These frequent
and bidirectional interchanges occurred most likely between Africa and
Laurasia via two routes: the Mediterranean Tethyan Sill, whose exposure
was periodic from the Jurassic to the Paleogene and closely tied to
falling sea levels, and a later eastern Iranian route that emerged in the
mid Eocene (Gheerbrant & Rage, 2006). Using the mid Eocene stem age
of gigas group, we can infer that the eastern Iranian route was the most
probable scenario, however, we cannot rule out use of the Mediterra-
nean Tethyan Sill. The latter scenario would match geodispersal patterns
proposed for Sericini scarab beetles (Eberle, Fabrizi, Lago, & Ahrens,
2017), the extinct predatory mammals of the family Hyenodontidae
(Solé, 2013) and monitor lizards (Vidal et al., 2012).

The second instance of geodispersal by Nomada into the southern
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hemisphere occurred between the Nearctic and the Neotropics by the
diverse vegana species group shortly after the Eocene-Oligocene transi-
tion (~34 Mya). This corresponds to a floral shift within South America
as tropical biomes gave way to more temperate and grassland habitats
(Houben, van Mourik, Montanari, Coccioni, & Brinkhuis, 2012; Pound &
Salzmann, 2017; Zachos, Pagani, Sloan, Thomas, & Billups, 2001). Two
possible routes taken by vegana to reach South America include use of
the Isthmus of Panama (IP) and via island hopping through the Antilles
region. Movement of vegana through the IP is questionable as comple-
tion of the isthmus was predicted to have happened ~ 3-4 Mya (Coates
& Stallard, 2013; Jackson & O’Dea, 2013), some 30 Mya after the
divergence of the vegana group from its sister species group, erigeronis.
However, there is some evidence that the IP may have formed much
earlier than expected, possibly in the middle Miocene (Montes et al.,
2015) or near the Oligocene-Miocene boundary (Bacon et al., 2015) or
even existed as a chain of islands in late Eocene (Montes et al., 2012).
Our analyses indicated that Nomada were already present in the Neo-
tropics no later than ~ 20 Mya and therefore cannot rule out dispersal
over an Oligocene-Miocene IP emergence nor an island stepping geo-
dispersal. It is known that bee faunas in Southeast Asia and the Carib-
bean used scattered islands to disperse between landmasses (Michener,
1979) so it is feasible that Nomada island hopped between North and
South America. Other organisms are found to have possibly dispersed
across the IP prior to its estimated complete closure including Ceratina
bees (Rehan et al., 2010), Dynastes beetles (Huang, 2016), palms (Bacon,
Mora, Wagner, & Jaramillo, 2013), and Boa snakes (Head, Rincon,
Suarez, Montes, & Jaramillo, 2012).

The third southern geodispersal happened when the furva group
reached Australia ~ 10 Mya. During the late Miocene (~12-7 Mya), the
Australian continent drifted towards southeast Asia, leading to an
extension of the Sula Spur (Torsvik & Cocks, 2016) and provided a
steppingstone like connection between Indonesia and Australia. Many
organisms such as Tylomelania freshwater snails (von Rintelen, Stel-
brink, Marwoto, & Glaubrecht, 2014), passerines in the Oriolidae
(Jgnsson et al., 2019) and Spathius parasitoid wasps (Zaldivar-Riveron
et al., 2018) traversed this connection in order to disperse into or out of
Australia.

Various Nomada species groups dispersed into the Nearctic between
46 and 10 Mya most likely across the Bering Land Bridge (BLB). The
species groups adductua, belfragei, and erigeronis are all confined to North
America and have MRCAs that were found across the Holarctic. Our
results indicate that the ancestors for these groups geodispersed back
into the Nearctic between 46 and 33 Mya, shortly after the start of the
Eocene-Oligocene transition (~34 Mya). During this time period, major
climatic shifts caused the vegetation of the BLB to transition from bor-
eotropical to forests of mixed deciduous and coniferous trees (Sanmartin
et al., 2001). The Holarctic roberjeotiana, superba + basalis and the
ruficornis groups would have used the BLB to geodisperse to the Nearctic
~ 19-10 Mya. The BLB was a common route used by bees; genera from
at least three families are known to have traversed it either to reach the
Nearctic or the Palearctic: Apidae (Dorchin, Lopez-Uribe, Praz, Gris-
wold, & Danforth, 2018; Hines, 2008; Onuferko et al., 2019; Praz &
Packer, 2014; S. Rehan & Schwarz, 2015); Colletidae (Ferrari et al.,
2020); Megachilini (Branstetter et al., 2021; Trunz, Packer, Vieu, Arrigo,
& Praz, 2016).

5. Conclusions

Here we constructed the first molecular phylogeny and biogeog-
raphy for the Nomada using genome wide next-generation sequencing
techniques. Overall, there was strong support for 14 of the 16 previously
established species groups and additional support for one previously
unknown group. Nomada most likely originated in the early Paleogene
somewhere across the Holarctic in the latter half of the Cretaceous and
began to radiate following the K-Pg extinction event. Throughout their
evolutionary history, geodispersal for Nomada predominantly occurred
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between the Nearctic and Palearctic; ten independent geodispersal
events using multiple existing land bridges, including the first instance
of a bee crossing the De Geer land bridge, were recorded. Three geo-
dispersal events gave rise to the three southern hemisphere species
groups. Although all species groups were sampled, future studies should
include more representation within the smaller clades such as trispinosa,
odontophora, and belfragei. With nearly 800 species worldwide, Nomada
are the most diverse and widespread of the brood parasitic apid bees.
This well resolved phylogeny and historical biogeography provide an
important first step towards a deeper understanding of both Nomada
diversification and cleptoparasitic bee evolution more broadly.
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