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1. Introduction

The study of spectral and orbital stability of traveling waves,
both spatially periodic and solitary, of Hamiltonian PDEs has
seen tremendous advances in the last three decades. Around
1990, Grillakis, Shatah and Strauss [1,2] described the stability
theory of infinite dimensional Hamiltonian systems in an abstract
formulation that is suitable for use in various different models of
solitary waves in the presence of symmetry. See also [3], which
is relevant to the equations discussed here. The corresponding
generalized eigenvalue problem, which determines the spectral
stability of such nonlinear waves, was studied later in [4] and [5],
where “index counting” results about the number of eigenvalues
with positive, negative and zero real parts were introduced. These
were improved and generalized later in [6-9] and [10]. One can
find additional important applications referenced in the excellent
review by Kapitula and Deconinck [11]. At the same time there
has been a myriad of novel results on the orbital stability of
spatially periodic solutions for Hamiltonian PDEs. Some of these
fall under the “energy methods” strategy, classically proposed
by [1,2] and further developed for periodic waves in [12]. Ex-
amples of such are given by [13,14] for the NLS as well as [15-
17] and many others. However, if one considers “subharmonic”
perturbations, then the second variation of the energy functional
contains additional negative eigenvalues and direct application
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of the standard energy method is impossible. In such situations,
extra care and the use of inverse scattering techniques and higher
level conserved quantities is needed in order to perform stability
analysis of the waves. Examples of such results are [18] for NLS
and [19] for Dirac solitons, see also [11] and [20]. These are not
the main focus of our investigations here, although the methods
we use have their origins in the same tradition and are of similar
flavor. Rather, we want to investigate the NLS and the general-
ized KdV waves searching for optimal bounds for the associated
semigroups in the cases when spectral stability holds.

The nonlinear Schrodinger equation is an ubiquitous model in
quantum mechanics, which has been extensively studied in the
literature. To fix notations, we consider it posed in the form

iy + Au+f(JuP)u=0,t >0,xe R4 orx e [—L, L]*. (1)

for an appropriate non-linearity f. In both the unbounded and
bounded cases, we assign the standard boundary conditions, ex-
pressed though the domain of the Laplacian H*(R?) (HZ,[—L, L]*
respectively), which makes the Laplacian a self-adjoint operator.
Another model that will be of interest is the generalized KdV
equation, which we will only consider in the periodic setting.
Namely, we seek real-valued solutions of the following PDE

U + Uy + K(f(WPu)=0,x e Ror —L<x<1L (2)

Existence and uniqueness (and more generally well-posedness)
for the Cauchy problems for (1) and (2), have been well-
understood, after an extensive study in the last forty years,
both in the infinite domains and in the periodic setting. For our
purposes, it suffices to say that for nice enough functions f, local
in time solutions exist, whenever the initial data is say in the class
H'. In many cases, (such as the focusing case, f > 0 : f(z) =
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ZN 4+ 0(z"*1) for sufficiently large N), solutions may experience
blow up in finite time, even for very smooth and well-localized
initial data. On the other hand, in the defocussing cases and in
the focusing cases with low power nonlinearity, H' conservation
law, which is valid for both the NLS and the KdV models

E[u] = / |Vu(x)Pdx — / F(lu(o)dx, F' = f.

prevents blow-up in finite time. We will not discuss any further
the well-posedness issues, as we focus our work on a different
aspect of the dynamics, namely the behavior close to special
solutions. Next, we describe some relevant background material.

1.1. Special solutions and the corresponding linearized problems

If one considers a standing wave solution, in the form e/®!¢(x)
of the NLS model (1), with real-valued ¢, we obtain the profile
equation

— A+ wp — f(9*)p =0, x € Rlor x € [—L, L]%. (3)

Similarly, we find traveling wave solutions of the generalized KdV
problem (2) as follows. We take the ansatz in the form ¢(x — wt).
In the whole line case, we work under the assumption that ¢
vanishes at 00, while we assume periodic boundary conditions
in the case —L < x < L. In each case, we integrate the associated
ODE once and we obtain

—¢ " +wp—f@*lp=axeRor—L<x<lL, (4)

where a = 0 in the case x € R and it is an arbitrary constant
of integration otherwise. The elliptic problems (3) and (4) are
well-known instances of the Newton’s equation, which at least
in one spatial dimension admits solutions in quadratures. We will
henceforth assume that such solutions ¢ (with appropriate prop-
erties) exist, and we shall concentrate instead on the question of
the dynamics of the data near them.

More specifically, we consider the linearization about these
special solutions. Linearize around the standing wave ¢, that
is take u = e [¢ + v] and further split the real and imaginary
parts. Ignoring O(|v|?) terms, we obtain, after some algebraic
manipulations, the linear system for v; := Nv, v, := Jv,

v 0 1 L 0 v
(w)=(So)(e o)) o
where

L1 = —A+ o —f(9?) — 20°f (¢?),
Ly = —A+o—f(¢?)

Passing to the eigenvalue form of the problem (5), ( z; ) —
()
%] ’
0 1 L1 0 U1 _ U1
s (=) o

For the generalized KdV problem, we take u(t, x) = ¢(x — wt) +
v(t,x — wt), which after ignoring O(v?) terms, brings about the
eigenvalue problem

ve = (—37v + wv — (F(9?) + 2¢0°f (9* ) = &L1v,

in the previous notations. Passing to the eigenvalue formulation
v — ey, yields

L1V = Av (7)
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1.2. Motivation

As we saw above, both eigenvalue problems (6) and (7) are in
the form 7Lv = Av, where J* = —7, £* = L. More precisely,
in the NLS case, we have

(0 1 (0
.7—(_] 0),£—< 0 Lz) (8)
where D(£) = H? x H?, while in the KdV example

J =0, L=1L, 9)

with D(£;) = H?. Note that in both examples, the operator £ is a
(matrix) Schrodinger operator in the form £1, = —A 4w — Vi 5,
where V; ; are generally smooth potentials. It is not hard to estab-
lish (and generally well-known), that the Hamiltonian linearized
operators 7L of the form arising in (6) and (7) generate a Cy
semigroup on L?, under very general conditions on the potentials.

It is of interest whether or not such semigroups satisfy the
spectral mapping theorem. In particular, if the linearized operator
J L does not have unstable spectrum, is it true that the semigroup
maps L? into itself, uniformly in time?

Another interesting question, which comes up often in ap-
plications? is where is the unstable spectrum of £ possibly
located? That is, is there a way to reduce the search for unstable
spectrum to some a priori determined, possibly small region.
More precisely, we pose and eventually address the following.

Question 1. Under natural assumptions on the potentials V1, V5,
give reasonable bounds on the location of the spectrum of JL for
the cases of the NLS semigroup (8) and the KdV semigroup (9).

In fact, we consider this question in its more general form,
namely, we consider general second order Schrédinger operators

Ly =—-A-Vy,
Ly =—A—=V,.
and we are interested in the location of the spectrum as posed in

Question 1. More specifically, assume that the semigroup gener-
ator 7L is either in the form

(0 1 o —A-V 0
7‘(—1 0)"—( 0 —A—V2>’
or

j:8xaL:_a)3_V’

where V1, V5, V will be only assumed to be bounded functions (in
the respective function classes), without any relation to the par-
ticular form as they arise in the linearized operators, (5) and (7).
For this general class of operators, we also address the question
for polynomial bounds. That is,

Question 2. Assume spectral stability, that is o(JL£) C iR. Under
what extra assumptions on Vi, Vo (V respectively), one has at most
polynomial bounds. More precisely, does there exist a constant C, so
that

eV |22 < CtN? (10)
21
1.3. Main results

We start with the Schrédinger case.

2 for example in numerical runs for finding instabilities of Hamiltonian
systems of this sort.



H. Gaebler and M. Stanislavova

1.3.1. Schrédinger case
Our first result addresses Question 1, in the context of the
Schrodinger semigroup (8).

Theorem 1 (The Spectrum of the Linearized NLS Lies Inside Horizon-
tal Strip). Letd > 1,L > 0 and 2 = R or £2 = [—L, L]?. Assume
that V1, V be real valued and bounded functions and set

VitV
==

Then, the operator
(0 1 —A+V 0

7‘—(—1 o)( 0 —A+V2> (I

with D(J L) = H*(2) x H*(£2) generates a Cy-semigroup on L*(£2).
More importantly, its spectrum satisfies

o(JL) CIRU{z: Nz # 0, |3z| < 2|V}

Equivalently, all potential spectral instabilities of 7L lie inside the
strip

{z 1 13z] < 2|V}

Remark. Note that Theorem 1 applies to both the unbounded case
£2 = R? and the periodic case £2 = [—L, L]%.

Next, we address the question for the time behavior of the
semigroup’s L? bounds, but only for the case d = 1 and periodic
boundary conditions §2 = [—L, L]. By rescaling, we can easily
reduce the general case to L = 7 or £2 = [—, 7], SO we assume
this henceforth.

Before we state the result, let us introduce some notations.
Assume spectral stability for the operator 7., thatis o(JL£) C iR.
By classical arguments, it is clear that o(J7L£) consists of point
spectrum of finite multiplicity only. Due to Hamiltonian invari-
ance, for every i € o(JL)NIR, we have that —in € o(JL)NIR.
In addition, each pair +iyu; has some algebraic multiplicity n; and
a geometric multiplicity associated to it, which is the number of
linearly independent eigenvectors [; < n;. In the case |; < n;, we
have two copies of Jordan blocks to each pair, so let us denote

. 1 l 1 ]
their lengths by n <---<n,so that nj = ny +--- +nj.We
have the following result.

Theorem 2. Let Vq,V,;[—m, ] — R be bounded, real-valued
functions and set V = VIZLVZ Then the spectrum of o(J L) consists
of eigenvalues with finite multiplicity, accumulating only at infinity.
Next, assume spectral stability, that is o(J7L) C iR Then all
eigenvalues +in € o(JL) N iR, with |u| > 2max(||V|[, 1)
are simple. Denote the remaining, (finitely many) eigenvalues by
{£ip1, ... iun} = o(TL)N{ip 2 |ul < 2max(||V]lee, 1)}. Then,
in the notations above, there exists a constant C, so that

. i
le"TEf 2 < CmIANT T . (12)

In particular, if all eigenvalues of JL are simple (or more gener-
ally their algebraic and geometric multiplicities match), then the
semigroup is time uniformly bounded on L2,

sup "Iz < C.

0<t<oo

Remarks.

e In the case of a general L > 0, the cutoff above which one
finds only simple pure imaginary eigenvalues =+iu, becomes

|l > 2max(|V e, ).
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e In order to state the power bound (12) in its current form,
we need to impose the assumption of spectral stability —
o(JL) C iR. While it is possible to state the result in the
general case,> we chose this formulation, due to the fact that
the main interest in (12) is in the case of spectral stability.

e The results in [10] offer similar uniform bound on the cen-

tral manifold associated to (a much more general form) 72

— see Theorem 2.2, [10]. One has to note though that an

application of these results to operators in the form (11),

imply that the semigroup e‘7*, obeys the bound sup;.,

et £lly1 < CtN=1f |41, where N is the size of the largest

Jordan block associated to any purely imaginary eigenvalue

of. On the other hand, our results apply to the more natural

space [2.

More specifically, Lin and Zeng, [10] work within the Pon-

tryagin framework, which necessitates that they use the

norms induced by the domains of the quadratic forms of
the self-adjoint piece £, in this case H'. Our approach is of
completely different nature, as it permits the use of L% space.

It is worth noting that the H! bounds in Theorem 2.2, [10]

follow from (12).

Lastly, the direct method for the proof of the power bound

(12) should allow for other problems to be considered,

which are not necessarily covered by [10]. Indeed, in the

framework of Pontryagin spaces, one needs the self-adjoint
operators to be semi-bounded. Thus, operators with infinite

Morse index or with sign indefinite Hamiltonians, who will

not be treatable with the Pontryagin’s techniques, certainly

can be analyzed with the methods developed in this paper.

1.3.2. KdV case

We now state the main results for the KdV case. As one can
see, the results here — both the ones concerning Questions 1 and
2 are not as precise as those for the Schrédinger case. This is
partly due to the fact that the operator 7 = 9, (and its inverse,
on the space L2 = L N {u : [ u(x)dx = 0}) is less explicit to work
with.

Theorem 3 (The Spectrum of the Linearized KdV Lies Inside a Hori-
zontal Strip). Let V : [—m, ] — R be a real-valued potential, V €
C'[—7, 7]. Then, the spectrum of the operator d,(—d? — V') consists
of eigenvalues with finite multiplicity, with only accumulation point
at infinity. The operator generates a Cy semigroup on L*[—m, 7]. In
addition, there exists an absolute constant C, so that

o(8L) CiIRU{z: Mz # 0, |3z < Cmax(|V |}, 1)}.

Equivalently, all instabilities of oL lie inside the strip {|Jz| <
€ max(||V |7, 1}

Our next theorem shows at most polynomial in time growth
J a2 . e
for e!®(=%=Y) assuming spectral stability.

Theorem 4. Let V be a real-valued potential. Assume spectral
stability, that is
o (9(—02 — V)) C iR Then,

A a2 _
e A5V < CENTIf 2, (13)

where N is the size of the largest Jordan block associated to any
purely imaginary eigenvalue of 8,((—83 - V).

If all (purely imaginary) eigenvalues of 7L are simple or more
generally, their algebraic and geometric multiplicities coincide, then
the semigroup is time-uniformly bounded on L?,

L
sup [|e"“|lg,2) < C.

0<t<oo

3 with corresponding exponentially decaying or growing factors, equal to the
maximal real part of the eigenvalues in o(7L).
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The plan of the paper is as follows. In Section 2 we collect
some preliminary and well-known facts about the operators we
are working with, their specta and long-time behavior. Impor-
tantly, we state and prove Gomilko type bounds for self-adjoint
operators, an interesting result that will be very useful for the
rest of the paper. In Section 3 we construct resolvents for the NLS
operator, while in Section 4 we do the same for the KdV problem.
In Section 5 we use Gomilko’s criteria to prove uniform bounds
for the NLS semigroup by splitting the cases of low frequencies
from those of high frequency. Finally, Section 6 does the same
for the KdV bounds.

2. Preliminaries

We start with some basics regarding Fourier series. For a
locally integrable function f : [—L,L] — C, define its Fourier
coefficients

" 1 [t -
flk)= 7/ fx)e *idx, k=0, +1,+2,....
2L,

Then, in L[?[—L, L] sense,

f= ) floet, —L<x<L

k=—o00

and the Plancherel’s identity takes the form ||f ||f2 =2LY 2

[f(k)lz. For every integer k, define the symmetric operators
Pif(x) = f(k)e™ T, Py = Px + P_y, Py = Id — Py

It is well-known fact that for a self-adjoint (generally unbounded)
operator #, acting on a Hilbert space H, there is the resolvent
bound

1
I+ = (e + i9)) Ml = <lqI™". (14)

 dist(u +iq, o(H))
for all u,q € R.

2.1. Some semigroups basics

We work with the standard notion of strongly continuous or
Co semigroup, namely that on a fixed Banach® space X, there is a
family of bounded operators {T(t)};>o C B(X), so that T(0) = Id,
T(t+s) = T(t)T(s) and for every x € X : lim,_, oy || T(t)x—x||x = O.
It is well-known that such semigroups are associated to (generally
unbounded) linear operators, A called generators, defined via
T(t)x —x T(t)x —x

— exists }, Ax := lim ——,

D(A)={xe€ X : lim
t—0+ t

t—0+
so that T(t)f = e, in appropriate sense, namely as the unique
solution, at time t of the initial value problem u; = Au, u(x, 0) =
f(x). Such operators .4 must obey a number of properties to do
so, but we will not touch upon that. Importantly, it is well-known
that for each Cp semigroup there is an estimate [le"*|/px) < Ce®,
which allows one to introduce the growth bound

wo(A) = inflo : e |lpxy < Ce™'}.

If for every 6 > 0, there is Cs, so that the bound ||e““||3(x) <
Csel” 9 holds, then

wo(A) < y.

An easy to verify condition for C, semigroup generation is dissi-
pativity, which we restrict to Hilbert spaces.

4 Which usually for us will be a Hilbert space.
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Theorem 5. Let H be a Hilbert space and (A, D(A)) is closed,
densely defined operator. Then, the following are equivalent:

(1) A is a dissipative operator. That is
N(Ax, x) < 0. (15)
(2) A generates a semigroup of contractions.

The theorem is essentially a corollary of the Lumer-Phillips
theorem. The necessity is well-documented, see for example
Proposition 3.23, p. 88, [21]. The sufficiency of the condition is
as follows: (15) implies that A* is dissipative as well. Then, one
can show that for all A > 0, A — A is surjective, hence by
Lumer-Phillips one gets that .A generates a semi-group of con-
tractions. This argument is carried out in full detail in Corollary
3.17, p. 84, [21].

An easy corollary of Theorem 5 is the following.

Corollary 1. Let H be a Hilbert space and the closed, densely defined
operator (B, D(B)) satisfies

R(Bx, x) < o|x|°. (16)

for some w € R and every x € D(B). Then B generates a Cp
semigroup, with growth bound wy(B) < w.

Corollary 1 follows by applying Theorem 5 to A := B — w.
2.2. The JL operators generate Cy semigroups

In both cases of NLS and KdV problems, the operators are triv-
ially relatively bounded perturbations of the corresponding con-
stant coefficient operators. We now prove the claims regarding
semi-group generation in Theorems 1 and 3.

Let us first discuss the NLS case, that is the semi-group intro-
duced in (11), when Vq, V, are bounded potentials.

2.2.1. The NLS case

Our main tool in this will be the bounded perturbation theo-
rem, see Theorem 1.3, p. 158, [21], which states that (A, D(A))
generates a semi-group and B is bounded, then (A + 3, D(A))
generates semi-group as well. As we apply this result to the
operators

A=<_O1 é)(_oA —OA)’B:<—01 é)(‘g ‘92)

and B is bounded, it clearly suffices to show that (4, H?(£2) x
H?(£2)) generates a semi-group on [?(£2) x L*(£2). Elementary
calculations show

etA = ( _01 (1) )sin(—tA)+Id2 cos(—tA),

where the operators sin(—tA), cos(—tA) are defined via the
semi-groups e4, which in turn can be realized via the Fourier
inversion/Fourier series formulas. Thus, A generates a C, semi-
group and hence the 7 £ operator in the form (11) generates one
as well.

2.2.2. The KdV case

In the KdV case, we need to rely on Corollary 1 instead. We
have A = 3,(—32+V), a closed, densely defined operator, D(A) =
H3([—L, L]), so we need to verify (16). We clearly have for every
f e H3(2), R(—d3f,f) = 0, so it remains to estimate

R((VF), f) = —m/ Vff'dx = —1/ Voulf|2dx
2 2 2

1
- / VIR < [Vl I 1%
2

Thus, we have established (16), with @ = ||V/||; and 8,(—d2+V)
generates a semigroup.
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2.3. Gearhart-Priiss and Gomilko’s theorems

We begin with a statement of the celebrated Gearhart-Priiss
theorem — see Theorem 2.16, p. 97, [22].

Theorem 6. Let A generate a strongly continuous semi-group on a
complex Hilbert space H. Then, the following are equivalent

e C, :={Mz > 0} C p(A) and

sup [I(z — A) M lpwy < o0

z:Mz>0

e wo(A) < 0 or equivalently, there exist § > 0 and a constant
C, so that

lle™ |5y < Ce™®". (17)

Let us make some comments regarding this formulation of
the theorem, as there are various (essentially) equivalent versions
available in the literature. To start, we can use a straightforward
corollary of the inversion formula for the Laplace transform to
represent (A — z)~! = — [* e *e'dt, whenever A satisfies
(17) and z : Mz > —4§, which means that in this case {fz >
—38} C p(A). In particular, {Rz = 0} C p(A). Conversely, one
usually checks the following sufficient condition for (17), namely
{Nz > 0} C p(A) and sup,,g II(in — A) Y|y < oo. In fact, we
have the following corollary.

Corollary 2 (Gearhart-Priiss - Second Version). Let A generate
a strongly continuous semi-group on a complex Hilbert space H.
Assume that {iz > 0} C p(A) and

M := sup ||(in — A)~
neR

Then, wo(A) < 0.

1
llgHy < oo.

Remark. As mentioned above, the converse is also true, since
wo(A) implies {Rz > —5§} C p(A) and then, one gets the uniform
resolvent bounds on the imaginary axes by the representation
(A—z)1=— [Te e Adt.

Proof. First, by the resolvent identity we have that for all § € R,
(148 — A7) = (i — A

By Neumann series expansions, for all § : [5] < o = 5,
we have that (1 4 §(iu — A)7') is invertible for all © € R
and ||(1 + 8(in — A7) lgy < 2. Thus, (§ +ip — A" =

(6 +iu— A"

1

(iw — A1 4 8(in — A"~ and
sup [|(8 + i — A) lgwy < 2sup [I(in — A) " lpwy = 2M.
neR neR

Thus, we have shown

sup Iz — A)q gy < 00. (18)

z:—8p <Nz =4y

Thus, so(A) < —8p < 0. Thus, one has the Laplace transform
representation

1
T(tx = o e(‘”“‘ (a+ip—A) du
1 o .
=5 et l(g ip — A)2dp (19)

for all a > so(.A), see Theorem 3.8, [22].
For the rest, we follow the proof of the Gearhart-Priiss theo-
rem from [22], see Theorem 2.16, p. 97, with minor modifications.
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We need to show

/Oo [{(is — A)"2x, y)|ds < oo (20)

e}

for all x,y € H, see Theorem 2.15, [22].

For a > wy(A), due to the representation of the resolvent
(a+in — A)"" as a Laplace transform of e~ T(t), (19), we have
from Plancherel’s identity

o0 o0
/ a4 i — A x|Pdu = / e T(enl2dt < 00, (21)
_ 0

oo

for each x € H. By the resolvent identity
Gpw—A)"" = 0 +alin—A) " Na+in—A)"| < (1+Ma)ll(a+in—A)""|

whence from (21), for all x € H,

(o]
[t = e < e (22)
—00
Applying the same arguments to A*, we obtain, for all x € H,
(o]
[ = a0y i < e (23)
—00
Clearly, (23)and 22) imply (20), hence by (19)
Clix Iy
T(t (( A)” du < ———
KT(tx, y)| < s / w— Mdu < ;

Hence ||T(t)|| — O and this implies wg(A) < 0. O

As useful as this Gearhart-Pruss result is, it fails to distin-
guish between exponentially decaying semigroups (i.e. growth
bound w(A) < 0) and uniformly in time bounded semigroups,
which means slightly more than wg(.A) = 0. Such result is
available in the literature. We state a precise version of it, due
to Gomilko, [23], see also Theorem 1.1, p. 82, [22].

Theorem 7 (Gomilko). Let A generate a Cy semigroup on a Hilbert
space H. Then, the following are equivalent:

e C; C p(A) and there is a constant C, so that for any f € H

SUPS/ ICA—(8+iw)) ™ FIIF + (A" —(8+iw) " fllFldw < CIIFIIE-
(24)
e e is uniformly bounded on H, i.e.

sup e |ly—py < oo.
O<t<oo
Note that it suffices to assume the condition (24) only for all small
enough 8§ > 0,say 0 < § < 1. That is, if C; C p(A) and

OSL;PIS/ [ICA— (8 +ip)) F IR+ (A" = (8 +im)~ ' flIF1dr < CIFIIE-

(25)
then €' is uniformly bounded.

Besides obvious applications to uniformly bounded semi-
groups, Gomilko’s criteria may be used to identify equality in the
growth bounds as follows. Suppose that a condition reminiscent
of (24)

sup f ICA = (5 + i) I + 1A — (8 + i) Fl121de

§>8¢

< Gs, If I3, (26)
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holds for every §; > 0. Then, we claim that for all ¢ > 0, there is
Ce, so that [|e"| /gy < Cce. Indeed, (26) implies

sup a/ [ICA = 80 — (o + i) I

O<a<1
+ (A" = 80 — (@ + in)) " fIl1du
< Gy, lIf 175
By (25), this means that A — §y generates uniformly bounded

semigroup for every §, > 0. That is, ||e"*|g) < Cs,e®". Thus,
according to our previous remarks, we must have that wg(A) < 0.

2.4. Gomilko type bounds for self-adjoint operators

The following lemma is a consequence of Theorem 7, but
we present its direct proof in order to introduce some useful
techniques for our subsequent arguments.

Lemma 1. Let M be a self-adjoint operator on a Hilbert space H.
Then,

sup§ / 1M = o+ 8 Bdu < CIFIE.

§>0 00

Proof. The lemma follows by applying abstract results as follows.
By the Stone’s theorem, iM generates a group of isometries,
[|le’tM llgry = 1. Thus, by the necessity in Gomilko’s theorem

o0
sup(S/ lGimM —

§>0 00

(8 +iw)) " fllzdu < CIfI
This is of course equivalent to the claim in the Lemma.
We proceed with a simple direct proof, to illustrate some ideas

that will be useful later on. Consider the spectral decomposition
for M, namely Mf = fa(M) AdE). We have

/ WM = 1+ i8) f I de

_ / (M= 118 (M — o+ i8) ' fydu =

—i8)7'f, fdp

/ fM)l)L wl? + 82 d(ES.F)du
1
E.f, ———dp ) dA
/(7(M)< 4D </—oo A — )+ 82 M)

w5 [ Ef D=5 W
o(M)

—00
o0
= (M —p+i8)" (M

3. Construction of the NLS resolvent and absence of unstable
spectrum outside a strip

We start with a derivation of a convenient representation of
the resolvent of the operator 7£ in the form (11).

3.1. Resolvent formulas for NLS

Clearly, since 7~' = —7, we have
(TL—@B+iu) ' =le+76+iw)) ' =—[c+I06+in) g
(Tey =@ +iw) ' = —T@+iu)g) ' = -Tlc— T +iu)]l ™"

Clearly, in order to study the resolvent operator (.7£—(8+iu))"},

)
it suffices to construct (£ 4+ J(8 + iw))~!. Write z = [£ + J(6 +
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i)~ 'f, that is

[( —AO_Vl _AO_V2>i(_O1 (1))(8+iu)]z:f. (27)

Representing

(5 2)=s(3 1) o4 1)

and some algebraic manipulations leads to the equivalent to (27)
form

—A—V £ (n—28i) -V _
( v CA-VEu—si )F=T (28)
where V = ‘“;—VZ At this point, it is clear that the estimates

required for the two cases are symmetric, so we consider the
resolvent in the form

<—A—V—M+B -V

v —A—v+u—w>Z:f (29)

Moreover, the case 4 > 0 and u < 0 are symmetric as well, so
we just concentrate on the case u > 0. We have

{ (A =V —u+id)zy —Vz = f

(A =V +pu—id)zy +Vzy = fy (30)

Clearly, for i > o > 1, the second equation is easily resolvable,
since (—A -V +pu)>upu—-V > % for large enough . In fact,
by elementary estimates for self-adjoint operators

1

(=2 =V 4+ 1) e +I(=A =V 4 u—i8) e < Cu,

for an absolute constant C. We can express z, from the second
equation in (30) as follows

=(-A-V+u—i) fh—(-A-V+u—

for as long as (—A — V + u — i8)~! exists.
Using this relation in the equation for z; in (30), we obtain the
following equation for z;

i8)" 'z,  (31)

(—A=V—p+i8)z1 +V(—A—V4+u—is) " Wz; = V(= A=V +u—is) fo+fi.

Note that this last equation is autonomous for z;, which means
that we can concentrate on it for the time being and then use the
results in (31) to derive the equation for z,.

By the resolvent identity

(—A=V+pu—is) ' = (—A=V+u) '—is(—A—V4u—is) " (—A=V+u)"!,

whence we finally derive an equation for z; in the form,
(—A—=VHV(=A-V+u) WV —p+id)z =

=iV(—A—-V+pu—is) (—A-V+u) vy

+ V(=A-V+pu—is)hH+f.

This will be our final form of the resolvent equation, so for
convenience we introduce the two self-adjoint operators

Ho := —A-=V
H=—-A—-VH+V(=A-V+p) 'V

Note that the operator appearing in front of z;, (X — u + i8) is
invertible, as o (#) is real. Clearly, the norm of the inverse may be
large, depending on p (namely, if dis(i, o (H)) = 0(8)), namely of
order §~!, which is the challenge in its estimation. On the other
hand, note that the other operators in the formula in front of
z1 have norms O(x~2), which allows one, at least for large i to
invert the operator on the left of (32) via von Neumann.
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In any case, we can rewrite the equivalent system for z¢, z, as
follows

(I —i8(H — pw +i8) V(Ho + p — i8)(Ho + p)”'V)za(u) = (32)
= (H—p+i8)"V(Ho + pu —i8)'fo + (H — e +1i8)"'fi.
z(n) = (Ho+p —i8) "o — (Ho + n — i8) 'V (). (33)
We have shown the following

Proposition 1. Let § > 0. Then, the resolvent (£ — J(8 + i)}
for > ||V ||~ is given by the implicit relations (32) and (33).

3.2. Absence of spectrum for the NLS generator in {z
0, [SA] > 2|V I}

D ORA £

We are now ready to show that there cannot be unstable
spectrum of the 7£ with imaginary part larger than 2||V|| .

Proposition 2. Let Vy, V, be bounded real-valued potentials, V =
V1 + Vz. Then,

o(TLYN{RA £ 0, |SA] > 2|V |} = 9.

In other words, if A € o(JL), then either A = 0 or |[JA| <
2|Vl

Proof. The claim of the proposition will follow from the in-
vertibility of 7£ — (6 4+ in) for all § # 0, |u| > 2||V|i~. By
Hamiltonian symmetries, it suffices to consider the case when
§>0,u > 2||V||ee.

As we have discussed above, the invertibility of 72 — (8 +iu)
is equivalent to bounds for z1, z; in (32) and (33) in the form

lz1llz + N2zl < Cus(filliz + If Nl 2)- (34)
By the self-adjointness of #, and the fact that u — V > & (since

12

n > 2||V]e), s0 —A+ u —V > £, we have the bounds

_ 2 e 2
I(*Ho + 1) l||B(L2) < —, I(Ho + p —i8) l||B(L2) < —.
2 2
Further, by the self-adjointness of #, we have that
I(H—p+is) " <8

All in all, we obtain the following estimate

T T 1 4|V |7
8(H—pu+i8)" V(Ho+u—id)" (Ho+u)™ Vg2 < 2

<1,

according to i > 2||V|| . It follows that the operator on the left-
hand side of (32), | —i8(H — u+i8) "'V (Ho+pu—i8) (Ho+u)~ 'V
is invertible and
ICT — i8(H — e +18)'V(Ho + p — i8) ™' (Ho + 1) 'V) g2,
1
< —.
T 1= 4p?|V s

As a consequence, we take ||-||;2 in (32) and we obtain the bounds

2u7 '8 IV i< fallioe + 87 If 2
1—4p72|V i

Using this estimate in (33), we obtain the bound for z,,

lz1ll2 < (35)

lz2lle < 26 ol + 207 Vi llzill2 <
20 5V e Wfslls + 8" ful2
1— 4 2|VZ

This shows absence of spectrum of o (7£) off the imaginary axes
(as 8 # 0), in the strip Iz > 2||V||j~. O

IA

217l + 21 IV Il
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Remark. Note that the formula (35) and the estimate for z, imply
that for a fixed §, there is uniform bound for (72 — (8§ +iuw))~".
More precisely, for each § > 0, there exists Cs, so that

sup (7L —(8+in) 'l <C. (36)

> [IVIlpoo

4. Resolvent construction for the KdV problem and absence of
unstable spectrum outside a strip

We need to study the resolvent of the operator d,£; =
8X(—83—V) on a periodic interval [—L, L], where V is a real-valued
potential. By rescaling, we can reduce to the case L = =, so we
assume this henceforth. Thus,

fx)= Z f(k)eikx’f’\(k) = % _Z f(X)e_ikxdx,

k=—o00

Introduce the spectral parameter § + iu, where we take § >
0, > 0, since the case u < 0 is similarly explored based on
symmetry considerations.

We would like to construct the resolvent, whenever possible.
Most importantly, we would like to see whether the operator
d(—087 —V)—(8+in) has an inverse in L3, [, 7] and if so, what
is the dependence of (8y(—32 —V)—(8+iw))~" on the parameters
8, i especially as § — 0+, while & > 1.

To set things concretely, let G be a given function and intro-
duce, for each € R, F = [0(—37 —V)—(8+in)]~'G. As we have
shown, § + i € p(3(—32 — V) — (8 +iw)), so F is well-defined.
That is

[0,(—97 —V) = (8 +iu)IF =G, —w <x <m. (37)
We need to show
o0
sup 5 [ IFGOId < ClGIE,
8:0<6<1 —00
The first step is to integrate (37) in [—, 7], which implies
N 1 4
F(0)= — G(0), 38
(0) ST in (0) (38)
. . 0 1
Wthlh resolves the zero modes completely, since fioo md" =
TéT.
From now, assume without loss of generality that both F, G

are mean free, i.e. I:'(O) = 6(0) = 0. We apply 8;1 in (37), so we
obtain

[—37 —V —ipd; ' — 83, 'IF=9;'G,—w <x<m. (39)

Note that the operator —32 —V —iud; ! is self-adjoint, while §3;

is skew-symmetric. To simplify the calculations, take u := v3.

4.1. Some heuristics and strategy

Ignoring for a moment the potential term V and the non-self
adjoint term 88;1, we see that the linear term’s dispersion is of
the form

-t o Yo _ sy 2 s e ke 02,
k Kk k

Thus, the modulus of the dispersion function is small (and po-
tentially zero), only k is very close to v. In order to exploit
this quantitatively, let Jv[ denote the closest integer to the real
number v. Then, for k # ko(v), we have that [k — v| > % and
hence

’kz _H s lmax(kz, vz). (40)

k 4 k

Thus, for large v, it is easy to invert the operator on the left-
hand side of (39). The only problematic term is the one for which
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k = ko(v). We refer to this mode as the critical one, for a fixed
value v.

Our strategy for the rest of the argument is to write, if possible,
the resolvent problem (39) in an equivalent form of the type

F = RF + TG, (41)

where the operator R has small norm in B(L?) (for large 1) and 7
satisfies appropriate bounds in B(L?). This would allow us to solve
(41) via Neumann series and get the bound ||F||2 < 2||TG| 2.

4.2. Equations for the critical and non-critical modes: preliminary
steps

We would like to project Eq. (39) on the critical mode Py,.
Recall Py,F(x) = F(ko)e™o¥, while F, = F — Py,F. So, for fixed
v, apply Py,. Noting that

Py (VF) = Pyy(VFiy) + Prg(VF.iy),
we have
(=82 —ipdy " =88, " )Fiy — Pig(VFiy) = 8y "Gy + Py (VP2ko F). (42)

For the non-critical mode, we project with P in (39). We
obtain, in a similar way,

(=07 —ipdy ' =80, kg =Py (VFsky) = 05 ' Gty Pty (VPio F).

We can rewrite this last equation in the following way

(=07 —ipdy " — Pty VP g Fopky = 89 ' Forky + 0 ' Gotiig) + Py (VP F)-

(43)

Consider the self-adjoint operator that arises in the previous
calculation

M= My, = =3 —iud; " — Py (VPsi,), DIM) = H?,

which acts invariantly on the subspace Py, [L?]. We claim that
for a sufficiently large v, the operator M is invertible, in particular
M [P [121] = Py [12].

In fact, assuming that v so large that v > C|V]|~, for
some absolute constant C, its inverse has favorable B(L?) bounds,
namely

k

max(k?, v2) (44)

i ”P#kO[LZ]—W#kO[LZ] <C
Indeed, this follows by realizing that one can expand M~! in a
Neumann series,

o0
M=) (=07 — ipdy ") Pk (VPtg (=07 — i)™

1=0
which converges once we take into account the bound (40), which
yields
(=07 — ipoy !

)" Pty (VPosig 2y < C Ve

max(kz B Vz)
= 1” ” !

Cv Ve < 5
= L 2

under the assumption ||V~ <« v made earlier. In addition, esti-
mating again in the Neumann series, we find that
M1 “B(P#_kO[LZ]) < 2|[(=8g —ipd ) ||B(p7é,(0 127)> hence the bound
(44).

With (44) in hand, let us proceed with the analysis of the
equations of the critical mode. Applying M~! in (43), we obtain

Farg = M '[9 "Farg] + M [0 Gy ] + M [Poaiy [VPiy F11.
(45)
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Plugging this back in Eq. (42) and reorganizing terms yields
[—82 — indy " — Pry[VPiy(-)] — Pig VPotieg M ™" Posiey VPio (-)1Fiey =

= 80, 'Fiy + 35 'Giy + P V(ISM '[85 "Fang] 4 Pig VM ™[0 Gty 1)

We now introduce another self-adjoint operator, namely

— Piy[VPio ()] — PigVPyikg M ™ 'Piy VPy,.  (46)

Note that Q acts invariantly on the subspace P, [L?]. In fact, its
action is in the form

Q= -3 —ind, '

Q[Zf lkx] ko_i Cv)f k )elkox+z k) ikx (47)
ksko

where

c, = V(0)+ VP;ﬁkoM 1P,V (0)

T
7[ / x)dx + / VP_kg M ™ Psg V (x)d].
Clearly, c, is a real constant, satisfying |c,| < C||V || (14 ||V |1 ).
The operator Q allows us to rewrite the last relation for Fy, in
the form,

1)
(Q+i7 i = 8Py VM™ 10, Foakg + 95 ' Gig + Prg VM 1[0, 1G]
Recall though that Q is self-adjoint, so (Q+l
in fact, from (14), we have the bound

8 k
02 +i—) g2y < = (48)
ko )

) is invertible, and

This yields the formula,
Fko = RkoF + 77<OG‘ (49)

where, we have introduced the operators

L0 e
Ryy = 5(g+zg) Py VPokg M0 Ps

N -
+(Q+i—) IPkOVP#kOM 18x 1P¢k0.

RN
77(0 = (Q+17) lax ]Pko I
)

ko

4.3. Construction of the resolvent
We collect our findings so far in the following proposition.

Proposition 3. The resolvent equation (37) can be equivalently
written in the form

Fko = RkOF + 77‘0(;' F;ﬁko = R;ﬁkoF + T#koc, or F=RF+7Gin
short, where

Ro g2y < Cv™H IV [Ipoe, (50)
IR 2k 132y < CV™ IV llioo, | Toeko g2y < Cv 2 (51)
Proof. Most of the statements have been established in the
discussion preceding the statement of the Proposition, but we

collect all the information herein. For (50), we have by (48) and
(44),

8 - _
1Rio lga2y = 116(Q + IF) P VP 2k M Posi g2y < Co 7V oo
0

We can represent R, from (45),
= (I = 8M 713 P iy ) M TP, VP, (52)

whence the estimate for ||R .k, llg 2, easily follows. Again from
(45),

Tk = (I = SM 717 Py ) "M TP, (53)

Cv~2 follows from (44) as

R#ko

whence the estimate || 7, llp2) <
well. O
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4.4. Proof of Theorem 3

We present the proof of Theorem 3 as a direct corollary of
Proposition 3. First, for the zero mode, we use the relation (38),
which yields )

[F(0) < CM‘1LG(O)|. Next, we assume, without loss of gener-
ality that F(0) = G(0) = 0.

Assume that u > max(||V||foc, 1). Then, the estimates for R,
namely

IR g2y < Cv™ IVilpe < Cu™ PV e < 1,

guarantee that Id — R is invertible on I?, and in fact ||(I —
R)_lllg(Lz) < % Thus, we can resolve the resolvent equation
F = RF + TG as follows F = (I — R)~'7G. Then, we apply the
estimates for 7 found in Proposition 3, to obtain

IFll2 = I TkomGll2 + I Tron)Gll 2
The estimate || 7z,)Gll;2 < ClIGll;2 is in (51), whereas by a direct
estimation (using (44))

ko 1 IVl
[ Tho)Gllp < C—o (o +
1) ko

p NGlz < 871Gl 2.
Ko

All in all, this implies that ||F|;2 < C87'||G||2. This shows that
the resolvent at § +iu indeed exists, i.e. it is bounded operator on
12, whenever u > max(||V||f‘oc, 1). In fact, we have the resolvent
estimate

sup [|0(—07 — V) — (8 + in)llgzy < C6~ . (54)
neR

Note that this estimate blows up as § — 0, so establishing
Gomilko type bounds (i./e. in the form (24)) for the operator
0y(—82 — V) is more subtle than (54).

5. Uniform L? bounds for the NLS semigroup

In this section, after appropriate reductions, we eventually
reduce matters to the verification of the Gomilko’s criteria. Let
us work on the reductions first.

5.1. The semigroup e'7* grows at most sub-exponentially
The first result is preliminary.

Proposition 4. Assume that the generator 7L is spectrally stable,
that is o(JL) C iR Then, for every § > 0, there is Cs, so that for
every t > 0,

le"7“f N2 < Cse If ll 2. (55)

Remark. It suffices to assume that there is no spectrum in the
set {z : Mz # 0, |Jz| < 2||V||=}, since the remaining spectrum
is guaranteed to be on iR by Proposition 2.

Proof. Let §, > 0. We apply the Gearhart-Priiss theorem to
the semi-group generated by JL£ — Jpl. Indeed, if we show that
el(7£-%) has negative growth bound, then in particular,

tTL Sot
e “fll2 < Cs, € [If Il 2

As such an inequality holds true for all § > 0, the Proposition
follows. According to Gearhart-Priiss, and the assumptions, it
thus remains to show

sup (7L — 8o + i) 22 < G- (56)
neR

First, observe that we are assuming that C, C p(JL). So, the
B(L?) valued function z — (J£ — z)~! is holomorphic on C,. In
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particular, it is continuous, and hence bounded on the compact
subsets, sayon K = {z : z = &g — i : || < 4||V||1=}. It follows
that

sup  I(JTL — 8o + iu)” lzp2 < Gsyv-
[l =4]IV oo
For u : || > 4||V|i~, we use the bounds from Proposition 2,
with § = §p. Namely, (35) and the subsequent bound for z, are
in the form

Iz1ll2 + l1z2lli2 < Coo(1+ 1~ Wi lliz + ILfallz2),
when || > 4||V| . Thus,

sup  [I(TL =80+ i) iz < Gy
[u|=4]V |00
This verifies the Gearhart-Priiss criteria, and hence the sub-
exponential bounds are established. O

Note: Under the spectral stability assumption o(7£) C iR, as
a simple consequence of Proposition 4, we can in fact bound the
Gomilko’s quantities, if § > 8o > 0. More precisely, we claim that
(55) implies

sup $ / [T £~ (8+i) " FI2 +I(LT +@+im) FI%)du < G IF 1.
=00 —00

(57)

Indeed, (55) establishes negative growth rate for the semigroup
generated by A = J£ — § for any 4. In particular, the semigroup
is uniform in time for § = %" and hence, the necessity statement
in Theorem 7 applies. Thus,

0 )
supor [ 1172 =3 ~ (o +i) 11

o>0
8 o
+ T + 50 + (o +iw) fI%1du
< G, lIf 112

In particular, for o > ‘370 the last estimate implies that we have
control in the form

ssusp 3/ [||(~7C—(8+il4))7]f”iz+||(£‘7+(8+il/«))71f“iz]dﬂ < 2G, Hfllfz-
=40 —00

This last inequality does not of course imply the full Gomilko
sufficient condition (24), but it shows that it remains to control

1i§m zUPB/ (T L=+ fI% + 1T+ +i) flI1dw < CIfI1%-
—0+ —00

This is what we do next.
5.2. Proof of Theorem 2

We need to show the following estimate for the solutions
21,23 of (32), (33),

(o]
/ [z ()I? + Nlz2()lZ2)dp < CEIAIP + IR 17 (58)
—00

for all sufficiently small § > 0, say 0 < 8§ < 1, and an
absolute constant, independent of §. As we have mentioned be-
fore, the cases © > 0 and u < O are symmetric, so it suf-
fices to consider just © > 0. In accordance with the results
of Proposition 2, we split the integral: © > max(2||V||~,2)
and 0 < u < max(2||V]i~, 2). Historically, at least in quan-
tum mechanical contexts, spectral parameters have played a role
of an appropriate energy levels of the corresponding atoms, so
we adopt these notations and refer to these two cases as high
energies and low energies.
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5.2.1. The case of high energies
Let us show that the estimate for z, reduces to the estimate
for z;. We have

/00
max(2[|V||jo0,2)

00
f+2/
max(2|| V|| 00,2)

The first integral above is controlled by C5§~!| f2|| 2

whereas the standard estimate ||(Ho + pw — i6)~ ||B(,_2) < Cu
(when u > 2||V||j), yields an estimate for the second term in
the form

c / W2V IR i) dpe.
[i]>max(2(|V |l o0,2)

Thus, an estimate in the form

loa()Padie < 2 f

max(2[|V|jee,2)

1o + 1 — i8) " foll o due +

(#o + 1 — i) Va1 () 2 di

by Lemma 1,
-1

/ lz1(w)IPdpe < CSTLIA I + IR1171- (59)
max(2[|V [;00,2)

would imply the estimate for z, as well as the required estimate
for z;. Thus, we have reduced matters in to the verification of
estimate (59). We henceforth concentrate on showing (59). Recall
that

(0 —i8(H — p+18) "V (Ho + p —i8) " (Ho + 1) 'V) g2y < 2,

whenever p > 2||V||~. So, (59) reduces to

/ = i8) V(o +p— 8 1Py < C5IF 1%
max(ZHVH,_oc 2)

(60)

since the required estimate for the f; term is
/ 16— e+ i) 1Py < Co~IF I,
max(2||V|ljc0,2)

follows from Lemma 1.

Before we present the further details, let us point out that #
has a finite number of eigenvalues (say u;, with eigenvectors e;)
in each compact interval. So,

/ N — o+ 18)" V(3o + 1 — i8I <
max(2| V|00 ,2)

sl n+1

2

n=[max(2|[Vl00,2)] * "

IA

(7 =+ i8)? —i8)7If|I* <

n+1
/ iy — 1+ 1872
n

foy— 2
X |(V(Ho +pn —i8)"'f, e "du +
o n+1

I(Pan-1 + Pons2)IV(Ho + u — i8) ' f1I% dpe.

V(Ho+ 1

o)

IA

n=[max(2||V|[jc0 ,2)] j:pj€ln—1,n+2]

+

n=[max(2|[V o0, 2)] * "

The second term is easier to control. We have

oo

2

n=[max(2|[V | e0,2)] * "

n+1
P 2
l(P<n—1 + P=ny2)[V(Ho + o — i8) 1f]||,_zdll«

oo

2

n=[max(2||V||;00,2)] * "

n+1 2
I(Ho + s — i8) " 'fll2dpe

IA

CIV 12

IA

o0
U 2 _
C||V||foc/ (Mo + i —i8)"'fll < CSTHIVIF= If 12+
—00

where in the last step, we have used Lemma 1.

10
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In order to control

> ox [Tw

n=[max(2||V||jo0,2)] j:pj€ln—1,n+2]

X [(V(Ho + pu —i8)7'f . &) dps,

— 4872

we need to expand, via the resolvent identity and forn < u <
n—+1,
[o]

2 (-

I=

(Ho + p —i8)” Y[(Ho +n —i8)" 1.

Note that this is convergent, due to the fact that [n — u| < 1,

while [|(#o + n — i8) '[lgy2y < Cn~'. It follows by Cauchy-
Schwartz’s inequality that

(VY (n— i8)"'1%f, )l

=0
2

H—lf ej |>

S+ BVi(Ho +n— i) I ety (14 P)!
0 1=0

Denote Fy; == V[(#o + n — i8)"']"'f, an [? function, which is
independent on u, j. Note however,

IVl
Wl

We now need to estimate

(V(Ho + 1 —i8)7'f, e)I Y[(#o +n—

IA

(Z V[(Ho+n—

1=0

I A

IFaill2 <

o)
Yan Y el [ o+ s,
=0 n=| [max(Z\lVHLoo 2)] Wi e[n 1,n+2]

(61)

For each particular j : uj € (n —

n+1 o) 1 T
| — p +i8|2du < / ——dpu = —§""
/,1 ! o (j—puP+8? 2

Going back to (61), we can estimate it by

sy (1+P) >

1,n+2),

oo

|(Fu1, e)1? <

>0 n=[max(2|V||;00,2)] pni€ln—1,n+2]
[eS)
<Y A+ Y Full: <
=0 n=[max(2[|V||yc0,2)]

o]

1
2 <
n2i+2

< G VIR IFIE Y (1 +P)

=0 n=[max(2||V||;00,2)]
. a+B)
< CSVIESIFIZ ) o = €87 IF I
=0

This establishes (60) and hence the case u > max(2||V ||, 2) is
analyzed in full.

5.2.2. Low energies estimate

For this step, we proceed as follows. Fix a large real number,
N : N > max(2||V|e, 2). Note that by assumption o(7L£) C
iR. Moreover, since o(7L) consists of isolated eigenvalues, we
can further select N, so that £iN are not eigenvalues. Finally,
by Hamiltonian symmetry, all the eigenvalues of 7. inside the
interval [—iN,iN] are in the form =iu;,j = ., Jn, where
0 < uj < N. For each +ip;, consider the Riesz projection P; that
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is
1

T o

/(Jﬁ —z)"ldz,
Yi

where y; is a positively oriented closed curve of index one that
encloses both +iyu;, but no other spectrum of 7£. The operators
P,gL = P.JLP;,j = 1,...,]ny can be represented as finite di-
mensional matrices of dimension n{, which consists of [; separate
Jordan blocks, each of dimension n;, I=1,..., 1. For these types
of matrices, it is well-known that
Ij
1P g2y < € (62)
Introduce then the Riesz projections Py = Zfﬁ 1Piand Qv =
I — Py. Clearly,

I.

J
P, max;, n —1
€8T “ g2y = [IPye'T“ g2y < eI T (63)

On the other hand, the operator Qy7£ : Qy(L?) — Qn(I?) has
no spectrum in a neighborhood of [—iN, iN]. Thus, its resolvent
z — (QuJ £ — z)~ ! is analytic, B(Qy(L?)) valued function in such
a neighborhood, so by its continuity

Jim (724 (6 + i) = (7L £ i) a2y = 0-

This implies that for f = Qnf,

N N
imsup / 1T LG +i) Iy = / 0T L) i du < Gyl
—0+ JoN -N
(64)
Thus, for f = Qnf,
N
iimsups [ 1725+ i) Idn =0,
§—0+ —N

Since we have dealt with the high energies case before, we have
that for all f € L?, so in particular for f € Qy(L?)

lim sup 8 f (7L £ (8 + i) 'filndp < CIf 2
50+ | 4]>max(4[V|[c0,2)

The selection of N ensures that we have covered the whole real
axes, once we combine the last two estimates. Thus, for f €

Qi(L?)

(o]

lim sup & /
§—0+ —00
Applying the Gomilko’s sufficient condition to the Hilbert sub-

space Qu(L?), on which the semigroup e‘7* acts invariantly, we
conclude

sup (e “Qnfll2 < ClIf ll2-

O<t<oo

(7L £ (8 +iw)) fI%du < CIf -

The complementary estimate is provided in (63). All in all,

}
e 4 f |l < CEMIM T T f . (65)
6. Uniform L? bounds for the KdV semigroup: Proof of Theo-
rem 4

We are approaching the problem in the same way as its
NLS counterpart. The first step is to realize that the assumption
o(3,(—02 — V)) C iR, together with the estimate (54), which
shows the uniform bound [|(8x(—87 —V)—(8+iu)) "l g2y < €5~
for all ;& >> max(||V ||, 1)3, implies that for all § > 0, there exists
a constant Cs, so that
sup [[(3(—87 — V) — (8 + i) g2y < Gs.

neR
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Indeed, for large energies, this is just (54), while for low energies,
we just exploit the analyticity and hence the continuity of the
map p — (3(—82 — V) — (8 + in))"! on compact intervals
€ (=N, N),N ~ max(||V||;~, 1)*. Based on this uniform bound
for the resolvent on each vertical line {z : Mz = §} one can
infer sub-exponential growth of the semi-group et®(~% ), That
is ||e‘3x(‘3X2‘V)IIB(Lz) < C.e! for each k > 0.

As in the NLS case, we will show uniform L? bounds on the
high energies, the low energies are treated in an identical way.
By Gomilko’s theorem, this reduces to the estimates

6/ I@B(=0F = V) = (6 + i) Gl pdu < CIGI:
[u|>N

o0
i
lpe|>N3

for N > max(||V||;<, 1). As in the NLS case, the sub-exponential
bound implies that (see the proof of (57), based on the estimate
(55)) for each 8 > 0, there is Cs,, so that

(66)

1((=82 = V)3 — (8 + in)) 'Gll%du < CIIGI,. - (67)

supaf (=02 — V) — (8 + i) 'GlI%dpe < Gy Gl 2,
§>8p |u|>N3

similar for (67). Thus, matters are reduced to thecase § : 0 < § <
1, which we assume henceforth.

We start with the proof of (66), the proof of (67) goes through
much of the same estimates, with some extra complications,
which will be addressed later on.

6.1. Proof of (66)

The cases u > 0 and u < 0 are symmetric, so we take u > 0.
The first thing to observe is that by (38), we clearly have

® L2 *® L2
/ [F(0)| du < Cf IGO)[ e 2dp < C||G||fz < C5—1||G||fz,
1 1

since § < 1. As we have observed earlier, we may henceforth
assume F(0) = G(0) = 0. Next, we perform change of variables
w = v3 in (66). We need to control

5/ (3x(—8 — V) — (8 + iv3))7lG||fzv2dv.
N

Based on the representation in Proposition 3, we can control the
contributions of the terms (I—R)”T#ko(v), (1—72)*‘77<0 as follows
—since | — R) Y22 < % it suffices to control

I
due to the bound (50) and § < 1. For the remaining term,

o0
/ i) GIIZ v,
N

o0

v2[Glhdv < CIGIE < C57IGIIE

| Totko () GlIZ v dv < C/ 2

N

(68)

observe that the operator involves (Q + i%)‘lPkO, has a very
simple form according to (47), namely

1 A .
- —f (ko)e™~.

.8
(Q+i—) "Ppf() = —F———

ko ki — L —c,+iZ

0 0

In addition, let us analyze the real part of the modified dispersion
term. More precisely, introducing k : k¥ = kg — cyko, so that
k = ko(v) + O(v~1) (recall ¢, = 0(1)), we write

2 v3 I~<3—v3 I~<2+I~<v+v2 ~
ki———c, = V) —————

L = ~ (k= v)v.
ko ko ko (< U)U

We now estimate the two terms arising in 7x,,)G, namely

°° O s 22 - N
f (@ + =)0 G I F2v7dv < CZ[ (@ +i)"'Gill%dv
N Ko =y Y1172 !

k —

I+1/2
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where we have observed that for v € (I—1/2,14 1/2), ko(v) = L
Next, we partition each of the intervals (I—1/2, [4+1/2) as follows

(1=1/2,14+1/2) C{v:|v—kl <82JUUZ,
x {v:|v—k|l ~2m8I72} = A Uny Am.
Note that v € A, implies (by estimating with the imaginary
part), ——1—— ~ 187!, while v € A, gives ——1——
k=¥ ey+igd-| k2= eyt |
0 0 0 0
2-M§~1, Taking into account that | A,| ~ 2™8172,

14+1/2 s 0
f I(Q+i7)7'Glladv < € 272" P82 Gil, f
1-1/2 A

m=0

~

dv

[o¢]
<cshGIEL Y 2

m=0

which implies the desired bound, since Y, [|G/[|%, < [IGI%.
For the other term, it is actually reducible to the one that we
just handled. Indeed, we need to control

o0
L0 e
[ 0@ ) B VP M0 Gy e
N

Denoting G := VP, M~ '3, 'G, (note that G depends on v and
0y Uin front of it is missing), we have, by performing the same
steps as above

e s 1~ 2.2 o 2mj4 2 ~ 2
[ CRR RN 3 S Ll I O
N 0 I=N m=0 Am

According to (44) however, ||5,||Lz < C||V |l v~2. Plugging this in
the previous estimate, together with | A,,| ~ 2™8172 yields again
the bound C8"(|G|1%,.

6.2. Proof of (67)

Write the resolvent equation corresponding to (67) in the form

(=82 — V)aF — (8 + in)F = G. (69)

As in the proof of (66), we start with the contribution of ﬁ(O).
Taking an integral x € [—x, 7] in (69), we obtain the relation
(8 + in)F(0) = —G(0) — VF'(0).

Clearly, integration by parts implies |\7I?/(0)| < VgzIF —
(27)' [T F(y)dyl|2. Hence

X a2 2 2 [T 2
/ [F(O)] du < ClIGII; + C||V’||L2 / IFzoll2dpe,
1 1

whence the estimate (67) reduces to the control of [} ||F#0||fzdu
in terms of C ||G||fz. That is, without loss of generality, we may and

do assume IA’(O) = 6(0) = 0. Applying the change of variables
f = 0kF, g = 0,G in (69), we obtain

(=32 =V — (6 +iwd; 'f =3, 'g

This last relation is nothing but (39), whence we can resolve
it according to Proposition 3 in the following way f = Rf +
Tg. Taking into account f = dF,g = 9G and applying 9!
judiciously, we arrive at

(I — 8, 'Ra,)F = 8, ' T,G. (70)
In order to analyze (70), we need the following lemma.

Lemma 2. Let § € (0, 1). Then,

195 " Roxllgu2) < Cv ™IV lroe. (71)
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In particular, if v > ||V, (I —
d; "R0x) g2y < 3. In addition,

dy 'R3y) is invertible and ||(I —

18, " Tt Oxll g2y < Cv 2. (72)
Proof. We start with 9, 1R¢k08x. This is represented in (52).
According to it, by using the von Neumann series,

3y "Rozkgdx = 3 (I — M1 Py )T M TPy VP, Oy
= 3y "M TP VP 3 +

o]
)0 (MO P o Y MTTP kg VP B
=1
Using the estimate (44) and 0 < § < 1, we can bound favorably
the terms in the sum as follows

18 "(SM ™3, Py ) M TPy VPiy Bl g2y < Co ™2 ||V ][,
while
||8;1M’]P¢kOVPk08XI|B(Lz < Cv Y|Vl 1e0.

As before, this guarantees that if v > ||V|~, we have the
bound (71). Similarly, using the bound (48), we can estimate
||8;1Rk08x||3az < Cv7Y|V||;e. Thus, (70) follows by adding the
two terms in 9, 'Rdy.

Regarding 9, 1T75k0 dy, we have the bound (expanding as in the

analysis for 9, 1Ry),
110" Totko Oxll g2y < Cv™2. O

Going back to the required estimate (67), we have that accord-
ing to (70) and for v : v 3> ||V, F = (I — 37 'Rdx) "1, 1 TG
and |Fllp < C||8x‘17’8xG||Lz. Thus, we need to control
Sy 1871 T9,G||?v2dv. Due to the bound (72), we have

o]

v2GI%dv < CIGII% < €57 G

12

[e¢]
/ 18, ! Totko(yHGlIZ vPdv < C /
N N

whenever § < 1, which is our standing assumption.

It remains to retrace the main steps in the proof of (68), in
the context of the estimate for [\ [|9; " Tky(v)3xGl|% v2dv. In fact,
using the concrete formulas for 7,y and using the fact that Q
acts invariantly on Py,(L?), we have

8 ~ 8
3y Thoydy = 3;1(Q+zk—) 10, ' Pyy dx + 0y 1(g+zk—) !
0 0

X Py VP g M1 P sy By

I _ 8 _
(Q+1F0) 1aX’Pk0+aX1(g+zk—0) Py VPt M ™ Pty

Note that its first piece, (Q + i%)*la)j]PkO is identical with what
needed to be controlled earlier and that has been done in the
proof of (68). The second piece, which is given by d;'(Q +
i%)‘lPk0 VP, M~ 'P_y,, inserted in the appropriate integral, can
be estimated in exactly the same way as in the proof of the
corresponding piece for 7y, and the estimate follows in the same
fashion. We omit further details.
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