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Standfirst 234 

During the COVID-19 pandemic, genomics and bioinformatics have emerged as essential 235 
public health tools. The genomic data acquired using these methods have supported the 236 
global health response, facilitated development of testing methods, and allowed timely 237 
tracking of novel SARS-CoV-2 variants. Yet the virtually unlimited potential for rapid 238 
generation and analysis of genomic data is also coupled with unique technical, scientific, 239 
and organizational challenges. Here, we discuss the application of genomic and 240 
computational methods for the efficient data driven COVID-19 response, advantages of 241 
democratization of viral sequencing around the world, and challenges associated with viral 242 
genome data collection and processing. 243 

Introduction 244 

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly contagious 245 
pathogen that caused the COVID-19 pandemic, which reached an unprecedented scale of 246 
infection not seen since the influenza pandemic of 1918–1919. Within a month of its first reported 247 
case in Wuhan, China in December 2019, the virus had spread to many regions within the country 248 
as well as in several neighboring countries, including Thailand, Korea, and Japan. As international 249 
flights continued to operate, SARS-CoV-2 rapidly spread to Europe and North America1. 250 

During this time, it became clear that the genomic toolkits are essential for public health decision 251 
making, including testing for COVID-19, monitoring for emergence of new virus variants with 252 
altered biological or immunological properties, identification of at-risk individuals and informing 253 
epidemiological models that describe outbreaks in communities2. This has allowed for the 254 
observation of SARS-CoV-2 genome evolution in almost real time, rapid tracking of SARS-CoV-255 
2 genetic lineages, and variants of interest and concern (VOIs, VOCs) which in turn have 256 
facilitated the development of SARS-CoV-2 clinical tests and prediction of vaccines efficacy 257 
against viral variants3,4. However, to reach the full potential of genomic data for future public health 258 
surveillance and outbreak response, we believe it is necessary to expand and coordinate best 259 
practices in genomics and bioinformatics that have now been field tested during the COVID-19 260 
response5. Herein, we discuss the genomic techniques and corresponding bioinformatics 261 
algorithms that are addressing many of the pressing public health issues associated with COVID-262 
19. 263 

Genomics-based methods enabled early warnings of COVID-19 pandemic 264 

When a local team of health professionals was investigating a small local outbreak of pneumonia 265 
consisting of the first 59 suspected cases from Wuhan in December 2019, they quickly discovered 266 
that they were dealing with a novel virus of unknown origin6. This rapid discovery was made 267 
possible by modern robust and accurate genomic and bioinformatic tools, which while now used 268 
routinely, did not exist a couple of decades ago. On January 30, 2020, when WHO declared a 269 
Public Health Emergency of International Concern (PHEIC) 339 SARS-CoV-2 genomes had 270 
already been sequenced and characterized1. 271 
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To investigate the newly emerging outbreak, scientists in China performed whole-genome 272 
sequencing on specimens, followed by de-novo assembly and end mapping to annotate the 273 
complete 29,903 nucleotides long SARS-CoV-2 genome. Bioinformatics analysis revealed that 274 
the genome organization of SARS-CoV-2 was consistent with single-stranded, positive-sense 275 
RNA from the genus Betacoronavirus7. Additionally, sequence alignment tools including BLAST8 276 
were used to search for related species of the newly discovered virus in the NCBI GenBank 277 
database, revealing alarming similarities to SARS-CoV (SARS-CoV-1), and a much higher 278 
similarity with Betacoronavirus from bats, proposing zoonotic origin of the virus. Some SARS-279 
CoV-2 genome fragments, in addition, have the highest similarity to the corresponding fragments 280 
from pangolins, which suggests that there were possible recombination events. Subsequent 281 
analyses including on additional sarbecovirus genomes from bats and pangolins further 282 
scrutinized the evolution and recombination history, and found that the lineage giving rise to 283 
SARS-CoV-2 had been probably circulating unnoticed in bats for decades9,10. 284 

Genomics-based methods shaped the effective COVID-19 response 285 

Once the SARS-CoV-2 genome was sequenced, the authors immediately publicly deposited the 286 
genome to GenBank7,11. Timely open access release of the virus genome sequence was a 287 
laudable decision that allowed informed scientific analyses and pandemic preparation to begin 288 
immediately. 289 

As the pandemic progressed, increased availability of modern sequencing technologies prompted 290 
the collection of SARS-CoV-2 viral genomic data at an unprecedented scale. Within a month, on 291 
average about 1,300 genomes were being submitted per day. Within six months of the pandemic 292 
(May 2020), GISAID had 110,000 SARS-CoV-2 full-length genome sequences. By December 293 
2021, two years into the pandemic, 67,000 genomes per day were being deposited into public 294 
viral genome data repositories like GISAID, COG-UK, and GenBank, which currently contain over 295 
6 million SARS-CoV-2 genomes12–14 (Figure 1a, Table S1). The unprecedented volume of data 296 
collection for SARS-CoV-2 is seen when contrasted with HIV genomic data collection. HIV that 297 
consistently captivated the attention of public health officials and the general public since 1980’s, 298 
has fewer than 16,000 full-length genome sequences collected by the biggest public HIV 299 
database at Los Alamos sequence National Laboratory over the past 40 years15 (Figure 1a).  300 

Sequencing data collected all over the world and rapidly shared on online databases ultimately 301 
aided public health officials and governments in making better-informed decisions16. However, to 302 
fully explore the potential of such databases, there are a few issues which need to be solved. 303 
Despite the unprecedented pace overall, inevitable delays caused by shortage of sequencing 304 
capacity and political interference in some regions led to problems in the logistical chain in these 305 
regions, including in sample collection, transporting, and shipping samples17. Depending on the 306 
country and the strength of their public health infrastructure, the median collection to submission 307 
time lag differs, ranging from one day to one year. Several factors impact the rate and scale of 308 
viral genomic sequencing across the globe. Countries with minimal sequencing are likely to 309 
encounter outbreaks of higher severity, leading to blind spots of genomic surveillance that can 310 
facilitate the spread of new variants to other countries17. On average high-income countries 311 
shared about 100 times more sequences per capita than low-income countries (Figures 1b and 312 
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S2). However, some African countries with a low GDP per capita were able to sequence a 313 
comparable number of viral genomes of middle- and high-income countries18. This preparedness 314 
can be attributed to previous global initiatives to support African countries in mitigating outbreaks 315 
of other viruses that has enhanced the sequencing capacity of the region. Africa provides a 316 
remarkable example of the necessity of international cooperation that could be implemented in 317 
other parts of the globe to improve pandemic response (Figure 1c). The number of shared 318 
coronavirus genomes per capita is correlated with the country's GDP per capita (Figure 1d).  319 

Moving forward, several important data sharing issues need to be addressed to facilitate open 320 
and rapid viral genome data sharing. Scientists depositing sequencing data should trust that their 321 
rights will be respected by data users and that their authorship rights will not be violated19. For 322 
instance, GISAID data access mechanism proved its ability to overcome these obstacles to the 323 
international sharing of virus data, making GISAID the largest repository of influenza and SARS-324 
CoV-2 genomic data16,20.  325 

Bioinformatics methods are capable of accurately tracking SARS-CoV-2 genomic 326 
evolution 327 

As SARS-CoV-2 has spread through the world population over the first year of the pandemic, it 328 
gradually evolved into several viral lineages21–24. Based on statistical analysis of collected SARS-329 
CoV-2 genomes, it was shown that SARS-CoV-2 has a mutation rate of at least 10-fold lower than 330 
seasonal influenza25. The lower mutation rate initially gave hope for efficient control of the 331 
pandemic through vaccination because the slower the virus mutates, the less chances it has to 332 
adapt to vaccines. However, given the large number of COVID-19 cases (>277 million and 333 
climbing, according to WHO) and possibly because of SARS-CoV-2 recombination events, new 334 
variants continue to evolve, which are being classified as variant under investigation (VUI), of 335 
interest (VOI), and of concern (VOC) according to their epidemiological, biological and/or 336 
immunological properties. Indeed, some variants acquired numerous mutations in a rapid fashion 337 
(variants Alpha and Omicron) and showed evidence of immune escape (Omicron). Notably, it was 338 
observed that immunodeficient individuals with unusually long periods of SARS-CoV-2 infection 339 
can create a plausible environment for faster SARS-CoV-2 evolution because their immune 340 
system allows for viral immune escape26. 341 

Prior to the COVID-19 pandemic, the public health community has had experience with tracking 342 
and responding to genome evolution for viruses such as the seasonal flu causing influenza 343 
viruses. The Global Influenza Surveillance and Response System (GISRS) was established by 344 
WHO for timely collection, genetic and antigenic characterization of these viruses27. Sharing of 345 
virus sequence data in the GISAID database along with Nextstrain28 online phylogenetic tool was 346 
utilized for biannual influenza A and B vaccine seed strain selection and understanding viral 347 
genomic evolution and antigenic drift. GISAID and Nextstrain were both promptly adopted for 348 
collecting and analyzing SARS-CoV-2 genomic data, becoming the largest global system for 349 
tracking SARS-CoV-2 evolution and monitoring of the new variants.  350 

The widespread application of sequencing technologies became possible because of extensive 351 
efforts by the scientific community to benchmark and standardize sequencing protocols and open-352 
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source bioinformatics workflows for accurate consensus genome assembly29. However, the use 353 
of proprietary next-generation sequencing solutions and software has been more commonplace 354 
in well-resourced national and state/province level public health labs. The accessibility of tiled 355 
primer sequences (e.g., ARCTIC or midnight primer sets), lower costs of Illumina and Oxford 356 
Nanopore sequencing along with open access bioinformatics workflows supported sequencing in 357 
dozens of regional public health labs and academic institutions across the world. By December 358 
24th, 2021, 80.49% of available SARS-CoV-2 genomic data at GISAID was generated by Illumina 359 
sequencers, 12.46% by Oxford Nanopore, and 3.85% by Pacbio, 1.59% by IonTorrent, 1.29% by 360 
BGI, 0.31% by Sanger and 0.02% by QIAGEN (Figure S1a). NCBI GenBank has 91.04% genomic 361 
data sequenced by Illumina, 8.1% by Oxford Nanopore, 0.47% by IonTorrent, < 0.01% by PacBio, 362 
and 0.38% unspecified (Figure S1b). 363 

This democratization of viral sequencing methods has helped build pathogen sequencing capacity 364 
in low- to middle-income countries and has fostered insights into the genomic epidemiology of 365 
SARS-CoV-2, including emergence and spread of variants, for example in Colombia (VOI Mu), 366 
Ukraine (VOC Delta), the Philippines (VOC Alpha), in the U.K. (VOC Alpha) as it moved to the 367 
U.S., and in South Africa, where immune evasive VOC Omicron was identified by genome 368 
sequencing30–33. 369 

Bioinformatics methods enable tracking COVID-19 geographical spread in real time 370 

As viruses evolve, tracking the appearance of new mutations and the locations where they were 371 
introduced can reveal geographical transmission routes. These routes help distinguish imported 372 
cases from community transmission, aiding the identification of high-risk transmission routes that 373 
can be subject to enhanced public health control34. Comparative genomic analyses for studying 374 
COVID-19 outbreak transmission dynamics have been mostly conducted using classic maximum 375 
likelihood (ML) phylogenetic methods35. Unfortunately, ML methods are not scalable enough to 376 
handle large volumes of SARS-CoV-2 genomic data available. It is often a requirement, therefore, 377 
for ML to reduce sample size and to consider only a fraction of the data in order to conduct the 378 
analysis, which can potentially compromise the accuracy of the results. Alternatively, more 379 
scalable approximate maximum parsimony methods (MP) can be used for phylogeny 380 
reconstruction for SARS-CoV-2 dense data36. Indeed, it was shown theoretically that with dense 381 
enough sampling, MP produces an ML tree under certain maximum likelihood models37–39. 382 
Another approach has been to use network-based methods, which are significantly faster but 383 
theoretically less accurate than phylogeny-based methods40–42. 384 

Diverse publicly available SARS-CoV-2 genome sequences from around the world have aided 385 
efficient and accurate tracking of local and global SARS-CoV-2 transmission routes43–45 (Figure 386 
S3). Phylogenetics methods (listed in Table S2) revealed that SARS-CoV-2 was introduced into 387 
Europe from China and into the US from China and Europe34,46–48 and have also been used to 388 
track domestic transmission chains and differentiate them from international ones. For example, 389 
studies showed that SARS-CoV-2 was likely introduced in Connecticut via a domestic 390 
transmission route while the most successful viral introductions in Arizona were likely via domestic 391 
travel34,49. New York City area experienced multiple introductions of SARS-CoV-2, primarily from 392 
Europe50. Similarly, phylogenetic analysis suggested that SARS-CoV-2 was likely introduced into 393 
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France from several countries, including China, Italy, the United Arab Emirates, Egypt, and 394 
Madagascar51 (Figure 1e, Tables S2).  395 

Differences in sampling across geographical locations and over time represent a considerable 396 
challenge to accurately reconstruct spatial transmission patterns. However, additional data such 397 
as travel information and epidemiological estimates may help mitigate non-uniform sampling 398 
across geographical locations and time and contribute to a more complete picture of viral spread. 399 
This has been illustrated by a study of SARS-CoV-2 importation and establishment in the UK52. 400 
Large-scale genomic data resulted in estimates of the number and timing of introductions events, 401 
but its combination with epidemiological and travel data allowed identification of the 402 
spatiotemporal origins of these introductions. Such additional data sources are also being 403 
increasingly integrated in phylodynamic inferences. For example, a study of the contribution of 404 
persistence versus new introductions to the second COVID-19 wave in Europe made use of 405 
Google mobility data to inform the phylogeographic component of the genomic reconstruction53. 406 
Furthermore, the individual travel history of sampled individuals can be formally incorporated in 407 
such analyses54. 408 

Additionally, phylogenetics can be used to monitor the effectiveness of global travel restrictions 409 
and lockdowns. For example, it was shown that the risk of domestic transmission of SARS-CoV-410 
2 in Connecticut already exceeded that of international introduction at the time federal travel 411 
restrictions were imposed, highlighting the critical need for local surveillance34. Similarly in Brazil, 412 
three clades of European origin were established prior to the initiation of travel bans and 413 
lockdowns55. In the UK, lineages introduced prior to national lockdown were shown to be larger 414 
and more dispersed and lineage importation and regional lineage diversity declined after 415 
lockdown52. Phylogenetics showed that, due to violations of imposed lockdowns with sea trade, 416 
several SARS-CoV-2 international introductions likely occurred in Morocco56. In Australia, 417 
lockdown effectiveness was validated using SARS-CoV-2 genomic data coupled with agent-418 
based modeling, a computation tool to simulate the interactions of autonomous agents such as 419 
individuals57. Phylogenetic modeling of over 11,000 SARS-CoV-2 genomes collected in 420 
Switzerland throughout 2020 enabled estimating the effect of different public health measures, 421 
including lockdown, border closure, and test-trace-isolate efforts58. Similarly, comparative 422 
phylodynamics analysis of SARS-CoV-2 transmission dynamics in neighboring Eastern European 423 
countries of Belarus and Ukraine, that followed highly different COVID-19 containment policies, 424 
allowed to assess the effectiveness of public health intervention measures in this region, and 425 
highlight the role of regional political and social factors in the virus spread59. 426 

Genomics methods enable wastewater-based monitoring of SARS-CoV-2 epidemiology  427 

The presence of trace viral genomic material in wastewater has been successfully employed to 428 
track antibiotic use60, tobacco consumption61 and the monitoring of several respiratory and enteric 429 
viruses including poliovirus62. Although COVID-19 is primarily associated with respiratory 430 
symptoms, SARS-CoV-2 is regularly shed in feces of infected individuals63. As of December 2021, 431 
wastewater-based surveillance for tracking SARS-CoV-2 viral infection dynamics64 has been 432 
implemented in many countries around the world (Figure 1e).  433 
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Wastewater-based epidemiology has been shown to provide more balanced estimates of viral 434 
prevalence rates in a population than clinical testing alone due to inherent limitations in testing 435 
resources and/or testing uptake rates especially in underserved communities. Combining clinical 436 
diagnostics with wastewater-based surveillance can provide a more comprehensive community-437 
level profile of both symptomatic and asymptomatic cases, enabling identification of hospital 438 
capacity needs65–72. Additionally, an important advantage of wastewater monitoring is the ability 439 
to detect early-stage outbreaks before they become widespread62,73–76. Although tracking of 440 
SARS-CoV-2 viral RNA via qPCR-based methods can reveal temporal changes of virus 441 
prevalence in a given population, it cannot provide underlying epidemiological information for 442 
identifying transmission or genomic details on emerging variants. Tracking viral genomic 443 
sequences from wastewater significantly ameliorates community prevalence estimates and also 444 
detects emerging variants. Tracking SARS-CoV-2 viral genomic sequences from wastewater 445 
using a targeted tiled amplicon-based sequencing approach would significantly ameliorate 446 
community prevalence estimates and also detect emerging variants77. 447 

Wastewater genomic epidemiology can also act as a surrogate to elucidate strain geospatial 448 
distributions, helping identify outbreak clusters and track prevailing and newly emerging variants, 449 
covering even areas with insufficient clinical testing rates. However, the highly variable nature of 450 
wastewater, low viral loads, fragmented RNA and the presence of multiple genotypes in a single 451 
sample makes it challenging to obtain good quality genome sequences and discern lineages with 452 
a high degree of accuracy78.  453 

The commonly used tools used for discerning viral lineages in clinical samples such as pangolin3 454 
and UShER79 cannot deconvolute the multiple lineages that are commonly observed in a single 455 
wastewater sample and at best detect the most dominant one. As existing lineage calling methods 456 
require a single consensus sequence to perform assignment, they are ill-equipped to capture the 457 
diversity present in mixed viral samples. Hence, tools to robustly identify the multiple lineages and 458 
their relative proportions present in wastewater are critical in understanding and interpreting the 459 
underlying sequence data obtained from these samples. For example, a depth-weighted demixing 460 
algorithm Freyja80, uses a “barcode” library of lineage defining mutations to represent each viral 461 
variant and can be used to recover relative abundance in the sample. This approach enabled the 462 
early detection of emerging VOCs in wastewater up to 14 days in advance of first clinical detection 463 
and also identified multiple instances of cryptic transmission not observed via clinical genomic 464 
surveillance81.  Similar algorithms for mutation calling, haplotype reconstruction, and population 465 
characterization in viral specimens, can also be used to deconvolute the mixture of variants 466 
present in a wastewater sample82,83. By searching for signature mutations co-occurring on the 467 
same amplicon, variant B.1.1.7 in wastewater was detected eight days before the first patient 468 
sample was tested positive for the variant84. Similarly, RNA transcript quantification methods, 469 
such as Kallisto, can be used to estimate the relative abundance of SARS-CoV-2 variants in 470 
wastewater85. Both digital PCR-based and sequencing-based estimates of variant abundance in 471 
wastewater have been used to derive the fitness advantage of a recently introduced variant, an 472 
important epidemiological parameter to assess the expected transmissibility and spread of the 473 
variant86,87. 474 
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Alternatively, viral genomes in wastewater can be sequenced via next generation sequencing 475 
approaches after enriching for a wider array of RNA viruses present in a sample through a hybrid 476 
probe-capture approach. This approach allows characterization of the prevalent SARS-CoV-2 477 
genomic variants in a defined local region and dynamics of other pathogenic viruses present in 478 
the sample88–90. Shotgun metagenomic and metatranscriptomic sequencing (i.e. community-479 
based sequencing approaches) can provide a comprehensive snapshot of the viral community 480 
ecology and thereby aid in tracking of viruses of clinical significance in a community. 481 

 As SARS-CoV-2 transitions to become an endemic pathogen, wastewater genomic sequencing 482 
offers a scalable, less expensive, long-term passive surveillance tool for tracking emerging 483 
variants in the population. A global metagenomics approach has been suggested to detect, 484 
collect, and store samples in preparation for future pandemics91,92. Resources such as GISAID, 485 
GenomeTrakr93,94 and CDC-NWSS95 (National Wastewater Surveillance System)95 could facilitate 486 
the above efforts. 487 

Outlook 488 

The unprecedented volume of available SARS-CoV-2 genomic data coupled with available 489 
bioinformatics tools accelerated the prompt and effective characterization of SARS-CoV-2 490 
genomes and provided tools to epidemiologists and public health officials to more effectively 491 
respond to the COVID-19 pandemic. Numerous independent efforts across the globe utilized 492 
bioinformatics methods that demonstrated the utility of genomics-based approaches and created 493 
a solid foundation for the response to COVID-19 and future pandemics. This was achieved by the 494 
standardization of methodology, protocol and data sharing, and applications of using SARS-CoV-495 
2 genomic data in epidemiological investigations.  496 

Genome-based surveillance has been shown to be beneficial in addressing COVID-19. However, 497 
the unprecedented volume of sequencing data, currently six million complete SARS-CoV-2 498 
genome sequences in databases, challenged the current systems of data storage, processing, 499 
and bioinformatics analysis16,19,96. Due to various technological burdens, such systems were still 500 
in the early stages of development in December of 2019. COVID-19 has led to the mobilization of 501 
financial, scientific, and developmental resources in record time, with numerous global 502 
surveillance systems that provided resources for outbreak response using SARS-CoV-2 genome 503 
analysis (Table 1). A notable example is the timely deployment of GISAID and Nextstrain for 504 
addressing the COVID-19 response. This technology has taken a lead in centralizing efforts to 505 
collect and analyse SARS-CoV-2 genomic data. 506 

Emerging VOCs, VOIs, and VUIs are likely to continue shaping the course of the COVID-19 507 
pandemic. Global genomics-based surveillance for new variants, in our view, will continue to play 508 
a leading role, with information on all SARS-CoV-2 lineages being collected and made available 509 
online for the rapid evaluation of their impact on transmission, virulence, and vaccine escape97,98. 510 
Targeted genomic surveillance of SARS-CoV-2 in immunocompromised patients, in our view, can 511 
provide useful insights into the mechanisms of appearance of newly emerging VOCs. This can 512 
be done by applying bioinformatics tools for intra-host population analysis similar to those that are 513 
already available for other RNA viruses such as HCV and HIV82,99–102. 514 
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Efficient early detection and tracking of potentially dangerous variants requires real-time data from 515 
all countries103. The European Commission, for example, recommended gaining a capacity of 516 
sequencing of at least 5% of positive test results, which can be a good global standard. Yet, many 517 
underdeveloped countries in the world face insurmountable logistic, technological, and financial 518 
barriers to operating sequencing centers to accommodate this scale, suggesting that developed 519 
countries share responsibility for global surveilance104.  Following the example of many African 520 
countries, additional sequencing centers in countries without viral genomic sequencing could be 521 
established. In regions where that is not practical, a logistically efficient system of obtaining and 522 
delivering samples to sequencing centers in other countries might be an appealing alternative.  523 

In our view, there are three potential benefits of a standard genome epidemiological sequencing 524 
system. The immediate benefit will allow improved timeliness and accuracy of tracking emerging 525 
VOI and VOC. A longer-term goal is an improved ability to learn about evolutionary pressures 526 
driving the emergence of novel, potentially dangerous variants. Presently, VOC are declared 527 
based on their increased transmissibility or virulence, or decreased effectiveness of public health 528 
and social measures, available diagnostics, vaccines and therapeutics. Learning more about 529 
evolutionary dynamics of emergent strains may lead to predictions of VOI based on genomic 530 
sequence alone, further improving response times. Finally, a truly global system of pathogen 531 
genome sequencing and analysis is likely to improve our ability to combat future pandemics.  532 

Global coordination of genomic data surveys will also allow for wider application of wastewater-533 
based or environmental-based virus surveillance105. Currently, wastewater-based monitoring 534 
lacks the granularity of clinical diagnostic testing and cannot discern a particular area of an 535 
outbreak when the wastewater treatment plant serves a large population. Sampling at a higher 536 
spatial resolution within the sewer system or even at a building-level scale could potentially 537 
provide early indications of viral outbreaks and help monitor their progression106.  538 
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Figure Legend 595 

Figure 1. Available SARS-CoV-2 genomic sequencing data and its usage for outbreak 596 
investigation (a) The number of SARS-CoV-2 genomes sequenced according to Global Initiative 597 
On Sharing All Influenza Data (GISAID) between January 2020 and December 2021. (b) The 598 
number of available SARS-CoV-2 sequences in GISAID per 1 million (1M) individuals for each 599 
country or region vs. the number of cases per capita up to March 2021. (c) The number of 600 
available SARS-CoV-2 sequences in GISAID per 1 million (1M) individuals for each country in 601 
Africa vs. the number of sequencers per capita up to March 2021. Blue line is the correlation of 602 
all data points on the plot. (d) The number of available SARS-CoV-2 sequences in GISAID per 603 
number of reported COVID-19 cases for each country or region vs. the number of reported 604 
COVID-19 cases per capita from December 2019 up to December 2021. (e) Global outbreak 605 
investigations by phylogenetic analysis (red) and wastewater studies (yellow), dots were placed 606 
in the geographical centers of each country or region. 607 

 608 

Table 1: Online services with SARS-CoV-2 genome resources and analytics 609 

Resource Description Link 

GISAID Platform for assembled 

genome sharing and 

analysis 

https://www.gisaid.org/ 

NCBI GenBank Sequence read archive 

(SRA) 

https://www.ncbi.nlm.nih.go

v/sars-cov-2/ 

COG-UK United Kingdom sequences 

database 

https://www.cogconsortium

.uk/ 

PANGO Lineage analytics https://cov-lineages.org/ 

Nextstrain Phylogenetic analysis https://nextstrain.org/ 

WBEC Wastewater analytics https://www.covid19wbec.o

rg/ 

COVID-3D Structural changes of 

lineages 

http://biosig.unimelb.edu.a

u/covid3d/  

Outbreak.info Variants reports https://outbreak.info/  

CoVizu Global and local variant 

distribution analytical tool 

https://filogeneti.ca/covizu/  

CoVsurver GISAID quality check and https://corona.bii.a-

http://biosig.unimelb.edu.au/covid3d/
http://biosig.unimelb.edu.au/covid3d/
https://outbreak.info/
https://filogeneti.ca/covizu/
https://corona.bii.a-star.edu.sg/


 

annotation tool identifying 

phenotypically or 

epidemiologically 

interesting candidate amino 

acid (aa) changes for 

further research 

star.edu.sg/ 

https://www.gisaid.org/epifl

u-applications/covsurver-

mutations-app/ 

 

KSA-KAUST  COVID-19 virus mutation 

tracker  

https://www.cbrc.kaust.edu

.sa/covmt/ 

COVID Genes Shotgun RNA-seq viral 

data and host responses 

https://covidgenes.weill.cor

nell.edu/ 
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