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Computational UV spectra for amorphous solids
of small molecules

Austin M. Wallace and Ryan C. Fortenberry *

Ices in the interstellar medium largely exist as amorphous solids composed of small molecules including

ammonia, water, and carbon dioxide. Describing gas-phase molecules can be readily accomplished with

current high-level quantum chemical calculations with the description of crystalline solids becoming

more readily accomplished. Differently, amorphous solids require more novel approaches. The present

work describes a method for generating amorphous structures and constructing electronic spectra

through a combination of quantum chemical calculations and statistical mechanics. The structures are

generated through a random positioning program and DFT methods, such as oB97-XD and CAM-B3LYP.

A Boltzmann distribution weights the excitations to compile a final spectrum from a sampling of

molecular clusters. Three ice analogs are presented herein consisting of ammonia, carbon dioxide, and

water. Ammonia and carbon dioxide provide semi-quantitative agreement with experiment for CAM-

B3LYP/6-311++G(2d,2p) from 30 clusters of 8 molecules. Meanwhile, the amorphous water description

improves when the sample size is increased in cluster size and count to as many as 105 clusters of

32 water molecules. The described methodology can produce highly comparative descriptions of

electronic spectra for ice analogs and can be used to predict electronic spectra for other ice analogs.

Introduction

In cold interstellar regions and protoplanetary disks, amor-
phous solids exist due to the lack of energy required to produce
crystalline solids. While specific molecular concentrations vary
depending on the astrophysical environment, H2O, H2CO, N2,
CO, O2, CO2, H2O2, CH4, and NH3 are the primary constituents
of grain mantles1–5 that exist as amorphous solids in low
temperatures. These amorphous solids can act as a surface
upon which molecules accumulate and reaction pathways are
accelerated. At temperatures around 10 K, most molecules—
except H2 and He—that collide with these ice analogs will stick
to the surface.6 More specifically, the surface of amorphous
water has nanopores that have strong binding sites which allow
adsorption of molecules, such as CO, permitting additional
surface chemistry.7,8 Due to increased flexibility, amorphous
solids can behave as superior catalysts compared to their
corresponding crystalline solid form.7 Consequently, interstel-
lar amorphous solids provide an environment for bringing
molecules together and, subsequently, increasing their
reactivity.

Additionally, amorphous solids can exist as ices and provide
the material for forming larger molecules independently. Ultra-
violet photolysis of ice analogs consisting of H2O, CH3, NH3 and

CO ultimately produces H2CO3, CO2, CH4, HCO and more complex
molecules in simulated interstellar environments.9–12 These pro-
ducts and other similar small molecules containing carbon atoms
are likely precursors for forming larger organic and biologically
relevant molecules in the interstellar medium (ISM).6,9,13–19 Some of
these compounds include glycine, alanine, and serine20 with reac-
tion pathways explored computationally.21 Furthermore, previous
theoretical and laboratory work shows that methane, ethylene, and
acetylene ices can undergo radical reactions to produce larger
alkanes.22 Therefore, better ice analog characterization can lead to
increased understanding of extraterrestrial environments in which
organic residues form.

While many computational approaches exist for describing
amorphous solids with molecular dynamics and machine
learning,23–26 few approaches attempt to use higher-levels of
theory, such as density functional theory (DFT), to describe
amorphous solids due to the high computational costs.
Attempts at combining DFT and machine learning have pro-
duced favorable results for describing ta-C surfaces;27 however,
a gap exists in the literature regarding the description of
electronic spectra of small molecule amorphous solids poten-
tially present in the ISM. Other computational descriptions of
ices have utilized B3LYP/6-31+G** with up to 12 water mole-
cules and implicit solvent effects to describe water as an ice
environment for simulating interactions between ammonia
and formaldehyde.28 Chen and Woon conclude that increasing
the number of water molecules in the clusters seems to produce
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infrared modes that start converging in value with
observations.28 Other approaches with DFT investigate interac-
tions with water ices with good agreement to experimental
results.29,30 Thus, DFT appears predictive for interstellar-like
clusters in the infrared region.

Previous research on ices in interstellar regions primarily
focuses on vibrational spectroscopy in the infrared region31–34

with less investigation into electronic spectroscopy within the
ultraviolet light region.35,36 Infrared spectroscopy of amor-
phous CO2 ices has shown that IR can detect mixtures of CO2

with other small molecules and discern between ice and gas
phase through attention to minor details.37,38 While water in
the gas phase has its first vertical excitation at about 7.5 eV, the
amorphous solid is significantly higher in energy due to less
favorable interactions with adjacent water molecules from the
excited state’s smaller dipole moment.36 Due to ionization
limits, each ice has a specific upper-bound energy for the
observable electronically excited states before the energy
changes the ice itself. As such, electronic excited states con-
fined to a region below the ionization limit provides a region
for comparing computation and experiment. In order to pro-
vide a computational description of the amorphous solids of
ammonia, carbon dioxide, and water, the present work
describes a method for generating these solids computationally
and comparing the computed electronic spectroscopic data
with experiment in the literature.35 The generation of molecu-
lar structures uses randomization, and the optimizations and
electronically excited states are calculated using DFT. After
generating clusters of each of these molecules, the use of DFT
for molecular optimizations and electronic spectroscopy in the
current work aims to provide electronic spectral characteriza-
tion for small molecule amorphous solids with application to
elucidating the behavior of interstellar ices both in the labora-
tory and potentially even in astrophysical environments.

Computational methods and approach

Amorphous solids are computationally generated through a
randomization program written in Python3. The program relies
on two main parameters: number of clusters and number of
molecules per cluster. After building the clusters and running
optimization and electronic excitation calculations, spectro-
scopic data is extracted and weighted according to a Boltzmann
distribution of the clusters’ energies. The final output is a
normalized spectrum based on combining all the clusters’ data.

Prior to using the program, the desired molecule is opti-
mized as a monomer. In the present work, ammonia, water,
and carbon dioxide monomers are optimized with oB97-XD/
6-31G(d) through Gaussian16.39–41 The optimized molecular
geometry and cluster parameters, such as number of molecules
in the system, number of clusters, and size of the box, are then
input into the program. Additionally, differing geometries can
be used with specific ratios to construct mixtures. Regardless of
the parameters, each molecule in the cluster starts at the origin
and undergoes randomized rotations and displacements

according to values generated by the Mersenne Twister series,42

which acts as a pseudorandom number generator. The random
rotations occur in three planes. Then, the molecules are displaced
by a randomly generated three-dimensional vector. In order to
ensure that the molecular geometries do not overlap in the clus-
ter—causing errors in the optimization calculations—the program
checks the distance between each of the monomers in the system
and the newly added monomer. If the distance is too small, the
molecule undergoes the randomization process again. This cycle
continues until the system contains the specified number of
molecules. Upon completion, the program constructs Gaussian16
geometry optimization input files with Cartesian coordinates and
frozen internal coordinates of bond length and bond angles within
the individual molecules themselves.

The process described above is conducted for as many
clusters as the user specifies. Next, each optimization calcula-
tion runs with oB97-XD/6-31G(d) until the constrained mole-
cular internal coordinates cause the calculation to fail to
converge; however, this optimizes the distance between the
molecules providing a better guess as to the preferred arrange-
ment of the molecules. The last molecular geometry is extracted
and placed into another Gaussian16 input file without freezing
internal molecular coordinates in order to calculate the opti-
mized geometry and harmonic frequency zero-point energy for
the cluster. This two step process accelerates the optimization
process and avoids nearly all imaginary frequencies. Then, the
optimized geometries undergo time-dependent density func-
tional theory (TD-DFT) electronic excitation calculations. Nota-
bly, the current work uses the optimized structures as a
reference geometry for the exploration of different functionals
and basis sets. The methods include B3LYP,43 PBE0,44 oB97-
XD,41 CAM-B3LYP,45 and B97D3.46 The basis sets include
6-311G(d,p) and 6-311++G(2d,2p).47,48

After the optimizations finish, the program uses a Boltz-
mann distribution from the relative energies to acquire a
scaling factor. The scaling factor is used to weight the con-
tributions of each cluster’s excitations oscillator strengths,
which approximates Beer’s Law. Additionally, the temperature
parameter is set by the user to match the energy levels of the
environment. For ammonia, water, and carbon dioxide, the
temperature is calculated through converting the binding ener-
gies of the dimers into units of temperature. These binding
energies come from optimizing the dimers with oB97-XD/
6-31G(d) and subtracting the energy from twice the monomer
energy. From the Boltzmann distribution, the more stable
clusters will contribute more to the overall spectrum than the
less stable structures. The program then compiles the excita-
tions into one file for a sub-processed artificial spectrum
broadening program that uses the Gaussian line shape proce-
dure with a full width at half maximum height (FWHM)
variable of 2 nm to produce a continuous function from the
discretely calculated spectra. To ensure that the broadness is
consistent across all spectra produced by the program, the
FWHM is set to 2 nm arbitrarily. Finally, a normalized spec-
trum (compared to the highest peak) of the oscillator strength
is plotted as a function of energy.
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In order to explore the capabilities of generating amorphous
solid electronic spectra, four datasets are generated comprising
of pure water, ammonia, or carbon dioxide. Since water has the
fewest electrons of the listed molecules, two datasets of water
are analyzed. One dataset comprises of 105 randomized clus-
ters of 32 water molecules, while the other is 30 randomized
clusters of 8 water molecules. The datasets for ammonia and
carbon dioxide agree in size with the smaller water dataset of
30 randomized clusters of 8 molecules.

Results and discussion
Ammonia

A total of 30 octamer clusters of ammonia are generated with
their spectra compared with experiment. The temperature for
the Boltzmann distribution with ammonia is 1348 K corres-
ponding to the binding energy of the dimerization which
implies that all of the binding energy will be thermally released
into the amorphous ice. This large assumption ultimately has
little effect on the observed results due to the similarities of the
excited state properties for the various molecular geometries.

Initially, a dataset for several functionals are computed with the
6-311G(d,p) basis set with 25 electronic states to extend over
10 eV as shown in Fig. 1(a). All of the peaks are normalized to
the oscillator strength of the maximum intensity peak from the
CAM-B3LYP/6-311++G(2d,2p) spectrum from Fig. 1(c) to pro-
vide a standard normalization factor for comparing relative
intensities of the functionals. The normalization emphasizes
that the number of states calculated does not affect the raw
intensities of an excited state calculation between CAM-B3LYP/
6-311++G(2d,2p) displayed in Fig. 1(b and c).

The relative intensities are reported in Table 1. B3LYP
appears to perform quite well with this basis set at describing
the first peak shown from work by Mason et al.35 while CAM-
B3LYP, oB97-XD, and PBE0 report higher in energy.

However, in order to better describe the hydrogen bonding
interactions in the amorphous ammonia, diffuse orbitals and a
larger basis set are computed. Fig. 1(b) utilizes the
6-311++G(2d,2p) basis set with the same functionals showing
that all the hybrid functionals are lower in energy. Now, it
appears as though CAM-B3LYP and oB97-XD are matching the
first peak the best. To extend the spectrum to 10 eV, a spectrum
is built with CAM-B3LYP/6-311++G(2d,2p) and oB97-XD/

Fig. 1 VUV spectra for 30 clusters of 8 ammonia molecules normalized to the maximum oscillator strength in (c) for consistency, and the experimental
plot35 normalized to itself: (a) basis set: 6-311G(d,p) and states: 25; (b) basis set: 6-311++G(2d,2p) and states: 25; and, (c) basis set: 6-311++G(2d,2p) and
states: 125.
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6-311++G(2d,2p) with 125 electronic states producing Fig. 1(c).
The artificial spectrum matches with the experimental spec-
trum very well qualitatively and even semi-quantitatively. Both
peaks of the CAM-B3LYP artificial spectrum match nicely with
regards to relative oscillator strengths to the experimental
solid; while oB97-XD approximates the relative intensities with
less accuracy. Therefore, 30 randomized clusters of 8 ammonia
molecules with CAM-B3LYP/6-311++G(2d,2p) with 125 electro-
nic excited states appears to effectively describe amorphous
ammonia’s UV spectrum.

Finally, the timings for the electronic excited states depend
heavily on the number of states and the basis set size. The best
results from the CAM-B3LYP and oB97-XD with
6-311++G(2d,2p) and 125 states take an average of 13.20 and
13.56 hours, respectively, on the local high-performance

computing cluster. With the 6-311++G(2d,2p) basis set and
25 states, these functionals run for an average of 4.67 and
5.17 hours, a reduction in time cost of roughly one-third. Lastly,
the quickest option for these two functionals with 6-311G(d,p)
and 25 states required 1.02 and 1.16 hours, which is relatively
fast but produces the worst results. Thus, CAM-B3LYP finishes
slightly faster than oB97-XD and provides closer energies and
relative intensities when utilizing larger basis sets and number
of states.

Carbon dioxide

Amorphous carbon dioxide is simulated through the creation of
30 randomized clusters of eight carbon dioxide molecules.
Since carbon dioxide interacts with itself much less than
ammonia due to the lack of hydrogen bonding, the binding
energy from the dimerization yields a lower temperature of
457 K for the Boltzmann distribution. Spectra from several
functionals with 6-311G(d,p) are displayed in Fig. 2(a). Once
again, the two functionals that match experiment the best are
CAM-B3LYP and oB97-XD; both predict a smaller peak at
around 9 eV and a larger peak just over 10 eV. However, the
relative oscillator strengths do not match well. B3LYP and
B97D3 both have a major peak lower in energy than experiment
and do not display two peaks with this basis set. Finally, PBE0
has two peaks that are of nearly equal strength. Therefore, only
CAM-B3LYP and oB97-XD appear to perform decently with this
basis set.

In order to improve the possible physical representation, the
basis set is increased to 6-311++G(2d,2p). While no hydrogen
bonding exists in the carbon dioxide clusters, the oxygen and
carbon atoms do benefit from extra d and p orbitals. The effects
of the basis set are apparent as shown in Fig. 2(b). In order to
cover the energy range of the experiment, 50 electronic states
for each functional are calculated. While PBE0 aligns closer in
energy to the experiment with this basis set, the qualitative
description has a large shoulder. This shoulder is merged into
the major peak due to the artificial spectrum broadener;
however, the height for the peak is still too large. For both of

Table 1 Tabulated format of the ammonia spectra displayed in Fig. 1.
Experimental data comes from work produced by Mason et al.35 All
computational spectra are normalized to the maximum peak from CAM-
B3LYP/6-311++G(2d,2p)

Method Basis set
Excitation
(eV)

Oscillator strength
(normalized)

B3LYP 6-311G(d,p) 6.79 0.68
PBE0 6-311G(d,p) 7.13 0.88
wB97XD 6-311G(d,p) 7.56 1.37
wB97XD 6-311G(d,p) 9.18 0.28
CAM-B3LYP 6-311G(d,p) 7.32 1.16
CAM-B3LYP 6-311G(d,p) 8.80 0.24
B97D3 6-311G(d,p) 4.79 0.00
B97D3 6-311G(d,p) 6.30 0.31
B97D3 6-311G(d,p) 6.79 0.34
B3LYP 6-311++G(2d,2p) 6.02 0.43
PBE0 6-311++G(2d,2p) 6.23 0.52
wB97XD 6-311++G(2d,2p) 6.59 0.80
wB97XD 6-311++G(2d,2p) 7.66 0.18
wB97XD 6-311++G(2d,2p) 9.39 1.27
CAM-B3LYP 6-311++G(2d,2p) 6.44 0.72
CAM-B3LYP 6-311++G(2d,2p) 7.36 0.14
CAM-B3LYP 6-311++G(2d,2p) 9.32 1.00
B97D3 6-311++G(2d,2p) 5.70 0.25
Exp. solid 7.00 0.79
Exp. solid 8.33 0.48
Exp. solid 9.61 1.00

Fig. 2 VUV spectra for 30 clusters of 8 carbon dioxide molecules normalized to the maximum oscillator strength of each functional, and the
experimental solid carbon dioxide plot35 normalized to itself: (a) basis set: 6-311G(d,p) and states: 25; and (b) basis set: 6-311++G(2d,2p) and states: 50.
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the predictive peaks in CAM-B3LYP and oB97-XD, the excita-
tion energies are higher than experiment. However, the curves
for CAM-B3LYP and oB97-XD match qualitatively well with
experiment through a small peak separated by a much larger
peak over 1 eV away. Thus, the CAM-B3LYP and oB97-XD
functionals describe amorphous carbon dioxide the effectively
but not quite as well as they did with ammonia (Table 2).

Water

Two datasets of water are generated at varying cluster sizes to
compare the results with each other. The larger dataset, 105
randomized clusters of 32 water molecules, should better
approximate the reality of amorphous water; however, the
objective is to determine if a smaller dataset, such as 30
randomized clusters of 8 water molecules, can make an equally
valid approximation.

First, a dataset of 30 clusters with eight water molecules is
generated to investigate with the same functionals listed above.
Fig. 3(a) displays the 30 clusters of 8 water molecules for several
functionals with 6-311G(d,p). From this water dataset, B3LYP

Table 2 Tabulated format of the carbon dioxide spectra displayed in
Fig. 2. Experimental data comes from work produced by Mason et al.35

Method Basis set
Excitation
(eV)

Oscillator strength
(normalized)

B3LYP 6-311G(d,p) 9.16 1.00
PBE0 6-311G(d,p) 9.42 1.00
wB97XD 6-311G(d,p) 9.16 0.80
wB97XD 6-311G(d,p) 10.06 1.00
CAM-B3LYP 6-311G(d,p) 9.07 0.78
CAM-B3LYP 6-311G(d,p) 9.97 1.00
B97D3 6-311G(d,p) 8.39 1.00
B3LYP 6-311++G(2d,2p) 9.25 1.00
PBE0 6-311++G(2d,2p) 9.68 1.00
wB97XD 6-311++G(2d,2p) 9.33 0.02
wB97XD 6-311++G(2d,2p) 10.86 1.00
CAM-B3LYP 6-311++G(2d,2p) 9.14 0.04
CAM-B3LYP 6-311++G(2d,2p) 10.52 1.00
B97D3 6-311++G(2d,2p) 8.31 1.00
Exp. solid 8.83 0.12
Exp. solid 9.63 0.60
Exp. solid 9.70 0.79
Exp. solid 9.77 0.93
Exp. solid 9.85 1.00
Exp. solid 9.93 1.00
Exp. solid 10.00 0.91

Fig. 3 VUV spectra for 30 clusters of 8 waters (a and b) and 105 cluster of 32 waters (c and d) compared with experiment.35 All plots are normalized to
themselves: (a) basis set: 6-311G(d,p) and states: 25; (b) basis set: 6-311++G(2d,2p) and states: 25; (c) basis set: 6-311G(d,p) and states: 50; and, (d) basis
set: 6-311G(d,p) and states: 25.
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and PBE0 appear to perform the best qualitatively for water,
while CAM-B3LYP and oB97-XD predict a larger secondary peak
that appears to be beyond the energy range of the experiment.
With a larger basis set in Fig. 3(b), the functionals produce
peaks lower in energy than experiment. While all of functionals
report lower excitation energies than experiment, CAM-B3LYP
and oB97-XD (Table 3) report the closest values along with a
secondary small peak as they did with ammonia. While these
qualitative descriptions are in decent agreement with experi-
ment at the cluster size of 8 water molecules, the energy and
oscillator strength differences between the major peaks and
experiment could be improved. The inaccuracy could be due to
the small molecular weight of the water molecules and the
hydrogen bonding not being fully represented.

Upon increasing the number of molecules from 8 to 32 in a
cluster and the amount of clusters from 30 to 105, the spectrum
is slightly lower in energy than the experimental values
as in Fig. 3(c). CAM-B3LYP with 6-311G(d,p) and 50 states
matches the experimental spectrum. Alternatively, B3LYP with
6-311G(d,p) and 25 states as in Fig. 3(d) displays a lower energy
prediction as well, albeit not as strong. Regardless, both of
these spectra support the notion that a dataset with more
clusters and more molecules in each cluster better represents
reality even with a smaller basis set.

To compare timings of the two datasets, the clusters with
eight water molecules took an average of 0.51 hours for B3LYP/
6-311G(d,p), whereas the 32 water molecule clusters averaged
15.83 hours for the same method, basis set and number of
states. Additionally, the CAM-B3LYP/6-311G(d,p) with 25 states
for the smaller clusters takes an average of 2.45 hours, while the
much more accurate results with same method and basis set
with 50 states takes an average of 31.46 hours per TD-DFT
calculation. Clearly, the larger water cluster produces better
results with the CAM-B3LYP/6-311G(d,p) and 50 states than the
CAM-B3LYP/6-311++G(2d,2p) and 25 states; however, the cost is
much higher but nowhere near prohibitively so.

The datasets presented above indicate that CAM-B3LYP is
the best functional because it produces the best qualitative and
semi-quantitative agreement with experiment. Due to the usage
of DFT, no exact numerical predictions for the peak maximums
are expected; however, the water example of increasing the
cluster size from 8 to 32 molecules shows that larger clusters
can drastically improve the accuracy of the numerical predic-
tions. Furthermore, the number of states required to build a
spectrum over a desired region will grow with increasing cluster
sizes, atomic numbers of elements, and basis sets due to the
increased number of molecular orbitals contributing to
the electronic excited state calculations. As such and based
on the present results, applying this method to amorphous
solids without comparable experimental data should aim to
have n 4= 8 for the number of molecules in the clusters and
use a basis set size of at least 6-311G(d,p). Future work will
continue to refine this approach, but the present methodology
serves as an initial means of predicting such spectra. Ulti-
mately, the qualitative predictions for unknown molecular
spectra should be used to guide experiment.

Conclusions

Ultimately, the methodology implemented herein utilizing a
randomization program along with DFT calculations can pro-
duce predictive electronic spectrum descriptions for amor-
phous ices in the ISM or for laboratory analogues based on
the present benchmarks for H2, NH3, and CO2. The usage of a
randomization procedure for generating arbitrary input geo-
metries and a Boltzmann distribution to weight the excitations
yields high qualitative, and even semi-quantitative, agreement
with experiment for small molecule amorphous solid electronic
spectra. Overall, the best functionals for this application are
CAM-B3LYP and oB97-XD because both yield high qualitative
agreement with experimental values. While increasing the basis
set size on ammonia and carbon dioxide produces better
results, water requires additional water molecules and larger
number of clusters to resemble reality better, even with a
smaller basis set. Regardless, the solid correlation with experi-
ment in the UV region provides evidence for these clusters
mimicking amorphous solids as ice and that increasing cluster
size improves the description. Therefore, the method described
in this work effectively characterizes ice analogues through the
usage of DFT and should be able to do so for other ices.
Mixtures of molecules in the ices are, naturally, a next step
and will be explored in future work.
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Table 3 Tabulated format of the water spectra displayed in Fig. 3(a and b).
Experimental data comes from work produced by Mason et al.35

Method Basis set
Excitation
(eV)

Oscillator strength
(normalized)

B3LYP 6-311G(d,p) 7.98 1.00
B3LYP 6-311G(d,p) 8.76 0.56
PBE0 6-311G(d,p) 8.31 1.00
PBE0 6-311G(d,p) 9.42 0.51
wB97XD 6-311G(d,p) 8.79 0.86
wB97XD 6-311G(d,p) 10.61 1.00
CAM-B3LYP 6-311G(d,p) 8.48 0.96
CAM-B3LYP 6-311G(d,p) 10.19 1.00
B97D3 6-311G(d,p) 6.82 0.49
B97D3 6-311G(d,p) 7.81 1.00
B3LYP 6-311++G(2d,2p) 7.48 1.00
PBE0 6-311++G(2d,2p) 7.68 1.00
wB97XD 6-311++G(2d,2p) 8.05 1.00
wB97XD 6-311++G(2d,2p) 9.43 0.32
CAM-B3LYP 6-311++G(2d,2p) 7.86 1.00
CAM-B3LYP 6-311++G(2d,2p) 9.15 0.32
B97D3 6-311++G(2d,2p) 6.21 0.49
B97D3 6-311++G(2d,2p) 6.97 1.00
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