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INTRODUCTION

Phenotypic variation across environmental gradients 
can yield important insight into understanding current 
species distributions and predicting the capacity of spe-
cies to adapt to future environmental change (Gienapp 
et al., 2008). One source of trait variation is genotype-by-
environment interactions (GxE), where genetic and envi-
ronmental factors interact to affect phenotype (Hereford, 
2009; Josephs, 2018). However, GxE interactions do not 
fully capture genotypic and environmental effects on 
phenotypes. Covariance can evolve between phenotypic 
deviations due to genotype (genotypic effects) and those 
due to environment (environmental effects) across spa-
tial locations (CovGE). Stated differently, environmental 
and genotypic effects on the phenotype can covary posi-
tively or negatively across spatial locations (Berven et al., 
1979; Conover & Schultz, 1995; Falconer & Mackay, 1996; 
Levins, 1968; Trussell & Etter, 2001). CovGE indicates 

that phenotypic responses are contingent on the strength 
and direction of the association between genotypic and 
environmental effects. While the importance of GxE 
in agriculture, human health and adaptive evolution 
is recognised (Saltz et al., 2018), CovGE remains an un-
derstudied force driving the evolution of phenotypic 
change across environmental gradients. Nevertheless, 
research on CovGE has led to significant insights into 
our understanding of evolutionary processes across 
space (Conover et al., 2009; Conover & Schultz, 1995). 
For instance, Levins discovered CovGE in montane pop-
ulations of Drosophila, challenging the prevailing views 
that phenotypic variation always accompanies genetic 
variation (Levins, 1968). Spatial CovGE has also led to 
insights into how adaptation can evolve without pheno-
typic clines, the evolution of latitudinal compensation, 
Bergmann clines, and how evolution can affect ecologi-
cal patterns (summarised in Table 1).
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Spatial covariance between genotypic and environmental influences on phenotypes 

(CovGE) can result in the nonrandom distribution of genotypes across environmental 

gradients and is a potentially important factor driving local adaptation. However, a 

framework to quantify the magnitude and significance of CovGE has been lacking. We 

develop a novel quantitative/analytical approach to estimate and test the significance 

of CovGE from reciprocal transplant or common garden experiments, which we vali-

date using simulated data. We demonstrate how power to detect CovGE changes over 

a range of experimental designs. We confirm an inverse relationship between gene-

by-environment interactions (GxE) and CovGE, as predicted by first principles, but 

show how phenotypes can be influenced by both. The metric provides a way to meas-

ure how phenotypic plasticity covaries with genetic differentiation and highlights the 

importance of understanding the dual influences of CovGE and GxE on phenotypes 

in studies of local adaptation and species’ responses to environmental change.
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The classical model describing phenotypic variation 
(Vp) for quantitative traits shows that both GxE interac-
tions and CovGE contribute to trait variance:

In this equation, VG is the underlying genetic variance 
and VE is the environmental variance affecting VP. VGxE is 
the effect of GxE, CovGE captures the covariance between 
genotypic and environmental effects (Conover et al., 2009; 
Conover & Schultz, 1995; Falconer & Mackay, 1996), and 
Verror is residual variation. The biological interpretation 
of these variance components depends on the experimen-
tal design (reviewed in Tables S1 and S2), but we focus on 
designs in which multiple genotypes are raised in multi-
ple environments. Cogradient variation is positive CovGE 
(CoGV; CovGE > 0) and occurs when the effect of selection 
on genotype corresponds with the environmental influ-
ence on phenotype, maximising phenotypic differences 
across environments (Figure 1a). Conversely, counter-
gradient variation is negative CovGE (CnGV; CovGE < 0) 
and occurs when the genotypic effect on the phenotype 
opposes the environmental effect, minimising phenotypic 
differences across environments (Figure 1b).

GxE and CovGE can be inferred from reciprocal trans-
plant (i.e. raising individuals in their native and ‘new’ 
environments) or common garden experiments (i.e. 
raising individuals from different locations in shared 

environments) (Merilä & Hendry, 2014), but past synthe-
ses have focused solely on either GxE (Hereford, 2009) 
or CovGE (Conover et al., 2009; Conover & Schultz, 
1995). However, in the phenotypic realm, the magnitude 
of CovGE is inversely related to the magnitude of GxE: 
CovGE is maximised when reaction norms are parallel, 
and GxE is absent. Conversely, GxE is maximised when 
reaction norms cross in an ‘X’ pattern, and there is no 
CovGE. However, there are intermediate scenarios when 
phenotypes may be influenced by both CovGE and GxE. 
Despite the likelihood of this dual influence in nature, to 
our knowledge there have been no explorations of the as-
sociation between CovGE and GxE. Hence, we continue 
to have a poor understanding of the relative contributions 
of GxE and CovGE to phenotypic variation in nature.

The studies that have identified CoGV or CnGV have 
been limited to qualitative assessments of visual patterns 
because there has been no useful quantitative framework 
to evaluate the magnitude and significance of CovGE 
(Conover et al., 2009). Falconer (1989) suggested that 
CovGE could be measured indirectly using inbred lines 
and by controlling for non-random aspects of the envi-
ronment but did not describe how to estimate CovGE in 
the presence of GxE interactions or residual variation. 
Without a method to test whether observed patterns of 
CovGE are statistically different from zero, it is difficult 
to determine the true prevalence and strength of these 
patterns in driving evolution across environmental gra-
dients in nature.

(1)VP = VG +VE +V(GxE) + 2
(
CoVGE

)
+Verror

TA B L E  1   Major advancements in ecology and evolution from spatial CovGE

Study: Subject How did it or does it influence the field?

(Levins, 1968): countergradient 
variation in body size with 
altitude

Levins discovered that genetic variation for body size was partially counteracting the effect of 
temperature (which was negatively related to size), thereby moderating the change in body size with 
altitude that would have otherwise been expressed. He referred to this pattern as ‘contragradient 
variation,’ which challenged the then widely held assumption that genetic variation, if any, would 
parallel phenotypic variation

(Conover & Schultz, 1995): 
countergradient variation

Identified that investigating CovGE can reveal the environmental and physiological pathways of 
adaptation, both of which are essential to understand current and future range limits under climate 
change. Also pointed out that many instances of local adaptation via countergradient variation 
could be overlooked, due to a long history of evolutionary biologists focusing on clinal phenotypic 
variation as evidence of strong selection (e.g. Endler, 1977)

(Levinton, 1983): latitudinal 
compensation

Latitudinal compensation is a pattern of CnGv in which cooler populations exhibit higher growth 
and metabolic rates than warmer populations (a type of CnGv). This challenges metabolic theory, 
which predicts that populations residing in warm locations will have higher rates of growth 
compared to those residing in cool habitats because warming increases the rate of metabolic 
processes (Brown et al., 2004).

(Blanckenhorn & Demont, 2004): 
body size clines with latitude

Degree of CnGv in developmental and growth traits gave insights into debates regarding the 
mechanisms underpinning variation in body size along latitudinal gradients (e.g. Bergmann's rule 
and exceptions). Specifically, countergradient variation can reconcile paradoxical patterns in 
development and growth that occur across latitudinal gradients

(Urban et al., 2020): effect 
of evolution of CovGE on 
ecological patterns in space

This review challenges the ecological inference that can be determined from direct relationships of 
species traits/abundances and ecological gradients due to CovGE. For instance, evolution can 
amplify environmental variation (CoGv), and lead to an overestimation of ecological effects 
of an environmental gradient. Conversely, evolution can dampen ecological patterns across an 
environmental gradient (CnGv) which may lead to local adaptation evening out fitness across 
environments and researchers incorrectly concluding that the environment does not influence 
ecological patterns

Note: CoGV, cogradient variation; CnGV, countergradient variation.
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To better understand the extent to which phenotypes are 
influenced by CovGE and GxE across environments, it is 
critical that we (1) develop a statistical approach that es-
timates the magnitude and significance of CovGE, and (2) 
determine experimental designs that best reveal these pat-
terns. We show that foundational equations in statistics can 
be used to estimate the magnitude and significance of the 
effect size of CovGE for a single phenotype observed across 
environments and genotypes. We use bootstrap and per-
mutation to determine the uncertainty and significance of 
CovGE estimates respectively. This approach (effect size es-
timation) is fundamentally different from, but complemen-
tary to, partitioning phenotypic variance into its different 
components (as in Equation 1). Thus, our CovGE estimate 
is analogous to a correlation and can be compared across 
datasets with different amounts of residual variation.

To explore the relationship between GxE and CovGE 
across datasets with different amounts of residual vari-
ation (which is not possible with a traditional ANOVA 
framework), we also develop a sampling statistic for ef-
fect size and significance of GxE. We validate the CovGE 
and GxE statistics with simulated and experimental data 
and show that it is a useful approximation for measuring 
the magnitude of CovGE and GxE. We also use simulated 
data to evaluate the types of experimental designs that 
are most powerful to disentangle how phenotypes are in-
fluenced by CovGE and/or GxE. Finally, we demonstrate 
an application on data from two published studies.

M ETHODS

Spatial CovGE is an emergent phenomenon in a metapop-
ulation and is not mathematically equivalent to additive 
genetic covariance (which describes the pleiotropic effect 
of mutations on multiple traits), nor is it equivalent to 
covariance between phenotype and environment (which 
is an evolved property of a genotype that describes the 
reaction norm) (see Table S3).

Experimental design for spatial CovGE

Calculating spatial CovGE requires experimental designs 
where genotypes sourced from two or more environments 
are raised in a factorial combination of all sourced envi-
ronments. We define a genotype as a group of interbreed-
ing individuals of the same species that may be connected 
to other groups via dispersal but maintain some spatial 
structure or genetic separation (Kawecki & Ebert, 2004). 
Estimating CovGE requires phenotypic data that are col-
lected from each genotype within its native environment 
and the native environments of other genotypes in the ex-
periment. This criterion is met with reciprocal transplant 
experimental designs, in which multiple individuals of 
each genotype are collected and transplanted into all lo-
cations. Data from common garden experiments, where 
individuals from different genotypes are grown in the 
same environmental conditions, can also be used if each 
genotype's native environment is included as a treatment 
(See Figure S1 for examples of experimental designs).

Spatial CovGE magnitude

CovGE measures the joint variability of genotypic 
(ngen = number of genotypes) and environmental (nenv = num-
ber of environments) effects on phenotypes. The estimated 
value of spatial CovGE (ĈovGE) is given as a standardised 
mean product between corresponding pairs of environ-
mental and genotypic effects sourced from the same native 
environments. An environmental effect is the difference be-
tween the mean phenotype of replicate individuals grown in 

F I G U R E  1   In these examples of cogradient variation (a) and 
countergradient variation (b), we show the sampling estimates that 
are used to estimate CovGE. The genetic effect for genotype i is 
the estimated marginal mean phenotype across all environments 
(yi)The environmental effect for environment j is the estimated 
marginal mean phenotype across all genotypes (yj) The black 
dashed line shows the degree of phenotypic change that would be 
observed in a survey. Genetic effects are then matched with their 
native environmental effects (in the above example, genotype 1 is 
native to environment 1, genotype 2 is native to environment 2) and 
covariance is measured using Equation 2. The inset boxes denote the 
behavior of the indicator variable (I) in Equation 2 for each genotype 
and environment combination

(a)

(b)
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environment j (across all genotypes) from the overall mean 
(yj − y), while a genotypic effect is the difference between 
the mean phenotype of replicate individuals from genotype 
i across all environments (yi − y; Figure 1):

where s2yi  is the variance across the average genotypic ef-
fects (Methods S1, Equation 2), s2yj  is the variance across 
the average environmental effects (Methods S1, Equation 
3), and I is an indicator variable (see below). To stan-
dardise covariance on a scale from −1.0 to 1.0, we divide 
ĈovGE by the larger of the genotypic or environmental 
variance (max(s2yi , s

2
yj

)); see proof and population equa-
tions in Methods S2 and S3). Unlike a traditional cor-
relation (which is standardised by s2yi* s2yj  and leads to 
inaccurate estimates of CovGE), the genotypic and envi-
ronmental effects are not independent of each other be-
cause spatial CovGE measures the association between 
genotypic and environmental means. By taking the 
max(s2yi , s

2
yj

), we preserve the relationship between the ge-
notypic and environmental effects and bound results be-
tween −1 and 1 (Methods S2). We use the indicator 
variable Iij to only include environmental and genotypic 
effects in the ĈovGE calculation when the genotypic ef-
fect is correctly matched with the environmental effect 
of its native environment. Thus, Iij is 1 when the geno-
typic and environmental effects of its native environ-
mental are correctly paired and zero otherwise (see inset 
in Figure 1).

GxE magnitude

To evaluate the relationship between ĈovGE and GxE, we 
needed a sampling estimate of the effect size of GxE that 
was not influenced by the amount of residual variation 
in the data (Method S3). We calculated the sampling es-
timate of the GxE interaction (ΔGxE) as the average de-
viation of the mean of the observed average effects of 
genotype and environment from that expected pheno-
type based on the additive effects of genotype and envi-
ronment, given by:

In this equation, yij is the mean phenotype of ith geno-
type in the jth environment, yi is the mean phenotype for 
the ith genotype across all environments, yj is the mean 
phenotype of the jth environment across all genotypes, 
and y is the overall mean phenotype across all genotypes 

and environments (Queen et al., 2002). As ΔGxE ap-
proaches zero, the reaction norms become increasingly 
parallel (e.g. G + E).

We used estimated marginal means (EMMs) from 
categorical linear models (e.g. ANOVAs) to gener-
ate the yi and yj values to estimate ĈovGE and ΔGxE 
(Equations 2 and 3). Model-fit coefficients reduce bias 
that may arise from unequal sample sizes within groups 
(Russell, 2018). To estimate yi and yj, we performed an 
ANOVA that included an interaction between fixed 
effects of environment and genotype to standardised 
phenotypic data using function aov() in package ‘lme4’ 
(Bates et al., 2014), and extracted EMMs using func-
tion emmeans() in package ‘emmeans’ (Lenth, 2016). 
We standardised each individual's phenotype by sub-
tracting the overall EMM and dividing by the standard 
deviation of group means. We define a ‘group mean’ 
as the average value among individuals belonging to 
a specific genotypic and environmental group (sensu 
Whitlock & Schluter, 2009). All analyses and simula-
tions were performed using R (version 3.6.2) (R core 
team, 2018).

Confidence intervals

We used Monte Carlo methods to calculate confidence 
intervals (CIs) and conduct hypothesis tests because 
they make fewer assumptions about the data (Whitlock 
& Schluter, 2009). We used bootstrapping to determine 
the level of uncertainty around the ĈovGE and ΔGxE es-
timates. We generated 95% CI by re-sampling with re-
placement the phenotypic data within each genotype 
and environment combination 999 times.

Hypothesis testing

We used permutations to test the null hypotheses that 
ĈovGE  =  0 and ΔGxE  = ΔG+E because permutations ac-
count for strange distributional properties. We use 
ΔGxE = ΔG+E as the null expectation to test whether the 
amount of GxE exceeded that expected based on the 
additive effects of genotype and environment and to ac-
count for the fact that an absolute value cannot overlap 
zero. ΔGxE is a right-tailed test (HA: ΔGxE  > ΔG+E), so 
the p-value is the proportion of values that were greater 
than or equal to ΔGxE.ĈovGE is a two-tailed test (HA: 
ĈovGE ≠ 0), so we took the absolute value of ĈovGE and 
the null distribution, making the p-value the proportion 
of values greater than or equal to |ĈovGE|. We shuffled 
standardised phenotypic data 999 times across geno-
types and environments without replacement to form 
null distributions for both ĈovGE and ΔG+E. P-values 
were calculated as the proportion of values in the null 
distribution that were equal or further in the tail(s) than 

(2)

ĈovGE=
1∑ngen

i=1

∑nenv
j=1

�
Iij
�
⎛
⎜⎜⎜⎝

∑ngen

i=1

∑nenv
j=1

�
yi−¬y

��
yj−¬y

�
Iij

max
�
s2
yi
, s2

yj

�
⎞
⎟⎟⎟⎠

(3)ΔGxE =
1(

ngen
)(
nenv

)
ngen∑
i=1

nenv∑
j=1

|||yij − yi − yj + y
|||
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the sample estimate. P-values were compared to � = 0.05 
to assess significance.

Simulations

To validate the ĈovGE and ΔGxE sampling estimates, we 
created simulations that mimicked experimental data, 
and provided an array of scenarios to understand how 
effect size, presence of GxE, total sample size, experi-
mental design, and variability affected ĈovGE, as well as 
the ability to detect and measure these patterns. We sim-
ulated datasets with total sample sizes (number of envi-
ronments × number of genotypes × sample size) between 
32 and 500 individuals.

For reciprocal transplant data, we simulated geno-
typic effects that increased linearly at rate γ along an 
environmental variable (e) for genotypes equally spaced 
from environment j = [1, 2,... nenv]. We generated unitless 
phenotypic data based on the equation:

In this equation, the phenotype of individual k from 
genotype i in environment j is given by the genotypic 
effect (intercept, (i − 1) × γ), the reaction norm (where 
ej is the value of the environment and β is the slope of 
the reaction norm), an interaction term for genotype i in 
environment j (�ij) that describes the deviation of the re-
action norm from linearity, and error (εijk). When �ij = 0, 
GxE is absent. When γ = 0 (i.e. when Vp = VE + VGxE, 
Equation 1), β = 0 (i.e. Vp = VG + VGxE, Equation 1), or  
�ij is large, ĈovGE is absent.

Interaction terms (�ij) were drawn from a normal dis-
tribution with mean of zero and variance equal to the 
number of genotypes. Random error (ϵijk) was added 
by sampling from a normal distribution with a mean of 
zero and standard deviation of either 0.5 (low residual 
variation) or 1 (high residual variation). Scenarios with 
no random error (ϵijk) were used to assess population pa-
rameters (Method S3).

For common garden designs, we adjusted this ap-
proach to model designs in which different numbers of 
genotypes were reared in two common environments 
(Figure S4c). We generated a single phenotypic reaction 
norm for each group of genotypes (i.e. genotypes native 
to the same environment) based on the first terms of 
Equation 4 (e.g. (i − 1)γ + βej). Then we generated reac-
tion norm data for individual genotypes by adding the 
interaction term (�ij) and error (ϵijk) to the overall reac-
tion norms.

Evaluation

After simulating phenotypic data, we estimated ĈovGE 
and ΔGxE as well as 95% CI and P-values. To assess how 

confidence intervals and p-values performed in assessing 
significance, we calculated false positive and false nega-
tive rates. For ΔGxE, we compared error rates to the F-
test for GxE from an ANOVA.

We assessed power by determining the proportion 
of times that we correctly rejected the null hypothesis 
(H0: ĈovGE =0 or ΔGxE = ΔG+E) for moderate effect sizes. 
Moderate values of ̂|CovGE| and ΔGxE fell between 0.2 and 
0.5 in scenarios with high levels of residual error (ϵijk = 1). 
We then determined which experimental designs were 
most powerful in identifying ĈovGE and ΔGxE.

Examples from published data

We applied the analytical approach described above to 
determine the magnitude, certainty, and significance of 
ĈovGE and ΔGxE on phenotypic data from two published 
studies. We chose these studies because each qualitatively 
observed countergradient variation patterns, reported 
the native environments for each genotype, and included 
each genotype's native environment as a treatment.

The first study, Albecker and McCoy (2019), used a 
common garden design to investigate the impacts of salt-
water exposure on larval frog (Dryophytes cinerea) devel-
opment collected from coastal and inland locations. We 
analysed ‘age at metamorphosis’ data, which measured 
the number of days between egg hatching and meta-
morphosis. The four coastal and inland populations 
were separate genotypes that were native to the saltwa-
ter or freshwater environment (respectively) (Albecker 
& McCoy, 2017). We omitted one inland genotype be-
cause there were no survivors in the saltwater treatment. 
Because our approach requires that each genotype's na-
tive environment is included as a treatment, we only used 
data from two environments (freshwater and 6 parts per 
thousand [ppt] salinity (hereafter called ‘saltwater’). 
Data were provided by the authors.

We applied our methods to a second study that inves-
tigated patterns of local adaptation in Red-shouldered 
soapberry bugs (Jadera haematoloma) (Cenzer, 2017). 
This study used a common garden design to test whether 
soapberry bugs have become locally adapted to intro-
duced or native host plants. Individuals were offspring 
(F2 generation) that were either native to Cardiospermum 
corindumand (the native host plant species) collected 
from three locations (three genotypes), or native to the 
introduced host plant (Koelreuteria elegans) collected 
from five locations (five genotypes). We accessed the 
data via datadryad.org (https://doi.org/10.5061/dryad.
bn89r) and analysed forewing length data for male and 
female bugs.

The common garden designs in the above studies are 
imbalanced in the numbers of genotypes collected from 
each native environment (Figure S2). This imbalance bi-
ases the overall mean (y) and environmental estimated 
mean phenotype (yj), and therefore biases ĈovGE. In 

(4)phenotypeijk = (i − 1)� + �ej + �ij + �ijk

https://doi.org/10.5061/dryad.bn89r
https://doi.org/10.5061/dryad.bn89r
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Table S4, we describe how we calculated unbiased ĈovGE 
for imbalanced designs.

RESU LTS

We simulated 10 replicates of phenotypic data for 3315 
unique parameter combinations, which produced ĈovGE 
estimates between −1 (strong countergradient varia-
tion) and 1 (strong cogradient variation) (Figure S3). 
Comparisons two-genotype/two environment scenarios, 
reciprocal transplant scenarios, and common garden de-
signs revealed how the sampling estimates can be used 
to compare CovGE and GxE (Figure S4). The sampling 
estimates were good estimates of the population param-
eters (Figure S5).

Error rates for ĈovGE based on bootstrapping (i.e., 
95% CI do not cross 0) and permutation (P < �) for sce-
narios with higher amounts of residual variation (ϵijk = 1) 
revealed that inference based on permutation had lower 
false positive rates, whereas inference based on boot-
strapped confidence intervals had a nominal increase 
in false positive rates (Figure 2a,b). Power to detect 
moderate effect sizes of ĈovGE increased with increas-
ing sample size (Figure 3a,b) and was greater for boot-
strapped confidence intervals than permutation (dashed 
green lines above solid green lines in Figure 3). For re-
ciprocal transplant designs with 256 total samples (and 
higher residual variation), inference for |ĈovGE| based 
on permutation only achieved 80% power at large effect 
sizes (~0.85)(solid green line; Figure 3c), but common 
garden designs reached 80% power at moderate effect 
sizes (~0.4; solid green line; Figure 3d). However, infer-
ence based on bootstrap reached 80% power for |ĈovGE| 
at lower effect sizes for both reciprocal transplant (~0.4, 
dashed green line in Figure 3c) and common garden de-
signs (~0.2, dashed green line in Figure 3d). In summary, 
bootstrap had more power than permutation to detect 
differences but also carried a nominal increase in false 
positive rates, and common garden designs had higher 
power than reciprocal transplant for similar sample 
sizes. Higher amounts of variation than simulated here 
will reduce power.

We also evaluated error rates for ΔGxE based on 
permutation and ANOVA (P < �) using scenarios with 
higher residual variation. Inference based on bootstrap 
was found to be unreliable for ΔGxE so we do not include 
it (Figure S6). Inference based on permutation demon-
strated lower false positive rates than ANOVA (Figure 2c 
and d), but also slightly lower power to detect moderate 
effect sizes of ΔGxE. Nonetheless, both modes of infer-
ence are sufficiently powerful to detect moderate (~0.3) 
to high (>1.0) levels of ΔGxE (purple lines; Figure 3c and 
d).

An inverse relationship exists between ĈovGE and 
ΔGxE but is characterised by substantial variation be-
cause a dataset could have both small but significant 

ĈovGE and ΔGxE (Figure 4a). Another way to understand 
this inverse relationship is to evaluate how the probabil-
ity of detecting significant ĈovGE decreases with ΔGxE. 
When ΔGxE was low (~0.25), the proportion of significant 
ĈovGE estimates were approximately 80% for both exper-
imental designs (Figure 4b). As ΔGxE grew in magnitude 
(~0.75), the proportion of significant ĈovGE observations 
dropped to approximately 25%. This inverse relationship 
was also evident in the variance components (Figure S7).

The ĈovGE effect size in Equation 2 provides com-
plementary information to variance components. For 
example, when |ĈovGE| is maximised, equal amounts 
of non-residual variance are explained by VG, VE and 
VCovGE for the fully factorial reciprocal transplant ex-
periment (Figure S8a). Similarly, intermediate values of 
|ĈovGE| can be driven by higher VE and lower VG, or lower 
VE and higher VG (Figure S8b&c).

Applying our method (corrected for imbalanced num-
bers of genotypes) to the time to metamorphosis data 
from Albecker & McCoy, 2019 yielded a ĈovGE of −0.42 
(95% CI −0.49 to −0.32; p = 0.067) and a ΔGxE of 0.298 
(p = 0.99) (Figure 5a). The p-value for CovGE is slightly 
above �, but because 95% confidence intervals were not 
close to zero, we interpreted this ĈovGE as significant be-
cause permutations have lower power compared to the 
bootstrapped CI. This study had a total sample size of 
187.

Analysis of data on male forewing length phenotype 
(Figure 5b) from Cenzer (2017) supports the paper's 
original interpretation (ĈovGE = −0.51; 95% CI: {−0.78, 
−0.12}; p-value =  0.009; ΔGxE =  0.37; p =  0.99) but data 
for females (Figure 5c), did not reveal significant pat-
terns (ĈovGE  =  −0.03, 95% CI: {−0.36, 0.08}; p  =  0.65; 
ΔGxE = 0.27, p-value = 0.99). This study had a total sam-
ple size of 40 for males and 58 for females, which demon-
strates that small studies can have sufficient power to 
detect significant effects depending on the residual 
variation.

DISCUSSION

Local adaptation can be shaped by both genetic and 
environmental influences on phenotypic variation 
but determining their relative contributions to pat-
terns of phenotypic change can be difficult (Endler, 
1986; MacColl, 2011). Overcoming this challenge is 
key because parsing out the relative contributions of 
plasticity versus genetic evolution in phenotypic vari-
ation will enhance our understanding of range limits, 
patterns of local adaptation and responses to climate 
change (Boutin & Lane, 2014; Charmantier & Gienapp, 
2014; Merilä & Hendry, 2014; Stamp & Hadfield, 2020). 
The discovery of spatial CovGE in 1967 had an impor-
tant influence on views of patterns of phenotypic vari-
ation and eco-evolutionary dynamics (Table 1). Thus, 
a new statistical test that quantifies the strength and 
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direction of spatial for phenotypic data should acceler-
ate research on the role of CovGE in eco-evolutionary 
dynamics.

Spatial CovGE and GxE give different insights into 
the processes that drive and maintain local adaptation. 
Strong spatial CovGE patterns manifest as near-parallel 
reaction norms with different intercepts, while strong 
GxE is revealed by a non-parallel pattern in reaction 
norms. Since GxE for fitness is a prerequisite for local 
adaptation (Kawecki & Ebert, 2004), claiming that both 
give insights to local adaptation may seem paradox-
ical. The apparent paradox can be resolved by consid-
ering that traits can evolve a pattern of spatial CovGE, 
while fitness evolves a pattern of GxE. For instance, a 
congeneric pair of northern and southern marine poly-
chaete species (Ophryotrocha sp.) demonstrated CnGV 
in growth rates, but the northern species demonstrated 

higher mortality in warmer water indicating a GxE re-
lationship in fitness (Levinton, 1983). Although traits 
showing strong patterns of CoGV and CnGV may not 
have GxE for phenotype, such patterns are reconcilable 
with local adaptation if the relationship of those traits 
with fitness differs among populations, resulting in GxE 
for fitness. Because local adaptation is based on fitness 
and not on traits sensu stricto, a GxE for fitness gives 
insight into adaptation but not plasticity, and does not 
reveal the traits underlying adaptation (Jong, 2005; 
Scheiner, 1998).

Significant CovGE implies that genetic differentiation 
among populations has evolved in a way that reinforces 
(CoGv) or opposes (CnGv) the environmental effects 
on phenotypes. It also implies that different popula-
tions have evolved parallel reaction norms to a degree 
beyond that expected by chance. Although significant 

F I G U R E  2   Heat maps showing the false positive rates for ĈovGE (a, b) and ΔGxE (c, d) according to sample size and the number of genotypes 
for cases with high residual error. In a and b, tiles show false positive rates according to bootstrapping (upper tile) or permutation (lower tile). 
In c and d, tiles show false-positive rates according to permutation (upper tile) or ANOVA (lower tile) (Bootstrapping was unreliable for ΔGxE, 
see Figure S6). N above each tile set indicates the total sample size (number of genotypes x number of environments x number of samples)

(a) (b)

(c) (d)
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CovGE does not necessarily imply local adaptation for 
fitness, many classical examples of CovGE (Berven et al., 
1979; Conover & Present, 1990) are from locally adapted 
species, and recognition of CovGE has led to a deeper 
understanding of local adaptation in these systems. 
Similarly, significant CovGE does not necessarily imply 
that the reaction norm is influenced solely by organismal 
processes, because both abiotic and biotic processes in-
fluence the reaction norm (Falconer, 1989; Havird et al., 
2020).

CoGV implies that selective processes determin-
ing the phenotypic optima across locations act in the 
same direction as the processes generating the re-
action norm and is thus a type of adaptive plasticity 
(Conover, 1998). By contrast, CnGV implies that the 
selective processes determining phenotypic optima 
across locations oppose the processes generating the 
reaction norm. Hence CnGV represents a type of non-
adaptive (or maladaptive) plasticity. In both cases, 
the metric provides a way to measure how phenotypic 
plasticity covaries with genetic differentiation across 
spatial gradients, while potentially illuminating can-
didate physiological pathways that underpin CovGE. 
For example, when exposed to sublethal saltwater 

concentrations, freshwater organisms expend energy 
processing osmotic stress that would otherwise be 
used for growth or development. In the amphibian 
dataset, significant CnGV in amphibian larval period 
illuminated genetic differentiation in the physiolog-
ical pathways that counter the growth/development  
costs that are otherwise induced by exposure to saltwater 
(Albecker & McCoy, 2019). In the soapberry bug study, it 
was assumed that local adaptation to different host plants 
had occurred, but phenotypic differentiation expected 
with divergence was lacking. Identifying significant 
CnGV confirmed that genetic differentiation had evolved 
and provided an explanation for the lack of apparent 
phenotypic differentiation (Cenzer, 2017). Although this 
study focused on beak length, identifying CnGV in male 
wing length suggests that selection has acted upon male 
flying or dispersal ability, which could stimulate new re-
search into sexual differences in this species.

Spatial CovGE may play an important role with re-
spect to the ecological impacts of climate change (Arietta 
& Skelly, 2021; Gienapp et al., 2008; Merilä, 2012). 
Theoretical studies exploring the role of adaptation and 
plasticity in population responses to climate change 
typically model temporally fluctuating environments 

F I G U R E  3   Power (defined as 1-ß) to detect |ĈovGE| (green) and ΔGxE (purple) for reciprocal transplant (RT: a, c) and common garden (CG: 
b, d) designs for scenarios with higher amounts of residual variation (ϵijk = 1). Dotted black lines indicate 80% power. In each plot, power to 
detect |ĈovGE| is shown for bootstrap methods (green circles; dashed green lines) and permutation methods (green squares; solid green lines). 
We show power for ΔGxE for ANOVA (purple diamonds; dot-dashed purple lines) and when using permutation methods (purple triangle; solid 
purple lines). Bootstrap for ΔGxE is not shown because it is unreliable for ΔGxE (Figure S6). Panels A and B are filtered to show the power to 
detect moderate effect sizes (between 0.2 and 0.5) of |ĈovGE| and ΔGxE according to total sample size, which corresponds with the shaded area in 
panels c and d. Total sample size is the number of genotypes x number of environments x number of samples. Panels c and d are filtered to show 
power to detect |ĈovGE| and ΔGxE according to effect size when 256 total samples are measured

(a) (b)

(c) (d)



      |  1529ALBECKER et al.

without including a spatial component (Ashander et al., 
2016; Chevin & Hoffmann, 2017; Chevin et al., 2010; 
Coulson et al., 2017, 2021; Lande, 2009; Scheiner et al., 
2017, 2019), and thus do not capture the potential influ-
ence of spatial CovGE. Some of these studies modeled 
intrinsic properties of the genotype-phenotype map 

as covariance in pleiotropic effects on multiple traits 
(Coulson et al., 2017, 2021; Via et al., 1995), but how 
genetic (co)variance influences the pattern of spatial 
CovGE in a metapopulation, and thus metapopulation's 
responses to climate change, has not been rigorously 
addressed by theory and remains an important area of 

F I G U R E  4   Relationships between CovGE and ΔGxE. Data in these plots are filtered to show just instances of significant ĈovGE or ΔGxE, with 
false positives removed. Panel a shows the inverse relationship between the magnitudes of |ĈovGE| and ΔGxE for common garden (purple points) 
and reciprocal transplant (green points) experimental designs. Panel b shows that the proportion of significant ĈovGE values decrease as ΔGxE 
increases. In panel b, data has been filtered to remove false positives, and points are slightly offset along the y-axis for visualization

(a)

(b)
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future research. The metric provided here can now be 
combined with more traditional metrics (reviewed in 
Table S3) to address this gap.

There is an urgent need to better understand how 
genetic and environmental factors affect responses to 
novel or changing environments. Because the magni-
tude and direction of spatial CovGE will likely affect 
responses to climate change, incorporation of mea-
surements of spatial CovGE will enhance our capac-
ity to develop more robust predictions. For example, 
colder populations are predicted to be maladapted to 
a warmer climate and vulnerable to climate change 
(Lotterhos et al., 2021; Sharma et al., 2011). Yet this 
may not hold under countergradient variation scenar-
ios if the traits under selection in colder environments 
continue to be adaptive in warmer environments. 

However, as highlighted by the marine polychaeta ex-
ample, populations evolved to local optima that did 
not yield universally higher fitness across environ-
ments (Levinton, 1983), which should temper optimis-
tic predictions and stimulate research that applies the 
metric to understand how spatial CovGE will affect cli-
mate change outcomes.

If spatial CovGE can mitigate population decline, 
there are likely ecological consequences for populations 
exhibiting spatial CovGE in changing environments. 
As demonstrated by many taxa (e.g. Arendt & Wilson, 
1999; Berven et al., 1979; Carroll et al., 2001; Trussell, 
2000; Villeneuve et al., 2021), colder temperatures and 
shorter growing seasons can induce the evolution of 
faster growth rates (CnGV), with consequences for life 
history traits such as size and age at maturity, fecundity, 

F I G U R E  5   Phenotypic reaction norms for the data collected from two published studies (Cenzer, 2017; Albecker & McCoy, 2019) analysed 
for ĈovGE and ΔGxE. Reaction norms and points are coloured to correspond to each genotype's native environment overlaid on individual data 
points (point shapes to denote separate genotypes). Panel a shows normalised age at metamorphosis data from green tree frog populations 
(Dryophytes cinereus) native to freshwater and saltwater habitats that were exposed to freshwater or saltwater treatments (Albecker & McCoy, 
2019). Age at metamorphosis demonstrates countergradient variation (ĈovGE = −0.42 (95% Confidence Interval: {−0.49, −0.32}; p = 0.067) with 
non-significant ΔGxE (ΔGxE = 0.29, p = 0.99). Panels B and C show normalised forewing length (mm) data from male (b) and female (c) Red-
shouldered soapberry bugs (Jadera haematoloma) according to data from (Cenzer, 2017). Male soapberry bug wing length (b) is countergradient 
(ĈovGE = −0.41, 95% CI: {−0.57, −0.18}; p = 0.009), with no significant ΔGxE (ΔGxE = 0.37, p = 0.99). Contrastingly, female soapberry bugs wing 
lengths (c) show no gradient patterns (ĈovGE = −0.03, 95% CI: {−0.36, 0.08}; p = 0.65) with non-significant ΔGxE (ΔGxE = 0.27, p = 0.99). Panels B 
and C only show 4 introduced plant host reaction norms (out of the expected five) because one genotype only had one sample

(a)

(b) (c)
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and developmental rates. Moreover, rapid growth under 
warmer temperatures may be associated with increased 
foraging rates and therefore stronger species interactions 
with implications for community dynamics (Miller et al., 
2014; Trussell et al., 2003; Trussell & Schmitz, 2012) and 
ecosystems (Schmitz et al., 2008, 2010). For example, the 
indirect effects of predators on lower trophic levels can 
be shaped by the environmental impacts on the forag-
ing rates of species in the middle of food chains (Schmitz 
& Trussell, 2016; Trussell & Schmitz, 2012). Many mid-
trophic-level species are ectotherms that are sensitive to 
temperature, and CovGE may influence how foraging 
rates respond to warming. Because food web diversity 
is dominated by middle trophic levels (60% of the total 
species; Williams & Martinez, 2000), spatial CovGE in 
foraging traits within these trophic levels may strongly 
influence ecosystems. Thus, an important area of fu-
ture research will be to determine how spatial CovGE 
and environmental change interact to influence species 
traits, species interactions and their cascading effects on 
ecosystems.

CONCLUSIONS

CovGE has advanced our understanding of range limits, 
latitudinal compensation, Bergmann's rule, the effects of 
evolution on ecological patterns in space, and how local 
adaptation can evolve in the absence of phenotypic clines. 
In the past, CovGE has been inferred from visual patterns, 
but with the new metric, we can now study CovGE with 
an increased level of statistical rigor to advance knowl-
edge of how CovGE evolves, the ecological consequences 
of CovGE, the relative influence of CovGE vs. GxE on 
eco-evolutionary dynamics, and how patterns of spatial 
CovGE alter metapopulation responses to climate change.
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