Received: 28 January 2022

Revised: 26 January 2022

Accepted: 1 February 2022

DOI: 10.1111/ele.14020

METHOD

ECOLOGY LETTERS [ RVYMNESa

A novel analytical framework to quantify co-gradient and
countergradient variation

Molly A. Albecker ® |

Department of Marine and Environmental
Sciences, Northeastern University, Boston,
Massachusetts, USA

Correspondence

Molly A. Albecker, Department of Biology,
Utah State University, Logan, UT, USA.
Email: malbecker@gmail.com

Present address
Molly A. Albecker, Department of Biology,
Utah State University, Logan, Utah, USA

Funding information
National Science Foundation, Grant/
Award Number: 1764316

Editor: Tim Coulson

Geoffrey C. Trussell |

Katie E. Lotterhos

Abstract

Spatial covariance between genotypic and environmental influences on phenotypes
(Covp) can result in the nonrandom distribution of genotypes across environmental
gradients and is a potentially important factor driving local adaptation. However, a
framework to quantify the magnitude and significance of Cov, has been lacking. We
develop a novel quantitative/analytical approach to estimate and test the significance
of Cov g, from reciprocal transplant or common garden experiments, which we vali-
date using simulated data. We demonstrate how power to detect Cov, changes over
a range of experimental designs. We confirm an inverse relationship between gene-
by-environment interactions (GXE) and Cov g, as predicted by first principles, but
show how phenotypes can be influenced by both. The metric provides a way to meas-
ure how phenotypic plasticity covaries with genetic differentiation and highlights the

importance of understanding the dual influences of Cov; and GXE on phenotypes
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INTRODUCTION

Phenotypic variation across environmental gradients
can yield important insight into understanding current
species distributions and predicting the capacity of spe-
cies to adapt to future environmental change (Gienapp
et al., 2008). One source of trait variation is genotype-by-
environment interactions (GXE), where genetic and envi-
ronmental factors interact to affect phenotype (Hereford,
2009; Josephs, 2018). However, GXE interactions do not
fully capture genotypic and environmental effects on
phenotypes. Covariance can evolve between phenotypic
deviations due to genotype (genotypic effects) and those
due to environment (environmental effects) across spa-
tial locations (Cov). Stated differently, environmental
and genotypic effects on the phenotype can covary posi-
tively or negatively across spatial locations (Berven et al.,
1979; Conover & Schultz, 1995; Falconer & Mackay, 1996;
Levins, 1968; Trussell & Etter, 2001). Covg indicates

in studies of local adaptation and species’ responses to environmental change.

adaptive plasticity, cogradient variation, countergradient variation, covariance between genotype
and environment, genetic-by-environment interactions, local adaptation, maladaptive plasticity,

that phenotypic responses are contingent on the strength
and direction of the association between genotypic and
environmental effects. While the importance of GxE
in agriculture, human health and adaptive evolution
is recognised (Saltz et al., 2018), Cov remains an un-
derstudied force driving the evolution of phenotypic
change across environmental gradients. Nevertheless,
research on Covg has led to significant insights into
our understanding of evolutionary processes across
space (Conover et al., 2009; Conover & Schultz, 1995).
For instance, Levins discovered Cov,; in montane pop-
ulations of Drosophila, challenging the prevailing views
that phenotypic variation always accompanies genetic
variation (Levins, 1968). Spatial Covgp has also led to
insights into how adaptation can evolve without pheno-
typic clines, the evolution of latitudinal compensation,
Bergmann clines, and how evolution can affect ecologi-
cal patterns (summarised in Table I).
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The classical model describing phenotypic variation
(Vp) for quantitative traits shows that both GxE interac-
tions and Cov contribute to trait variance:

VP = VG + VE + V(GXE) + Z(COVGE) + Verror (1)

In this equation, V is the underlying genetic variance
and V. is the environmental variance affecting V.. Vi, p is
the effect of GXE, Cov, captures the covariance between
genotypic and environmental effects (Conover et al., 2009;
Conover & Schultz, 1995; Falconer & Mackay, 1996), and
V.iror 18 Tesidual variation. The biological interpretation
of these variance components depends on the experimen-
tal design (reviewed in Tables S1 and S2), but we focus on
designs in which multiple genotypes are raised in multi-
ple environments. Cogradient variation is positive Covg
(CoGV; Covp > 0) and occurs when the effect of selection
on genotype corresponds with the environmental influ-
ence on phenotype, maximising phenotypic differences
across environments (Figure la). Conversely, counter-
gradient variation is negative Cov (CnGV; Covy < 0)
and occurs when the genotypic effect on the phenotype
opposes the environmental effect, minimising phenotypic
differences across environments (Figure 1b).

GxE and Cov, can be inferred from reciprocal trans-
plant (i.e. raising individuals in their native and ‘new’
environments) or common garden experiments (i.e.
raising individuals from different locations in shared

TABLE 1

environments) (Merild & Hendry, 2014), but past synthe-
ses have focused solely on either GxE (Hereford, 2009)
or Covgp (Conover et al.,, 2009; Conover & Schultz,
1995). However, in the phenotypic realm, the magnitude
of Covgp is inversely related to the magnitude of GxE:
Covgp 1s maximised when reaction norms are parallel,
and GxE is absent. Conversely, GXE is maximised when
reaction norms cross in an ‘X’ pattern, and there is no
Covp. However, there are intermediate scenarios when
phenotypes may be influenced by both Cov and GxE.
Despite the likelihood of this dual influence in nature, to
our knowledge there have been no explorations of the as-
sociation between Cov; and GXE. Hence, we continue
to have a poor understanding of the relative contributions
of GXE and Cov,; to phenotypic variation in nature.

The studies that have identified CoGV or CnGV have
been limited to qualitative assessments of visual patterns
because there has been no useful quantitative framework
to evaluate the magnitude and significance of CovGE
(Conover et al., 2009). Falconer (1989) suggested that
Covp could be measured indirectly using inbred lines
and by controlling for non-random aspects of the envi-
ronment but did not describe how to estimate Cov, in
the presence of GXE interactions or residual variation.
Without a method to test whether observed patterns of
Covyp, are statistically different from zero, it is difficult
to determine the true prevalence and strength of these
patterns in driving evolution across environmental gra-
dients in nature.

Major advancements in ecology and evolution from spatial Cov

Study: Subject

How did it or does it influence the field?

(Levins, 1968): countergradient
variation in body size with
altitude

Levins discovered that genetic variation for body size was partially counteracting the effect of
temperature (which was negatively related to size), thereby moderating the change in body size with
altitude that would have otherwise been expressed. He referred to this pattern as ‘contragradient

variation,” which challenged the then widely held assumption that genetic variation, if any, would

parallel phenotypic variation

(Conover & Schultz, 1995):
countergradient variation

Identified that investigating Cov g can reveal the environmental and physiological pathways of
adaptation, both of which are essential to understand current and future range limits under climate

change. Also pointed out that many instances of local adaptation via countergradient variation
could be overlooked, due to a long history of evolutionary biologists focusing on clinal phenotypic
variation as evidence of strong selection (e.g. Endler, 1977)

(Levinton, 1983): latitudinal
compensation

Latitudinal compensation is a pattern of CnGv in which cooler populations exhibit higher growth
and metabolic rates than warmer populations (a type of CnGv). This challenges metabolic theory,

which predicts that populations residing in warm locations will have higher rates of growth
compared to those residing in cool habitats because warming increases the rate of metabolic

processes (Brown et al., 2004).

(Blanckenhorn & Demont, 2004):
body size clines with latitude

Degree of CnGv in developmental and growth traits gave insights into debates regarding the
mechanisms underpinning variation in body size along latitudinal gradients (e.g. Bergmann's rule

and exceptions). Specifically, countergradient variation can reconcile paradoxical patterns in
development and growth that occur across latitudinal gradients

(Urban et al., 2020): effect
of evolution of Cov on
ecological patterns in space

This review challenges the ecological inference that can be determined from direct relationships of
species traits/abundances and ecological gradients due to Cov,.. For instance, evolution can
amplify environmental variation (CoGv), and lead to an overestimation of ecological effects

of an environmental gradient. Conversely, evolution can dampen ecological patterns across an
environmental gradient (CnGv) which may lead to local adaptation evening out fitness across
environments and researchers incorrectly concluding that the environment does not influence

ecological patterns

Note: CoGV, cogradient variation; CnGV, countergradient variation.
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FIGURE 1 Inthese examples of cogradient variation (a) and
countergradient variation (b), we show the sampling estimates that
are used to estimate Cov. The genetic effect for genotype i is

the estimated marginal mean phenotype across all environments
(»)The environmental effect for environment j is the estimated
marginal mean phenotype across all genotypes (3;) The black
dashed line shows the degree of phenotypic change that would be
observed in a survey. Genetic effects are then matched with their
native environmental effects (in the above example, genotype 1 is
native to environment 1, genotype 2 is native to environment 2) and
covariance is measured using Equation 2. The inset boxes denote the
behavior of the indicator variable (/) in Equation 2 for each genotype
and environment combination

To better understand the extent to which phenotypes are
influenced by Cov and GXE across environments, it is
critical that we (1) develop a statistical approach that es-
timates the magnitude and significance of Cov, and (2)
determine experimental designs that best reveal these pat-
terns. We show that foundational equations in statistics can
be used to estimate the magnitude and significance of the
effect size of Covy, for a single phenotype observed across
environments and genotypes. We use bootstrap and per-
mutation to determine the uncertainty and significance of
Cov; estimates respectively. This approach (effect size es-
timation) is fundamentally different from, but complemen-
tary to, partitioning phenotypic variance into its different
components (as in Equation 1). Thus, our Cov,, estimate
is analogous to a correlation and can be compared across
datasets with different amounts of residual variation.

To explore the relationship between GXE and Cov
across datasets with different amounts of residual vari-
ation (which is not possible with a traditional ANOVA
framework), we also develop a sampling statistic for ef-
fect size and significance of GXE. We validate the Cov
and GxE statistics with simulated and experimental data
and show that it is a useful approximation for measuring
the magnitude of Cov,; and GXE. We also use simulated
data to evaluate the types of experimental designs that
are most powerful to disentangle how phenotypes are in-
fluenced by Cov and/or GXE. Finally, we demonstrate
an application on data from two published studies.

METHODS

Spatial Cov is an emergent phenomenon in a metapop-
ulation and is not mathematically equivalent to additive
genetic covariance (which describes the pleiotropic effect
of mutations on multiple traits), nor is it equivalent to
covariance between phenotype and environment (which
is an evolved property of a genotype that describes the
reaction norm) (see Table S3).

Experimental design for spatial Cov

Calculating spatial Cov requires experimental designs
where genotypes sourced from two or more environments
are raised in a factorial combination of all sourced envi-
ronments. We define a genotype as a group of interbreed-
ing individuals of the same species that may be connected
to other groups via dispersal but maintain some spatial
structure or genetic separation (Kawecki & Ebert, 2004).
Estimating Cov; requires phenotypic data that are col-
lected from each genotype within its native environment
and the native environments of other genotypes in the ex-
periment. This criterion is met with reciprocal transplant
experimental designs, in which multiple individuals of
each genotype are collected and transplanted into all lo-
cations. Data from common garden experiments, where
individuals from different genotypes are grown in the
same environmental conditions, can also be used if each
genotype's native environment is included as a treatment
(See Figure SI for examples of experimental designs).

Spatial Cov,,, magnitude

Covie measures the joint variability of genotypic
(g, = number of genotypes) and environmental (,,,, = num-
ber of environments) effects on phenotypes. The estimated
value of spatial Covp (Covgg) is given as a standardised
mean product between corresponding pairs of environ-
mental and genotypic effects sourced from the same native
environments. An environmental effect is the difference be-
tween the mean phenotype of replicate individuals grown in
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environment j (across all genotypes) from the overall mean
(¥; — »), while a genotypic effect is the difference between
the mean phenotype of replicate individuals from genotype
i across all environments (y; — y; Figure 1):

Covep= 1 X5 T =) (=)
CE™ gon e
X X (1) max(s%l s%/)
(@)

where Sy— is the variance across thze average genotypic ef-
fects (Methods S1, Equation 2), 55, 18 the variance across
the average environmental effects (Methods S1, Equation
3), and [ is an indicator variable (see below). To stan-
dardise covariance on a scale from —1.0 to 1.0, we divide
CovGE by the larger of the genotypic or environmental
variance (max(S REs )) see proof and population equa-
tions in Methods SZ and S3). Unlike a traditional cor-
relation (which is standardised by sy—* Sz and leads to
inaccurate estimates of Covp), the genotyplc and envi-
ronmental effects are not independent of each other be-
cause spatial Cov, measures the association between
genotypic and environmental means. By taking the
max(ss» Sy—j), we preserve the relationship between the ge-
notypic and environmental effects and bound results be-
tween —1 and 1 (Methods S2). We use the indicator
variable 7. ;to only include environmental and genotypic
effects in the COVGE calculation when the genotypic ef-
fect is correctly matched with the environmental effect
of its native environment. Thus, Iij is 1 when the geno-
typic and environmental effects of its native environ-
mental are correctly paired and zero otherwise (see inset
in Figure 1).

GxE magnitude

To evaluate the relationship between C/mEE and GxE, we
needed a sampling estimate of the effect size of GXE that
was not influenced by the amount of residual variation
in the data (Method S3). We calculated the sampling es-
timate of the GXE interaction (Ag,g) as the average de-
viation of the mean of the observed average effects of
genotype and environment from that expected pheno-
type based on the additive effects of genotype and envi-
ronment, given by:

Mgen Moy

Bop=— 1 7 —F
AGxE - (ngen)(nenv) Z Z yz] Vi

i=1 j=1

-y+y Q)

In this equation, y; is the mean phenotype of ith geno-
type in the jth environment, y; is the mean phenotype for
the ith genotype across all environments, y; is the mean
phenotype of the jth environment across all genotypes,
and y is the overall mean phenotype across all genotypes

and environments (Queen et al., 2002). As Agg ap-
proaches zero, the reaction norms become increasingly
parallel (e.g. G+ E).

We used estimated marginal means (EMMs) from
categorical linear models (e.g. ANOVAs) to gener-
ate the y; and y; values to estimate Covgp and Ag,p
(Equations 2 and 3). Model-fit coefficients reduce bias
that may arise from unequal sample sizes within groups
(Russell, 2018). To estimate y; and y;, we performed an
ANOVA that included an interaction between fixed
effects of environment and genotype to standardised
phenotypic data using function aov() in package ‘lme4’
(Bates et al., 2014), and extracted EMMs using func-
tion emmeans() in package ‘emmeans’ (Lenth, 2016).
We standardised each individual's phenotype by sub-
tracting the overall EMM and dividing by the standard
deviation of group means. We define a ‘group mean’
as the average value among individuals belonging to
a specific genotypic and environmental group (sensu
Whitlock & Schluter, 2009). All analyses and simula-
tions were performed using R (version 3.6.2) (R core
team, 2018).

Confidence intervals

We used Monte Carlo methods to calculate confidence
intervals (CIs) and conduct hypothesis tests because
they make fewer assumptions about the data (Whitlock
& Schluter, 2009). We used bootstrapping to determine
the level of uncertainty around the Covgy and Ag,g es-
timates. We generated 95% CI by re-sampling with re-
placement the phenotypic data within each genotype
and environment combination 999 times.

Hypothesis testing

We used permutations to test the null hypotheses that
Covgp = 0 and Ag.p = Ag,g because permutations ac-
count for strange distributional properties. We use
Agxe = Ag,g as the null expectation to test whether the
amount of GxE exceeded that expected based on the
additive effects of genotype and environment and to ac-
count for the fact that an absolute value cannot overlap
zero. Ag,g is a right-tailed test (H,: AGye > Agyp): SO
the p-value is the proportion of values that were greater
than or equal to Agp.Covgg is a two-tailed test (H,:
Covgp = 0), so we took the absolute value of Covgy and
the null distribution, making the p-value the proportion
of values greater than or equal to |Covgg|. We shuffled
standardised phenotypic data 999 times across geno-
types and environments without replacement to form
null distributions for both Cov; and Ag,g. P-values
were calculated as the proportion of values in the null
distribution that were equal or further in the tail(s) than
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the sample estimate. P-values were compared to « = 0.05
to assess significance.

Simulations

To validate the C/ma and Ag, sampling estimates, we
created simulations that mimicked experimental data,
and provided an array of scenarios to understand how
effect size, presence of GxE, total samﬂﬁize, experi-
mental design, and variability affected Covgp, as well as
the ability to detect and measure these patterns. We sim-
ulated datasets with total sample sizes (number of envi-
ronments X number of genotypes x sample size) between
32 and 500 individuals.

For reciprocal transplant data, we simulated geno-
typic effects that increased linearly at rate y along an
environmental variable (e) for genotypes equally spaced
from environment j =[1, 2,... n,, ]. We generated unitless
phenotypic data based on the equation:

phenotypey = (i — )y + fe; +n; + € @

In this equation, the phenotype of individual k from
genotype i in environment j is given by the genotypic
effect (intercept, (i — 1) X y), the reaction norm (where
e is the value of the environment and f is the slope of
the reaction norm), an interaction term for genotype i in
environment j (77;) that describes the deviation of the re-
action norm from linearity, and error (eijk). When n; =0,
GxE is absent. When y = 0 (i.e. when V = Vi + Vs
Equatlon 1) =0 (ie. V Vo * Voxe Equatlon 1), or

;18 large, COVGE is absent

Interactlon terms (17;) were drawn from a normal dis-
tribution with mean of zero and variance equal to the
number of genotypes. Random error (e, k) was added
by sampling from a normal distribution w1th a mean of
zero and standard deviation of either 0.5 (low residual
variation) or 1 (high residual variation). Scenarios with
no random error (¢,;,) were used to assess population pa-
rameters (Method S3).

For common garden designs, we adjusted this ap-
proach to model designs in which different numbers of
genotypes were reared in two common environments
(Figure S4c). We generated a single phenotypic reaction
norm for each group of genotypes (i.e. genotypes native
to the same environment) based on the first terms of
Equation 4 (e.g. i — )y + /}e) Then we generated reac-
tion norm data for 1nd1V1dual genotypes by adding the
interaction term (n;) and error (61;/ ) to the overall reac-
tion norms.

Evaluation

After simulating phenotypic data, we estimated C{ov\GE
and Ag,g as well as 95% CI and P-values. To assess how

confidence intervals and p-values performed in assessing
significance, we calculated false positive and false nega-
tive rates. For Agp, we compared error rates to the F-
test for GXE from an ANOVA.

We assessed power by determining the proportion
of times that we correctly rejected the null hypothesis
(H Covgp =0 or Agyg = Ag.p) for moderate effect sizes.
Moderate values of |€0_1?E| and Ag, g fell between 0.2 and
0.5 in scenarios with high levels of residual error (e =1).
We then determined which experlmental demgns were
most powerful in identifying Coy. ., cr and Agyg.

Examples from published data

We applied the analytical approach described above to
determine the magnitude, certainty, and significance of
Covgp and Ag,g on phenotypic data from two published
studies. We chose these studies because each qualitatively
observed countergradient variation patterns, reported
the native environments for each genotype, and included
each genotype's native environment as a treatment.

The first study, Albecker and McCoy (2019), used a
common garden design to investigate the impacts of salt-
water exposure on larval frog (Dryophytes cinerea) devel-
opment collected from coastal and inland locations. We
analysed ‘age at metamorphosis’ data, which measured
the number of days between egg hatching and meta-
morphosis. The four coastal and inland populations
were separate genotypes that were native to the saltwa-
ter or freshwater environment (respectively) (Albecker
& McCoy, 2017). We omitted one inland genotype be-
cause there were no survivors in the saltwater treatment.
Because our approach requires that each genotype's na-
tive environment is included as a treatment, we only used
data from two environments (freshwater and 6 parts per
thousand [ppt] salinity (hereafter called ‘saltwater’).
Data were provided by the authors.

We applied our methods to a second study that inves-
tigated patterns of local adaptation in Red-shouldered
soapberry bugs (Jadera haematoloma) (Cenzer, 2017).
This study used a common garden design to test whether
soapberry bugs have become locally adapted to intro-
duced or native host plants. Individuals were offspring
(F2 generation) that were either native to Cardiospermum
corindumand (the native host plant species) collected
from three locations (three genotypes), or native to the
introduced host plant (Koelreuteria elegans) collected
from five locations (five genotypes). We accessed the
data via datadryad.org (https:/doi.org/10.5061/dryad.
bn89r) and analysed forewing length data for male and
female bugs.

The common garden designs in the above studies are
imbalanced in the numbers of genotypes collected from
each native environment (Figure S2). This imbalance bi-
ases the overall mean (y) and environmental estimated
mean phenotype (y;), and therefore biases Covgg. In
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Table S4, we describe how we calculated unbiased C{ov\GE
for imbalanced designs.

RESULTS

We simulated 10 replicates of phenotypic data for 3315
unique parameter combinations, which produced Covgp
estimates between —1 (strong countergradient varia-
tion) and 1 (strong cogradient variation) (Figure S3).
Comparisons two-genotype/two environment scenarios,
reciprocal transplant scenarios, and common garden de-
signs revealed how the sampling estimates can be used
to compare Cov, and GXE (Figure S4). The sampling
estimates were good estimates of the population param-
eters (Figure S5).

Error rates for Covge based on bootstrapping (i.e.,
95% CI do not cross 0) and permutation (P < a) for sce-
narios with higher amounts of residual variation (eijk =1
revealed that inference based on permutation had lower
false positive rates, whereas inference based on boot-
strapped confidence intervals had a nominal increase
in false positive rates (Figure 2a,b). Power to detect
moderate effect sizes of Covgy increased with increas-
ing sample size (Figure 3a,b) and was greater for boot-
strapped confidence intervals than permutation (dashed
green lines above solid green lines in Figure 3). For re-
ciprocal transplant designs with 256 total samples (and
higher residual variation), inference for |m| based
on permutation only achieved 80% power at large effect
sizes (~0.85)(solid green line; Figure 3c), but common
garden designs reached 80% power at moderate effect
sizes (~0.4; solid green line; Figure 3d). However, ﬂl@-
ence based on bootstrap reached 80% power for |Covggl
at lower effect sizes for both reciprocal transplant (~0.4,
dashed green line in Figure 3c) and common garden de-
signs (~0.2, dashed green line in Figure 3d). In summary,
bootstrap had more power than permutation to detect
differences but also carried a nominal increase in false
positive rates, and common garden designs had higher
power than reciprocal transplant for similar sample
sizes. Higher amounts of variation than simulated here
will reduce power. .

We also evaluated error rates for Ag,e based on
permutation and ANOVA (P < a) using scenarios with
higher residual variation. Inference based on bootstrap
was found to be unreliable for Ag,g so we do not include
it (Figure S6). Inference based on permutation demon-
strated lower false positive rates than ANOVA (Figure 2¢
and d), but also slightly lower power to detect moderate
effect sizes of Ag.p. Nonetheless, both modes of infer-
ence are sufficiently powerful to detect moderate (~0.3)
to high (>1.0) levels of Agg (purple lines; Figure 3¢ and
d).

__An inverse relationship exists between C/O-\EE and
Ag,gp but is characterised by substantial variation be-
cause a dataset could have both small but significant

C/mEE and Ag, g (Figure 4a). Another way to understand
this inverse relationship is to evaluate how the probabil-
ity of detecting significant Covgy decreases with Ag,g.
When Ag,g was low (~0.25), the proportion of significant
Covgp estimates were approximately 80% for both exper-
imental designs (Figure 4b). As Ag,g grew in magnitude
(~0.75), the proportion of significant C/OE;‘ observations
dropped to approximately 25%. This inverse relationship
was also evident in the variance components (Figure S7).

The Covgy effect size in Equation 2 provides com-
plementary information to variance components. For
example, when |C/0‘E5| is maximised, equal amounts
of non-residual variance are explained by V, V. and
Veovge for the fully factorial reciprocal transplant ex-
periment (Figure S8a). Similarly, intermediate values of
|Cov | can be driven by higher Vi, and lower V5, or lower
V. and higher V (Figure S8b&c).

Applying our method (corrected for imbalanced num-
bers of genotypes) to the time to metamorphosis data
from Albecker & McCoy, 2019 yielded a Covgp of —0.42
(95% CI —0.49 to —0.32; p = 0.067) and a Ag,g of 0.298
(p = 0.99) (Figure 5a). The p-value for Covgy is slightly
above a, but because 95% confidgci intervals were not
close to zero, we interpreted this Covgp as significant be-
cause permutations have lower power compared to the
bootstrapped CI. This study had a total sample size of
187.

Analysis of data on male forewing length phenotype
(Figure 5b) from Cenzer (2017) supports the paper's
original interpretation (Covge = —0.51; 95% CI. {~0.78,
—0.12}; p-value = 0.009; Ag,g = 0.37; p = 0.99) but data
for females (Figure 5c¢), did not reveal significant pat-
terns (Covgy = —0.03, 95% CI. {-0.36, 0.08}; p = 0.65;
Agye = 0.27, p-value = 0.99). This study had a total sam-
ple size of 40 for males and 58 for females, which demon-
strates that small studies can have sufficient power to
detect significant effects depending on the residual
variation.

DISCUSSION

Local adaptation can be shaped by both genetic and
environmental influences on phenotypic variation
but determining their relative contributions to pat-
terns of phenotypic change can be difficult (Endler,
1986; MacColl, 2011). Overcoming this challenge is
key because parsing out the relative contributions of
plasticity versus genetic evolution in phenotypic vari-
ation will enhance our understanding of range limits,
patterns of local adaptation and responses to climate
change (Boutin & Lane, 2014; Charmantier & Gienapp,
2014; Merilda & Hendry, 2014; Stamp & Hadfield, 2020).
The discovery of spatial Covgp in 1967 had an impor-
tant influence on views of patterns of phenotypic vari-
ation and eco-evolutionary dynamics (Table 1). Thus,
a new statistical test that quantifies the strength and
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FIGURE 2 Heat maps showing the false positive rates for C{ov\GE (a, b) and ZGxE (c, d) according to sample size and the number of genotypes
for cases with high residual error. In a and b, tiles show false positive rates according to bootstrapping (upper tile) or permutation (lower tile).
In c and d, tiles show false-positive rates according to permutation (upper tile) or ANOVA (lower tile) (Bootstrapping was unreliable for KGxE,
see Figure S6). N above each tile set indicates the total sample size (number of genotypes x number of environments x number of samples)

direction of spatial for phenotypic data should acceler-
ate research on the role of Cov in eco-evolutionary
dynamics.

Spatial Cov and GXE give different insights into
the processes that drive and maintain local adaptation.
Strong spatial Cov,; patterns manifest as near-parallel
reaction norms with different intercepts, while strong
GxE is revealed by a non-parallel pattern in reaction
norms. Since GxE for fitness is a prerequisite for local
adaptation (Kawecki & Ebert, 2004), claiming that both
give insights to local adaptation may seem paradox-
ical. The apparent paradox can be resolved by consid-
ering that traits can evolve a pattern of spatial Cov,
while fitness evolves a pattern of GxE. For instance, a
congeneric pair of northern and southern marine poly-
chaete species (Ophryotrocha sp.) demonstrated CnGV
in growth rates, but the northern species demonstrated

higher mortality in warmer water indicating a GxE re-
lationship in fitness (Levinton, 1983). Although traits
showing strong patterns of CoGV and CnGV may not
have GxE for phenotype, such patterns are reconcilable
with local adaptation if the relationship of those traits
with fitness differs among populations, resulting in GXE
for fitness. Because local adaptation is based on fitness
and not on traits sensu stricto, a GXE for fitness gives
insight into adaptation but not plasticity, and does not
reveal the traits underlying adaptation (Jong, 2005;
Scheiner, 1998).

Significant Cov, implies that genetic differentiation
among populations has evolved in a way that reinforces
(CoGv) or opposes (CnGv) the environmental effects
on phenotypes. It also implies that different popula-
tions have evolved parallel reaction norms to a degree
beyond that expected by chance. Although significant
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FIGURE 3 Power (defined as 1-8) to detect |@| (green) and KGxE (purple) for reciprocal transplant (RT: a, ¢) and common garden (CG:
b, d) deﬂg_ﬁ for scenarios with higher amounts of residual variation (e,./.k = 1). Dotted black lines indicate 80% power. In each plot, power to
detect |Covyl| is shown for bootstrap methods (green circles; dashed green lines) and permutation methods (green squares; solid green lines).
We show power for ZGxE for ANOVA (purple diamonds; dot-dashed purple lines) and when using permutation methods (purple triangle; solid
purple lines). Bootstrap for Ag,g is not shown because it is unreliable for Ag, (Figure S6). Panels A and B are filtered to show the power to
detect moderate effect sizes (between 0.2 and 0.5) of [Covgy| and A, according to total sample size, which corresponds with the shaded area in
panels c and d. Total sample size is the number of genotypes x number of environments x number of samples. Panels c and d are filtered to show
power to detect |@| and ZGxE according to effect size when 256 total samples are measured

Covgp does not necessarily imply local adaptation for
fitness, many classical examples of Cov, (Berven et al.,
1979; Conover & Present, 1990) are from locally adapted
species, and recognition of Cov,, has led to a deeper
understanding of local adaptation in these systems.
Similarly, significant Cov does not necessarily imply
that the reaction norm is influenced solely by organismal
processes, because both abiotic and biotic processes in-
fluence the reaction norm (Falconer, 1989; Havird et al.,
2020).

CoGYV implies that selective processes determin-
ing the phenotypic optima across locations act in the
same direction as the processes generating the re-
action norm and is thus a type of adaptive plasticity
(Conover, 1998). By contrast, CnGV implies that the
selective processes determining phenotypic optima
across locations oppose the processes generating the
reaction norm. Hence CnGV represents a type of non-
adaptive (or maladaptive) plasticity. In both cases,
the metric provides a way to measure how phenotypic
plasticity covaries with genetic differentiation across
spatial gradients, while potentially illuminating can-
didate physiological pathways that underpin Cov.
For example, when exposed to sublethal saltwater

concentrations, freshwater organisms expend energy
processing osmotic stress that would otherwise be
used for growth or development. In the amphibian
dataset, significant CnGV in amphibian larval period
illuminated genetic differentiation in the physiolog-
ical pathways that counter the growth/development
costs that are otherwise induced by exposure to saltwater
(Albecker & McCoy, 2019). In the soapberry bug study, it
was assumed that local adaptation to different host plants
had occurred, but phenotypic differentiation expected
with divergence was lacking. Identifying significant
CnGYV confirmed that genetic differentiation had evolved
and provided an explanation for the lack of apparent
phenotypic differentiation (Cenzer, 2017). Although this
study focused on beak length, identifying CnGV in male
wing length suggests that selection has acted upon male
flying or dispersal ability, which could stimulate new re-
search into sexual differences in this species.

Spatial Cov,; may play an important role with re-
spect to theecological impacts of climate change (Arietta
& Skelly, 2021; Gienapp et al., 2008; Merild, 2012).
Theoretical studies exploring the role of adaptation and
plasticity in population responses to climate change
typically model temporally fluctuating environments
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without including a spatial component (Ashander et al.,
2016; Chevin & Hoffmann, 2017, Chevin et al., 2010;
Coulson et al., 2017, 2021; Lande, 2009; Scheiner et al.,
2017, 2019), and thus do not capture the potential influ-
ence of spatial Covg. Some of these studies modeled
intrinsic properties of the genotype-phenotype map

as covariance in pleiotropic effects on multiple traits
(Coulson et al., 2017, 2021; Via et al., 1995), but how
genetic (co)variance influences the pattern of spatial
Cov,g in a metapopulation, and thus metapopulation's
responses to climate change, has not been rigorously
addressed by theory and remains an important area of
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future research. The metric provided here can now be
combined with more traditional metrics (reviewed in
Table S3) to address this gap.

There is an urgent need to better understand how
genetic and environmental factors affect responses to
novel or changing environments. Because the magni-
tude and direction of spatial Covgp will likely affect
responses to climate change, incorporation of mea-
surements of spatial Covg, will enhance our capac-
ity to develop more robust predictions. For example,
colder populations are predicted to be maladapted to
a warmer climate and vulnerable to climate change
(Lotterhos et al., 2021; Sharma et al., 2011). Yet this
may not hold under countergradient variation scenar-
ios if the traits under selection in colder environments
continue to be adaptive in warmer environments.

However, as highlighted by the marine polychaeta ex-
ample, populations evolved to local optima that did
not yield universally higher fitness across environ-
ments (Levinton, 1983), which should temper optimis-
tic predictions and stimulate research that applies the
metric to understand how spatial Cov g will affect cli-
mate change outcomes.

If spatial Covgp can mitigate population decline,
there are likely ecological consequences for populations
exhibiting spatial Covg in changing environments.
As demonstrated by many taxa (e.g. Arendt & Wilson,
1999; Berven et al., 1979; Carroll et al., 2001; Trussell,
2000; Villeneuve et al., 2021), colder temperatures and
shorter growing seasons can induce the evolution of
faster growth rates (CnGV), with consequences for life
history traits such as size and age at maturity, fecundity,
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and developmental rates. Moreover, rapid growth under
warmer temperatures may be associated with increased
foraging rates and therefore stronger species interactions
with implications for community dynamics (Miller et al.,
2014; Trussell et al., 2003; Trussell & Schmitz, 2012) and
ecosystems (Schmitz et al., 2008, 2010). For example, the
indirect effects of predators on lower trophic levels can
be shaped by the environmental impacts on the forag-
ing rates of species in the middle of food chains (Schmitz
& Trussell, 2016; Trussell & Schmitz, 2012). Many mid-
trophic-level species are ectotherms that are sensitive to
temperature, and Covg, may influence how foraging
rates respond to warming. Because food web diversity
is dominated by middle trophic levels (60% of the total
species; Williams & Martinez, 2000), spatial Cov, in
foraging traits within these trophic levels may strongly
influence ecosystems. Thus, an important area of fu-
ture research will be to determine how spatial Cov
and environmental change interact to influence species
traits, species interactions and their cascading effects on
ecosystems.

CONCLUSIONS

Covg has advanced our understanding of range limits,
latitudinal compensation, Bergmann's rule, the effects of
evolution on ecological patterns in space, and how local
adaptation can evolve in the absence of phenotypic clines.
In the past, Cov,; has been inferred from visual patterns,
but with the new metric, we can now study Cov with
an increased level of statistical rigor to advance knowl-
edge of how Cov . evolves, the ecological consequences
of Covy, the relative influence of Covg vs. GXE on
eco-evolutionary dynamics, and how patterns of spatial
Cov, alter metapopulation responses to climate change.
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