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Studies by Task
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Abstract—Knowledge of human perception has long been incorporated into visualizations to enhance their quality and effectiveness.
The last decade, in particular, has shown an increase in perception-based visualization research studies. With all of this recent progress,
the visualization community lacks a comprehensive guide to contextualize their results. In this report, we provide a systematic and
comprehensive review of research studies on perception related to visualization. This survey reviews perception-focused visualization
studies since 1980 and summarizes their research developments focusing on low-level tasks, further breaking techniques down by visual
encoding and visualization type. In particular, we focus on how perception is used to evaluate the effectiveness of visualizations, to help
readers understand and apply the principles of perception of their visualization designs through a task-optimized approach. We
concluded our report with a summary of the weaknesses and open research questions in the area.

Index Terms—Visualization, perception, graphical perception, visual analytics tasks, evaluation, survey.

1 INTRODUCTION

ISUALIZATION provides valuable assistance in data
Vanalysis and decision-making tasks. The human per-
ceptual and cognitive systems are essential in the process
of visualization, influencing visual analysis activities, e.g.,
data exploration, data gathering, and data manipulation.
As an example, data exploration requires forming high-
level analysis goals, planning actions, and evaluating re-
sults effectively, all of which are cognitive activities. Before
higher-level cognitive processes analyze data, visualization
passes through the human perceptual system impacting the
visualization’s utility [1]. The design of the visualization
should make it as easy and unambiguous as possible to
understand the data. Ultimately, a better understanding
of human perception aids visualization design in both a
quantitative and qualitative manner [2].

Numerous fields of science have studied perception,
including perceptual psychology, visualization, and human-
computer interaction. Much of our understanding of per-
ception in visualization is rooted in an early work that
ranked the order of visual encodings based on their effec-
tiveness for visual judgment [3]. The findings were pivotal
in nature and a milestone in research, demonstrating that
the application and understanding of perception lead to
guidelines for an effective and expressive visual design.
Furthermore, numerous works on improving and evaluating
visualization’s effectiveness have utilized the knowledge
of attention, psychophysics, stimulus, judgment estimation,
and perceptual laws to confirm the importance of perception
throughout the process of generating a visualization [4], [5],
[6], [7], [8], [9], and we have observed a notable increase in
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the interest in perception-based visualization studies over
recent decades (see Fig. 1).

In this paper, we review perception-focused visualization
studies since 1980 and summarize their research develop-
ments. Our focus is primarily on information visualization—
areas such as scientific visualization, 3D perception, etc.,
have been surveyed elsewhere, e.g., [10]. Within this context,
we create a practical taxonomy of prior studies based upon
Amar et al.’s low-level task taxonomy [11], further breaking
techniques down by visual encoding and visualization type.
In particular, we focus on how perception is used to evaluate
the quality of visualizations, to help readers understand
and apply the principles of perception to their visualization
designs through a task-optimized approach.

We focus our survey on studies that measured the efficacy
of the visual design using graphical perception when the user
is performing various low-level tasks. Furthermore, since
perception and cognition are not entirely separable, we dis-
cuss some perceptual effects on cognitive performance, e.g.,
completion time, accuracy, and error rate. Unless otherwise
noted, throughout the remainder of this survey, we will use
the term perception to refer to graphical perception.

One of the key challenges with many graphical perception
studies is their limited scope and reproducibility [12], caused
in part by the difficulty of constructing human studies.
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Human studies are often resource-limited by the types and
sizes of data, variety of visualizations or visual encodings,
tasks being performed, and the size and diversity of subject
pools, to name a few. This all puts transferability of results
on tenuous footing. There is mounting evidence of the
perceptual efficacy for many tasks and visualization types,
but our survey provides a window into open research
questions in many other situations. One of our survey’s
goals is collecting and organizing findings in such a way
that the reader can make a judgment of the applicability of
results to their context.

1.1

In this report, we target students, practitioners, and re-
searchers, each of which will find value in different sections.
First, Sect. 2 establishes the structure of our taxonomy,
including a discussion of tasks, as well as secondary issues,
including the visual encoding and visualization types. Next,
Sect. 3 is the main survey of papers, divided by task, which
provides background and context to aspects of perception
that have been studied in visualization. Sect. 4 concludes
the work by discussing key points, limitations, and open
research questions. Finally, as an appendix, Sect. 5 provides
a brief introduction to some fundamentals of perception for
individuals looking to gain basic knowledge of the perceptual
principles studied on visualization designs.

An interactive list of the papers we have identified
in our survey is available at <https://usfdatavisualization.
github.io/ VisPerceptionSurvey/>.

Audience Guide for this Report

1.2 Related Works
Optimizing visualization design is a perennial topic.
Design Recommendations. Design choices and recom-
mendations form a critical element of effective visualization.
In his book [2], Colin Ware talked about human perception in
the context of information visualization design. He aimed at
broadly summarizing the design implications of research in
perception and suggested explicit design guidelines. In their
survey, Healey and Enns focused more specifically on the
role that attention and visual memory play in the perception
of visualizations [7]. The work highlights how what we
see impacts the viewer’s accuracy in information judgment.
Finally, VisGuides <https://visguides.org/> is a web-based
forum, which was established to collect practical knowledge
of visualization guidelines and feedback on designs [14].
Frameworks. In addition to general guidelines, several
researchers have focused on developing robust frameworks
for optimizing design. Rensink’s framework for reasoning
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Fig. 2: Reproduction of a plot of the number of publications
utilizing crowdsourcing experiments in recent years [13].
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about perceptions of visualization designs suggests using
techniques from vision science [15]. The extended-vision
theory asserts that a viewer and visualization system is a
single system, whereas the optimal-reduction thesis pos-
tulates an optimal visualization. The work focuses on a
few of the fundamental questions, e.g.: What is the best
way to measure how a given visualization works? Or, could we
determine if its design is optimal? Recent work by Elliott et
al. introduced a design space of experimental methods for
empirically investigating the perceptual processes involved
in viewing data visualizations to inform visualization design
guidelines [16]. The paper provides shared design space
and lexicon for facilitating empirical visualization research.
Researchers can use this design space to create innovative
studies and progress scientific understanding of design
choices and evaluations in visualization. In contrast, our
paper provides an overview of perception-based studies by
surveying papers that have evaluated the effectiveness of
various visualization under a variety of tasks.

Evaluation. When optimizing a design, measurements of
effectiveness are critical to understanding their impact. Stud-
ies often rely upon subject evaluations of visualizations. One
important innovation is the introduction of crowdsourcing
environments which are faster, less costly, and provide more
diverse subject pools than lab-based studies (Fig. 2). Borgo
et al. provided a detailed review of the use of crowdsourcing
for evaluation in visualization research [13]. In addition to
subject evaluations, there are many methods and metrics for
quantitatively evaluating the effectiveness of a visualization.
Behrisch et al. [17] gave an extensive audit of the state-of-art
in quality metrics for various visualization techniques, along
with details on a variety of implementation possibilities. The
papers we discuss throughout this survey use a combination
of both subject evaluations and quantitative measures to
formulate their conclusions.

1.3 Systematic Survey Literature

Perception, being a critical part of visualization, has a wide
range of applications and is included throughout different
visualization-related journals and conferences. In addition,
perception and its incorporation to visualization are derived
from psychology-related journals, such as the Journal of Vi-
sion, Attention, Perception, and Psychophysics, and Psycho-
nomic. With the survey’s objective and the vast availability
of perception-based papers, it was challenging to perform
a comprehensive literature search. Our taxonomy discusses
the application of perception to visualization. Therefore, we
focused on visualization journals and conferences.

We identified papers from major visualization journals
and conferences between 1980-2019 (see Table 1). We targeted
the ACM, IEEE, and EG/CGF libraries to collect the papers
using a combination of keywords, including: perception,
visualiz/sation, evaluation, design, modeling, visual perception,
attention, visual task, user study, graphical encoding, and effec-
tiveness. The “others” categories in Table 1 are highly cited,
pivotal works that were discovered during our search of
the primary sources. Using the PRISMA framework (see
<http:/ /www.prisma-statement.org/>) as a guide, we coded
the scope of the survey into categories to screen the literature.
We filtered the paper based on the study’s objective and
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TABLE 1: The number of surveyed papers by source.

Paper
Sources Count
IEEE Trans. on Visualization and Computer Graphics (TVCG)
IEEE Information Visualization (InfoVis) o4

IEEE Visual Analytics in Science and Technology (VAST)

IEEE Pacific Visualization Symposium (PacificVis)

ACM Conf. on Human Factors in Information Systems (CHI)
including Extended Abstracts 30

ACM Transaction of Graphics (TOG)

Computer Graphics Forum (CGF)

Eurographics (EG)

EG/IEEE VGTC Conference on Visualization (EuroVis) 17
including Short Papers

Others—Beyond Time and Errors on Novel Evaluation Meth-

ods for Visualization (BELIV); Journal of Vision; Perception

and Psychophysics; Science; Journal of the American Statistical 1

Association; International Conference on Theory and Appli-
cation of Diagram; Cartographics; Journal of Man-Machine
Studies; Behaviour and Information Technology; Others

characteristics. We could not include all filtering categories
due to space limitations, but some examples are below.
Examples for Inclusion.

e Experiments focused on graphical perception on
visual tasks, e.g., [18], or visual design, e.g., [9].

o Experiments focused on the graphical perception of
visualization methods, e.g., [19].

o Studies including discussion and suggestions of de-
sign guidelines, e.g., [20].

o Experiments on modeling the visualization to im-
prove inference-making, decision-making, or judg-
ment estimation, based on visual channel and graphi-
cal perception, e.g., [21], [22].

Examples for Exclusion.

e User-study comparing two or more models, e.g., [23].

o Empirical studies to check on quality metrics of a
system by user study, e.g., [24].

o Evaluations of the performance of visualization tools
or systems, e.g., [25].

o Empirical studies on graphics or user interfaces, not
the visualization, e.g., [26].

In addition to the interactive taxonomy at <https:
/ /usfdatavisualization.github.io/ VisPerceptionSurvey />, you
will find (1) a spreadsheet of surveyed papers, (2) the
systematic flow of paper collection and filtering, i.e., PRISMA,
(3) a paper categorization template, and (4) a summary table
with the count of studies.

2 STRUCTURE OF THE TAXONOMY

The method of visually encoding data is usually thought to be
the main component of visualization. However, the analysis
task is equally, if not more, important. Several evaluation
studies have suggested visualization effectiveness is task-
dependent [19], and a large body of research seeks to deter-
mine which data representations are perceptually optimal
for specific low-level tasks, e.g., [2], [3], [20], [27]. Seeing
that the vast majority of perceptual studies in visualization
had a specific low-level task as the main study objective or
a low-level task was used in the evaluation, we centered
on that as the main category of the taxonomy. Furthermore,
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most papers consider the low-level tasks in the context of
a limited subset of visual encodings and/or visualization
types. Therefore, each of our low-level task discussions is
further split by types of visual encoding and visualization.

2.1 Low-Level Tasks

We considered two existing task taxonomies as a frame-
work for our survey. We first considered Brehmer and
Munzner’s taxonomy of abstracted tasks, which is a higher-
level taxonomy, i.e., perceptual + cognitive [28]. Since our
focus was perception, it did not fit well. Despite perception
and cognition not being entirely separable, an ideal task
framework, would ensure as little cognition as possible
occurs within the task. Ultimately, Amar et al.’s low-level
task taxonomy [11] fit better, as the tasks they define require
less reasoning about the data. From there, we took its ten
low-level tasks: retrieve value, filter, compute a derived value,
find extremum, sort, determine range, characterize distribution,
find anomalies, cluster, and correlate, and we included one
derived task, compare, for a total of 11 low-level task groups.
Each paper was placed into one or more of these task groups.
We summarize the tasks using descriptions from prior work:

Retrieve Value (Sect. 3.1) — “Given a set of specific
cases, find attributes of those cases.” [11]

Filter (Sect. 3.2) — “Given some concrete conditions
on attribute values, find data cases satisfying those
conditions.” [11]
Compute Derived Value (Sect. 3.3) — “Given a set of
data cases, compute an aggregate numeric representation
of those data cases.” [11]

o Find Extremum (Sect. 3.4) — “Find data cases possess-
ing an extreme value of an attribute over its range within

. the data set.” [11]

Sort (Sect. 3.6) — “Given a set of data cases, rank them
according to some ordinal metric.” [11]

Determine Range (Sect. 3.5) — “Given a set of data
cases and an attribute of interest, find the span of values
within the set.” [11]

Find Anomalies (Sect. 3.7) — “Identify any anomalies
within a given set of data cases concerning a given
relationship or expectation, e.g., statistical outliers.” [11]
Characterize Distribution (Sect. 3.8) — “Given a set
of data cases and a quantitative attribute of interest,
characterize the distribution of that attribute’s values
over the set.” [11]

Cluster (Sect. 3.9) — “Given a set of data cases, find
clusters of similar attribute values.” [11]

Correlate (Sect. 3.10) — “Given a set of data cases and
two attributes, determine useful relationships between the
values of those attributes.” [11]

Compare (Sect. 3.11) — “Given a set of data cases,
compare any attributes within and between relations
of the given set of data cases for a given relationship
condition.” [11]

2.2 Visual Encoding

Visual encodings are properties used to encode data in a
visualization, including position, length, angle, area, volume,
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shading, direction, curvature, and color (see Fig. 3). The terms
graphical encoding, visual channel, visual encodings, and
visual properties are often interchanged, but generally, they
mean the same thing. Throughout the remainder of this
paper, we refer to them as visual encodings.

Effectiveness of Visual Encodings. Understanding the
role of perception in the choice of visual encodings is critical
to visualization designers. Cleveland and McGill’s study
evaluated the efficacy of visual encodings by measuring the
perceptual magnitude of judgments to determine their accu-
racy. Mackinlay produced the first comprehensive ranking of
visual encodings by data type, as shown in Fig. 4 [29]. The
ranking has been further validated and elucidated through
numerous follow-up studies, e.g., [9], [18], [20], [30], [31],
[32], [33], [34], [35], [36], many of which are further discussed
throughout our taxonomy.

Taxonomy on Visual Encodings. Early works in visual
encoding defined numerous individual visual channels, e.g.,
10 in [3] and 13 in [29]. Given our taxonomy already defines
11 task categories, enumerating all visual encoding types
would have resulted in far too many categories. Instead,
we combined visual encodings into roughly two main
categories: spatial encodings and color encodings, each
with two subcategories. Spatial encodings encompass visual
encodings having to do with position, size (i.e., length, area,
and volume), direction, and shape. Mackinlay, as well as
others, have shown that spatial encodings are particularly
effective for quantitative data [29]. Color is another important
visual encoding that includes properties of color such as
hue, saturation, luminance, and opacity. Stimulus-based psy-
chophysics experiments have demonstrated that color can be
used to represent ordering [37], category [38], quantity [39],
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Fig. 4: Reproduction of the Mackinlay visual encoding
rankings [29].

Spatial Position and Shape encodings are combined

because of their geometric relationship. The category

encompasses any encoding concerning the layout,
e.g., position, or shape, e.g., direction/angle or curvature.

Spatial Size encodings are those where the size
of objects, i.e., length, area, or volume, encode the
relevant data in the visualization.

Color Hue deals primarily with variations in color
(in the colloquial sense), usually dealing with cate-
gorical colors or colormaps.

Color Intensity encodings capture data by the
intensity of the color representation, e.g., in color
saturation, luminance, shading, or opacity, which
have combined due to their close inter-relatedness, e.g.,
changes in opacity, luminance, or saturation can all influence
the intensity of a color.

[ ]
3

2.3 Visualization

The final category of our taxonomy is visualization type.
Most papers studied standard visualization types, quite often
with a variation in their design. We extracted all visualization
types and combined related types into the following 10
categories and one “other” category:

Scatterplot Bar Chart Line Chart
Parallel Coordinates Map Network Heatmap
Pie Chart  Bubble Chart Text
3 SURVEY

One of our survey’s goals was collecting and framing studies
in a way that one could generate effective visual designs
considering graphical perception. However, our investigation
led us to experiments with limited scope, e.g., focus on a
small set of visual encodings, visualization types, limited
tasks, or limited data set size and variety. Furthermore, most
findings are never replicated or externally validated beyond
peer review, with only a few exceptions.

These limitations have two effects. First, when the scope
of work is limited, it puts transferability of findings on
unsteady ground. E.g., if the real-world conditions associated
with a data visualization do not match a contrived scenario,
often necessary for studying graphical perception, will the
findings be relevant? The second limitation is that finding
common links between various studies is quite often difficult.
E.g., if two studies using different sized data and slightly dif-
ferent tasks have contradictory results, relating the findings
in an actionable way is difficult at best. As such, our summary
of works in graphical perception tries to highlight these
differences while leaving room for the reader to interpret
real-world consequences for their particular situation.
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3.1 Retrieve Value

The retrieve value task requires identifying the
data or attributes that satisfy a given set of
specific criteria. In the literature, retrieve value
tasks are often combined with other tasks, e.g.,
computing a derived value, comparison, sort, etc. We did
identify several works that studied the retrieve value task
individually with various visualization methods.

3.1.1 Visual Encoding

Spatial Position, Shape, & Size. Visual factors, such
as position along common and unaligned scales,
have been observed to produce more accurate judg-
ments than length, direction, and angle on simple
tasks [3], [29] (see Fig. 4 for the ranking of other
encodings). However, a recent study demonstrated
in position-based visualizations, e.g., scatterplots, encoding
additional attributes with size required more time for retriev-
ing values than alternatively encoding with color [40]. On
the other hand, subjects” accuracy improved with size. The
findings further explored the symmetry between the size and
color as the visual encoding for quantitative information, and
they suggested that marks with varied sizes might interfere
with decoding the quantity value in position channels. The
results further indicated that chart orientation influenced
performance by comparing x- and y-faceted charts, with
y-faceted charts performing 0.9 times faster. Nevertheless,
our understanding of how variations in the visualization
design potentially influence user performance on this task is
evolving.
Color Hue. Several studies have evaluated people’s
ability to identify values using color-coded visualiza-
tions. In one instance, the performance in identifying
or determining value in visualization was shown to be
affected by color and other visual features, such as motion
or layout [5]. We have identified several studies focused
on how color can be applied such that finding targets or
reading a value becomes less strenuous. For example, the
issue of color vision deficiency, i.e., colorblindness, was
studied in automated colormap design [41]. In the study,
colormaps were created starting with a single seed color
that was used to generate color ramps that mimic designer
practices. Their experiments measured the viewer’s potential
to accurately identify or read a value in the given color-
coded scatterplot, heatmap, or choropleth maps. Ultimately,
the performance of their automated system was as good
as human-designer-specified color ramps [42]. Reasonable
precaution is necessary to improve accessibility, i.e., for
colorblind, low vision, or other vision impairments, to make
the task less challenging and provide an unbiased user
response.
Color Intensity. One study showed that lightness in
the data point symbol could be an impacting factor
for visual tasks, such as locating and identifying
values in sparse scatterplots on a white background [43].
This experiment identified how lightness could be modeled
as a combination of two opposite power functions and used
to determine discriminability. Related to lightness, opacity
has been used as a constructive factor in a scatterplot design
to mitigate overdraw in tasks, such as to read and identify
values for higher-level tasks [44].

3.1.2 Visualizations

A recent study by Saket et al. [18] comparing five visual-
ization types—tabular visualization, scatterplots, bar charts,
line charts, and pie chart—evaluated the efficacy of these
visualizations with small data for all ten of Amar et al.’s
tasks [11], in terms of accuracy, time, and user preference
(see Fig. 5). For the retrieve value task, they found tabular
visualization outperformed all others for accuracy, time, and
preference, bar and pie charts performed well in terms
of accuracy and time, and scatterplots performed well
only in terms of accuracy. A similar comparative study of
three multidimensional visualizations—parallel coordinates,
scatterplot matrix, and tabular visualization—studied their
user performance on analytical and decision-making tasks.
For the retrieve value task, parallel coordinates had the
highest accuracy. The evaluation also demonstrated that
tabular visualization was familiar, accurate, and time-efficient
for the retrieve value task [45]. In both studies, tabular
visualizations allowed subjects to reach decisions faster with
better accuracy levels than the other visualizations because
of their familiarity with tables.
Scatterplot. A scatterplot is one of the most effective
forms of visualization, which allows users to identify,
read, or retrieve a value based on different visual
encodings. For example, scatterplots colored with additional
categorical data were found to be highly effective for compar-
ing individual data and were preferred over dot plots [40].
Bar chart. While bar charts represent information
in a way that helps the user identify and read
quantitative data easily, the design decisions used
play an essential role in user performance. In one study,
pictorial bar charts were found to reduce the user perfor-
mance on retrieving a value task but not beyond the effect
already observed based upon their shape [46]. A recent
study focusing on a “reading a value” task concluded that
there is a need for direct encoding of absolute values and
their relationship in bar charts or dot plots [47]. Ultimately,
while embellishments are used to improve aesthetics and
memorability, they can affect user performance on the task.
Parallel Coordinates. Parallel coordinates are often
disparaged as being challenging to use and under-
stand for first-time users. However, one study used
the retrieving a value task to show otherwise—the experi-
ment assessed the task using eye-tracking, and it indicated
that first-time users quickly learned to use them [48]. The
study plotted eight vehicle attributes as axes for 406 cars
and used eye-tracking to measure the user’s performance on
identifying the values in the data.
Text. In visualizations where text is involved, visual
complexity affects a user’s ability to grasp aspects
of the overall structure of the visual display. Op-
timizing the use of typography in visualizations, e.g., the
location of the labeling and parameters including typeface,
font size, font weight, color, orientation, intensity (boldness),
spacing, case, border, background, underline, and shadow,
determines the legibility of text and, thus, influences the
understandability of the visualization [49]. One experiment
indicated the biases caused by word length, height, and
width could impact user accuracy, and the findings provide
practical guidelines for improving the user experience [50].
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Fig. 5: A recent study evaluated a pairwise relation between visualization types across tasks and performance metrics on
small datasets. Arrows show that the source is significantly better than the target. Image reproduced with permission [19].

Therefore, the design of text in a visualization should
consider the word typography for any potential biases.

Map. We use larger and higher resolution displays to

increase the scalability of visualizations, particularly

when data is small, such as in maps. By sheer size,
such displays could make it more difficult to attend to
the visualization. A perceptual scalability study on maps
investigated user performance focusing on retrieving or
reading a value task in a larger display [51]. They found
that the larger display did nof result in a time increase or
accuracy decrease.

3.1.3 Summary

In summary, we identified several studies using the retrieve
value task scattered over various visualization types. As
one would expect, user performance varies with the choice
of visualization and the visualization design. Prior work
indicates that bar charts should be the first choice when
accuracy is important. Thoughtful use of embellishments can
improve aesthetics and memorability, but they can also affect
user performance on the task.

3.2 Filter

In our search of the literature, filtering essentially

came down to two types of tasks. The first, what

we would typically call filtering, encompassed

eliminating subsets of data used in the visualiza-
tion. The second was a search task, which focused on finding
a target in the visualization.

3.2.1 Visual Encoding

Spatial Position, Shape, & Size. Popout, a pre-

attentive effect caused by variations in certain en-

codings, makes it easy to draw the user’s attention

to the critical elements of the visualization. A study

examined and demonstrated the efficacy of popout

in target identification in a group of symbols in a scat-
terplot using different visual channels, including color, shape,
luminance, flashing, motion, and size [6]. On three metrics
of performance—perceived success, visibility, and accuracy—
shape required high effort with a low performance, whereas
motion showed little effort and a high level of performance.
The remaining four channels showed a definite increase in
perceived visibility and accuracy across intensity.

A similar experiment investigated searching for a target
in a grid matrix using three visual channels—mark size,
set size, and color—suggested design guidelines based on
grouping, quantity set, and size of visual symbols [31]. While
searching for an item was faster when colors were spatially
grouped in the grid, the number of symbols had little effect
on search time. At the same time, if the number of symbols
increased, the performance slowed for random data displays.

Color Hue. Color encoding optimization can in-

crease the effectiveness of categorical data visual-

ization. While categorical colors are easily distin-
guishable in large color bars or individual plots, when they
are inserted into maps or other plots with varying sizes,
the variation reduces the visibility of categorical differences.
Class visibility is an important measure of how color and
spatial distribution of each class affect its perceptual intensity
to the human visual system [52].
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layouts. Image reproduced with permission [57].

3.2.2 Visualizations

Filtering task performance highlights the need to explicitly
and directly encode numeric differences between data val-
ues [47]. In an experiment with image visualization, finding
an image within a set of images showed that both latency and
task complexity play a significant role in search behavior [53].
In Saket et al.’s study on small data [19], they found tabular
visualizations and bar charts performed well in terms of
accuracy, time, and preference on filtering tasks (see Fig. 5).
Parallel Coordinates. In a decade-old experiment,
a filtering task was used to assess the usability of
parallel coordinates. The performance of the filtering
task using eye-tracking showed that users had high fixation
time in order to confirm their interpretation of the results [48].
The study showed that the effect of latency in an interactive
visual system is more gradual than binary.
Map. Maps are used to represent structures, pat-
terns, and relations in spatial data. Researchers
have worked on a variety of map types, e.g., choro-
pleth [54], cartogram [55], geographical map [52], typo-
graphic maps [56], etc., to evaluate the human perception
in identifying the pattern and structures, and optimize the
design process based on the encoding method. As pointed
out earlier, class visibility has been studied on maps and
shown how color and the spatial distribution can influence
perceptual intensity [52]. Filter and search tasks on maps
are affected by visual encoding choices, as well as the
physical construction of maps. Cartograms were evaluated
on the four classes—contiguous, non-contiguous, rectangular,
and Dorling—using a qualitative performance analysis [55].
Cartograms that preserve the relative position of the regions
in the geographical maps, facilitating faster search, while
Dorling and rectangular maps had better accuracy.
Text. The optimal setting of typography parameters
determines the legibility of text, thus, influences
the understandability of visualizations. In a word
cloud study focused on different layout and encodings
effects, font size and color performed well compared to
encodings using additional marks, such as bars and circles
on keywords, in a task of searching for a keyword [57]
(see Fig. 6). Furthermore, spatial and column layout of
the keywords similarly outperformed the row version of
keyword arrangement on keyword searches. A similar study
on text confirmed the prior results by showing how searching
for target words could be influenced by font sizes [50].

7

Another study evaluated the effects of four types of
layouts, and the results showed that perhaps unsurprisingly,
alphabetic ordering was faster for searching for a keyword,
order and font size were found to have no impact on
searching for a tag belonging to an assigned topic, and words
with bigger fonts were more likely to be recalled [58]. This
confirmed a prior study that investigated word recall based
on classic word clouds with unordered layouts and font
size encoding frequency. In a study, participants recalled the
words with larger font sizes more often. Their guidelines
considered optimizations based on typography (i.e., font
weight, size, and color) and word placement (i.e., sorting,
clustering, and spatial layout) [59]. In addition to layout and
font size, good highlighting mechanisms facilitate search
and comparison in textual views or labels. Another study
empirically investigated the effective use of highlighting
techniques for visualization applications for text data and
suggested design guidelines for the effectiveness of nine
web-friendly text highlighting techniques [49]. In summary,
search tasks on the text and word clouds benefit from the
thoughtful selection of size, layout, ordering, and highlight.

3.2.3 Summary

In summary, the filter task is one in which user perfor-
mance varies based on the design of visualization, choice
of visualization, and related set of tasks being performed.
Tabular visualizations and bar charts perform well in terms
of accuracy, time, and preference. Searching for a keyword
in text or a value in a scatterplot can benefit from utilizing
encodings font/symbol size and color, as well as alphabetic
ordering for text.

3.3 Compute Derived Value

Given a set of data, computing derived values is

similar to calculating an aggregate of that data.

Many visualization tasks require users to create

an aggregated abstraction or statistical summary,
which are often referred to as visual aggregations.

3.3.1 Visual Encoding

Spatial Position, Shape, & Size. Cleveland and

McGill’s seminal work on visual perception utilized

the task of computing derived values from the

visual representation [3]. In their results, position

and length were among the visual encodings with

the highest accuracy in quantitative judgment. That
study was replicated on a crowdsourced platform using
proportional judgment tasks to confirm the effectiveness
rankings of visual encoding [33]. A recent study, concentrat-
ing on various channels in scatterplots, suggested point size
encoding performs well for summary tasks on quantitative
encoding [40].

Another experimental study investigated the estimation
of average position in line and bar charts [60]. Even though
positions are considered a precise form of data encoding,
reports of average positions were biased because of under-
estimation or overestimation of bar positions due to the
introduction of a bias called perceptual pull—position esti-
mates for a target data were “pulled” toward the irrelevant
data in the series.
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Color Hue & Intensity. Quite often, colormaps
|:| are applied to data, and aggregation tasks are per-

formed. Studies have demonstrated the perception
|:| of continuous colormaps is affected by colormap

characteristics and spatial frequency. Estimating the
values based on colormaps in a continuous quantitative
colormap showed no relation between colormaps and spatial
frequency, but with increased spatial complexity, estimation
error increases [35]. The important point is that spatial
frequency impacts the effectiveness of color encoding, but
the true impact is task-dependent.

Similarly, another study assessed the efficacy of col-
ormaps for encoding scalar information using binary-choice
experiments [61]. Relative distance judgments investigated
accessing color similarity between the source and target
using reference color. A combination of perceptually uniform
color space and color naming more accurately predicted user
performance than either alone, but the accuracy was low in
both cases.

A study, which used color as an encoding method on time-
series data was performed to identify the average in data, and
it demonstrated that color-coding techniques showed better
average judgments [62]. Symbols are used in a scatterplot to
encode values, and lightness is one of the dominant factors of
color encoding. A model-based study on computing derived
values compared two different types of scatterplots—with a
circle as symbols and with spots as a symbol—with varying
levels of lightness [63]. The scatterplot with a circle as a
symbol performed better in terms of error rate. Gleicher et
al.’s large-scale crowdsourced study on identifying aggregate
relative judgment to read and the average value in the multi-
class scatterplot was another form of computing derived
values on various groups of objects [64].

Other. Factors, such as affective priming, social informa-
tion, or individual user characteristics, directly impact the
task performance. Accurate visual judgment is essential to
performing the summarization, estimation, or other related
computations of a derived value. Harrison et al. performed
a series of experiments that showed users articles from the
New York Times, followed by a judgment task [21]. The
evidence from the experiment showed that affective priming
influences the user’s visual judgment accuracy. In similar
experiments, social information was shown to influence the
users on summarization tasks, such as proportion judgment
and linear estimation [65]. Other studies have evaluated
how individual user characteristics, in particular, working
memory (WM) (low, average, or medium), affected the user’s
performance on visual tasks, such as counting values [66].
The experiment evaluated the task by comparing charts with
vertical and horizontal layouts. Users with low visual WM
performed faster with a horizontal layout.

3.3.2 Visualization

When comparing the overall efficacy of different visualiza-
tion methods for computing derived values, Saket et al.
showed that for small data sizes: in terms of accuracy table,
bar chart, pie chart, and scatterplots were best, in that order;
in terms of completion time table and pie chart were best;
and finally in terms of user preference, table, pie chart, and
bar chart were best [19] (see Fig. 5).
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Bar Chart. People prefer linear bar charts because of

their familiarity. A comparison-based study between

using radial and linear bar charts to visualize daily
patterns suggested that 24-hour linear bar charts are more
accurate and efficient for summarization tasks [67]. Along
with the layout of bars in a bar chart, the design of the bars
themselves also affects user performance. In a recent study
on comparison tasks on various types of bar charts, two types
of compute a derived value task were studied to identify the
effects of bar variants on tasks [68]. They found chart design
affects the task completion time, and data conditions also
influenced the completion time and accuracy.

3D bar graphs are considered to be difficult to understand
and generally bad for performing visual analysis tasks. In
an experiment where the performance of relative magnitude
estimation on pie charts and bar charts with and without 3D
was evaluated, the task performance was shown to be better
in 2D than 3D [69].

As better design improves performance, visual embel-
lishments are often used to improve aesthetics. Embellish-
ments were evaluated in bar charts on relative magnitude
estimations, which confirmed that common embellishments
significantly impact the task [70]. In another follow-up study,
pictorial charts reduced the user’s performance on relative
judgments or computing a retrieved value task, but not
beyond the effect already observed for their shape [46].

Pie Chart. In an evaluation of pie and donut charts

on relative magnitude estimation performance, the

baseline donut chart was observed to be as good as
the baseline pie chart. Furthermore, user performance on
the arc length chart was similar to an area chart, angle pie
chart, and angle donut chart [71]. In a similar study, where
judgment error in pie chart variations was evaluated, variants
of the pie charts, such as a chart with a larger slice, exploded
pie, elliptical pie, and square pie caused more significant
judgment errors than regular pie charts [72].

Maps. A study compared different types of car-

tograms on tasks, such as detecting change and

summarizing, found that contiguous cartograms per-
formed better at detecting change, with the lowest error rate
and completion time. For the summarize task, contiguous
and Dorling cartograms had lower completion times, while
the error rate in rectangular cartograms was highest among
all four types of map visualization [55].

3.3.3 Summary

In summary, computing derived values is one of the more
basic low-level tasks, generally studied as a standalone task.
User performance for this task varies greatly based upon
visualization and encoding type. Though, the majority of the
studies considered only bar charts and line charts. Overall,
prior studies have indicated that bar charts, line charts,
pie charts, and scatterplots can all be effectively used for
summary-based task visualizations.

3.4 Find Extremum

e This task focuses on identifying data cases that

o possess an extreme value of an attribute over its

range within the dataset. In this context, the find

. extremum values task can encompass finding
both global and local maxima or minima in data.
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3.4.1

Position encoded plots, e.g., scatterplots and dot plots, are
often used to identify quantitative values [3]. Further, in a
study of the effectiveness of visual encodings, the size of
marks was more effective than color for quantitative values
involving finding or identifying the extremum values [40].

Visual Encoding

3.4.2 Visualization

For the find extremum task, Saket et al. found all five
methods—tabular visualization, scatterplots, bar charts, pie
charts, and line charts—performed well in terms of accuracy
on small data. Bar charts, line charts, and scatterplots
additionally performed well in terms of time. Finally, bar
charts performed best in terms of user preference [19] (see
Fig. 5). Another recent work compared the performance
of design variation in three visualizations—bar charts, line
charts, and pie charts—on a task of finding the maximum [73].
The evaluation confirmed the prior hypothesis of better
performance in overlaid design versus small multiples and
suggested additional new performance improvements.
Bar Chart. Bar charts are often used to read the
minimum/maximum quantitative values in data,
and recent studies have suggested have indicated
that bar design in bar charts influences the user’s perfor-
mance on identifying those values [68]. In another example,
a comparison between radial charts and linear bar charts
investigated the visualization of 24-hours time. Users had
higher accuracy for identifying the maximum value in linear
bar charts compared to radial charts [67]. A series of studies
were performed for determining the maximum value of delta
and mean in bar charts, slope, and donut chart for three
variations of their design—small multiples, overlaid, and
mirrored [73], [74]. Animation in the design made identifying
maximum delta value particularly salient, but the effect did
not carry over when the change was large. The identification
of maximum mean value held high accuracy for the bar
charts with mirrored and stacked bar arrangements.
Line Chart. Line charts are used to visualize time-
series data because of the inherent potential of
showing the trend. Evaluation of variation in line
graph design demonstrates user performance of the finding
minimum or maximum values also depends on the design of
the visual representation [75]. A modified form of line charts
using position encoding, called a “stock chart,” ! performed
significantly better on finding a minimum, whereas the
composite line chart? performed well on finding a maximum.
However, line charts using a colorfield had the highest
accuracy on this task.
Network and Map. A comparison study between
node-link graphs and matrix-based representation
reported that the task of “finding extremum,” in
the form of finding the most connected node, had
the highest accuracy and lower completion time
for a matrix representation [76]. The results were
particularly strong as the size of the graph became large, or
the link density increased.

1. The modified stock chart is a line chart with a layering of moving
average over the original series to supplement summary judgments [75].

2. A composite line chart is a line chart layered over a bar chart
representing averages of discrete subregions [75].
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The task of identifying the highest value of an attribute
in maps, in the form of top-k identification, a standard
cartogram has the highest accuracy when compared to other
types of cartograms, ie., rectangular, non-continuous, or
Dorling cartograms [55].

3.4.3 Summary

In summary, finding extremum values is a low-level task
mostly studied on bar charts and line charts. Generally
speaking, line charts can be used to represent the time-series
data when finding an extremum value, while scatterplots
and bar charts can be used for quantitative values encoded
by position or length.

3.5 Determine Range

A determine range analysis task has users finding
the span of values in a given data for an attribute
of interest. The determine range task is another
task that has received limited attention.

3.5.1

Saket et al.’s evaluation on small data found that for the
task of determining a range of values, bar charts had
high accuracy, whereas scatterplot performed better on
completion time and user preference [19] (see Fig. 5). In
an evaluation of multidimensional visualizations, where the
task of finding range is evaluated on three user performance
metrics of accuracy, completion time, and user satisfaction,
parallel coordinates and tabular visualization were found
to be effective in terms of accuracy and completion time,
but parallel coordinates were least preferred by users [45].
However, this result is only applicable to this limited context.
Bar Chart. A variety of bar charts arrangements
designs were investigated on a maximum range
task [74]. A stacked arrangement of bar charts gave
the highest visual comparison accuracy, while superimposed
charts gave the lowest.
Line Chart. For identifying the range of values on
time-series data visualizations, line charts based
on position encoding had higher accuracy over a
modified stock chart, box plot, and a composite line graph,
respectively [75]. Though these are variations of the same
visualization type, i.e., a line chart, their design variations
significantly impact their efficacy.

Visualization

3.5.2 Summary

In summary, determining a range of values has many unstud-
ied aspects. For example, we did not find any studies which
directly investigate the performance on visual encodings.
That said, the limited depth and breadth still indicate that
scatterplots are preferred when requiring faster performance,
bar charts should be chosen when accuracy is needed, and
parallel coordinates work well for multidimensional data.

3.6 Sort

Sorting generally implies ranking the given set
of data according to some ordinal attribute. Sort-
ing, as a low-level task, has not received much
attention.
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3.6.1 Visualization

Saket et al. also studied ordering tasks, which are synony-
mous with sorting [19] (see Fig. 5). The bar chart stood out
in terms of accuracy, timely completion, and user preference.
Pie chart, scatterplot, and tabular visualization were next best
in terms of accuracy, whereas the line chart and scatterplot
were next best for the time completion metric.
Bar Chart. Different types of ranked-list visualiza-
tions, such as scrolled bar charts, wrapped bars,
piled bars, packed bars, treemaps, and Zvinca plots®,
were evaluated in a study that suggested wrapped bars
are best for visualizing ranked lists as they provide a
simple, compact, and interaction friendly visualization, while
treemaps reported the highest accuracy despite the use of
area when length is generally a preferable encoding [78].
Parallel Coordinates. An improved form of parallel
coordinates, called the progressive parallel coordi-
nates, was studied to understand how data order can
mitigate scalability concerns [79]. The application of level-of-
detail and randomly accessing individual values were based
on an ordering activity.
Text. Sorting a keyword summary alphabetically
reduces the time to find a word, and as such, it makes
ordered layouts (e.g., column layouts) more effective
than unordered layouts (e.g., spatial arrangements) [80]. It
was shown that a simple ordering of text data could be
much more effective than font size encodings, most notably
in searching and retention. In other cases, words can be
sorted alphabetically, by frequency, or by a predetermined
algorithm. In an experiment on word cloud effectiveness
suggesting guidelines for construction, the authors evaluated
impression formation and memory by varying font size
and layout (e.g., alphabetical sorting, frequency sorting) of
words [59]. One important finding was that a list ordered
by frequency might provide a more accurate impression as
compared to other layouts.

Other. A study focused on user characteristics showed
that user performance on sorting values depended upon
participants’” working memory (WM) (low, average, and
medium) [66]. Due to individual differences in perceptual
judgments, users with lower verbal WM were slower than
others for the sorting task, and users with low visual WM
required more time for the task than users with average
visual WM. Users with higher cognitive processing speed
were also more effective at deriving facts and insights from a
visualization than others.

In another study on perceptual kernels—a matrix of ag-
gregated pairwise subjective measures of judged similarity—
participants were asked to rank the data categories from
least to most similar to a target class [30]. This experiment
estimated perceptual kernels for visual encoding variables
of shape, size, color, and combinations. Based on the judged
similarities using Likert ratings among visual variables,
findings can be applied to improve visualization design
through automatic palette optimization.

3.6.2 Summary

In summary, the sorting, which has many similarities to find-
ing extremum and determining range, has not been studied

3. A Zvinca plot is a layered plot where points replace bars, see [77].
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extensively. Nevertheless, studies indicate that bar charts
and text-based visualizations are the preferred techniques
for quantitative and textual data, respectively.

3.7 Find Anomalies

The find anomalies task is a form of visual
aggregation task, generally involving identifying
any outliers or unexpected cases within a given
set of data.

3.7.1 Visual Encoding

Spatial Size. With the focus on investigating symbol
size discrimination in scatterplots, one study de-
veloped a method to pick sizes that are effective
for counting outliers and making the judgment as easy
as possible [81]. The results show that size perception can
be described by the Power law transformation to yield an
optimal scale for symbol size discrimination.
Color Hue. Color, motion, and layout (random or
grouped) affect the users” attention capacity, and the
same has been evaluated on identifying outliers [5].
Search time for an outlier in a matrix form of symbols was
shown to vary with color, motion, and layout. Further, color
grouped and motion grouped had the best response time,
whereas motion random cases were worst in response time.
The color group also had the highest identification accuracy.
Color Intensity. Another discriminability study
aimed to select luminance levels such that analytical
tasks, including counting outliers, were as easy
as possible [43]. The performance limit for the task was
approached where high-perceived contrast was observed
for the data symbols. Additional findings stated that with
clustering/groupings of the same data symbols, the task
might become easy for low contrast sets.

3.7.2 Visualization

Saket et al. found that for finding anomalies, scatterplots and
bar charts performed best in terms of accuracy, time, and
user preference [19] (see Fig. 5).

Line chart. Identification of outliers in time-series

data using line charts and their variants is complex

and reported low user response accuracy [75]. Basic
line chart, modified stock chart, composite line chart, and
color-field have the same level of accuracy, whereas event
stripping outperformed all of these visualizations. The
accuracy was low in this visualization for outlier tasks
because data spread was confounding as an outlier and
vice-versa. Essentially, when data values that would increase
or decrease in the opposite direction were focused on for
outlier behavior [82].

Other. A recent study on three types of visualization—
density plot, histogram, and dot plot—pointed out the outlier
detection task as a part of data quality issues [83]. Participants
were better able to identify outliers as the flaws in data,
but there was no single visualization suggested, which was
significantly better among the three.

In an algorithm-based outlier detection, the authors
studied outliers and anomalies on box plots and letter-value-
box plots [84]. These types of approaches can be paired
with visualizations to help analysts explore anomalous data
features, especially multidimensional outliers.
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3.7.3 Summary

In summary, finding anomalies is defined by the need to
identify targets that are different from others in the given set,
which varies based upon the visual features, e.g., position,
size, orientation, color, and luminance [85]. Scatterplots have
been most heavily studied for this task. They are efficient
in identifying outliers and detect anomalies in the data.
Additionally, line charts easily represent any abnormal or
outliers behavior in time-series data.

3.8 Characterize Distribution

This task requires that for a given set of data and
a quantitative attribute of interest, the distribu-
tion of that data should be characterized over
that attribute’s value.

3.8.1

Characterizing distribution is another visual abstraction
task, with a specific focus on pattern or trend recognition.
The data can be encoded using several visual features, e.g.,
position, size, orientation, color, and luminance, which can
be crucial in identifying the distribution [85]. For example,
Gapminder uses size, position, and color to reveal patterns
in global demographics [86], and weather maps use color
and orientation to visualize information about wind speed,
temperature, and other meteorological data [87].

Color Hue. Colormap design in continuous quanti-

tative maps was used to evaluate the perception of

patterns [35]. There was a negative main effect of
spatial frequency on pattern perception. Further, the use of
low color at low spatial frequency was unlikely to improve
pattern perception as compared to a plain grayscale ramp.

Visual Encoding

3.8.2 Visualization

In Saket et al.’s study, the bar chart was shown to have
high accuracy and to be the user preferred method for
characterizing distribution tasks, but the scatterplot had
better completion time [19] (see Fig. 5). The line chart was
next most accurate after the bar chart and scatterplot.

Scatterplot. The scatterplot uses position encoding

for the data, and users can identify or detect a

data pattern or distribution easily. Varying densities
and gaps between data points were shown to influence
the user’s perception of the distribution or pattern of data
points [88]. Further, multiple studies demonstrated the task
of characterizing a distribution is influenced by encodings,
specifically symbol size and lightness, in a scatterplot [63],
[81].

With scagnostics, density is assumed to be a property
that shows the concentration of points, which is directly
influenced by the distribution of points [89]. This observation
led the way to investigating how people interpret trends in
a scatterplot and was studied using a sensitivity model.
Visual augmentation of scatterplots introduces sensitivity
information, which was used to study how people interpret
trends in scatterplots [90]. Orientation cues provided by the
flow lines give an idea of the local data. Sensitivity or local
trends helped in identifying the type of relationship between
two variables.
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Line chart. Variants of the line chart were evaluated
on characterizing the distribution of data, also called
the spread [75]. When encodings are position-based,
the box plot performed with the highest accuracy, but in
the case of color encoding, event stripping performed better.
Conventional line charts stood third in the ordering after
bar charts and scatterplots for pattern identification. While
line charts are usually considered to be the best choice for
time series visualization, scatterplots are more effective for
showing trends. A study was conducted to merge the two,
automatically selecting the right representation for trend
exploration in time series data [91]. The choice was affected
by the amount of noise, outliers in the data, and aspect ratio.
When the noise was small, a line chart is preferred, whereas
a scatterplot was preferred with the larger noise.
Parallel Coordinates. A new technique was com-
bined with parallel coordinate, called orientation-
enhanced parallel coordinates, to overcome the clut-
ter due to overplotting for characterizing the underlying data
distribution [92]. This method improves outlier discernibility
by visually enhancing parts of each parallel coordinates
polyline through its slope. Interactive evaluation verified the
feature of the discernibility of information in complex data.
Maps. Cartograms are popular for geo-referenced
data visualizations used to illustrated patterns and
trends in the map. Major types of cartograms (e.g.,
contiguous, non-contiguous, rectangular, Dorling, etc.) were
evaluated for comparing trends and analyzed on quantitative
performance analysis in terms of completion time and
error and subjective preferences [55]. Dorling cartograms
performed best on the task involving comparing trends,
whereas rectangular performed worst.

Other. Viewers accurately estimate trends in many stan-
dard visualizations of bi-variate data. However, visual
features, e.g., bias within a bar of visualization, and data
features, e.g., outliers, can result in visual estimates that
systematically diverge from standard least-squares regression
models [93]. Designers should be aware of the distinction
between regression by eye and explicit statistical information.

3.8.3 Summary

Scatterplots and line charts have received the majority of
attention for the task of characterizing the data distribu-
tion. Scatterplots support faster and easier identification of
distributions and patterns in data, followed by line charts.
A line chart should still be used when the patterns or
trends are from time-varying data. Pattern perception on
colormaps or chloropleth maps should be sure not to use
low color combined with lower spatial frequency. Otherwise,
performance will suffer.

3.9 Cluster

Clustering tasks are focused on identifying a

similar attribute in a given set of data. A de-

sign factor survey study on information visual-

ization defines clustering as a high-level data
characterization—"“the ability to identify groups of similar
items” [94]. Clustering and segmentation of data points
in a given dataset reveal characteristics of data and allow
visualization designers and practitioners to explore more
about the data [95].
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3.9.1 Visual Encoding

Spatial Position, Shape, & Size. Symbol or mark

size is an influencing visual encoding that affects

the density and concentration of point clustering.

Additionally, symbol size has a direct influence on

identifying the clusters in data, and studies have

demonstrated that their discriminability is task-
dependent. Li et al. demonstrated the effect of mark size
and lightness perception on viewers’ ability in multi-class
scatterplots for clustering-based tasks [43], [81]. Separability
between the symbols or groups of symbols is an important
factor in identifying clusters based on the encoding marks.
For example, mark shape significantly affects the perception
of both size and color, and separability among the three
encodings function asymmetrically [96].

Since concentrations of density influence cluster percep-
tion, as the size of data points increases, so does the con-
centration and density. Sadahiro developed a mathematical
model to represent cluster perception in point distributions
based on proximity, concentration, and density change, and
he suggested perception was significantly influenced by the
concentration and density change [97]. Varying densities and
gaps between groups of points influence the pattern of data
points, potentially forming clusters of points [88]. A study
focusing on the perceptual optimization of scatterplot design
studied standard design parameters, including mark size,
opacity, and aspect ratio, and it demonstrated that effective
choices of the variables enhanced class separation [98].

Color Hue. Color is another important visual en-

coding of a scatterplot that influences the visual

task of segmentation or clustering and grouping,
but how we measure the color difference perception varies
inversely with mark diameter [9] (see Fig. 7). Furthermore,
the shape of the symbol significantly affects how well we
perceive the color difference [96]. Hence, an optimized
choice of colors aids users in efficiently understanding
separability in multi-class scatterplots. They used a method
of color assignment to design scatterplots that optimized
class separability perception taking into account density-
related factors, such as spatial relationship, density, degree
of overlaps between points and cluster, and background
color [99], which could not be achieved by the default
colormapping.

Color Intensity. Reducing mark opacity can alleviate

overplotting to aid various visual analytics tasks, e.g.,

cluster perception or identification [95], [100], [101]
while preserving the spatial information. Different opacity
levels aid in enhancing class separation—while low opacity
benefits density estimation for extensive data, it also makes
locating outliers more difficult [98]. Of course, these solutions
have their limits, e.g., when opacity is below available
precision, or points are their smallest possible size [102].

Bias. Priming and anchoring effect distorts the user’s
decision-making process. Deciding the separability of the
two clusters depends not only on how far they are apart but
also on previously seen stimuli. Valdez et al. elaborated on
how repeated exposure to a visualization impacts our inter-
pretation [103]. While the authors presented the biases caused
by these effects, at the same time, the results came with the
caveat that judgments were not normally distributed, which
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further indicating an overestimation of the effect size. The
effects can be accidentally caused by chromostereopsis [104]
and should be studied on monochrome colors.

3.9.2 Visualization

Saket et al.’s study found that, with small data, bar charts
and pie charts outperformed tables, scatterplots, and line
charts in clustering tasks [19] (see Fig. 5). The performance
in cluster perception in pie charts can be traced back to its
effectiveness in facilitating proportional judgments through
a part-to-whole relationship [105], [106].

Scatterplot. Scatterplots are widely used to visualize

data to reveal patterns of data characteristics such as

class segmentation or clusters. Numerous studies on
visual cluster separation have been conducted to identify the
effects of various design factors and visual encodings.

A qualitative evaluation of cluster separation measures
study suggested taxonomy of four factors—scale, point
distance, shape, and position-that influence separation per-
ception [36]. With the focus class separation, Sedlmair and
Aupetit’s extended their prior work and evaluated 15 state-of-
the-art class separation measures in a study aimed at mitigat-
ing human judgment impacts. They rely on human ground
truth as input to a machine learning framework that was
used for evaluating the quality of dimension reduction [107].
A further continuation of the work included even more mea-
sures for improved matching to human perception [108]. The
ScatterNet method captured perceptual similarities between
scatterplots by applying a deep learning model that was
designed to emulate human clustering decisions [109]. The
scagnostics technique focused on identifying the patterns in
scatterplots, including clusters [110], [111]. However, a recent
study showed that scagnostics do not reliably reproduce
human judgments [112]. The commonality in all of these
studies is that they are algorithmically oriented, and most of
their evaluations did not consider visual channels.

Sadahiro presented a mathematical model that suggested
perception is significantly influenced by the concentration
and density change [97]. ClustMe used visual quality mea-
sures to model human judgments to rank scatterplots [113].
ClustMe performed well in reproducing rational decisions
for cluster patterns. Quadri and Rosen built and tested a
topology-based model of human perception of scatterplots
that considered data distribution, number of data points,
size of data points, and opacity of data points in cluster
perception [101]. Their model demonstrated the strong
relationship between all of these factors and the perception
of cluster separation.

Parallel Coordinates. Parallel coordinates are useful

for a variety of tasks, including clustering in real-

world applications [114]. One study that measured
the participants’ learning outcomes used clustering as a
primary task [115]. The results showed a more engaging
experience for interactive parallel coordinates than static,
and the users did not find it challenging to learn the data
item mapping to the parallel axes.

Orientation-enhanced parallel coordinates were devel-
oped especially for large datasets to improve the display
of emphasizing the underlying data structure, such as
allowing the discernibility of clusters [92]. The evaluation
demonstrated that orientation made it easier to identify the
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Fig. 7: The perceived color difference varies inversely with
size, and elongated marks provide significantly higher
discriminability. Colors on longer marks were also more
discernible than shorter bars of equal thickness. The percep-
tible color differences for lines vary inversely with thickness.
Finally, perceptible color differences for points vary inversely
with point diameter. Image reproduced with permission [9].

data clusters between the two data dimensions and allowed
multiple small clusters between the first two dimensions to be
visually enhanced. Ultimately, there remains some question
as to whether scatterplots or parallel coordinates are better
for identifying clusters, as one study found that parallel
coordinates better showed the actual shape of clusters [116].
Networks. Graph layout algorithms optimize visual
characteristics of visual encodings to create intuitive
visualizations. The layout of graphs was investigated
in an evaluation study where participants produce their
graph from a graph shown earlier to depict clusters [117].
Users reach confidence and higher overall task accuracy in
visualization during the interaction when rapidly adjusting
the visual encodings.
Text. A study to investigate word recall memory,
based on classic word clouds layout and font size,
stated that word placement (i.e., sorting, clustering,
spatial arrangement) is an important consideration as it
affects the users’ recall potential [59].

3.9.3 Summary

As scatterplots demonstrate the clustering of bivariate data
effectively, most studies we identified used scatterplots.
In the case of multivariate data, parallel coordinates and
scatterplot matrices can be used to visualize data.

3.10 Correlate

Correlation, in general, is a relationship between
values of two or more attributes in a dataset.
Formally, correlation is a statistical measure of
the linear relationship between two quantitative
variables, represented by a correlation coefficient. A positive
correlation indicates the extent to which those variables
increase in parallel, and a negative correlation indicates the
extent to which one variable increases as the other decreases.

3.10.1 Visual Encoding

Evaluating the correlation perception helps identify people’s
abilities to perceive and judge differences in visualizations.
Numerous studies have focused on identifying linear corre-
lation in a data distribution with visual encodings, including
the slope of the points, marker size, opacity, and color [27],
[98], [118], [119], [120]. Rensink and Baldridge showed that
perception of correlation in scatterplots could be mathemati-
cally modeled using the perceptual laws of Weber’s law [118].
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Further, Chang et al. [121] also use Weber’s law to provide a
guide for practitioners to select a visualization.

3.10.2 Visualization

Identifying correlation supports the decision-making process
in multivariate data visualization. A comparative study of
parallel coordinates, tabular visualization, and scatterplot
matrix reported tabular visualization and the scatterplot
matrix have high accuracy, whereas parallel coordinates
stand out in terms of completion time [45].

The Harrison et al. study compared and ranked scatter-
plots to other visualization methods (parallel coordinates,
stacked area charts, stacked bar charts, stacked line charts,
line charts, ordered line charts, radar charts, and donut
charts) for correlation perception tasks and stated that Just-
Noticeable Difference (JND) in correlation could be modeled
by Weber’s law [27] (see Fig. 8). Kay and Heer proposed a
log-linear-based re-analysis of the results of Harrison et al.’s
work [122] (see Fig. 9). The critical finding of these works was
that scatterplots stand above all other tested visualizations
for precision on both positive and negative correlations.

As a counterpoint, Saket et al.’s reported that line graphs
stand out for detecting correlation in terms of accuracy, time,
and user preference, followed by scatterplots [19]. However,
the experiments only used a small number of points, adding
further complexity to the discussion of which method is
truly most effective for identifying correlations. Nevertheless,
the results are supported by earlier research reporting the
effectiveness of line charts for trend-finding tasks [123].

Scatterplot. Correlation is one of the more exten-

sively studied tasks in this taxonomy, particularly

concerning scatterplots. One of the first perceptual
studies on correlation on scatterplots by Bobkop and Kar-
ren [124] formed the basis for many other experiments. They
measured a direct estimation of Pearson’s product-moment
correlation coefficient, like many other correlation perception
studies [119], [125], [126], [127], [128]. However, Sher et al.
conducted a study about measuring the offsets of human
perception of correlation when changing visual variables,
and they found that humans perceive correlations differently
compared to the statistical measure of Pearson’s product-
moment correlation coefficient [129].
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Fig. 8: Harrison et al. leveraged perceptual laws to evaluate
and rank the effectiveness of visualizations for represent-
ing correlation. One interesting finding is that judgment
precision had a striking variation between negatively and
positively correlated data on certain visualizations, e.g.,
parallel coordinates. Image reproduced with permission [27].
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Fig. 9: The study by Kay and Heer presented a series of
refinements to the model presented by Harrison et al. [27]
(see Fig. 8), including the incorporation of individual dif-
ferences, log transformation, and Bayesian modeling. The
left side shows the posterior probability distribution over
the mean log (JND) for each value of r using the Bayesian
censored log-linear model. The right side shows the ranking
and grouping of visualizations based on how precise people’s
estimations of correlations are (lower JND implies higher
precision). The new model demonstrated notable differences,
e.g., parallel coordinates—negative and scatterplot-negative
swap positions. Image reproduced with permission [122].

Correlation was also among the first visualization tasks
to be studied using JNDs in four experiments [4]. The study
found that users become more confused with low correlation
values than with high correlation values. The reason behind
the effect was that the user’s judgment of discriminability
increased with the increased strength in the variable asso-
ciation. Rensink’s perception of correlation study opened a
new door to effective visualization design by demonstrating
a precise way perception of correlation in a scatterplot could
be modeled using Weber’s law and JND [118]. Their design
studies were focused on the comparison of performance
using dot size and density.

Best et al. investigated correlation coefficient estimation
in the laboratory-based study where they found that human
brain activity during correlation perception increases as
correlation is decreased [130]. Findings indicated that differ-
ent relationships on a scatterplot are processed differently.
However, perceptually, scatterplot processing was similar,
and participants used visual features to code the pattern.

A recent comparative survey included all correlation stud-
ies in a timeline taxonomy and investigated a hypothesis—
viewers attend to a small number of visual features, e.g.,
shape, dispersion, and orientation of scatterplots to discrim-
inate correlation in scatterplots [22]. The report compares
the findings with previous pivotal correlation perception
studies using Weber’s law. Scaling is another shape property
that plays an important role in identifying the correlation
between the variables. An early study by Cleveland et al.
reported that variables in a scatterplot look more correlated
when scales are increased [119].

Map. Visualizations on maps show spatial data, and
design variations are useful in identifying correlation
over geo-temporal data variables. Map lineups used
JNDs for evaluating correlation on choropleth maps [54].
They model the differences in visual stimuli of map color
and are useful in controlling spatial auto-correlation and
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increase user’s confidence. The comparison of average JNDs
measured across all three geographies demonstrated that
JND increases and becomes more noticeable when irregulari-
ties become more regular.

The encoding choice on the geophysical maps has a
direct influence on correlation judgments. A study on geo-
temporal visualization investigated the task of identifying the
correlation between two variables that evolve over time and
space [131]. The findings showed that the design choices of
geo-temporal multivariate data visualization would impact
how users detect a correlation between variables over space
and time. The vital design guidelines from this study are:
(1) small multiple visualizations on maps are better for
identifying correlation at a specific point in time; and (2) for
identifying correlation for time steps on single maps, bar
charts are better than other choices.

Other. Design variation, such as small multiples, overlay,
and mirroring on three visualizations (bar, slope, and donut
charts), were shown to influence the correlation task [73]. In
the study, participants struggled to use motion animation
to extract and compare the correlation between data sets,
whereas mirrored arrangements over adjacent arrangements
achieved precise results. The comparison arrangement design
evaluation confirms the prior hypothesis of better perfor-
mance in overlaid designs versus small multiples.

3.10.3 Summary

The majority of the correlation studies have been conducted
on scatterplots, but recent works have also diverged towards
other visualization types. Studies have by-and-large shown
that either scatterplots or parallel coordinates should be
used for correlation tasks. However, their performance may
interchange with positive or negative correlation due to the
different representations of positive and negative correlations
in parallel coordinates. For spatial data correlation choropleth
maps can be an effective approach.

3.11 Compare

Compare is a compound task that was mentioned

as an intentional “omission from the taxonomy”

of Amar et al. [11]. The task of comparison often

involves another subtask, e.g., retrieve a value,
compute a derived value, etc., followed by comparison
operation. Comparison was implicit in many of the prior
tasks. For example, the find extremum task (Sect. 3.4) often
requires comparing a set of candidate values to the rest of the
data, e.g., “which cars are more fuel-efficient, Japanese cars or
American cars?” [11]. This section focuses on the performance
of comparison tasks based on different visual features in their
design of the same visualizations to analyze the perception
judgment. Based on the quantity and importance of studies
of this type, we have included it as the eleventh task of the
taxonomy:.

3.11.1 Visualization

Bar Chart. The majority of the comparative study
performed on bar charts investigate the user per-
formance with design variations. The visual com-
parison task can be traced back to Cleveland and McGill’s
work, where charts are shown, and different bar chart
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designs impact the accuracy and comparison of the viewer’s
perceptual task [3]. The study reported that a comparison
between adjacent bars is more accurate than between widely
separated bars.

The findings from that study were extended to four
different types of bar charts [20]. Some of the critical findings
on bar chart comparisons are: short bars are difficult to
compare; the gap between stacked bars can prevent part-to-
whole comparison errors; distractors in bar effects unaligned
bar comparison; and separating bars in space makes the
comparison of their height more difficult. At the same time,
comparing the variants of the bar chart design provides
different levels of performance on completion time and
standard error [68]. Variants of bar charts were compared
based on the visual features in their designs, and their
perception judgments were used to discover error and
distraction factors. Charts with different overlays or hybrid
designs that combine aspects of juxtaposition and explicit
encoding with superposition are just as good or better
than sole juxtaposition or explicit encoding-based charts
on individual tasks. A comparison helps the designer to
identify differences in the representation of data.

Other forms of design variation in bar charts are embel-
lishments which attach aesthetics to visual display. Different
bar charts with visual embellishments were compared to
evaluate the accuracy, and the results demonstrate that
accuracy was not worse, but at the same time, it did not
provide better outcomes [70].

Comparing a visualization to a mental image is similar to
statistical analysis, and thus repeated interpretation of visual-
ization is sensitive to the multiple comparison problem—the
probability of discovering false insights when visualization
is examined more times or compared [132]. The study was
performed on different types of bar charts to measure and
compare the accuracy of user-reported insights such as shape,
mean, variance, correlation, and ranking.

Another work on bar charts is compared with Microsoft
Excel to show the difference in activities in terms of sequences
of action and pipelines [133]. Participants tend to follow a
linear pattern when using Excel, whereas while using tiles,
they followed a cyclical pattern. In a study of five types of
ranked list visualization, a comparison of two data items
takes the longest time with the lowest accuracy on Zvinca
plots [78]. A treemap outperformed all other visualizations
on accuracy.

Line Chart. A series of studies have evaluated and

compared the performance of line chart variants:

horizon graphs4 [32], [134], [135], [136], colorfields,
[62], [137] braided graph [134], and small multiples [138]. A
recent study assessed horizon graphs and colorfields, along
with a simple line graph on the perception of similarity
between time series—two patterns were considered similar
irrespective of their amplitudes or their stretching along the
time dimension [137]. Layered bands are more useful as chart
size decreases.

In another study, where mirrored and offset horizon
graphs were compared, found that estimation error and
time increased at four bands in the horizon graphs [32].

4. Horizon graphs split the space (mainly vertically) and attempted to
optimize the vertical footprint to visualize multiple time series [134].
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At the same time, the different chart types did not affect
the estimation time or accuracy. The effects of chart size of
horizon graphs and layering on comparison and estimation
showed that horizon graphs performed better than line charts
for small chart sizes. A time-series visualization comparison
studied line charts, horizon graphs, and color fields in
a similarity perception comparison where the choice of
visualization affects the viewer’s perception of temporal
patterns [137].

Network. Complementary views are best and in-

creased the accuracy of network exploration tasks.

Chang et al.’s work compared matrix diagrams,
node-link diagrams, and weighted networks to find ef-
fective matrix representations in side-by-side views for
network exploration tasks on error, completion time, and
user preference [139]. Findings state node-link and matrix
views are well suited for different visual tasks. Another
study compared graphs either for different tasks or different
datasets to measure their effectiveness. Graph edge attributes
with uncertainty were visualized using two separate visual
variables. For the task of comparing two graphs on overall
strength or certainty showed that lightness was an effective
mechanism for uncertainty [140].

Readability is another network feature evaluated in a
comparison study between node-link diagrams and their
matrix-based representations on generic low-level tasks [76].
They found readability depended upon graph detail, famil-
iarity, graph meaning, and the layout used to visualize them,
but the findings also reported that it deteriorated when the
size of graphs and link density increased. In a recent work on
the perception of graph properties, three layout algorithms—
force-directed, multidimensional scaling, and circular—were
modeled and compared using Weber’s law to discriminate
between graphs [141]. The results showed that Weber’s law
could be used to model density perception.

3.11.2 Summary

For the comparison task, we observed a relatively fair distri-
bution of studies on bar charts, line charts, and scatterplots.
Ultimately, the choice of visualization is more subtask-driven
and design-dependent.

4 DISCUSSION

We have presented a systematic review of research in the
perception of visualizations. One important observation from
our survey is that much of the research has been pursued
through the lens of low-level tasks in terms of efficiency
and effectiveness. Early works were broad in nature. For
example, Cleveland and McGill’s early work demonstrated
how the many different types of visual encodings influence
perceptual judgments [3].

4.1

One of the important conclusions we have seen time and
again in prior work is that low-level task effectiveness
varies with the dataset at hand, the visualization used, and
specific design variations with the visualization. While some
visualization types tended to perform better than others on
average, it seems, from our observation, there is no single

Visualization Effectiveness Is Task-Dependent
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visualization that is suitable for all situations. Saket et al.
seemed to agree in their study of five visualizations on small
datasets using ten low-level tasks [19], when they stated
that “No One Size Fits All.” In other words, depending
on the task at hand, various visualizations perform can
perform better or worse. In a similar vein, even within
a single visualization type, design variations can have a
serious effect on performance. Mylavarapu et al.’s study
on ranked-list visualizations, which included wrapped bars,
packed bars, piled bars, and Zvinca plots, quantified the
differences and trade-offs for three tasks. The effectiveness of
the representations varied, as each had its own strengths and
weaknesses that depended upon the task, data, and user [78].

4.2 Progress Understanding Graphical Perception

Investigating and evaluating the effectiveness of visualiza-
tions to optimize their visual design is a perennial topic. We
witnessed the continuously evolving nature of perceptual
research, with the majority focusing on visual task judgment.
The recent upward trend in perception-based visualization
studies, as noted in Fig. 1 and supported by two recent
related STAR reports by Borgo et al. [13] and Behrisch et
al. [17], show the maturing of this area of research. Many of
the works discussed in this report have applied perceptual
laws to evaluate visualizations, hopefully leading to better
visual design.

Much of our knowledge about perception in visualization
is taken for granted, and despite the diverse set of perceptual
research in visualization, many topics we have presumed
as “fact” have never been sufficiently studied. Take, e.g.,
parallel coordinates—despite their reputation, studies have
shown that parallel coordinates may not be as difficult to
use as we think [48]. The point here is not entirely to discard
the facts but instead to consider that re-evaluating what we
know might lead to better design guidelines. This align with
some of the work of Kosara [142], where the effort was to
tease apart what we know and what we only think we know,
using examples. The goal is to point out specific gaps in our
knowledge and to assist researchers in starting investigations
of the underlying theories to systematically build up a better
foundation for our field.

As the research objectives and methodologies have
evolved, insights have become more fine-grained and nu-
anced, e.g., Chung et al. observed that color saturation with
size could be used as an ordering variable [37]. Similarly,
Szafir’s work measured perceptual judgments on color differ-
ence that varied with size encodings, e.g., bar-width, circle-
radius, line-width [9]. These innovations, while enlightening,
also stand somewhat in contrast to applied works, e.g., Colin
Ware’s book [2] on visualization design and perception,
which provides a practical view of effective design.

4.3 Limitations of Scope and Reproducibility

As findings become more nuanced, so too does the scope of
the findings. Most individual studies come with limitations
in scope, complexity, objective-goal, and sometimes with
datasets or demographics. For example, studies that are
performed using limited and less diversified subjects, e.g., on
computer science students, need to be further investigated
before their guidelines could be put into practical use for a

16

broader population. Readers and practitioners need to pay
close attention to the limitation studies, as they are critical in
effectively applying their conclusions.

An integral part of understanding the limited scope
of studies is considering the issue of reproducibility in
studies. Reproducibility is being increasingly encouraged by
communities of science to validate conclusions and to extend,
re-evaluate, or specialize the original ideas [12], [143]. With a
few exceptions, e.g., [33], [122], there has not been significant
consideration of replication within the perception studies we
have surveyed. Several fields of science are experiencing
a “replication crisis” that has negatively impacted their
credibility. The problem is further exacerbated by the limited
scope of visualization studies, specificity of experiments, and
difficult logistics required for reproducing a study.

The lack of sufficient incentives, e.g., generating highly
cited publications at high-quality venues, for reproducing
studies also stands in the way. Recent suggestions for
mitigating this problem revolve around tightly coupling
original research with replication studies [12], [143], though
this approach does not address the lack of incentives. One
recent step in the right direction has been the trend of
encouraging authors to make their research data available. A
great set of recommendations are provided for open research
practices in [144].

4.4 Limitations and Open Questions

Throughout this survey, we uncovered various open chal-
lenges and areas requiring more study:.

Beyond Scatterplots, Bar Charts, and Line Charts. Many
research studies in visualization are driven by popularity,
familiarity, and applications. Table 2 provides an overview
to what extent the various areas have been studied in our
survey of papers. Clearly, scatterplots, bar charts, and line
charts received the majority of attention in research papers. It
is undeniable that bar charts and line charts are widely
used to represent univariate data, while scatterplots are
used to represent bivariate relationships effectively. Parallel
coordinates are an interesting case—even though there
has been extensive design-based research work on parallel
coordinates, the number of perceptual evaluations is low. One
reason may be that it is complex and challenging to perform
the perceptual evaluation. Similarly, we observe a bias in
Table 2 to the tasks of Retrieve Value, Compute Derived
Value, and Compare. While it is unlikely that the distribution
of studies will balance out, insights gained from some of the
less frequently studied techniques can have significant value.
Researchers should consider focusing their new research
efforts on the less studied tasks and visualization types.

Limitation of Experiment Data Collection. One topic we
did not address in any detail is the collection of human sub-
ject data used in these studies. Variations in data collection
make meta analyses difficult and can harm reproducibility
by fixating on limited subject pools or specific experimental
setups. The evaluation and perceptual studies we identified
most often used metrics such as accuracy, time to completion,
and subjective preference. Data collection methods range
from keyboard input to mouse input to eye-tracking (e.g.,
scanpath and fixation) to voice. The experimental strategies
also varied from methods of adjustment or interaction, forced-
choice, and think-aloud protocols, which can provide more
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TABLE 2: Table summarizing the number of studies we reviewed per task, visual encoding, and visualization type. The table
reveals which area have received the most attention and those that need more work.

Visual Encoding

Visualizations

Spatial
Popsitian Sp.atial o Color B Bar Chart s Map Network (e Bubble PCP Pie Chart Text Other Total

Task & Shape Size Hue Intensity plot Chart map
Retrieve Value 22 21 14 14 7 9 5 7 1 1 4 3 3 3 11 31
Filter 7 9 6 4 3 3 1 1 0 2 0 4 1 4 6 15
Compute Derived Value 38 36 14 20 4 20 10 5 2 2 4 2 4 2 16 48
Find Extremum 15 14 9 9 2 7 6 3 1 3 0 2 1 1 7 19
Sort 9 10 5 6 5 6 4 1 0 0 1 2 1 1 7 12
Determine Range 11 10 6 5 5 2 2 2 0 0 1 2 1 1 7 14
Characterize Distribution 14 11 12 13 7 2 5 0 1 2 1 2 1 1 6 19
Find Anomalies 5 8 4 5 5 1 3 2 0 1 1 0 1 1 3 10
Cluster 9 8 5 5 7 1 1 3 1 2 2 1 1 2 3 13
Correlate 14 10 4 2 11 2 3 1 0 0 0 5 1 1 6 17
Compare 24 22 10 18 6 10 7 4 4 5 1 2 1 2 9 34

Total | [ 94 84 48 57 | [ 42 38 27 22 13 12 8 8 7 7 40 |

cognitive and problem-solving insights. Many of the experi-
ments also suffer from low ecological validity, which refers to
how closely the experimental setting matches the real-world
setting in which the results might be applied [145]. There
is an explicit trade-off between experimental control and
ecological validity [146]. Studies with high ecological validity
closely reflect real-world use, while those with low ecolog-
ical validity are often highly controlled. Finally, we found
variation in the participant pools used, generally consisting
of university students or random subjects on crowdsourcing
platforms. All of these variations in metrics, apparatus, and
subject pools limit the applicability studies. For example,
familiarity with the visualization, task, datasets, and design
can be extremely biasing to participants” performance. In
the same regard, other biases, such as affective priming,
can influence perceptual judgment. These limitations require
serious consideration when applying conclusions to designs.

Relationship to Cognitive Processes. Perception and
cognition are tightly linked and difficult to separate. Almost
every study we discussed had some cognitive component
to it. For example, estimating correlation is both perceptual
and a cognitive task. In terms of the efficacy of visualization,
cognition plays as important of a role as perception does.
For example, one of the metrics on task performance,
which was largely ignored or at least largely unreported
in experiments, was confidence. Based on the complexity of
the task, e.g., interaction versus forced-choice, visualization
type familiarity, e.g., parallel coordinates, comfort with the
type or size of data, or the type of experimental study being
performed, subject confidence can vary widely. There is even
a possibility that the user’s confidence will vary task-by-
task. A related challenge is finding the right set of subjects,
which is a particular limitation when recruiting participants
through crowdsourcing. Due to the population diversity,
their experience and confidence vary, and it is difficult
to check quality. It fits then for researchers to evaluate
the participants’ level of confidence in task judgment, and
accordingly, data quality should be evaluated. New studies
should consider the participant’s level of confidence and how
this affects high- and low-level tasks.

4.5 Conclusion

We have presented our report with a particular focus on the
links between visualization types, visual encodings, and
tasks. Through our taxonomy, we wanted to emphasize

perception-based research findings and their impact on
visual encoding and visualization choices. We believe this
report will be a valuable starting point for those designing
visualizations and researchers looking to advance the state-of-
the-art in perception-based visualization research. It should
be noted, however, that the aim of this survey was not
to directly summarize the visualization recommendations
but instead to provide a broad understanding of the topics
that have been evaluated. Furthermore, all of the perceptual
studies were studied under limited conditions and come
with caveats that we could not enumerate.

5 APPENDIX: PERCEPTION FUNDAMENTALS

We provide a brief introduction to some fundamental con-
cepts of perception discussed in the paper. The presented
information is concise, and we encourage readers to refer to
the related articles for more in depth information.

5.1 Psychophysical Effects

Psychophysics is a set of methods relating sensations to
the characteristics of a stimulus. It is used to quantitatively
investigate relationships between physical stimuli and the
sensation of the perception they produce [147], [148]. The
transition of psychology from a philosophical to a scientific
discipline was facilitated when G.T. Fechner introduced
techniques to measure mental events. The attempt to mea-
sure sensations through the use of Fechner’s procedures
was termed psychophysics and primarily investigated the
relationships between sensations in the psychological domain
and stimuli in the physical domain. Central to psychophysics
is the concept of a sensory threshold, that measurement can
have a differential and an absolute sensitivity. The absolute
threshold or stimulus threshold is defined as the smallest
amount of stimulus energy necessary to produce a sensation.
The differential threshold was defined as the amount of change
in a stimulus required to produce a just noticeable difference
(JND) in the sensation.

Weber’s law, or Weber-Fechner’s law, relates to psy-
chophysics and is used to determine the relationship between
the perceived change in a stimulus and the actual change,
which has been used to modeling how humans perceive
certain features in a visualization. The law states that the
change in a stimulus that will be just noticeable is a constant
ratio of the original stimulus [149], [150].
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As an example of Weber’s law, consider the act of lifting
a 5 kg weight. Adding a small amount of weight, say
0.1 kg, may not make the weight feel any heavier. With
further additions of weight, the difference will eventually
be noticeable. Weber’s law is the ratio of change in the
stimulus (Al = 0.1 kg) to the stimulus magnitude (I = 5
kg), which is 0.02. Weber’s law has been shown to hold
for weight discrimination, visual discrimination, and tone
discrimination [151].

Just-Noticeable Difference (JND), also known as the
difference threshold, is the minimum level of stimulation
that a person can detect, usually 50% of the time, though
other ratios can be used [152]. For example, one is asked to
hold two objects of different weights—the JND would be
the minimum weight difference between the two that one
could sense half of the time. JND is used as a component
for the perceptual studies, which are required to determine
how much a given stimulus must be regulated in order for a
human to detect a change reliably. The relation between JND
and the stimulus can be represented using Weber’s law [149],
[150] as follows: dP = k%, where, dP is the differential
change in perception; k is the Weber fraction; dI is the
differential change in stimulus, and I is the actual intensity
of the stimulus. With the given I and Weber fraction, JND
corresponds to the minimum change of stimulus will produce
a noticeable difference in the perception. The application of
JNDs with psychophysics evaluation is useful for measuring
human judgments in the effectiveness of visual encodings
for different tasks or design improvements.

5.2 Bias and Effect

In the process of evaluating visualizations, the effect of bias,
whether cognitive or perceptual, is critical to understanding
and evaluating experimental results. The primary types of
bias observed and studied in visualization are perceptual
biases and cognitive biases.

5.2.1 Perceptual Bias

Perceptual biases are systematic errors that occur at the
perceptual level in perceiving visualization and/or related
tasks. Some types of perceptual biases studied include
clustering illusions and priming biases [153]. For example,
the clustering illusion is where people underestimate the
variance seen in patterns in a small set of random data [154],
[155]. Priming relates to associative memory theories where
a concept/effect is quickly activated after a similar con-
cept/effect has been activated.

Perceptual bias has been studied in several regards.
Change blindness refers to the inability of humans to recog-
nize large visual changes between images. An optimization-
based method introduced and evaluated an approach to
generate “spot-the-difference” alternatives [156]. Perceptual
biases have been studied in virtual reality platforms, e.g., in
the perception of size and stiffness of virtual objects [157] and
how photorealism negatively affects our perception of virtual
characters [158]. Irregularities in data can cause bias, influenc-
ing a user’s response to the conclusion of analysis [83], [159].
One study found that perceptual biases influence a user’s
awareness of uncertainties, further influencing the user’s
trust building [160]. Finally, researchers have investigated

18

how bias and perception intersect to create deceptive views.
Pandey et al. developed a method to quantify and compare
the exaggeration caused by misleading representations [161].

5.2.2 Cognitive Bias

Cognitive bias research has grown considerably at both the
cognitive science level and specifically for visual analytic
and decision-making tools. Cognitive biases differ from
perceptual biases in that they persist even if the information
has been correctly processed at a perceptual level. Broadly,
collective works on cognitive biases can be found in [162].
The following are examples of cognitive bias topics that have
been evaluated in visualization.

Attraction effect is a type of cognitive bias where the
presence of irrelevant alternatives influences the choice
between two options. When the user’s choice between
two options is influenced by the presence of an irrelevant
(dominated) third alternative. A good example, coming
from [164], involves selecting between two candidates based
on a rating of their education and crime control plans (see
Fig. 10). Bob has a solid education plan, while Alice’s strategy
for crime control is excellent. The choice is difficult if we
consider both the criteria. A third candidate, Eve, called the
“decoy,” is focused more on crime control than education,
though not as good as Alice. The introduction of Eve as
alternative biases our preference towards Alice. Awareness
of the attraction effect is important, as it may introduce skew
into decision-making tasks, as evidenced by Dimara et al.’s
study on scatterplots [163].

Anchoring effect is a type of cognitive bias, where a
stimulus might influence human judgment at the perceptual
level of the decision-making process. Anchoring effects and
ordering effects describe how the order in which information
is presented can affect the perceived size of an effect, with
subjects across a wide range of domains tending to assign
more rhetorical weight to evidence that comes near the
beginning of a sequence.

Priming is another form of stimulus that can influence
human judgment. The priming effect is a phenomenon in
which an alternative perceptual stimulus influences human
responses [165]. Priming effects are seen more frequently
than anchoring effects in separability judgment.

Emotions, in psychology, are defined by two dimensions:
valence, positive or negative feelings, and arousal, the inten-
sity of the feelings. Affective priming is the technique of
inducing emotion, also known as affect, in a user to study
the impact on cognitive tasks. It involves manipulating
valence and/or arousal via emotional stimuli. Harrison et
al.’s contribution to affective priming suggested that it can
influence accuracy in graphical perception tasks [21], [166].
The crowdsourced study indicated that affective priming
significantly influenced visual judgment, while positive
priming improved accuracy.

Bob Alice (Eve)
education | x* * *x x *x | * % * %
crime control | * % * Kk ok ok k|| Kk ok x

Fig. 10: Example of attraction effect in selecting hypothetical
election candidates. Image reproduced with permission [163].
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The cognitive biases of both anchoring and priming
suggest that the decision-making process not only depends
on what the visual features currently look like but also on
the previous frame of reference.
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