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a b s t r a c t 

The Barashenkov-Bogdan-Zhanlav solitons u ± for the forced NLS/Lugiato-Lefever model on the line are 

considered. While the instability of u + was established in the original paper, [3], the analogous question 

for u − was only considered heuristically and numerically. We rigorously analyze the stability of u − in 

the various regime of the parameters. In particular, we show that u − is spectrally stable for small pump 

strength h . Moreover, u − remains spectrally stable until a pair of neutral eigenvalues of negative Krein 

signature hits another pair of eigenvalues, which has emanated from the edge of the continuous spec- 

trum, [1 , 2 , 3] . After the collision, an instability is conjectured and numerically observed in previous works, 

[3] . 
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. Introduction 

Optical combs generated by micro-resonators is an active area 

f research, [5,14,16–18] , see also [9] for reports on concrete ex- 

erimental data. As a physical process having to do with electro- 

agnetism, the relevant starting point is the Maxwell equation. 

e refer the interested reader to consult [15] for physical deriva- 

ion in the important case of a cavity filled with medium obeying 

he Kerr’s law. The proposed mechanism of pattern formations and 

he related discussions on various parameters are also presented 

n great detail. There are numerous papers dealing with the model 

erivation, as well as reductions to dimensionless variables, see for 

xample [6,15,16] . 

In this article, our starting point of investigation is the consen- 

us model in one spatial dimension, namely the Lugiato-Lefever 

quation. In normalized variables, it may be written as 

u t + u xx − u + 2 | u | 2 u = −iγ u − h, x ∈ R , (1)

here u is the field envelop, t is the normalized time, x is the 

etarded and normalized coordinate, γ is the normalized damp- 
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ng/detuning rate, and h is the normalized pump strength. Note 

hat both γ , h are real parameters. 

.1. Steady states 

The time-independent solutions of (1) satisfy the elliptic PDE 

u ′′ + u − 2 | u | 2 u = iγ u + h. (2) 

urther reducing the problem, we consider the damping free case, 

hat is γ = 0 . Such problem is referred to as forced (or driven) NLS

quation, which has a different physical interpretation, [3,4] . The 

tudy of the existence and stability of the steady states (2) were 

nalyzed for different ranges of the parameters γ , h in the follow- 

ng works, [3,4,7,8,13,19,20,22] . 

The main subject of our investigations will be about the time 

ndependent solutions, for the forced NLS problem. In this case, the 

teady state problem, that is (2) , takes the simpler form 

u ′′ + u − 2 | u | 2 u = h. (3) 

learly, one cannot expect, for h � = 0 , the solutions to (3) to de-

ay at ±∞ , in fact the terminal value, denoted lim x →±∞ u ±(x ) = ψ 0 

ust satisfy the cubic equation 2 ψ 
3 
0 

− ψ 0 + h = 0 . As it happens,

hese problems have been studied before, see [3] . In fact, there are 

he following explicit solutions, which have appeared repeatedly in 

he literature. 

https://doi.org/10.1016/j.chaos.2021.111467
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2021.111467&domain=pdf
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roposition 1. Let h ∈ (0 , 2 

3 
√ 

6 
) and α ∈ (0 , ∞ ) is the unique real, so

hat 

 = 

√ 

2 cosh 
2 α

(1 + 2 cosh 
2 α) 3 / 2 

. (4) 

hen, the functions u ±, given by 

 ±(x ) = ψ 0 (1 + ϕ ±(x )) = ψ 0 

(
1 + 

2 sinh 
2 α

1 ± cosh α cosh (Ax ) 

)
, (5) 

 0 = 

1 √ 

2(1 + 2 cosh 
2 α) 

, A = 

√ 

2 sinh α√ 

1 + 2 cosh 
2 α

(6) 

re solutions to (3) . 

Remark: Note the important relations h = ψ 0 − 2 ψ 
3 
0 

and ψ 
2 
0 

< 

1 
6 , as a consequence of (6) . As a result, the map ψ 0 → h is a one-

o-one correspondence between (0 , 1 √ 

6 
) and (0 , 2 

3 
√ 

6 
) , whence the 

onstraints in the statement of Proposition 1 . 

It is a natural question to see whether such solutions are dy- 

amically stable in the context of the forced NLS, that is (1) , with

= 0 . In fact, this question has been considered in [3] , where the

uthors have offered an analytical solution for the case u + , while 

he case of u − was treated only numerically. 

.2. Linearizations and stability 

We first perform the linearization of the system (1) about the 

olutions u ±. 
Consider perturbations in the form u = u ± + y 1 (x ) + iy 2 (x ) . Plug

his in (1) , and after ignoring terms O (z 2 ) , we obtain the following

inear problem 

 t 

(
y 1 
y 2 

)
= 

(
0 1 

−1 0 

)(
L + 0 
0 L −

)(
y 1 
y 2 

)
(7) 

here 

L + = −∂ xx − 6 u 2 ± + 1 

L − = −∂ xx − 2 u 2 ± + 1 

ntroduce the eigenvalue ansatz 

(
y 1 
y 2 

)
→ e λt 

(
z 1 
z 2 

)
, the self-adjoint 

perator L and the skew symmetric J 

 := 

(
L + 0 
0 L −

)
, J := 

(
0 1 

−1 0 

)
(8) 

o that we can rewrite (7) in the compact form 

 L � z = λ� z , (9) 

hich is the well-known Hamiltonian formulation of the eigen- 

alue problem. 

efinition 1. We say that the wave u ± is spectrally stable if the 

inearized operator J L does not have spectrum in the right-hand 

omplex plane. In other words σ (J L ) ⊂ { λ : 
 λ ≤ 0 } . Otherwise,

he wave is referred to as spectrally unstable. 

Following Weyl’s theory 1 , we use the standard split of the spec- 

rum into pure point spectrum and essential spectrum. More pre- 

isely, for a closed operator A pure point spectrum σp.p. (A ) consists 

f eigenvalues of finite multiplicity of A , whereas the rest is essen- 

ial spectrum, σess. (A ) = σ (A ) \ σp.p. (A ) . 

Next, we present our main result. 
1 which asserts the stability of essential spectrum under suitable perturbations. S

2 
heorem 1. The solitons u + is spectrally unstable, with exactly one 

ositive eigenvalue. 

The steady state u − on the other hand is spectrally stable for small 

alues h > 0 , up to some critical value h ∗. 
More precisely, there exists a value α∗ ∈ [0 , ∞ ) , so that for all α >

∗, the linearized operator satisfies σ (J L ) ⊂ i R . Note that 

ess. (J L ) = { iλ : λ ∈ R , | λ| ≥ √ 

(1 − 6 ψ 
2 
0 
(α))(1 − 2 ψ 

2 
0 
(α)) } . 

urthermore, σp.p. (J L ) has a multiplicity two eigenvalue at zero, due 

o translational symmetry 2 as well as a pair of simple, purely imagi- 

ary eigenvalues ±iμ(α) with negative Krein signature. 

Finally, lim α→∞ μ(α) = 0 and the eigenvalues ±iμ(α) collide, 

s α → α∗+ , either with the edge of the continuous spectrum 

i 
√ 

(1 − 6 ψ 
2 
0 
(α))(1 − 2 ψ 

2 
0 
(α)) or with another pair of eigenvalues 

i ̃  μ(α) , so that 0 < μ(α) < ˜ μ(α) < 

√ 

(1 − 6 ψ 
2 
0 
(α))(1 − 2 ψ 

2 
0 
(α)) , 

hich are of positive Krein signature. That is, 0 < μ(α) < ˜ μ(α) : 

im α→ α∗+ ˜ μ(α) − μ(α) = 0 . In other words, we have a pair of neu- 

ral eigenvalues ±iμ(α) , which travels from 0 (corresponding to h = 0 

nd α = ∞ ) to μ(α∗) , and h → h ∗ = h (α∗) . 

Remarks: 

• The results in [3] already contain rigorous analysis for the in- 
stability of u + . 

• Regarding the stability of u −, some heuristic arguments were 

presented in [3] , which were complemented by numerical sim- 

ulations. 

• We do not present a rigorously established mechanism for the 

instability formation. However, from our arguments, it is con- 

firmed that the waves remain spectrally stable, till the pair of 

purely imaginary/neutral eigenvalues ±iμ(α) hits the edge of 

the continuous spectrum or the pair ±i ̃  μ(α) . According to the 

numerical simulations in [3] (but also the perturbative calcu- 

lations in [2] , which confirm that a pair of purely imaginary 

eigenvalues is peeled off the essential spectrum, as h > 0 ), an 

instability is triggered by a collision of the pairs ±iμ(α) and 

±i ̃  μ(α) , after a which a quartet of eigenvalues (of which two 

have a negative real part, while the other two have positive real 

part, hence create instability) is formed in the complex plane. 

• According to the numerics in [3] , the second alternative occurs, 

namely ±iμ(α) hits another eigenvalue ±i ̃  μ(α) and exits the 

imaginary axes after as a modulational instability. In fact, the 

collision between iμ(α) and i ̃  μ(α) happens at α∗ ∼ 2 . 5327 or 

h ∗ ∼ 0 . 07749 , [3] . 

 

We plan on presenting the proof of Theorem 1 , which consists 

f several different claims, in the following steps. We show that 

 + is spectrally unstable in Section 3.1 . The claims about σess. (J L )

s in Lemma 1 . Regarding the wave u −, the claims about the point

pectrum σ − pt. (J L ) for small h are in Section 3.2 , the precise re-

ult is stated in Proposition 4 . Then, the tracking for larger values 

f h , more specifically the alternative for developing eventual com- 

lex instabilities, is explored in Proposition 6 . In preparation for 

his, Proposition 5 however shows that no instability occurs, before 

) collision with another eigenvalue or 2) collision with continuous 

pectrum. 

. Preliminaries 

We now discuss the basics of the instability index theory. 
2 and as such has algebraic multiplicity two and geometric multiplicity one, see 

ection 3 below for explicit descriptions of these. 
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.1. Instability index theory 

We use the instability index count theory, as developed in 

11,12] . We present a corollary, which is enough for our purposes. 

or eigenvalue problem in the form (9) , we assume that L has 

 finite number of negative eigenvalues, n (L ) and J 
−1 : Ker[ L ] →

er[ L ] ⊥ . 
Let k r be the number of positive eigenvalues of (9) , k c be 

he number of 4 tuples of eigenvalues with non-zero real and 

maginary parts 3 and k −
i 
, the number of pairs of purely imagi- 

ary eigenvalues with negative Krein signature. For a simple pair 

f imaginary eigenvalues ±iμ, and the corresponding eigenvector 

  = 

(
z 1 
z 2 

)
: J L � z = iμ� z , the Krein signature is sgn (〈L � z , � z 〉 ) see [11] ,

. 267. That is, we say that the signature is negative, if 〈L � z , � z 〉 < 0 .

e note that since the self-adjoint operator L : Ker[ L ] ⊥ → Ker[ L ] ⊥ ,
e can define properly L 

−1 : Ker[ L ] ⊥ → Ker[ L ] ⊥ . 
We are now ready to introduce a matrix D . Namely, picking a 

asis for Ker[ L ] , say Ker[ L ] = span { φ1 , . . . , φn } , set 
 i j := 〈L 

−1 [ J 
−1 φi ] , J 

−1 φ j 〉 . (10) 

ote that the last formula makes sense, since J 
−1 φi ∈ Ker[ L ] ⊥ ,

hence L 
−1 [ J 

−1 φi ] ∈ Ker[ L ] ⊥ is well-defined. Note that we shall

se the Morse index notation, namely for a self-adjoint, bounded 

rom below operator S, with finitely many negative eigenvalues, 

enote 

 (S) = { λ < 0 : λ ∈ σp.p. (S) } , 
here the eigenvalues are counted with their respected multiplic- 

ties. The index counting theorem, see Theorem 1 , [12] states that 

f det(D ) � = 0 , then 

 r + 2 k c + 2 k −
i 

= n (L ) − n (D ) . (11)

ote that the purely imaginary eigenvalues with negative Krein 

ignatures play an important role in the instability formation - one 

anifestation of that is the formula (11) . For example, one ob- 

erves that the law (11) allows for configurations with k −
i 

= 1 , k c =
 that may be transformed, as parameters vary, into a case where 

 
−
i 

= 0 , k c = 1 . 

Indeed, a well-established mechanism of generation of instabili- 

ies is the collision of a eigenvalue of negative Krein signature with 

 eigenvalue of positive Krein signature. Such collisions, may (and 

sually do) give birth to a pair of complex eigenvalues, one with 

ositive real part (hence the instability) and one with a negative 

ne. We identify this below as a potential mechanism of instabil- 

ty, and numerics in [3] indeed confirm that this is the case. 

Next, we discuss some specific spectral results about the lin- 

arized operators involved in the eigenvalue problem (9) . 

.2. Some preliminary spectral results 

emma 1. The essential spectrum of J L is given by 

ess. (J L ) = { iλ : λ ∈ R , | λ| ≥ √ 

(1 − 6 ψ 
2 
0 
(α))(1 − 2 ψ 

2 
0 
(α)) } . 

 

roof. Since lim x →±∞ u ± → ψ 0 , we can write the operators (with 

 = u + or u = u −) 

 + = −∂ xx + 1 − 6 u 2 = −∂ xx + 1 − 6 ψ 
2 
0 − 6 V 

 − = −∂ xx + 1 − 2 u 2 = −∂ xx + 1 − 2 ψ 
2 − 2 V 
0 

3 as any eigenvalue λ : 
 λ � = 0 , � λ � = 0 will join σp.p. (J L ) , together with 

λ, ̄λ, −λ̄, due to Hamiltonian symmetries. 

L
a

(  

3 
here V = u 2 − ψ 
2 
0 
have exponential decay at ±∞ . By Weyl’s the- 

rem, 

ess. (J L ) = σ (J 

(
−∂ xx + 1 − 6 ψ 

2 
0 0 

0 −∂ xx + 1 − 2 ψ 
2 
0 

)
) . 

n anticipation that the spectrum is inside of i R , we set up the

pectral problem as the non-invertibility of the matrix operator 

 

(
−∂ xx + 1 − 6 ψ 

2 
0 

0 

0 −∂ xx + 1 − 2 ψ 
2 
0 

)
− iλ, which is equivalent 

o the non-invertibility of 

(
−∂ xx + 1 − 6 ψ 

2 
0 0 

0 −∂ xx + 1 − 2 ψ 
2 
0 

)
+ 

λJ . By Fourier transform arguments, we need 

et 

(
k 2 + 1 − 6 ψ 

2 
0 iλ

−iλ k 2 + 1 − 2 ψ 
2 
0 

)
= 0 , 

or some k ∈ R . Note that due to the restriction ψ 
2 
0 < 

1 
6 (see (6) ),

he diagonal entries of the matrix are positive for each k ∈ R . 

Thus, iλ ∈ σ (J 

(
−∂ xx + 1 − 6 ψ 

2 
0 

0 

0 −∂ xx + 1 − 2 ψ 
2 
0 

)
) if and 

nly if for some k ∈ R , 

2 = (k 2 + 1 − 6 ψ 
2 
0 )(k 

2 + 1 − 2 ψ 
2 
0 ) , 

n other words, the continuous spectrum fills up the 

maginary axes, with the exception of the segment from 

−i 
√ 

(1 − 6 ψ 
2 
0 
)(1 − 2 ψ 

2 
0 
) , i 

√ 

( 1 − 6 ψ 
2 
0 
)(1 − 2 ψ 

2 
0 
) ) . 

ess. (J L ) = {±iλ : λ ≥
√ 

(1 − 6 ψ 
2 
0 
)(1 − 2 ψ 

2 
0 
) } . �

Remark: It may be an interesting exercise to write down the 

pectrum of σ (J L ) for the case α = 0 . In such a case, we are

ealing with constant coefficient Schrödinger operators L ±, with 

λ ∈ σ (J L ) = σess. (J L ) given by λ2 = k 2 (k 2 + 
2 
3 ) , k ∈ R , whence

e obtain the formula σ (J L ) = σess. (J L ) = i R . 

The next issue that we need to address is about the solvability 

f a linear problem of the type 

J L − iμ) z = f, (12) 

here the spectral parameter iμ is outside of the 

ontinuous spectrum range, i.e. assuming that μ ∈ 

−
√ 

(1 − 6 ψ 
2 
0 
)(1 − 2 ψ 

2 
0 
) , 

√ 

( 1 − 6 ψ 
2 
0 
)(1 − 2 ψ 

2 
0 
) ) . 

We have the following Fredholm alternative type statement for 

he linear problem (12) . 

emma 2. Let μ ∈ (−
√ 

(1 − 6 ψ 
2 
0 
)(1 − 2 ψ 

2 
0 
) , 

√ 

( 1 − 6 ψ 
2 
0 
)(1 − 2 ψ 

2 
0 
)

et J , L are as in (8) and iμ ∈ σp.p. (J L ) is a simple eigenvalue, with

n eigenfunction z 0 : (J L − iμ) z 0 = 0 . 

Given f ∈ L 2 (R ) , the linear problem (12) has a solution, if and only

f 〈 f, J z 0 〉 = 0 . 

roof. The necessity of this condition is easy, since if we have so- 

ution of (12) , it suffices to take dot product of it with J z 0 . We

btain 

 f, J z 0 〉 = 〈 (J L − iμ) z, J z 0 〉 = 〈 z, L z 0 + iμJ z 0 〉 = 0 . 

he sufficiency part relies on the Fredholm properties of the oper- 

tors. More specifically, write 

 0 = 

(
−∂ xx + 1 − 6 ψ 

2 
0 0 

0 −∂ xx + 1 − 2 ψ 
2 
0 

)
, V = 

(
6 V + 0 
0 2 V −

)
, 

o that (12) can be recast in the equivalent form 

L 0 + iμJ − V) z = −J f, (13) 

ue to the fact that | μ| < 

√ 

(1 − 6 ψ 
2 
0 
)(1 − 2 ψ 

2 
0 
) , we have that 

 0 + iμJ is invertible, so we can further rewrite (13) equivalently 

s 

I − (L 0 + iμJ ) −1 V) z = −(L 0 + iμJ ) −1 J f =: ˜ f (14)
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ow, due to the fact that V is smooth and exponentially de- 

aying (matrix) potential, while (L 0 + iμJ ) −1 : L 2 (R ) × L 2 (R ) →
 
2 (R ) × H 

2 (R ) , with exponentially decaying kernel, we have that 

 := (L 0 + iμJ ) −1 V : L 2 × L 2 → L 2 × L 2 is a compact operator. As

uch, the operator Eq. (14) is in the Fredholm alternative form 

id − K) z = 
˜ f . Therefore, it has solution, if ˜ f ⊥ Ker(I − K 

∗) . 
We claim that under our assumptions, Ker(I − K 

∗) = span [(L 0 + 

μJ ) z 0 ] . Indeed, let z 
∗ ∈ Ker(I − K 

∗) . We have that z ∗ = V(L 0 +
μJ ) −1 z ∗ Letting η∗ := (L 0 + iμJ ) −1 z ∗, we conclude that (L 0 +
μJ ) η∗ = Vη∗, whence 

J L − iμ) η∗ = (J (L 0 − V) − iμ) η∗ = 0 . 

ince we have assumed that iμ is a simple eigenvalue, it follows 

hat η∗ = cz 0 , whence Ker(I − K 
∗) = span [(L 0 + iμJ ) z 0 ] . Thus, the

olvability condition can be written as 

 = 〈 ̃  f , (L 0 + iμJ ) z 0 〉 = 〈 (L 0 + iμJ ) ̃  f , z 0 〉 = −〈J f, z 0 〉 = 〈 f, J z 0

�

Next, we provide some properties of the linearized operators 

 ±, which will be useful in the sequel. 

.3. Properties of the linearized operators L ±

Note that L ± are standard self - adjoint 

Schrödinger operators with even potentials vanishing at ∞ . In 

act, since u ± → ψ 0 as x → ±∞ , we have that L + = −∂ xx + 1 −
 ψ 

2 
0 

− 6 V + , L − = −∂ xx + 1 − 2 ψ 
2 
0 

− 2 V −, whence 

ess. (L + ) = [1 − 6 ψ 
2 
0 , + ∞ ) , σess. (L −) = [1 − 2 ψ 

2 
0 , + ∞ ) 

ote that due to ψ 
2 
0 < 

1 
6 in Proposition 1 , it follows that 

ess. (L ±) ⊂ [1 − 6 ψ 
2 
0 
, ∞ ) ⊂ (0 , ∞ ) . 

We have the following Proposition, which collects some perti- 

ent spectral properties of L ±. 

roposition 2. Let h ∈ (0 , 2 

3 
√ 

6 
) . Then, the operators L ± are

elf-adjoint, with domain H 
2 (R ) . In addition, σess. (L ±) ⊂ (0 , ∞ ) ,

 + [ u ′ ±] = 0 , so that 0 ∈ σp.p. (L + ) . 

• For the case u + , L + has exactly one negative eigenvalue, while 

L − > 0 . 

• For the case u −, L + has exactly one negative eigenvalue, while L −
also has exactly one negative eigenvalue, and 0 / ∈ σp.p. (L −) . 

roof. Differentiating the profile Eq. (3) , implies that L + [ u ′ + ] = 0 .

n addition, u ′ + has exactly one zero, at x = 0 . By Sturm-Liouville’s

riteria, zero is a simple eigenvalue, which is the second smallest 

igenvalue. So, there is exactly one negative eigenvalue for L + . 
Consider the case u = u + . For the operator L −, clearly L − >

 + , so L − has at most one negative eigenvalue. We will show 

hat 4 n (L −) = 0 . Note that the profile Eq. (3) is equivalent to

 −[ u + ] = h > 0 . Assume for a contradiction that for some η :

 −η = −σ 2 η, σ > 0 . Since η will be ground state for L −, it fol-
ows that η > 0 and η will have exponential decay, in fact η(x ) ≤
e 
−| x | 

√ 

1 −2 ψ 
2 
0 . Informally, we obtain the contradiction as follows 

 < h 

∫ 
R 

η(x ) dx = 〈 h, η〉 = 〈 L −u + , η〉 = 〈 u + , L −η〉 
= −σ 2 〈 u + , η〉 < 0 , 

ince u + > 0 . 

Formally, fix a cut-off function, say ζ ∈ C ∞ 

0 
(R ) , ζ > 0 : suppζ ⊂

−2 , 2) , ζ (x ) = 1 , | x | < 1 and a large real N. Let ζN (x ) := ζ (x/N) .

ompute 

 < h 〈 1 , η〉 = lim 

N→∞ 

〈 ζN L −u + , η〉 = lim 

N→∞ 

〈 u + , L −[ ζN η] 〉 . 
4 this has already been proved in [3] , but we provide a direct, independent proof 

erein. 

4 
ow, since 

 −[ ζN η] = ζN L −[ η] − 2 ζ ′ 
N η

′ − ζ ′′ 
N η = −σ 2 ζN η + O L 2 (N 

−1 ) , 

s ζ ′ 
N 
, ζ ′′ 

N 
= O (N 

−1 ) . We compute 

lim 

→∞ 

〈 u + , L −[ ζN η] 〉 = −σ 2 〈 u + , η〉 < 0 , 

hich is a contradiction. The case, σ = 0 is also contradictory, by 

he same argument, now that we know that there are no negative 

igenvalues and zero must be the bottom of the spectrum, again 

n impossibility. 

For the case u = u −, we have again n (L −) ≤ 1 , since n (L + ) = 1

nd L + < L −. On the other hand, by direct inspection, 

 −u − = 2 ψ 
2 
0 u −(2 + u −) 

hence we can convince ourselves that 

L −u −, u −〉 = 2 ψ 
2 
0 

∫ ∞ 

−∞ 

u 2 −(2 + u −) dx < 0 , (15)

ndeed, by computations aided by Mathematica, we were able to 

xplicitly calculate ∫ ∞ 

−∞ 

u 2 −(2 + u −) dx = −
√ 

2 sinh 
3 
(α) cosh (α) 

√ 

cosh (2 α) + 2 

×
(
2 coth (α) csch (α) 

cosh 
2 
(α) 

+ 2 π coth (α) csch 2 (α) 

+ 

2 coth (α) csch (α) 

cosh 
2 
(α) 

+ 2 π coth (α) csch 2 (α) 

)

= −
√ 

2 sinh 
3 
(α) cosh (α) 

√ 

cosh (2 α) + 2 (
4 coth (α) csch (α) 

cosh 
2 
(α) 

+ 4 π coth (α) csch 2 (α) 

)
< 0 . 

Thus, L − has a negative eigenvalue and so n (L −) = 1 . Finally, 

e claim that L − does not have eigenvalue at zero. Before we start 

ith our contradiction argument, let us point out that since the 

chrödinger operator has L + = −∂ xx + 1 − 6 u 2 − and u 2 − is an even,

ositive and decaying on (0 , ∞ ) function (i.e. bell-shaped), we con- 

lude that its ground state, is bell-shaped as well. 

Assume now for a contradiction that 0 is an eigenvalue L −[ Q] =
 . This will be the second smallest eigenvalue for L −, whence it

ill have exactly one zero, so it will be an odd function, vanishing 

t zero. So, in particular, Q : ‖ Q‖ = 1 will be perpendicular to the

bell-shaped) ground state for L + . But now recall L + < L −, so we

ave 〈L + Q , Q 〉 < 〈L −Q , Q 〉 = 0 . Thus, by Rayleigh formulas 

0 (L + ) < λ1 (L + ) ≤ 〈L + Q , Q 〉 < 0 , 

o n (L + ) ≥ 2 , in contradiction with what we know, namely 

 (L + ) = 1 . Thus, L − does not have a zero eigenvalue, so it is in

articular invertible operator. �

We now describe the spectral properties of the linearized op- 

rators at h = 0 . This is a well-known result, due to M. Wein-

tein, [23] , but the reader might consult the excellent presenta- 

ion in Section 4.1.1, [21] . It is convenient to utilize the notion 

f a generalized kernel of an operator, defined as the subspace 

Ker(A ) := span [ Ker (A ) , Ker (A 2 ) , . . . ] . 

roposition 3. For h = 0 , the cubic NLS has the following behavior of

he linearized operators: 

• The operator L + has a single and simple negative eigenvalue, a 

simple eigenvalue at zero, with eigenfunction u ′ 0 . L + is strictly pos- 
itive on the co-dimension two subspace orthogonal to these two 

directions. 

• The operator L − has a simple eigenvalue at zero, spanned by u 0 . 

It is positive on the co-dimension one subspace orthogonal to it. 
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• The operator J L has 

σess. (J L ) = {±iλ : λ ∈ R , | λ| ≥ 1 } , σp.p. (J L ) = { 0 } , 
where zero is an eigenvalue of algebraic multiplicity four and ge- 

ometric multiplicity two, generated by the translational and the 

modulational invariance. More precisely, 

Ker[ J L ] = Ker[ L ] = span [ 

(
u ′ 
0 

)
, 

(
0 
u 

)
] ;

gKer[ J L ] = span [ 

(
0 

L 
−1 
− [ u ′ ] 

)
, 

(
L 

−1 
+ [ u ] 
0 

)
] . 

\ 

In the arguments in the sequel, we use h as a bifurcation pa- 

ameter. As the eigenvalues depend in a C 1 way on the parameter 

 , they may move as h changes. Specifically, for h = 0 , the eigen-

alue zt zero is of algebraic multiplicity four (as to respect the 

ranslational and modulational invariance). The moment the pa- 

ameter h is turned on, the modulational invariance is broken, and 

 pair of eigenvalues separates from zero, in a smooth way. 

. Proof of Theorem 1 

We start our considerations with the proof for the instability 

f u + . This has been previously established in [3] , we provide the

hort argument here for completeness. 

.1. The instability of u + 

The instability of u + is now an easy consequence of the results 

f Proposition 2 and the index count formula (11) . Indeed, on the 

ight hand side of (11) , we have n (L ) = n (L + ) + n (L −) = 1 + 0 =
 . Thus, the stability is determined by n (D ) . Since in this case

er[ L −] = { 0 } , we have that D is a matrix of one element, namely

L 
−1 
− u ′ + , u ′ + 〉 . However, since L − > 0 , we see that 〈L 

−1 
− u ′ + , u ′ + 〉 > 0 ,

hence n (D ) = 0 , whence a single real instability is detected by

11) . 

.2. The case of u −: Tracking the modulational eigenvalues as 

 < h << 1 

For h = 0 , we trivially settle on the standard Schrödinger model, 

here all spectral information, including the spectrum of σ (J L ) , 

s well-known, see Proposition 3 . More specifically, the operator 

 L at h = 0 has the structure of the spectrum as described in

roposition 3 , namely two eigenvectors and two generalized eigen- 

ectors co-exist there. 

After turning on the parameter h , i.e. the moment h � = 0 , the

translational eigenvalue” pair 

(
u ′ 
0 

)
and its corresponding gener- 

lized eigenvector 

(
0 

L 
−1 
− [ u ′ ] 

)
persists, due to the fact that trans- 

ational invariance is still intact, even after adding the h in the 

odel. Modulational invariance is however broken, once h � = 0 , so 

he other pair starts moving away from zero. Note that the sta- 

ility of the waves, or equivalently the eigenvalue problem (9) , is 

ompletely determined by the behavior of this pair of eigenvalues, 

hich at h = 0 correspond to the modulational invariance. Indeed, 

s we observed in Lemma 1 , σess (J L ) ⊂ i R . Thus, the wave is spec-

rally stable, that is, σ (J L ) ⊂ i R if and only if the modulational

igenvalue (of multiplicity two) at h = 0 split as a pair of purely 

maginary eigenvalues. We focus on the proof of this fact, for the 

ase of the waves u −. 
To this end, we look at the right-hand side of (11) . It is clear

hat n (L ) = n (L + ) + n (L −) = 1 + 1 = 2 , while n (D ) = 0 , so n (L ) −
5 
 (D ) = 2 . Thus, according to the indices on the left-hand side,

e are presented with the following alternatives: we either have 

wo different positive unstable eigenvalues for J L or we have a 

our tuple of eigenvalues (two of which are unstable), so k c = 1 

r we have a pair of purely imaginary eigenvalues, with nega- 

ive Krein signature (and so k −
i 

= 1 , k r = k c = 0 ). We now present

ome heuristical argument on why it must be that the two neg- 

tive Krein signature eigenvalues happen. Let us refute the other 

wo cases - First, the case of two different positive unstable eigen- 

alues is not viable - this is still a Hamiltonian problem and this 

ill effectively generate four eigenvalues (the two positive and the 

orresponding two with opposite signs), while we have only two 

igenvalues unaccounted for - namely the two previously modula- 

ional eigenvalues, which in the case h > 0 may start moving, due 

o the broken modulational invariance. In fact, and for the same 

eason, even the case of a four tuple of eigenvalues cannot happen, 

ecause this creates four eigenvalues, in addition who are still sit- 

ing at the zero, for a total of six eigenvalues, whereas we started 

ith four eigenvalues at h = 0 . 

We will show that for small h , a pair of purely imaginary eigen- 

alues, with negative Krein signature appear. According to (11) , 

uch a configuration is spectrally stable. Looking at the alternatives, 

t suffices to show that a pair of purely imaginary eigenvalues ap- 

ears close to zero, and then they must necessarily be with nega- 

ive Krein signatures. 

Before we continue with the construction of the modulational 

igenvalues as h � = 0 , let us compute n (D ) . Recall that accord-

ng to Proposition 2 , we have that Ker[ L −] = { 0 } , while Ker[ L + ] =
pan [ u ′ −] . We claim that there is no another generalized eigenvec-

or behind 

(
0 

L 
−1 
− [ u ′ ] 

)
. Indeed, otherwise, we would have the solv- 

bility of the relation 

 L 

(
z 1 
z 2 

)
= 

(
0 

L 
−1 
− [ u ′ −] 

)
, 

olving directly, this means that z 2 = 0 , while L + [ z 1 ] = −L 
−1 
− [ u ′ −] .

his then would require a consistency relation 〈L 
−1 
− [ u ′ −] , u ′ −〉 = 0 ,

hich is false. In fact, we show that 〈L 
−1 
− [ u ′ −] , u ′ −〉 > 0 , for all val-

es of h , see below. 

All in all, it turns out that D has only one element, namely 

L 
−1 
− [ u ′ −] , u ′ −〉 . Now, it is not as straightforward as in the classi-

al case to conclude that 〈L 
−1 
− [ u ′ −] , u ′ −〉 > 0 , since L − is not a non-

egative operator anymore, since in fact n (L −) = 1 . On the other

and, its ground state, say W : L −[ W ] = −σ 2 W, ‖ W ‖ = 1 is bell-

haped (since L − = −∂ xx + 1 − 2 u 2 − is a Schrödinger operator with

ell-shaped potential). Hence by parity considerations 〈 u ′ −, W 〉 = 

 , so u ′ − ⊥ W . But then, note that σ (L 
−1 
− | { W } ⊥ ) ⊂ (0 , ∞ ) , whence

 
−1 
− | { W } ⊥ > 0 , whence 

L 
−1 
− [ u ′ −] , u ′ −〉 = 〈L 

−1 
− | { W } ⊥ [ u ′ −] , u ′ −〉 > 0 . 

hus n (D ) = 0 and in addition recall that this was also useful in

stablishing that the Jordan block of 

(
u ′ 
0 

)
is of length two. 

We now turn to the construction of the modulational eigenval- 

es for h � = 0 . Similar to the spectral problem in [10] , we set up an

nsatz as follows. 

 

(
L 
0 
+ + hV + 0 

0 L 
0 
− + hV −

)( √ 

h ψ 1 

u 0 + hψ 2 

)
= iμ0 

√ 

h 

( √ 

h ψ 1 

u 0 + hψ 2 

)
+ O 

(
h 3 / 2 

h 2 

)

(16) 

here, we have used the fact that L 
h ± = L 

0 ± + hV ±, where

 
0 ± are the standard Schrödinger operators L 

0 + = −∂ 2 x + 1 −
 sech 

2 (x ) , L 
0 − = −∂ 2 x + 1 − 2 sech 

2 (x ) , u 0 = sech (x ) . Note L 
0 −[ u 0 ] =

 . Also, the potentials V ± can be explicitly written down, but this 
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ill not be necessary for our arguments. Resolving (16) yields, to 

eading order in h , 

L 
0 
−
2 + V −u 0 = iμ0 
1 

−L 
0 
+ 
1 = iμ0 u 0 . 

learly, from the second equation, we need 
1 = −iμ0 L 
−1 
+ [ u 0 ] , 

hich we then plug in the first equation. This is justified, since 

 0 ⊥ Ker[ L + ] = span [ u ′ 0 ] . It remains to solve 

 
0 
−
2 = μ2 

0 L 
−1 
+ [ u 0 ] −V −u 0 

his of course gives a solvability condition, namely 

 u 0 , μ
2 
0 
L 

−1 
+ [ u 0 ] −V −u 0 〉 = 0 , which is actually an equation for

0 . We obtain 

2 
0 = 

〈 V −u 0 , u 0 〉 
〈L 

−1 
+ u 0 , u 0 〉 

. (17) 

t is well-known (and also directly computable) that 〈L 
−1 
+ u 0 , u 0 〉 <

 , as this is equivalent to the stability of the soliton u 0 , as a so-

ution to the Schrödinger equation. In fact, this is the Vakhitov- 

olokolov condition for stability of solitary waves, which is well- 

nown to hold for the wave u 0 = sech (x ) . Unfortunately, V − is a

ign-changing solution, so it is not immediately clear how to de- 

ermine the sign of the quantity 〈 V −u 0 , u 0 〉 . Instead, we shall show

y a roundabout argument that 〈 V −u 0 , u 0 〉 < 0 . As a consequence,

17) has a pair of real solutions 

0 = ±
√ 〈 V −u 0 , u 0 〉 

〈L 
−1 
+ u 0 , u 0 〉 

, (18) 

epresenting a pair of complex imaginary eigenvalues 

i 
√ 〈 V −u 0 ,u 0 〉 

〈L −1 
+ u 0 ,u 0 〉 

. 

Indeed, otherwise, if 〈 V −u 0 , u 0 〉 > 0 , then we have constructed

in the form dictated by (16) ) a pair of real eigenvalues for J L ,

amely ±
√ 

− 〈 V −u 0 ,u 0 〉 
〈L −1 

+ u 0 ,u 0 〉 
, one stable, the other one unstable. But 

hen, n (L ) − n (D ) = 2 , as established earlier, while on the left

and side of (11) k r = 1 . This is impossible, a contradiction. Thus,

 V −u 0 , u 0 〉 < 0 and we have a pair of purely imaginary eigenvalues,

ith negative Krein signatures. This shows the following proposi- 

ion. 

roposition 4. There exits α0 >> 1 , so that for all α ∈ (α0 , ∞ ) , the

orresponding solutions u −,α described in (5) are spectrally stable. 

Moreover, the multiplicity four eigenvalue at zero for the standard 

LS problem has transformed itself into an eigenvalue at zero with 

ultiplicity two, and a pair ±iμ(α) is a pair of simple eigenvalues of 

egative Krein signatures, with even eigenfunctions. 

In addition, μ : (α0 , ∞ ) → R + is decreasing and smooth function, 

ith lim α→∞ μ(α) = 0 and μ(α0 ) > 0 . 

roof. Basically, this is a perturbation argument about the stan- 

ard NLS case, which corresponds to h = 0 , or equivalently 

= + ∞ . In the narrative preceding the formal statement of 

roposition 4 , we have shown that zero is still an eigenvalue, 

f multiplicity two, and we have also constructed the eigenval- 

es ±iμ(α) for large values of α. The only unproven claim in 

roposition 4 is that μ is a decreasing function of α (hence in- 

reasing function of h ), for large enough values of α (equivalently 

mall enough values of h ). 

In order to see this monotonicity, and even though the depen- 

ence on variable h is not smooth at h = 0 , we can express the

ormula (18) equivalently as 

lim 

 → 0+ 

√ 

h 
dμ(h ) 

h 
= 

1 

2 

√ 〈 V −u 0 , u 0 〉 
〈L 

−1 
+ u 0 , u 0 〉 

> 0 . (19) 

This shows that in a small neighborhood of h = 0 , h → μ(h ) is
ncreasing. �

6 
.3. The soliton u −: Tracking the neutral eigenvalues till the collision 

In Section 3.2 , we have demonstrated that for small values 0 < 

 << 1 , the modulational eigenvalue (of multiplicity two) at h = 0 

plits into a pair of purely imaginary eigenvalues ±iμ(h ) , μ(h ) > 0

f negative Krein signature. We now wish to further track this pair 

s h grows. Recall that by the smooth dependence on the param- 

ters, the wave u − is spectrally stable as long as these pair does 

ot turn into a complex instability. We have described the mech- 

nism of how this happens in the statement of our main result, 

heorem 1 . We now provide the details of the proof. 

Namely, we will show the following 

• as long as μ(α) < 

√ 

(1 − 6 ψ 
2 
0 
(α))(1 − 2 ψ 

2 
0 
(α)) and ±iμ(α) 

are simple eigenvalues (that is, we are in a pre-collision sce- 

nario), there is a neighborhood (α − δ, α + δ) , so that whenever 

˜ α ∈ (α − δ, α + δ) , the waves u −, ̃ α are spectrally stable, with a 

pair of negative Krein signature eigenvalues ±iμ( ̃  α) . 

• There exists α∗ ≥ 0 , so that either lim α→ α∗+ μ(α) = √ 

(1 − 6 ψ 
2 
0 
(α∗))(1 − 2 ψ 

2 
0 
(α∗)) or there exists another family 

of eigenvalues ±i ̃  μ(α) for J L α , with 

μ(α) < ˜ μ(α) : lim 

α→ α∗ ˜ μ(α) − μ(α) = 0 . 

Moreover, there exists σ0 > 0 , so that min α∗<α< ∞ μ(α) ≥ σ0 > 

0 . That is, the pair ±iμ(α) potentially exits the imaginary axis 

either by hitting the edge of the essential spectrum or the pair 

±i ̃  μ(α) and stays a fixed distance away from zero. 

 

Remark: According to the numerics in [3] , the second alterna- 

ive occurs, namely ±iμ(α) hits another eigenvalue ±i ̃  μ(α) and 

xits the imaginary axes after as a modulational instability. 

Here and below, we use the parameters h and α interchange- 

bly, due to the one-to-one correspondence described explicitly in 

4) . 

roposition 5. Let ±iμ(α) are the eigenvalues described in 

roposition 4 , which are in the pre-collision mode. That is, 0 < 

(α) < 

√ 

(1 − 6 ψ 
2 
0 
(α))(1 − 2 ψ 

2 
0 
(α)) and ±iμ(α) are simple. Then, 

here exists δ = δ(α) > 0 , so that whenever ˜ α ∈ (α − δ, α + δ) , the

aves u −, ̃ α are spectrally stable. Moreover, the mapping α → μ(α) is 

 
1 (α − δ, α + δ) . 

Remark: Interestingly, the proof breaks down, if either μ(α) = 

 or 

μ(α) = 

√ 

(1 − 6 ψ 
2 
0 
(α))(1 − 2 ψ 

2 
0 
(α)) or iμ(α) is not a simple 

igenvalue. 

roof. Fix α is so that 0 < μ(α) < 

√ 

(1 − 6 ψ 
2 
0 
(α))(1 − 2 ψ 

2 
0 
(α))

nd iμ(α) is a simple eigenvalue. This is exactly the setup of 

emma 2 , where iμ / ∈ σess. (J L ) . That is 

 L z(α) = iμ(α) z(α) , (20) 

e now construct, under the assumptions imposed on α the 

igenvalue in a neighborhood, (α − | δ| , α + | δ| ) for some small

: | δ| << 1 . First, we introduce the approximate operators 

 + (α + δ) = −∂ xx + 1 − 6 u 2 −,α+ δ = −∂ xx + 1 − 6 u 2 −,α − δV + + O (δ2 ) , 

= L 
0 
+ − δV + + O (δ2 ) , V + = 12 u −,α

∂u −,α

∂α

 −(α + δ) = −∂ xx + 1 − 2 u 2 −,α+ δ = −∂ xx + 1 − 2 u 2 −,α − δV − + O (δ2 ) , 

= L 
0 
− − δV − + O (δ2 ) , V − = 4 u −,α

∂u −,α

∂α
. 

ote that the potentials V ± are sign-changing functions over x ∈ 

0 , ∞ ) . Introduce also an expansion in the eigenvectors and the 

igenvalues 

z(α + δ) = z(α) + δq + O (δ2 ) =: z 0 + δq + O (δ2 ) 
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(α + δ) = μ(α) + δr + O (δ2 ) =: μ0 + δr + O (δ2 ) . 

sing standard inverse function theorems, with 

z, μ) ∈ { (H 
2 (R ) × H 

2 (R )) × R : | z − z 0 | << 1 , | μ − μ0 | << 1 } , 
t is enough to show that r, q can be selected so that the following

ystem is solvable up to first order in δ: 

 

(
L 
0 
+ − δV + 0 

0 L 
0 
− − δV −

)
(z 0 + δq ) − i (μ0 + δr)(z 0 + δq ) = 0 . 

(21) 

he order zero equations express the fact that (20) is satisfied. The 

ext order δ equations yield the following system 

J L 
0 − iμ0 ) q = J 

(
V + 0 
0 V −

)
z 0 + irz 0 , (22) 

hich we need to check is solvable. Applying Lemma 2 , matters 

educe to verifying the solvability condition 

J 

(
V + 0 
0 V −

)
z 0 + irz 0 , J z 0 

〉
= 0 . (23) 

his works out to an equation for r, which is 

r〈 z 0 , J z 0 〉 = −
〈(

V + 0 
0 V −

)
z 0 , z 0 

〉
. (24) 

his has a solution, provided 〈 z 0 , J z 0 〉 � = 0 . Once this is established,

e will be done with the proof of Proposition 5 . To this end, from

20) , we have that L 0 z 0 = −iμJ z 0 , whence 

 〈 z 0 , J z 0 〉 = 

〈L z 0 , z 0 〉 
μ

< 0 , 

ince iμ has negative Krein signature. �

Remark: The approximate formula (24) for r = μ′ (α) should, 

n principle imply the expected sign μ′ (α) < 0 (since we expect 

he mapping α → μ(α) to be monotone decreasing, as μ(∞ ) = 0 

nd it increases to μ(α∗) > 0 ). Unfortunately, we cannot make a 

etermination of the sign of the quantity 

〈(
V + 0 

0 V −

)
z 0 , z 0 

〉
based 

n our argument. 

Our next goal is to establish that for some α∗ ≥ 0 , μ(α) ∈ 

0 , 
√ 

(1 − 6 ψ 
2 
0 
(α))(1 − 2 ψ 

2 
0 
(α)) ) and iμ(α) is a simple eigen- 

alue for all α ∈ (α∗, ∞ ) , while at least one of these two

hanges 5 at α = α∗. Eventually, either α∗ = 0 or α∗ > 0 and either 

μ(α) collides with another eigenvalue i ̃  μ(α) or lim α→ α∗+ μ(α) = 
 

(1 − 6 ψ 
2 
0 
(α∗))(1 − 2 ψ 

2 
0 
(α∗)) ) . 

roposition 6. There exists α∗ ≥ 0 , so that μ(α) ∈ 

0 , 
√ 

(1 − 6 ψ 
2 
0 
(α))(1 − 2 ψ 

2 
0 
(α)) ) and iμ( α) is a simple eigen- 

alue, for all α ∈ (α∗, ∞ ) . 

Also, there exists σ0 > 0 , so that min α∗<α< ∞ μ(α) ≥ σ0 > 0 

nd either there exists a family of eigenvalues ±i ̃  μ(α) : μ(α) < 

˜ (α) , lim α→ α∗+ ˜ μ(α) − μ(α) = 0 or 

lim 

→ α∗+ 
μ(α) = 

√ 

(1 − 6 ψ 
2 
0 
(α∗))(1 − 2 ψ 

2 
0 
(α∗)) ) . 

n other words, ±iμ(α) (eventually) exits the imaginary axes (and be- 

omes unstable) after hitting another eigenvalue or through the edge 

f the continuous spectrum. 

roof. According to the results in Proposition 4 , we do not have to

orry about the behavior of μ(α) for very large α, so it suffices 

o consider an interval (0 , α ) , with α as in Proposition 4 . Due
0 0 

5 According to the numerics in [3] , a collision with another eigenvalue occurs 

rior to hitting the essential spectrum. 

‖

7 
o the results of Proposition 5 , α → μ(α) is a continuous function 

nd we may define 

∗ = inf { α > 0 : iμ(α) is pre-collision } . 
ow, it is either the case that α∗ = 0 or else α∗ > 0 . In the former

ase, there is nothing to do, while in the latter case, it remains to 

ule out the possibility that lim α→ α∗+ μ(α) = 0 . Let us note that 

hen α∗ > 0 , there exists σ0 > 0 , so that 

im sup 
α→ α+ 

λ0 (L ±,α ) < −σ0 , lim inf 
α→ α+ 

λ1 (L −,α ) 

> σ0 , lim inf 
α→ α+ 

λ2 (L + ,α ) > σ0 . (25) 

ndeed, (25) follows once we realize that for each compact interval 

 = [ α1 , α2 ] , there is a constant C = C J , so that for each f ∈ H 
2 and

1 , ν2 ∈ J, 

〈 (L ±,ν1 
− L ±,ν2 

) f, f 〉| ≤ C| ν1 − ν2 |‖ f‖ 
2 
L 2 , (26) 

s the operators (L ±,ν1 − L ±,ν2 ) f = const(u 2 ±,ν1 
− u 2 ±,ν2 

) f = 

onst(ν1 − ν2 ) ∂ νu 
2 
±, ̃ ν f . Then, once we have (26) , we easily 

onclude that lim α→ α∗ λ j (L ±,α ) = λ j (L ±,α∗ ) , j = 0 , 1 , . . . and

o on. Then, lim sup α→ α+ λ0 (L ±,α ) = λ0 (L ±,α∗ ) < 0 , according to 

roposition 2 . The other implications in (25) follow in a similar 

anner. 

Now, let us go back to the task at hand, namely to refute the 

ossibility lim α→ α∗ μ(α) = 0 . To this end, assume for a contradic- 

ion that in fact lim α→ α∗ μ(α) = 0 . Consider the eigenvalue prob- 

em (20) . Note that by the construction in Proposition 5 , the eigen-

alue problem is solved in the even subspace. In particular, the 

igenvalue λ1 (L + ,α ) = 0 is not very relevant in our discussion as 

ts eigenspace is spanned by an odd function u ′ + . 
Introduce the real and imaginary parts z R := 
 z(α) ; z I = � z(α) .

riting out the relation in (20) in terms of z R 
1 
, z I 

1 
, z R 

2 
, z I 

2 
yields 

L + ,αz R 1 (α) = μ(α) z I 2 (α) , L + ,αz I 1 = −μ(α) z R 2 (α) (27) 

L −,αz 
R 
2 (α) = −μ(α) z I 1 (α) , L −,αz 

I 
2 (α) = μ(α) z R 1 (α) . (28) 

he eigenvectors z(α) ∈ D (L ±) = H 
2 , so we normalize them as fol-

ows ‖ z(α) ‖ L 2 = 1 . Denote the ground states by 
±,α : ‖ 
±,α‖ L 2 =
 , L ±,α
±,α = λ0 (L ±,α )
±,α . In order to simplify the notations, we 

rop the dependence on α. By taking L 2 norm in (27) and (28) , and

pplying (25) , we arrive at the estimates 

 λ0 (L + ) ||〈 z R 1 , 
+ 〉| ≤ ‖L + z R 1 ‖ L 2 = μ(α) ‖ z I 2 ‖ L 2 . (29) 

imilarly, we establish 

| λ0 (L + ) ||〈 z I 1 , 
+ 〉| ≤ μ(α) ‖ z R 2 ‖ L 2 , | λ0 (L −) ||〈 z R 2 , 
−〉| 
≤ μ(α) ‖ z I 1 ‖ L 2 , (30) 

| λ0 (L −) ||〈 z I 2 , 
−〉| ≤ μ(α) ‖ z R 1 ‖ L 2 . (31) 

y taking dot products in (27) and (28) with appropriate vectors, 

e have (with P + f := f − 〈 f, 
+ 〉 
+ , projecting over the positive
ubspace of L + ), 

L + z R 1 , z 
R 
1 〉 = λ0 (L + ) 〈 z R 1 , 
+ 〉 2 + 〈L + P + z R 1 , P + z 

R 
1 〉 

≥ λ0 (L + ) 〈 z R 1 , 
+ 〉 2 + σ0 ‖ P + z R 1 ‖ 
2 

≥ σ0 ‖ z R 1 ‖ 
2 
L 2 − (| λ0 (L + ) | + σ0 ) 〈 z R 1 , 
+ 〉 2 ≥ σ0 ‖ z R 1 ‖ 

2 
L 2 

− 2 

σ0 

μ(α) ‖ z I 2 ‖ 
2 
L 2 ≥ σ0 ‖ z R 1 ‖ 

2 
L 2 −

2 

σ0 

μ(α) . 

here we have used the estimate (29) and the normalization 

 z I 
2 
‖ L 2 ≤ ‖ z‖ L 2 = 1 . Similarly, we establish 

〈L + z I 1 , z 
I 
1 〉 ≥ σ0 ‖ z I 1 ‖ 

2 
L 2 −

2 

σ
μ(α) , 
0 
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[

〈L −z R 2 , z 
R 
2 〉 ≥ σ0 ‖ z R 2 ‖ 

2 
L 2 −

2 

σ0 

μ(α) , 

〈L −z I 2 , z 
I 
2 〉 ≥ σ0 ‖ z I 2 ‖ 

2 
L 2 −

2 

σ0 

μ(α) 

dding up all these estimates, together with the negative Krein sig- 

ature, implies 

 > 〈L z, z〉 = 〈L + z R 1 , z 
R 
1 〉 + 〈L + z I 1 , z 

I 
1 〉 + 〈L −z R 2 , z 

R 
2 〉 + 〈L −z I 2 , z 

I 
2 〉 

≥ σ0 ‖ z‖ 
2 − 8 μ(α) 

σ0 

= σ0 − 8 μ(α) 

σ0 

his is clearly in contradiction with lim α→ α∗ μ(α) = 0 . With this, 

roposition 6 is established. �
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