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1. Introduction

Optical combs generated by micro-resonators is an active area
of research, [5,14,16-18], see also [9] for reports on concrete ex-
perimental data. As a physical process having to do with electro-
magnetism, the relevant starting point is the Maxwell equation.
We refer the interested reader to consult [15] for physical deriva-
tion in the important case of a cavity filled with medium obeying
the Kerr’s law. The proposed mechanism of pattern formations and
the related discussions on various parameters are also presented
in great detail. There are numerous papers dealing with the model
derivation, as well as reductions to dimensionless variables, see for
example [6,15,16].

In this article, our starting point of investigation is the consen-
sus model in one spatial dimension, namely the Lugiato-Lefever
equation. In normalized variables, it may be written as

itly + Uy — U+ 2|ul?u = —iyu —h,x € R, (1)

where u is the field envelop, t is the normalized time, x is the
retarded and normalized coordinate, y is the normalized damp-
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ing/detuning rate, and h is the normalized pump strength. Note
that both y, h are real parameters.

1.1. Steady states

The time-independent solutions of (1) satisfy the elliptic PDE

—u” +u-2uPu=iyu+h. (2)
Further reducing the problem, we consider the damping free case,
that is = 0. Such problem is referred to as forced (or driven) NLS
equation, which has a different physical interpretation, [3,4]. The
study of the existence and stability of the steady states (2) were
analyzed for different ranges of the parameters y, h in the follow-
ing works, [3,4,7,8,13,19,20,22].

The main subject of our investigations will be about the time
independent solutions, for the forced NLS problem. In this case, the
steady state problem, that is (2), takes the simpler form

—u” +u—=2ul’u=nh. (3)

Clearly, one cannot expect, for h # 0, the solutions to (3) to de-
cay at +oo, in fact the terminal value, denoted limy_, 1. U+ (X) = Yo
must satisfy the cubic equation ng — 1o +h=0. As it happens,
these problems have been studied before, see [3]. In fact, there are
the following explicit solutions, which have appeared repeatedly in
the literature.
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Proposition 1. Let h < (0, 3%/6) and o € (0, 00) is the unique real, so
that

B V2 cosh?
(1+2cosh? )32

Then, the functions u., given by

(4)

. 2sinh? « (5)
1 & cosh & cosh(Ax) )’

UL (x) = Yo(1+ 9L (x)) = Yo (1

1 V2sinha
Yo = — A= = (6)
v 2(1+2cosh” «) v 1+2cosh” o

are solutions to (3).

Remark: Note the important relations h = v/ — 293 and 2 <
%, as a consequence of (6). As a result, the map 9 — h is a one-
to-one correspondence between (0, %) and (0, ﬁ), whence the
constraints in the statement of Proposition 1.

It is a natural question to see whether such solutions are dy-
namically stable in the context of the forced NLS, that is (1), with
y = 0. In fact, this question has been considered in [3], where the
authors have offered an analytical solution for the case u,, while
the case of u_ was treated only numerically.

1.2. Linearizations and stability

We first perform the linearization of the system (1) about the
solutions .

Consider perturbations in the form u = uy + y; (x) + iy, (x). Plug
this in (1), and after ignoring terms 0(z2), we obtain the following
linear problem

* @;) B (‘01 fl’) (EJ f) (ﬁ) (7)

where

Ly =—0w—6u2+1
L= —0w—2u2+1

Introduce the eigenvalue ansatz <§ 1) — eM (?) the self-adjoint
2 2

operator £ and the skew symmetric J

_(£+ O . 0 1
e (5 2) o= (% 3) ®)

so that we can rewrite (7) in the compact form
JLZ = M\Z, 9)

which is the well-known Hamiltonian formulation of the eigen-
value problem.

Definition 1. We say that the wave u, is spectrally stable if the
linearized operator £ does not have spectrum in the right-hand
complex plane. In other words o (JL£) c {A : %A < 0}. Otherwise,
the wave is referred to as spectrally unstable.

Following Weyl's theory!, we use the standard split of the spec-
trum into pure point spectrum and essential spectrum. More pre-
cisely, for a closed operator A pure point spectrum op p (A) consists
of eigenvalues of finite multiplicity of A, whereas the rest is essen-
tial spectrum, oess. (A) = 0 (A) \ 0p p.(A).

Next, we present our main result.

1 which asserts the stability of essential spectrum under suitable perturbations.
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Theorem 1. The solitons u, is spectrally unstable, with exactly one
positive eigenvalue.

The steady state u_ on the other hand is spectrally stable for small
values h > 0, up to some critical value h*.

More precisely, there exists a value a* € [0, oo), so that for all o« >
o*, the linearized operator satisfies o (7L£) c iR. Note that

Oess (TL) = {ir : A e R A = /(1 = 693 () (1 = 292 (@))}.

Furthermore, op p (JL£) has a multiplicity two eigenvalue at zero, due
to translational symmetry? as well as a pair of simple, purely imagi-
nary eigenvalues +iu () with negative Krein signature.

Finally, limy_ o () =0 and the eigenvalues Fip(c) collide,
as o — a*+, either with the edge of the continuous spectrum
+i,/(1 -6y () (1 — 22 () or with another pair of eigenvalues
Fifi(er), so that 0 < p(e) < fi(a) < /(1 =6y () (1 -2y2(a)),
which are of positive Krein signature. That is, 0 < u(a) < fi(x) :
limg gy fi(e) — m(a) = 0. In other words, we have a pair of neu-
tral eigenvalues +ip (o), which travels from 0 (corresponding to h=0
and o = o0) to u(a*), and h — h* = h(a*).

Remarks:

» The results in [3] already contain rigorous analysis for the in-
stability of u,.

Regarding the stability of u_, some heuristic arguments were
presented in [3], which were complemented by numerical sim-
ulations.

We do not present a rigorously established mechanism for the
instability formation. However, from our arguments, it is con-
firmed that the waves remain spectrally stable, till the pair of
purely imaginary/neutral eigenvalues i () hits the edge of
the continuous spectrum or the pair +iji(«). According to the
numerical simulations in [3] (but also the perturbative calcu-
lations in [2], which confirm that a pair of purely imaginary
eigenvalues is peeled off the essential spectrum, as h > 0), an
instability is triggered by a collision of the pairs +iu (o) and
+ifi(ae), after a which a quartet of eigenvalues (of which two
have a negative real part, while the other two have positive real
part, hence create instability) is formed in the complex plane.
According to the numerics in [3], the second alternative occurs,
namely +iu (o) hits another eigenvalue +ifi() and exits the
imaginary axes after as a modulational instability. In fact, the
collision between iu(«) and ifi () happens at a* ~ 2.5327 or
h* ~ 0.07749, [3].

\

We plan on presenting the proof of Theorem 1, which consists
of several different claims, in the following steps. We show that
u, is spectrally unstable in Section 3.1. The claims about cess (7 L)
is in Lemma 1. Regarding the wave u_, the claims about the point
spectrum o — pt.(7£) for small h are in Section 3.2, the precise re-
sult is stated in Proposition 4. Then, the tracking for larger values
of h, more specifically the alternative for developing eventual com-
plex instabilities, is explored in Proposition 6. In preparation for
this, Proposition 5 however shows that no instability occurs, before
1) collision with another eigenvalue or 2) collision with continuous
spectrum.

2. Preliminaries

We now discuss the basics of the instability index theory.

2 and as such has algebraic multiplicity two and geometric multiplicity one, see
Section 3 below for explicit descriptions of these.
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2.1. Instability index theory

We use the instability index count theory, as developed in
[11,12]. We present a corollary, which is enough for our purposes.
For eigenvalue problem in the form (9), we assume that £ has
a finite number of negative eigenvalues, n(£) and 7! : Ker[£] —
Ker[£]*.

Let k. be the number of positive eigenvalues of (9), k. be
the number of 4 tuples of eigenvalues with non-zero real and
imaginary parts® and ki, the number of pairs of purely imagi-
nary eigenvalues with negative Krein signature. For a simple pair
of imaginary eigenvalues +iu, and the corresponding eigenvector

Z= (2) 1 JLZ = iuZ, the Krein signature is sgn({£Z,2)) see [11],
p. 267. That is, we say that the signature is negative, if (£Z,Z) < 0.
We note that since the self-adjoint operator £ : Ker[£]+ — Ker[£]*,
we can define properly £~ : Ker[£]* — Ker[£]*.

We are now ready to introduce a matrix D. Namely, picking a
basis for Ker[£], say Ker[£] = span{¢1, ..., én}, set

Dyj = (LT ¢ T ). (10)

Note that the last formula makes sense, since J~1¢; € Ker[£]',
whence £71[7-1¢;] € Ker[£]* is well-defined. Note that we shall
use the Morse index notation, namely for a self-adjoint, bounded
from below operator S, with finitely many negative eigenvalues,
denote

nS) ={r <0:1eco,,()

where the eigenvalues are counted with their respected multiplic-
ities. The index counting theorem, see Theorem 1, [12] states that
if det(D) # 0, then

kr + 2kc + 2k = n(L) — n(D). (11)

Note that the purely imaginary eigenvalues with negative Krein
signatures play an important role in the instability formation - one
manifestation of that is the formula (11). For example, one ob-
serves that the law (11) allows for configurations with ki = 1, kc =
0 that may be transformed, as parameters vary, into a case where
ki‘ =0,k =1.

Indeed, a well-established mechanism of generation of instabili-
ties is the collision of a eigenvalue of negative Krein signature with
a eigenvalue of positive Krein signature. Such collisions, may (and
usually do) give birth to a pair of complex eigenvalues, one with
positive real part (hence the instability) and one with a negative
one. We identify this below as a potential mechanism of instabil-
ity, and numerics in [3] indeed confirm that this is the case.

Next, we discuss some specific spectral results about the lin-
earized operators involved in the eigenvalue problem (9).

2.2. Some preliminary spectral results

Lemma 1. The essential spectrum of JL is given by

Oess. (TL) = {ik : A € R [A] = /(1 — 6 () (1 — 292 (@))}.
\

Proof. Since limy_,+o U+ — ¥, we can write the operators (with
U=u; Ooru=u_)

Ly =—0x+1-6u*=—0x+1-6y¢—6V

L= =0+ 1-2u* =0 +1-2¢¢ -2V

3 as any eigenvalue A : %A #0,31#0 will join o, (JL), together with
—A, A, —A, due to Hamiltonian symmetries.
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where V = u? — wg have exponential decay at +oco. By Weyl’s the-
orem,

_ _ 2

In anticipation that the spectrum is inside of iR, we set up the
spectral problem as the non-invertibility of the matrix operator

_ )
j( Oxx +(1) 63 oy +(1) B 21%) —iA, which is equivalent
_ _ 62
to the non-invertibility of ( One +é ¥ by +(1) 721#3) +
iAJ. By Fourier transform arguments, we need
k?+1 -6y iA
det( “ix 2r1-2y2) =0

for some k € R. Note that due to the restriction \ng < %(see (6)),
the diagonal entries of the matrix are positive for each k € R.
) —Ox + 1692 0 .
Thus, iAeco(J 0 *axx+]*2¢g ) if and

only if for some k € R,
A= (k2 +1-6y2)(KE+1-2v2),

In other words, the continuous spectrum fills up the
imaginary axes, with the exception of the segment from

(—iy/(1 =6y (1 -2¢).i,/(1 - 6y2)(1 - 2¢2)).
Oess. (TL) = {£ik : & = /(1 = 6y2)(1 - 2¢2)}. m

Remark: It may be an interesting exercise to write down the
spectrum of o (J7L) for the case o =0. In such a case, we are
dealing with constant coefficient Schrodinger operators £y, with
il € 0(JL) = Oess.(JL) given by A2 =k?(k? + 2),k e R, whence
we obtain the formula o (7L£) = 0ess. (JL) = iR.

The next issue that we need to address is about the solvability
of a linear problem of the type

(TL—-in)z=f, (12)

where the spectral parameter iu is outside of the
continuous  spectrum range, i.e. assuming that e

(—/(1=6Y2)(1 -292), /(1 - 6Y2)(1 - 292)).
We have the following Fredholm alternative type statement for
the linear problem (12).

Lemma 2. Let € (—/(1 - 6¥2)(1-2y2), /(1 - 6y2)(1 -2y2)).
Let J, L are asin (8) and ip € opp (JL) is a simple eigenvalue, with
an eigenfunction zg : (J7L£ —i)zg = 0.

Given f e L2(R), the linear problem (12) has a solution, if and only
if (f.Jz0) = 0.

Proof. The necessity of this condition is easy, since if we have so-
lution of (12), it suffices to take dot product of it with J7z5. We
obtain

(f, Tz20) = ((TL —i)z, Tzo) = (z, L20 + 14T Z0) = 0.

The sufficiency part relies on the Fredholm properties of the oper-
ators. More specifically, write

£ (Ot 1-6Y3 0 po (v O
0= 0 —Ow+1-292) "7\ o 2v)

so that (12) can be recast in the equivalent form
(Lo+ing =V)z=-Tf, (13)

Due to the fact that |u| </(1-6y2)(1—2v2), we have that
Lo +inJ is invertible, so we can further rewrite (13) equivalently
as

(= (Lo +ipg) V2= ~(Lo+ing) "I f =1 (14)
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Now, due to the fact that V is smooth and exponentially de-
caying (matrix) potential, while (Lo +inJ)~! :L2(R) x L2(R) —
HZ(R) x H2(R), with exponentially decaying kernel, we have that
K:=(Lo+ing) V12 xI? - 12 x[? is a compact operator. As
such, the operator Eq. (14) is in the Fredholm alternative form
(id — K)z = f. Therefore, it has solution, if f L Ker(I — K*).

We claim that under our assumptions, Ker(I — K*) = span[(Lq +
inJ)zg]. Indeed, let z* € Ker(I— K*). We have that z* = V(Ly +
ing)"1z* Letting n* := (Lo +inJ) 1z*, we conclude that (Lg+
inJ)n* = Vn*, whence

(JL—ipw)n* = (T (Lo —V) —in)n* = 0.
Since we have assumed that iu is a simple eigenvalue, it follows

that n* = czg, whence Ker(I — K*) = span[(Lg + itJ )zg]. Thus, the
solvability condition can be written as

0= (f, (Lo +ind)z0) = (Lo +ind)f. 20) = —(T f. 20) = (f. T20).

O

Next, we provide some properties of the linearized operators
L+, which will be useful in the sequel.

2.3. Properties of the linearized operators L.

Note that £ are standard self - adjoint

Schrodinger operators with even potentials vanishing at oco. In
fact, since uy — Y as x - +oo, we have that £, = -0+ 1 —
62 —6V,, Lo = 0w +1—2%2 —2V_, whence

Oess. (L) =[1— 61”3, +00), Oess. (L) =[1 — 21#5, +00)

Note that due to 1//5<% in Proposition 1, it follows that

Oess. (L) C [1 - ngs o0) C (0, 00).
We have the following Proposition, which collects some perti-
nent spectral properties of £..

Proposition 2. Let he(O,%). Then, the operators L. are

self-adjoint, with domain H2(R). In addition, oess (L+) C (0, c0),
Li[ul]=0, so that 0 € opp (L4).

« For the case uy, £, has exactly one negative eigenvalue, while
L_>0.

« For the case u_, £, has exactly one negative eigenvalue, while £_
also has exactly one negative eigenvalue, and 0 ¢ opp (L_).

Proof. Differentiating the profile Eq. (3), implies that £ [u/ ] =0.
In addition, v/, has exactly one zero, at x = 0. By Sturm-Liouville’s
criteria, zero is a simple eigenvalue, which is the second smallest
eigenvalue. So, there is exactly one negative eigenvalue for L.
Consider the case u=u,. For the operator £_, clearly £_ >
Ly, so £_ has at most one negative eigenvalue. We will show
that*n(£_) = 0. Note that the profile Eq. (3) is equivalent to
L_luy]=h>0. Assume for a contradiction that for some 7 :
L_n=—-02n, o >0. Since n will be ground state for £_, it fol-
lows that n > 0 and n will have exponential decay, in fact n(x) <

—|x],/1-2y2 . .
Ce I %. Informally, we obtain the contradiction as follows

0-< thn(X)dx — (hoy) = (L) = (14 £n)

_02(u+v 7)) < 0’

since u; > 0.

Formally, fix a cut-off function, say ¢ € Cg°(R), ¢ > 0 : supp¢
(-2,2),¢(x) =1,|x| <1 and a large real N. Let ¢{y(x) := ¢ (x/N).
Compute

0 <h(l,m) = lim {¢vLouy, ) = lim (i, £-[Evn]).

4 this has already been proved in [3], but we provide a direct, independent proof
herein.
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Now, since

Lo[onn] = SvL-[n] =25y = §in = —o*Gvn + 0 (N1,
as £, ¢/ = O(N~1). We compute

,3&“20<“+’ L_[evn]) = —o*(uy.n) <0,

which is a contradiction. The case, 0 = 0 is also contradictory, by
the same argument, now that we know that there are no negative
eigenvalues and zero must be the bottom of the spectrum, again
an impossibility.

For the case u =u_, we have again n(£_) <1, since n(£;) =1
and £, < £_. On the other hand, by direct inspection,

Lou =292u (2+u.)

whence we can convince ourselves that
(Couu )= 2¢;§f w22 +u.) dx <0, (15)

Indeed, by computations aided by Mathematica, we were able to
explicitly calculate

/Oo U2 (2 +u_) dx = —v/2sinh® («) cosh(a)/cosh(2e) + 2

5 (2 coth(a)csch(a)
cosh? ()
2 coth(a)csch(ar)
+ —
cosh” ()

— —/2sinh* (@) cosh(a)+/cosh(a) + 2
<4coth(oe)csch(oc)
cosh? (o)

Thus, £_ has a negative eigenvalue and so n(£_) = 1. Finally,
we claim that £_ does not have eigenvalue at zero. Before we start
with our contradiction argument, let us point out that since the
Schrédinger operator has £, = —0y +1—6u2 and u? is an even,
positive and decaying on (0, co) function (i.e. bell-shaped), we con-
clude that its ground state, is bell-shaped as well.

Assume now for a contradiction that 0 is an eigenvalue £_[Q] =
0. This will be the second smallest eigenvalue for £_, whence it
will have exactly one zero, so it will be an odd function, vanishing
at zero. So, in particular, Q : ||Q|| = 1 will be perpendicular to the
(bell-shaped) ground state for £,. But now recall £, < £_, so we
have (£,Q.Q) < (£_Q,Q) = 0. Thus, by Rayleigh formulas

A(Ly) < Aq(Ly) =(£4Q,Q) <0,

so n(£y) >2, in contradiction with what we know, namely
n(£4) = 1. Thus, £_ does not have a zero eigenvalue, so it is in
particular invertible operator. O

+ 27 coth(ar)csch? (o)

+ 27 coth(a)csch? (Ot))

+ 47 coth(ar)csch? (a)) <0.

We now describe the spectral properties of the linearized op-
erators at h=0. This is a well-known result, due to M. Wein-
stein, [23], but the reader might consult the excellent presenta-
tion in Section 4.1.1, [21]. It is convenient to utilize the notion
of a generalized kernel of an operator, defined as the subspace
gKer(A) := span|Ker(A), Ker(A?), .. .].

Proposition 3. For h = 0, the cubic NLS has the following behavior of
the linearized operators:

« The operator £, has a single and simple negative eigenvalue, a
simple eigenvalue at zero, with eigenfunction uy. £ is strictly pos-
itive on the co-dimension two subspace orthogonal to these two
directions.

« The operator £_ has a simple eigenvalue at zero, spanned by u.
It is positive on the co-dimension one subspace orthogonal to it.
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« The operator JL has
Oess. (T L) = {:l:i)L A eR |A| > l}, Up.p.(jﬁ) = {0}1

where zero is an eigenvalue of algebraic multiplicity four and ge-
ometric multiplicity two, generated by the translational and the
modulational invariance. More precisely,

Ker|7L] = Ker[£] = span[(l:)/), (2)];

gKer[JL] = span[(ﬁ_]o[u/]) (E{)[u])]A

\

In the arguments in the sequel, we use h as a bifurcation pa-
rameter. As the eigenvalues depend in a C! way on the parameter
h, they may move as h changes. Specifically, for h = 0, the eigen-
value zt zero is of algebraic multiplicity four (as to respect the
translational and modulational invariance). The moment the pa-
rameter h is turned on, the modulational invariance is broken, and
a pair of eigenvalues separates from zero, in a smooth way.

3. Proof of Theorem 1

We start our considerations with the proof for the instability
of u,. This has been previously established in [3], we provide the
short argument here for completeness.

3.1. The instability of u,

The instability of u, is now an easy consequence of the results
of Proposition 2 and the index count formula (11). Indeed, on the
right hand side of (11), we have n(£) =n(£y)+n(£_)=1+0=
1. Thus, the stability is determined by n(D). Since in this case
Ker[£_] = {0}, we have that D is a matrix of one element, namely
(£, u’.). However, since £_ > 0, we see that (£~'v/,,u’) >0,
whence n(D) =0, whence a single real instability is detected by

(11).

3.2. The case of u_: Tracking the modulational eigenvalues as
0<h<<1

For h = 0, we trivially settle on the standard Schrédinger model,
where all spectral information, including the spectrum of o (7L),
is well-known, see Proposition 3. More specifically, the operator
JL at h=0 has the structure of the spectrum as described in
Proposition 3, namely two eigenvectors and two generalized eigen-
vectors co-exist there.

After turning on the parameter h, i.e. the moment h # 0, the

/

“translational eigenvalue” pair <Lé

) and its corresponding gener-

alized eigenvector ( ) persists, due to the fact that trans-

0
£
lational invariance is still intact, even after adding the h in the
model. Modulational invariance is however broken, once h # 0, so
the other pair starts moving away from zero. Note that the sta-
bility of the waves, or equivalently the eigenvalue problem (9), is
completely determined by the behavior of this pair of eigenvalues,
which at h = 0 correspond to the modulational invariance. Indeed,
as we observed in Lemma 1, oess(J£) C iR. Thus, the wave is spec-
trally stable, that is, o(J7£) c iR if and only if the modulational
eigenvalue (of multiplicity two) at h =0 split as a pair of purely
imaginary eigenvalues. We focus on the proof of this fact, for the
case of the waves u_.

To this end, we look at the right-hand side of (11). It is clear
that n(£) =n(Ly) +n(L-) =1+ 1=2, while n(D) =0, so n(L) —
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n(D) = 2. Thus, according to the indices on the left-hand side,
we are presented with the following alternatives: we either have
two different positive unstable eigenvalues for 7L or we have a
four tuple of eigenvalues (two of which are unstable), so k. =1
or we have a pair of purely imaginary eigenvalues, with nega-
tive Krein signature (and so k;” =1, kr = kc = 0). We now present
some heuristical argument on why it must be that the two neg-
ative Krein signature eigenvalues happen. Let us refute the other
two cases - First, the case of two different positive unstable eigen-
values is not viable - this is still a Hamiltonian problem and this
will effectively generate four eigenvalues (the two positive and the
corresponding two with opposite signs), while we have only two
eigenvalues unaccounted for - namely the two previously modula-
tional eigenvalues, which in the case h > 0 may start moving, due
to the broken modulational invariance. In fact, and for the same
reason, even the case of a four tuple of eigenvalues cannot happen,
because this creates four eigenvalues, in addition who are still sit-
ting at the zero, for a total of six eigenvalues, whereas we started
with four eigenvalues at h = 0.

We will show that for small h, a pair of purely imaginary eigen-
values, with negative Krein signature appear. According to (11),
such a configuration is spectrally stable. Looking at the alternatives,
it suffices to show that a pair of purely imaginary eigenvalues ap-
pears close to zero, and then they must necessarily be with nega-
tive Krein signatures.

Before we continue with the construction of the modulational
eigenvalues as h # 0, let us compute n(D). Recall that accord-
ing to Proposition 2, we have that Ker[£_] = {0}, while Ker[£,] =
spanfu’_]. We claim that there is no another generalized eigenvec-

tor behind ( ) Indeed, otherwise, we would have the solv-

0
youtd 74
ability of the relation

z 0
J ‘(é) = <£1[u’_]>’

Solving directly, this means that z, = 0, while £,[z;] = -£-'[u"].
This then would require a consistency relation (£-'[u’],u’) =0,
which is false. In fact, we show that (£=![u’ ], u") > 0, for all val-
ues of h, see below.

All in all, it turns out that D has only one element, namely
(-], u’). Now, it is not as straightforward as in the classi-
cal case to conclude that (£-'[u’_],u") > 0, since £_ is not a non-
negative operator anymore, since in fact n(£_) = 1. On the other
hand, its ground state, say W : £_[W] = —02W, |W| =1 is bell-
shaped (since £_ = —0y + 1 —2u? is a Schrédinger operator with
bell-shaped potential). Hence by parity considerations (v’ ,W) =
0, so u” L W. But then, note that cr(L:lI{W}L) c (0, o), whence

L)+ > 0, whence

(CMu' Lul) = (L wyelu' ] u’) > 0.

Thus n(D) =0 and in addition recall that this was also useful in
establishing that the Jordan block of L(l)/ is of length two.

We now turn to the construction of the modulational eigenval-
ues for h # 0. Similar to the spectral problem in [10], we set up an
ansatz as follows.

£0 +hv, 0 Vhy ) _ Vhir he2
‘7< "o 0 +hv,> (uo + h:[/2> - WOﬁ(uo +h11//2> - O( h? )

(16)
where, we have used the fact that £ = £0i + hVy, where
£9 are the standard Schrédinger operators £ =—92 +1—

6sech?(x), £0 = —32 + 1 — 2 sech®(x), ug = sech(x). Note £°[ug] =
0. Also, the potentials V.. can be explicitly written down, but this
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will not be necessary for our arguments. Resolving (16) yields, to
leading order in h,

EQ\I—’Z +V_ug = i[,Lo‘Ijl
—;Cg_‘l/] = ilLoUo.

Clearly, from the second equation, we need W; = —mgﬁ;][uol,
which we then plug in the first equation. This is justified, since
up L Ker[£, ] = span[ug]. It remains to solve

[,9\1/2 = ,U%[,;WU()] —V_ug

This of course gives a solvability condition, namely
(ug,ugﬁf[uol—v_uo):o, which is actually an equation for
JLo. We obtain

(V_uo, ug)

, 17
(£ 'ug, uo) (a7

Mo =
It is well-known (and also directly computable) that (£ 'ug, up) <
0, as this is equivalent to the stability of the soliton ug, as a so-
lution to the Schrodinger equation. In fact, this is the Vakhitov-
Kolokolov condition for stability of solitary waves, which is well-
known to hold for the wave ug = sech(x). Unfortunately, V_ is a
sign-changing solution, so it is not immediately clear how to de-
termine the sign of the quantity (V_ug, ug). Instead, we shall show
by a roundabout argument that (V_ug, ug) < 0. As a consequence,
(17) has a pair of real solutions

(V_uo, up)
po =+ | oot (18)
(L3 uo, ug)
representing a pair of complex imaginary eigenvalues
+i (V_ug.ug) .
(£ ug.ug)

Indeed, otherwise, if (V_ug,ug) > 0, then we have constructed
(in the form dictated by (16)) a pair of real eigenvalues for 7.,

namely + /—%, one stable, the other one unstable. But
+ Y0-%0
then, n(£) —n(D) =2, as established earlier, while on the left

hand side of (11) k; = 1. This is impossible, a contradiction. Thus,
(V_ug, ug) < 0 and we have a pair of purely imaginary eigenvalues,
with negative Krein signatures. This shows the following proposi-
tion.

Proposition 4. There exits ag >> 1, so that for all a € (o, ), the
corresponding solutions u_ , described in (5) are spectrally stable.

Moreover, the multiplicity four eigenvalue at zero for the standard
NLS problem has transformed itself into an eigenvalue at zero with
multiplicity two, and a pair +iu(«) is a pair of simple eigenvalues of
negative Krein signatures, with even eigenfunctions.

In addition, wu : (g, o0) — R, is decreasing and smooth function,
with limy—e () =0 and p(ag) > 0.

Proof. Basically, this is a perturbation argument about the stan-
dard NLS case, which corresponds to h =0, or equivalently
o = +oo. In the narrative preceding the formal statement of
Proposition 4, we have shown that zero is still an eigenvalue,
of multiplicity two, and we have also constructed the eigenval-
ues +ip(a) for large values of «. The only unproven claim in
Proposition 4 is that w is a decreasing function of « (hence in-
creasing function of h), for large enough values of « (equivalently
small enough values of h).

In order to see this monotonicity, and even though the depen-
dence on variable h is not smooth at h =0, we can express the
formula (18) equivalently as

) duCh)y 1 | (V_ug, up)
lim /p&H _ 2 [ Wle. o) 19
hi%]Jrf h 2 (Ljrlum up) = (19)

This shows that in a small neighborhood of h =0, h — w(h) is
increasing. O
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3.3. The soliton u_: Tracking the neutral eigenvalues till the collision

In Section 3.2, we have demonstrated that for small values 0 <
h << 1, the modulational eigenvalue (of multiplicity two) at h =0
splits into a pair of purely imaginary eigenvalues +iu (h), u(h) > 0
of negative Krein signature. We now wish to further track this pair
as h grows. Recall that by the smooth dependence on the param-
eters, the wave u_ is spectrally stable as long as these pair does
not turn into a complex instability. We have described the mech-
anism of how this happens in the statement of our main result,
Theorem 1. We now provide the details of the proof.

Namely, we will show the following

«as long as p(a) < \/(1 —692(c))(1 —2¥2(x)) and =ip(a)
are simple eigenvalues (that is, we are in a pre-collision sce-
nario), there is a neighborhood (o — 8, « + §), so that whenever
& e (a—6,a+4d), the waves u_ 4 are spectrally stable, with a
pair of negative Krein signature eigenvalues +iu (&).

» There exists «a*>0, so that either limg_q«y p(a)=
V(=692 (")) (1 —2y2(a*)) or there exists another family
of eigenvalues +ifi(«) for 7Ly, with

p(e) < fife) : lim fier) - p(e) =0.

Moreover, there exists og > 0, so that ming g <00 () > 0 >
0. That is, the pair +iu(«) potentially exits the imaginary axis
either by hitting the edge of the essential spectrum or the pair
+ifi() and stays a fixed distance away from zero.

\

Remark: According to the numerics in [3], the second alterna-
tive occurs, namely +iu(a) hits another eigenvalue =iji(c) and
exits the imaginary axes after as a modulational instability.

Here and below, we use the parameters h and « interchange-
ably, due to the one-to-one correspondence described explicitly in

(4).

Proposition 5. Let +iu(o) are the eigenvalues described in
Proposition 4, which are in the pre-collision mode. That is, 0 <
p(e) < /(1 =692 (@) (1—2¢2()) and *ip(er) are simple. Then,
there exists 6 = 6(a) > 0, so that whenever & € (o — 8, +6), the
waves u_ g are spectrally stable. Moreover, the mapping o — (o) is
C'(a—-6,a+3).

Remark: Interestingly, the proof breaks down, if either u(«) =
0 or

ple) = /(1 =692 (@) (1 —2¢3()) or i(w) is not a simple
eigenvalue.

Proof. Fix « is so that 0 < u(a) < \/(1 —6Y2(a))(1 - 292 (@)
and iu(a) is a simple eigenvalue. This is exactly the setup of
Lemma 2, where it ¢ 0ess.(7£). That is

JLz(a) = in(a)z(a), (20)

We now construct, under the assumptions imposed on « the
eigenvalue in a neighborhood, (a — |8, + |§]) for some small
6 : |8] << 1. First, we introduce the approximate operators

Ow +1—6u% , — 8V, +0(8?%),

V, = 12u,va85’7(;"

Li(a+8) = —0x+1—6u*

atd =
= L% — 8V, +0(8?),
Lo(@+8) =—Bu+1-2u%  s=—-8u+1-2u>, - 8V_+0(5),

ou_q
Ja

Note that the potentials V. are sign-changing functions over x
(0, 00). Introduce also an expansion in the eigenvectors and the
eigenvalues

Z(a+8) = z(a) + 8q + 0(82) =: zg + 8q + 0(8?)

= £0 —8V_ +0(82),

V_o=4u_,
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(e +8) = () +8r+0(8%) =: g + 8r + 0(8%).
Using standard inverse function theorems, with
(z.) € {(H*(R) x H*(R)) xR |z = 2| << 1. |pt — pol << 1},

it is enough to show that r, g can be selected so that the following
system is solvable up to first order in §:

£9 -8V 0 :
J( "o * £ _ 5v_)(7'° +68q) —i(o +8r)(z0 +8q) = 0.
(21)
The order zero equations express the fact that (20) is satisfied. The
next order § equations yield the following system

(T£° —ipo)q = J(‘f)* v )Zo +irzo, (22)

which we need to check is solvable. Applying Lemma 2, matters
reduce to verifying the solvability condition

(6

This works out to an equation for r, which is

ir{zo, Jzo) = —<(‘8’ &)zo,zo>. (24)

This has a solution, provided (zg, 7zg) # 0. Once this is established,
we will be done with the proof of Proposition 5. To this end, from
(20), we have that £yzy = —itJzp, whence

‘9)Zo+ir20,j20>20. (23)

_ (L2, 29)

(20, J20) <0,

since in has negative Krein signature. OJ

Remark: The approximate formula (24) for r = u/(e) should,
in principle imply the expected sign u'(«) <0 (since we expect
the mapping o — w(«) to be monotone decreasing, as ((oo0) =0
and it increases to w(a*) > 0). Unfortunately, we cannot make a
determination of the sign of the quantity <<V6r ‘9 )zo,zo> based
on our argument.

Our next goal is to establish that for some o* >0, u(a) e
(0, \/(1 —6Y2(a))(1-2¢2(a))) and ip(a) is a simple eigen-
value for all o e (a* 00), while at least one of these two
changes® at @ = a*. Eventually, either a* = 0 or a* > 0 and either
in(a) collides with another eigenvalue ifi (o) or limy_ g« p(a) =

V(A =692 (@) (A =293 (@)

Proposition 6. There exists o«*>0, so that pu(o)e
(0, \/(1761/%(05))(1 —2y2(a))) and ip(a) is a simple eigen-
value, for all o € (a*, 00).

Also, there exists oy >0, so that ming«_y.oo () > 09 >0
and either there exists a family of eigenvalues =+ifi(x): u(a) <
(), limg—qny fi(er) — (o) =0 or

Jim (o) = /(1 =698 (@) (1 - 2y (@)

In other words, +iu(«) (eventually) exits the imaginary axes (and be-
comes unstable) after hitting another eigenvalue or through the edge
of the continuous spectrum.

Proof. According to the results in Proposition 4, we do not have to
worry about the behavior of u(«) for very large «, so it suffices
to consider an interval (0, ag), with o as in Proposition 4. Due

5 According to the numerics in [3], a collision with another eigenvalue occurs
prior to hitting the essential spectrum.
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to the results of Proposition 5, @ — u(«) is a continuous function
and we may define

o =infla > 0 :iu(a) is pre-collision}.

Now, it is either the case that a* = 0 or else «* > 0. In the former
case, there is nothing to do, while in the latter case, it remains to
rule out the possibility that limy .+ () = 0. Let us note that
when o* > 0, there exists og > 0, so that
limsupAo(Lio) < —0p, liminfAi(L_4)

aA—0y

a—o

> 0y, lgl‘lg‘nf)\.z([,_'__a) > 0p. (25)

Indeed, (25) follows once we realize that for each compact interval
J = lay, ay], there is a constant C = (, so that for each f e H? and

Vi, Vp E],
(L, = L) f )] < Clor = v I fIIE.. (26)

as the operators (Liv, —Liv,)f= const(uiv1 - uiVZ)f =
const (v — vz)a\,uiﬁf. Then, once we have (26), we easily
conclude that limg_ o= )»j(z:i,a) = )»j(z:i_a*), j=0,1,... and
so on. Then, limsup, .4, Ag(Lsa) = Ag(Lsra+) <0, according to
Proposition 2. The other implications in (25) follow in a similar
manner.

Now, let us go back to the task at hand, namely to refute the
possibility limgy_ ¢+ () = 0. To this end, assume for a contradic-
tion that in fact limy .+ (o) = 0. Consider the eigenvalue prob-
lem (20). Note that by the construction in Proposition 5, the eigen-
value problem is solved in the even subspace. In particular, the
eigenvalue A{(L+q) =0 is not very relevant in our discussion as
its eigenspace is spanned by an odd function u/,.

Introduce the real and imaginary parts z® := %z(a); Z = Sz(«).
Writing out the relation in (20) in terms of zR, z}, 28, 2 yields

LiaZi(@) = p(@)zh (@), Lioz) =—p(@)2 (@) (27)

LooZ8(a) = —p(a)Z) (@), Lo o425 (@) = pla)zf (). (28)

The eigenvectors z(c«) € D(£+) = H2, so we normalize them as fol-
lows [|z(at)||;2 = 1. Denote the ground states by W o : [|Winll2 =
1, LiaWVWig =Ao(L1ia)WVi . In order to simplify the notations, we
drop the dependence on . By taking L2 norm in (27) and (28), and
applying (25), we arrive at the estimates

Ao (L], W)l < 1£:25]]12 = () l|Zb I 2. (29)
Similarly, we establish

[Ao(LOINZ, W) | < (@) 12812, [Ao (L) 125, W)
< @)z |12, (30)

Ao (L) {z, W) | < ()12 ] - (31)
By taking dot products in (27) and (28) with appropriate vectors,
we have (with P, f := f — (f, ¥, )W¥., projecting over the positive
subspace of £.),

(L.28,28) = ho (L) (2R, W) + (L. P28, P.2Y)
)\0(£+)(le2, )2+ 00||P+Z§||2
oollZ5 17 — (1A (L] + 00) (2, W4)? = ool 2 112

IV 1V

2 ) , 2
~ oo @lzall: = ool — (@)

where we have used the estimate (29) and the normalization
12,112 < llzll ;2 = 1. Similarly, we establish

2
(L2, 24) = oollZ} |17, — ;OM(W),
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2
(£_28,28) > ool 2512 - ook,

2
(£_2h.25) = ooll 41|17 — g (@)
Adding up all these estimates, together with the negative Krein sig-
nature, implies
0> (£2.2) = (L4 28 28) + (L4020 2}) + (L2, 28) + (£_2}. 2))

Sule) _ - 8u(a)
0y 0 0y

%

oollzll* -

This is clearly in contradiction with limy_, ¢+ () = 0. With this,
Proposition 6 is established. O
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