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Abstract

This is part two of our study on the spreading properties of the Lotka-
Volterra competition-diffusion systems with a stable coexistence state.
We focus on the case when the initial data are exponential decaying. By
establishing a comparison principle for Hamilton-Jacobi equations, we are
able to apply the Hamilton-Jacobi approach for Fisher-KPP equation due
to Freidlin, Evans and Souganidis. As a result, the exact formulas of
spreading speeds and their dependence on initial data are derived. Our
results indicate that sometimes the spreading speed of the slower species
is nonlocally determined. Connections of our results with the traveling
profile due to Tang and Fife, as well as the more recent spreading result
of Girardin and Lam, will be discussed.
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1 Introduction

For monotone dynamical systems, the pioneering work of Weinberger et
al. [55, 57] (see also [43]) relates the spreading speed of the population to
the minimal speed of (monostable) traveling wave solutions. Their result can
be applied to the diffusive Lotka-Volterra competition system. Suitably non-
dimensionalized, the system is given by















∂tu− ∂xxu = u(1− u− av), in (0,∞)× R,
∂tv − d∂xxv = rv(1 − bu− v), in (0,∞)× R,
u(0, x) = u0(x), on R,
v(0, x) = v0(x), on R,

(1.1)

with a, b ∈ (0, 1). It is clear that (1.1) admits a trivial equilibrium (0, 0), two
semi-trivial equilibria (1, 0) and (0, 1), and further a linearly stable equilibrium

(k1, k2) =

(

1− a

1− ab
,
1− b

1− ab

)

.

Theorem 1.1 (Lewis et al. [36]). Let (u, v) be the solution of (1.1) with initial
data

u(0, x) = ρ1(x), v(0, x) = 1− ρ2(x),

where 0 ≤ ρi < 1 (i = 1, 2) are compactly supported functions in R. Then there
exists some cLLW ∈ [2

√
1− a, 2] such that











lim
t→∞

sup
|x|<ct

(|u(t, x)− k1|+ |v(t, x) − k2|) = 0 for each c < cLLW,

lim
t→∞

sup
|x|>ct

(|u(t, x)|+ |v(t, x) − 1|) = 0 for each c > cLLW.

In this case, we say that u spreads at speed cLLW.

Remark 1.2. If the initial data (u, v)(0, x) is a compact perturbation of (1, 0),
then there exists c̃LLW ∈ [2

√

dr(1 − b), 2
√
dr] such that the species v spreads at

speed c̃LLW.

It is shown in [38,39] that the spreading speed cLLW (resp. c̃LLW) is identical
to the minimum wave speed of traveling wave solution connecting the pair of
equilibria (k1, k2) and (0, 1) (resp. (1, 0)). It is crucial for the theory that the
pair of equilibria forms an ordered pair of equilibria (regarding the comparability
of steady states in the theory of monotone semi-flows, see [49]).

For the weak competitive diffusive system (1.1), Tang and Fife [50] proved an
additional class of traveling wave solutions connecting the positive equilibrium
(k1, k2) with the trivial equilibrium (0, 0). In this case, the equilibria (0, 0) and
(k1, k2) are un-ordered, and hence the existence of traveling wave, due to Tang
and Fife [50], does not directly follow from the monotone dynamical systems
framework due to Weinberger et al. [56, 57] (see also [20, 39]).

A natural question is whether the speed traveling wave solutions due to
Tang and Fife, which connect (k1, k2) to (0, 0), determine the spreading speed
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of the populations in the Cauchy problem (1.1), provided the initial data (u0, v0)
has the same asymptotics at x = ±∞ as the traveling wave solution? What
happens for more general exponentially decaying initial data? Does the two
species spread with different speeds?

In this paper, we continue our investigation in [41] on the spreading proper-
ties of solutions of the Cauchy problem (1.1). We are interested in determining
the spreading speeds of each of the populations u and v, for the class of initial
data (u0, v0) satisfying (u0, v0)(−∞) = (1, 0), (u0, v0)(∞) = (0, 0) and such that
u0 → 0 exponentially at ∞ with rate λu > 0; v0 → 0 decays exponentially at
∞ (resp. −∞) with rate λ+v > 0 (resp. λ−v > 0).

We introduce the Hamilton-Jacobi approach to study the spreading of two-
interacting species into an open habitat, and resolve a conjecture by Shige-
sada [48, Ch. 7]. Inspired by the pioneering work of Freidlin [22] and of Evans
and Souganidis [17] on the Fisher-KPP equation, we shall derive, via the thin-
front limit, a couple of Hamilton-Jacobi equations for which solutions have to
be understood in the viscosity sense. In our previous work [41], we considered
the Cauchy problem (1.1) endowed with compactly supported initial data, and
used the dynamics programming approach to show the uniqueness of the limit-
ing Hamilton-Jacobi equations, and to evaluate the solution by determining the
path that minimizes certain action functional. In contrast to our previous pa-
per, we will tackle the Cauchy problem with exponentially decaying initial data
using entirely PDE arguments. For this purpose, we establish a general com-
parison principle for discontinuous viscosity solutions associated with piecewise
Lipschitz Hamiltonians, the latter arising naturally in the spreading of multiple
species. The proof of the comparison result is based on combining the ideas due
to Ishii [33] and Tourin [51]. With this comparison principle at our disposal, we
are able to obtain large-deviation type estimates of the solutions (u, v) to the
Cauchy problem (1.1) by explicit construction of simple piecewise linear super-
and sub-solutions.

1.1 Known results of a single population

We first recall some classical asymptotic spreading results concerning the
single Fisher-KPP equation:

{

∂tφ− d̃∂xxφ = r̃φ(1 − φ), in (0,∞)× R,

φ(0, x) = φ0(x), on R,
(1.2)

where d̃, r̃ are positive constants. If the initial data is a Heaviside function,
supported on (−∞, 0], it is shown [3,21,35] that the population, whose density

is given by φ(t, x) has the spreading speed c∗ = 2
√

d̃r̃, i.e.,











lim
t→∞

sup
x<ct

|φ(t, x) − 1| = 0 for all c < c∗,

lim
t→∞

sup
x>ct

|φ(t, x)| = 0 for all c > c∗.
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In addition, the spreading speed c∗ coincides with the minimal speed of the
traveling wave solutions to (1.2) in this case. If we broaden the scope of initial
data φ0 to include the class of exponentially decaying data, then the asymptotic
behavior of the solution to (1.2) is sensitive to the rate of decay of φ0 at x = ±∞
(see e.g. [30, pp.42]), which is the leading edge of the front. This is related to
the fact that 0 is a saddle for (1.2), see [9, 16, 34, 44, 47].

Precisely, denoting λ∗ =
√

r̃/d̃. It is proved [34, 44] that:

(i) When the initial data φ0(x) decays faster than exp{−λ∗x} at x = ∞, then

the spreading speed c∗ = 2
√

d̃r̃;

(ii) When the initial data φ0(x) is the form of exp{−(λ + o(1))x} at x = ∞
with λ < λ∗, then the population has the spreading speed c(λ) = d̃λ+ r̃

λ

which is strictly greater than 2
√

d̃r̃.

For recent developments in asymptotic spreading of a single population in
heterogeneous environments, we refer to [5, 7, 19] for the one-dimensional case,
and to [6, 8, 45, 56] for higher-dimensional case.

1.2 Known results of multiple populations

For close to three decades, researchers have been trying to extend these
results to reaction-diffusion systems describing two or more interacting popula-
tions.

Motivated by the northward spreading of several tree species into the newly
de-glaciated North American continent at the end of the last ice age, Shigesada
et al. [48, Ch. 7] formulated the question of spreading of two or more competing
species into an open habitat, i.e., one that is unoccupied by either species. In
case of two competing species, it is conjectured that for large time, the solution
behaves like stacked traveling fronts, i.e., it exhibits two transition layers moving
at two different speeds c1 > c2, connecting three homogeneous equilibrium states
(0, 0), E1 and E2. Here E1 is the semi-trivial equilibrium where the faster
species is present, and E2 is either the other semi-trivial equilibrium or the
coexistence equilibrium (if the latter exists). While it is not difficult to see that
the spreading speed c1 of the faster species can be predicted by the underlying
single equation (since the slower species is essentially absent at the leading
edge of the front), the determination of the second speed remained open over a
decade. Lin and Li [40] first worked on the spreading properties of (1.1) in the
weak competition case 0 < a, b < 1 with compactly supported initial condition
(u0, v0) and obtained estimates for the spreading speed c2 of the slower species.
For the strong competition case a, b > 1, Carrère [10] determined both of the
spreading speeds, where c2 is determined by the unique speed of traveling wave
solutions connecting the semi-trivial steady state (1, 0) and (0, 1). The predator-
prey system was considered by Ducrot et al. [15]. For cooperative systems
with equal diffusion coefficients, the existence of stacked fronts for cooperative
systems was also studied by [31]. In these cases, the spreading speeds of each
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individual species can be determined locally and is not influenced by the presence
of other invasion fronts.

However, the second speed c2 can in general be influenced by the first front
with speed c1, as demonstrated by the work of Holzer and Scheel [29] which
applies in particular to (1.1) for the case a = 0 and b > 0. They showed that
the second speed c2 can be determined by the linear instability of the zero
solution of a single equation with space-time inhomogeneous coefficient. For
coupled systems, the case 0 < a < 1 < b was treated in a recently appeared
paper of Girardin and the third author [26]. By deriving an explicit formula for
c2, it is observed that c2 can sometimes be strictly greater than the minimal
speed of traveling wave connecting E1 and E2, and that it depends on the first
speed c1 in a non-increasing manner. The proof in [26] is based on a delicate
construction of (piecewise smooth) super- and sub-solutions for the parabolic
system. In our previous paper [41], we showed that in the weak competition
case 0 < a, b < 1 the formula for c2 is exactly the same as the one in [26] but
with a novel strategy of proof based on obtaining large deviation estimates via
analyzing the Hamilton-Jacobi equations obtained in the thin-front limit. We
also mention that coupled parabolic systems were also treated in [18, 23] based
on the large deviations approach, but in these papers all components spread
with a single spreading speed.

1.3 Main results

In this paper, we study the spreading of two competing species into an open
habitat with exponentially decaying (in space) initial data, with attention to
how the spreading speeds are influenced by the exponential rates of decay at
infinity.

For a function g : R → R and λ ∈ R, we say that g(x) ∼ e−λx at ∞ if

0 < lim inf
x→∞

eλxg(x) ≤ lim sup
x→∞

eλxg(x) < ∞.

Definition for g(x) ∼ eλx at −∞ is similar. We now state our hypothesis for the
initial data (u0, v0).

(Hλ)



















The initial value (u0, v0) ∈ C(R; [0, 1])2 is strictly positive on R,

and there exist positive constants θ0,λu,λ+v ,λ
−
v such that

u0(x) ≥ θ0 in (−∞, 0], u0(x) ∼ e−λux at ∞,

v0(x) ∼ eλ
−

v x at −∞, and v0(x) ∼ e−λ+
v x at ∞.

.

We denote


























σ1 = d(λ+v ∧
√

r

d
) +

r

λ+v ∧
√

r
d

, σ2 = (λu ∧ 1) +
1

λu ∧ 1
,

σ3 = d(λ−v ∧
√

r(1 − b)

d
) +

r(1 − b)

λ−v ∧
√

r(1−b)
d

,

(1.3)
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where a∧b = min{a, b} for a, b ∈ R. Here the quantity σ1 (resp. σ2) denotes the
spreading speed of v (resp. u) in the absence of the competitor [34,44]. Without
loss of generality, we assume σ1 ≥ σ2 throughout this paper. This amounts to
fixing the choice of v to be the faster spreading species.

Our main result is stated as follows.

Theorem 1.3. Assume σ1 > σ2. Let (u, v) be the solution of (1.1) such that
the initial data satisfies (Hλ). Then there exist c1, c2, c3 ∈ R such that c3 < 0 <
c2 < c1, and for each small η > 0, the following spreading results hold:







































lim
t→∞

sup
x>(c1+η)t

(|u(t, x)|+ |v(t, x)|) = 0,

lim
t→∞

sup
(c2+η)t<x<(c1−η)t

(|u(t, x)|+ |v(t, x) − 1|) = 0,

lim
t→∞

sup
(c3+η)t<x<(c2−η)t

(|u(t, x)− k1|+ |v(t, x) − k2|) = 0,

lim
t→∞

sup
x<(c3−η)t

(|u(t, x)− 1|+ |v(t, x)|) = 0.

(1.4)

Precisely, the spreading speeds c3 < 0 < c2 < c1 can be determined as follows:

c1 = σ1, c2 = max{cLLW, ĉnlp}, c3 = −max{c̃LLW,σ3}, (1.5)

where cLLW (resp. c̃LLW) is given in Theorem 1.1 (resp. Remark 1.2), and

ĉnlp =















σ1
2 −

√
a+ 1−a

σ1
2 −

√
a
, if σ1 < 2λu and σ1 ≤ 2(

√
a+

√
1− a),

λ̃nlp +
1−a
λ̃nlp

, if σ1 ≥ 2λu and λ̃nlp ≤
√
1− a,

2
√
1− a, otherwise,

(1.6)

with the quantity λ̃nlp being given by

λ̃nlp =
1

2

[

σ1 −
√

(σ1 − 2λu)2 + 4a
]

. (1.7)

To visualize the spreading result (1.4) visually, we consider the scaling

(û, v̂)(t, x) = lim
ε→0

(u, v)

(

t

ε
,
x

ε

)

for (t, x) ∈ (0,∞)× R,

whose asymptotic behaviors can be given in Figure 1.
Note that while the spreading speed c1 of the faster species v is entirely

determined by λ+v (the exponential decay of v0 at x ≈ ∞), and is unaffected by
the slower species u, the corresponding speed c2 of species u depends upon σ1
and λu (the exponential decay of u0 at x ≈ ∞). In particular, when λ+v ≥

√

r
d

and λu > σ1
2 , i.e., v0(x) and u0(x) decay fast enough, the speeds c1 and c2 are the

same as that of the case of compactly supported initial data (see [41, Theorem
1.2]).
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Figure 1: The asymptotic behaviors of (û, v̂).

Remark 1.4. We point out that the speed c2 in Theorem 1.3 is non-increasing
in both σ1 and λu, which follows from the following observations: (i) λ̃nlp given
by (1.7) is non-decreasing in both σ1 and λu; (ii) s+ 1−a

s is non-increasing in
(0,

√
1− a]. This fact makes intuitive sense: (i) a higher σ1 means the region

dominated by species v, which is roughly {(t, x) : c2t < x < σ1t}, is larger and
thus rendering it more difficult for species u to invade; (ii) a higher λu means
there are less population at the front to pull the invasion wave, which also makes
it difficult for species u to invade.

Fix σ1, λu > 0 and 0 < a < 1, such that σ1 > σ2 holds. We shall see that
the quantity ĉnlp in (1.6) can be equivalently defined by

{(t, x) : w2(t, x) = 0} = {(t, x) : t > 0 and x ≤ ĉnlpt},

where w2(t, x) is the unique viscosity solution of the Hamilton-Jacobi equation

{

min{∂tw + |∂xw|2 + 1− aχ{x<σ1t}, w} = 0, in (0,∞)× R,

w(0, x) = λu max{x, 0}, on R.
(1.8)

Here χS is the indicator function of the set S ∈ (0,∞)× R.
A further point of interest is the involvement of (0, 0) and (k1, k2) in co-

invasion process of (1.1), which happens only in the weak competition case 0 <
a, b < 1. In this case, the equilibrium states (0, 0) and (k1, k2) are un-ordered,
and hence the existence of traveling wave, due to Tang and Fife [50], cannot be
established by monotone dynamical systems framework due to Weinberger et
al. [57] (see also [20,39]). We will see that the invasion front (k1, k2) into (0, 0) is
indeed realized in (1.1) for initial data with certain values of exponential decay
rates λu,λ+v at infinity, namely, when σ1 = σ2.

Theorem 1.5. Assume σ1 = σ2. Let (u, v) be the solution of (1.1) such that
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the initial data satisfies (Hλ). Then for each small η > 0, it holds that


























lim
t→∞

sup
x>(σ1+η)t

(|u(t, x)| + |v(t, x)|) = 0,

lim
t→∞

sup
(c3+η)t<x<(σ1−η)t

(|u(t, x) − k1|+ |v(t, x)− k2|) = 0,

lim
t→∞

sup
x<(c3−η)t

(|u(t, x)− 1|+ |v(t, x)|) = 0,

(1.9)

where c3 = −max{c̃LLW,σ3} and that c̃LLW is given in Remark 1.2.

For initial data with general exponential decay rates, Theorem 1.3 demon-
strates that there are two separate monostable fronts where each of the two
species invades with distinct speeds. Moreover, if the parameters of (1.1)
changes in such a way that |σ1−σ2| → 0, the distance of the two fronts tends to
zero. Therefore, the invasion front of (k1, k2) transitioning directly into (0, 0),
due to Tang and Fife, is in fact the special case when these two monostable
fronts coincide (Theorem 1.5).

Remark 1.6. As in [17,41], our approach can be applied to the spreading prob-
lem of competing species in higher dimensions under minor modifications. How-
ever, we choose to focus here on the one-dimensional case to keep our exposition
simple, and close to the original formulation of the conjecture in [48, Chapter
7].

1.4 Outline of main ideas

To determine c1, c2, c3, we introduce large deviation approach and construct
appropriate viscosity super- and sub-solutions for certain Hamilton-Jacobi equa-
tions, and then apply the comparison principle (Theorem A.1) to obtain the
desired estimations. We outline the main steps leading to the determination of
the nonlocally pulled spreading speed c2, as stated Theorem 1.3, and remark
that c1, c3 can be obtained by a similar even simpler argument as c2.

1. To estimate c2 from below, we consider the transformation wε
2(t, x) =

−ε logu
(

t
ε ,

x
ε

)

and show that the half-relaxed limits

w2,∗(t, x) = lim inf
ε → 0

(t′, x′) → (t, x)

wε
2(t

′, x′) and w∗
2(t, x) = lim sup

ε → 0
(t′, x′) → (t, x)

wε
2(t

′, x′)

exist, upon establishing uniform bounds in Cloc (see Lemma 3.2). By
constructing viscosity super-solution w2, which satisfies

{(t, x) : w2(t, x) = 0} = {(t, x) : t > 0 and x ≤ ĉnlpt},

and using the comparison principle (Theorem A.1), we can show that
w∗

2 ≤ w2, and thus wε
2 → 0 locally uniformly in {(t, x) : x < ĉnlpt}. One

can then apply the arguments in [17, Section 4] to show that

lim inf
ε→0

u

(

t

ε
,
x

ε

)

> 0 in {(t, x) : t > 0 and x < ĉnlpt} .
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This implies that c2 ≥ ĉnlp (see Lemma 3.8).

2. To estimate c2 from above, we construct viscosity sub-solution w2 and
apply Theorem A.1 to estimate w2 from below, see Proposition 4.2. This
enables us to obtain a large deviation estimate of u. Namely, for each
small δ > 0, let ĉδ = σ1 − δ, we have

u(t, ĉδt) ≤ exp (−[µ̂δ + o(1)]t) for t , 1,

where µ̂δ = w2(1, ĉδ) = w2(1,σ1 − δ). Now, recalling that (u, v) is a
solution to (1.1) restricted to the domain {(t, x) : 0 ≤ x ≤ ĉδt}, with
boundary condition satisfying

lim
t→∞

(u, v)(t, 0) = (k1, k2) and lim
t→∞

(u, v)(t, ĉδt) = (0, 1),

we may apply Lemma B.2 in Appendix to show that ĉδ and µ̂δ completely
controls the spreading speed c2 of u from above.

The rest of the paper is organized as follows: In Section 2, we give upper
estimates ci for i = 1, 2, 3 and c2 ≥ cLLW. In Section 3, we give lower estimates
of c1, c2. The approximate asymptotic expressions of u and v are established in
Section 4, where we also determine c2, c3. In Section 5, we discuss the relation
of our results with the invasion mode due to Tang and Fife [50]. In Section 6, we
discuss the relation of our result with that of [26] due to Girardin and the last
author. In Section 7, we prove an extension which is associated to the spreading
speeds of the three-species competition systems. We conclude the article with
the Appendix. Therein we give the comparison principle of Hamilton-Jacobi
equation with piecewise Lipschitz continuous Hamiltonian and two other useful
lemmas.

This paper concerns the Cauchy problem of a system of reaction-diffusion
equations modeling two competing species. For the spreading of two species into
an open habitat, we refer to [37] for an integro-difference competition model,
and to [14] for a competition model with free-boundaries. See also [27, 42, 53,
54, 58] for other related results in free-boundary problems. We also note that
in those works the spreading speeds are always locally determined and thus do
not interact.
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2 Estimating the maximal and minimal speeds

The concepts of maximal and minimal spreading speeds are introduced in [28,
Definition 1.2] for a single species; see also [24, 41]. In our setting, we define



































































c1 = inf {c > 0 | lim sup
t→∞

sup
x>ct

v(t, x) = 0},

c1 = sup {c > 0 | lim inf
t→∞

inf
ct−1<x<ct

v(t, x) > 0},

c2 = inf{c > 0 | lim sup
t→∞

sup
x>ct

u(t, x) = 0},

c2 = sup {c > 0 | lim inf
t→∞

inf
ct−1<x<ct

u(t, x) > 0},

c3 = inf{c < 0 | lim inf
t→∞

inf
ct<x<ct+1

v(t, x) > 0},

c3 = sup{c < 0 | lim sup
t→∞

sup
x<ct

v(t, x) = 0},

(2.1)

where c1 and c1 (resp. c2 and c2) are the maximal and minimal rightward
spreading speeds of species v (resp. species u), whereas −c3 and −c3 are the
maximal and minimal leftward spreading speeds of v, respectively.

In this section, for initial data satisfying (Hλ), we will give some estimates
of the maximal and minimal spreading speeds. The main result of this section
can be precisely stated as follows.

Proposition 2.1. Let (u, v) be a solution of (1.1) with initial data satisfying
(Hλ). Then the spreading speeds defined in (2.1) satisfy

(i) ci ≤ σi for i = 1, 2 and c3 ≤ −σ3;

(ii) c2 ≥ cLLW, and c3 ≤ −c̃LLW,

where σ1,σ2,σ3 are defined in (1.3) and cLLW, c̃LLW are given respectively in
Theorem 1.1 and Remark 1.2. Furthermore, we have

lim
t→∞

(|u(t, 0)− k1|+ |v(t, 0)− k2|) = 0. (2.2)

Proof. We will complete the proof in the following order: (1) c2 ≤ σ2, (2)
c1 ≤ σ1, (3) c3 ≤ −σ3, (4) c3 ≤ −c̃LLW, (5) c2 ≥ cLLW, (6) (2.2) holds.
Step 1. We show assertions (1), (2) and (3).

Observe that for some M > 0 the function

u(t, x) := min{1,M exp(−min{λu, 1}(x− σ2t))}

is a weak super-solution to the single KPP-type equation

∂tu− ∂xxu = u(1− u) in (0,∞)× R,

of which u(t, x) is clearly a sub-solution. By choosing the constant M > 0 so
large that u0(x) ≤ u(0, x) in R, it follows by comparison that

u(t, x) ≤ u(t, x) = min {1,M exp(−min{λu, 1} (x− σ2t)} (2.3)
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for (t, x) ∈ [0,∞)× R. In particular,

lim
t→∞

sup
x>(σ2+η)t

|u(t, x)| = 0 for each η > 0. (2.4)

This proves c2 ≤ σ2, i.e., assertion (1) holds.
Similarly, we deduce assertion (2) by comparison with

v̄(t, x) := min{1,M exp(−min{λ+v ,
√

r/d}(x− σ1t))}

which is the solution of
{

∂tv − d∂xxv = rv(1− v), in (0,∞)× R,

v(0, x) = min(1,Me−min{λ+
v ,
√

r

d
}x), x ∈ R.

To prove assertion (3), let ṽ(t, x) = v(t,−x), we turn to consider another
single KPP-type equation

{

∂tv − d∂xxv = rv(1− b − v), in (0,∞)× R,
v(0, x) = v0(−x), x ∈ R.

Again the scalar comparison principle implies v(t,−x) = ṽ(t, x) ≥ v. By the
results in [34] or [44], we have

lim inf
t→∞

inf
(−σ3+η)t<x≤0

v ≥ lim inf
t→∞

inf
|x|<(σ3−η)t

ṽ ≥
1− b

2
, (2.5)

which means c3 ≤ −σ3.
Step 2. We show assertions (4) and (5).

Given any non-trivial, compactly supported function ṽ0 such that 0 ≤ ṽ0 ≤
v0. Then

(u0(x), v0(x)) - (1, ṽ0(x)) in R.

Let (ũLLW, ṽLLW) be the solution to (1.1) with initial value (1, ṽ0(x)). Then
Theorem 1.1 and Remark 1.2 guarantee the existence of c̃LLW ≥ 2

√

dr(1 − b),
such that

lim inf
t→∞

inf
|x|<|c|t

ṽLLW(t, x) > 0 for each c ∈ (−c̃LLW, 0).

By the comparison principle for (1.1), we have (u, v) - (ũLLW, ṽLLW) for all
(t, x) ∈ (0,∞)× R, which yields, for each c ∈ (−c̃LLW, 0),

lim inf
t→∞

inf
ct<x<ct+1

v(t, x) ≥ lim inf
t→∞

inf
ct<x<ct+1

ṽLLW(t, x) > 0.

This proves c3 ≤ −c̃LLW and thus assertion (4) holds.
Similarly, we can get show assertion (5), i.e., c2 ≥ cLLW. By comparing

(u, v) with the solution (uLLW, vLLW) of (1.1) with initial condition (ũ0, 1), for
some compactly supported ũ0 satisfying 0 ≤ ũ0 ≤ u0, and then using Theorem
1.1. In this way, we get

lim inf
t→∞

inf
|x|<ct

u ≥ lim inf
t→∞

inf
|x|<ct

uLLW > 0 for each c ∈ (0, cLLW). (2.6)

Step 3. We show assertion (6). In view of (2.5) and (2.6), one can deduce (2.2)
from items (a) and (c) of Lemma B.1.
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3 Estimating c1 and c2 from below

We assume σ1 > σ2 throughout this section. In this section, we estimate c1
and c2 from below via the large deviation approach and applying Theorem A.1.
To this end, we introduce a small parameter ε via the following scaling

uε(t, x) = u

(

t

ε
,
x

ε

)

and vε(t, x) = v

(

t

ε
,
x

ε

)

. (3.1)

Under the new scaling, we rewrite the equation of uε and vε in (1.1) as















∂tuε = ε∂xxuε + uε

ε (1− uε − avε), in (0,∞)× R,
∂tvε = εd∂xxvε + r vε

ε (1− buε − vε), in (0,∞)× R,
uε(0, x) = u0(

x
ε ), on R,

vε(0, x) = v0(xε ), on R.

(3.2)

To obtain the asymptotic behaviors of vε and uε as ε → 0, the idea is to
consider the WKB ansatz wε

1 and wε
2, which are given respectively by

wε
1(t, x) = −ε log vε(t, x), wε

2(t, x) = −ε log uε(t, x), (3.3)

and satisfy, respectively, the equations
{

∂twε − εd∂xxwε + d|∂xwε|2 + r(1 − buε − vε) = 0, in (0,∞)× R,
wε(0, x) = −ε log vε(0, x), on R,

(3.4)

and
{

∂twε − ε∂xxwε + |∂xwε|2 + 1− uε − avε = 0, in (0,∞)× R,
wε(0, x) = −ε loguε(0, x), on R.

(3.5)

Lemma 3.1. Let G be an open set in (0,∞) × R and K,K ′ be compact sets
such that K ⊂ IntK ′ ⊂ K ′ ⊂ G.

(a) If wε
2 → 0 uniformly in K ′ as ε→ 0, then

lim inf
ε→0

inf
K

uε ≥ 1− a lim sup
ε→0

sup
K′

vε; (3.6)

(b) If wε
1 → 0 uniformly in K ′ as ε→ 0, then

lim inf
ε→0

inf
K

vε ≥ 1− b lim sup
ε→0

sup
K′

uε. (3.7)

Proof. We first prove (a) by adapting the arguments from [17, Section 4]. Let
K,K ′ and G be given as above.

Fix an arbitrary (t0, x0) ∈ K and define the test function

ρ(t, x) = |x− x0|2 + (t− t0)
2.
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Since (i) (t0, x0) ∈ K ⊂ IntK ′ and (ii) wε
2 → 0 uniformly in K ′, the function

wε
2 − ρ attains global maximum over K ′ at (tε, xε) ∈ IntK ′ such that (tε, xε) →

(t0, x0) as ε→ 0. Furthermore, ∂tρ(tε, xε), ∂xρ(tε, xε) → 0, so that at the point
(tε, xε),

o(1) = ∂tρ−ε∂xxρ+ |∂xρ|2 ≤ ∂tw
ε
2−ε∂xxwε

2+ |∂xwε
2|2 ≤ uε−1+a lim sup

ε→0
sup
K′

vε.

This yields
uε(tε, xε) ≥ 1− a lim sup

ε→0
sup
K′

vε + o(1).

Since wε
2 − ρ attains maximum over K ′ at (tε, xε), we have in particular

wε
2(tε, xε) ≥ (wε

2 − ρ)(tε, xε) ≥ (wε
2 − ρ)(t0, x0) = wε

2(t0, x0).

Recalling uε(t0, x0) = e−εwε

2(t0,x0) and uε(tε, xε) = e−εwε

2(tε,xε), we therefore have

uε(t0, x0) ≥ uε(tε, xε) ≥ 1− a lim sup
ε→0

sup
K′

vε + o(1).

Since this argument is uniform for (t0, x0) ∈ K (depends only on K,K ′ and G),
we deduce assertion (a). The proof for (b) is analogous.

Next, we will pass to the (upper and lower) limits using the half-relaxed
limit method, which is due to Barles and Perthame [4]. Define

w∗
1(t, x) = lim sup

ε → 0
(t′, x′) → (t, x)

wε
1(t

′, x′),

w∗
2(t, x) = lim sup

ε → 0
(t′, x′) → (t, x)

wε
2(t

′, x′) and w2,∗(t, x) = lim inf
ε → 0

(t′, x′) → (t, x)

wε
2(t

′, x′).

That the above are well defined is due to the following lemma:

Lemma 3.2. Let wε
1 and wε

2 be the solutions to (3.4) and (3.5), respectively.
Then there exits some Q > 0, independent of ε small, such that

max{λ+v x++λ−v x−−Q(t+ ε), 0} ≤ wε
1(t, x) ≤ λ+v x++λ−v x−+Q(t+ ε), (3.8a)

max{λux+ −Q(t+ ε), 0} ≤ wε
2(t, x) ≤ λux+ +Q(t+ ε), (3.8b)

0 ≤ wε
1(t, x) ≤ Q(λ+v x+ + λ−v x− + ε), (3.8c)

0 ≤ wε
2(t, x) ≤ Q(λux+ + ε), (3.8d)

for (t, x) ∈ [0,∞)× R, where x+ = max{x, 0} and x− = max{−x, 0}.

Proof. We only prove (3.8a) and the estimations (3.8b)-(3.8d) follow from a
quite similar argument. Since vε ≤ 1, we have wε

1 ≥ 0 by definition. By (Hλ),
there exist positive constants C1 and C2 such that

C2e
−(λ+

v
x++λ−

v
x−) ≤ v(0, x) ≤ C1e

−(λ+
v
x++λ−

v
x−) for x ∈ R.
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By definition (3.3), we have

λ+v x+ + λ−v x− − ε logC1 ≤ wε
1(0, x) ≤ λ+v x+ + λ−v x− − ε logC2. (3.9)

Define
zε1 = λ+v x+Q(t+ ε).

We shall choose large Q independent of ε such that

wε
1(t, x) ≤ zε1 in [0,∞)× [0,∞). (3.10)

To this end, observe that zε1 is a (classical) super-solution of (3.4) in (0,∞)×
(0,∞) provided Q ≥ r. By (2.2) in Proposition 2.1, we find − log v(t, 0) is
uniformly bounded in [0,∞) (since v(0, x) > 0 in R), so that we may choose

Q = max

{

sup
t∈[0,∞)

[− log v(t, 0)], | logC2|, r

}

, (3.11)

such that

wε
1(t, 0) ≤ zε1(t, 0) for all t ≥ 0, wε

1(0, x) ≤ zε1(0, x) for all x ≥ 0,

where the last inequality is due to (3.9). By comparison, (3.10) thus holds.
By a similar argument, we can verify

zε2 = −λ−v x+Q(t+ ε)

is a super-solution of (3.4) in (0,∞)× (−∞, 0), so that

wε
1(t, x) ≤ zε2(t, x) in [0,∞)× (−∞, 0], (3.12)

where Q is defined by (3.11). Combining with (3.10) and (3.12) gives the desired
upper bound of wε

1.
To obtain the lower bound of wε

1, we may define functions

zε1 = λ+v x−Q(t+ ε) and zε2 = −λ+v x−Q(t+ ε).

By the same arguments as before, we can check

wε
1(t, x) ≥ zε1 in [0,∞)× R and wε

1(t, x) ≥ zε2 in [0,∞)× R,

by choosing Q = max
{

| logC1|, d(λ+v )2 + d(λ−v )
2 + r

}

. This completes the
proof of (3.8a).

Remark 3.3. According to Lemma 3.2, by letting t = 0 and then ε → 0 in
(3.8a) and (3.8b), we deduce that

w∗
1(0, x) =

{

λ+v x, for x ∈ [0,∞),

λ−v x, for x ∈ (−∞, 0],

and

w∗
2(0, x) = w2,∗(0, x) =

{

λux, for x ∈ [0,∞),

0, for x ∈ (−∞, 0].

Similarly, by setting x = 0 and then ε→ 0 in (3.8c) and (3.8d), we have

w∗
1(t, 0) = w∗

2(t, 0) = w2,∗(t, 0) = 0 for t ≥ 0.
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3.1 Estimating c1 from below

By Proposition 2.1, c2 ≤ σ2, so we deduce

0 ≤ lim sup
ε → 0

(t′, x′) → (t, x)

uε(t′, x′) ≤ χ{x≤σ2t}. (3.13)

Lemma 3.4. Let (u, v) be a solution of (1.1) with initial data satisfying (Hλ).
Then

(a) w∗
1 is a viscosity sub-solution of










min{∂tw + d|∂xw|2 + r(1 − bχ{x≤σ2t}), w} = 0, in (0,∞)× (0,∞),

w(0, x) = λ+v x, on [0,∞),

w(t, 0) = 0, on [0,∞);

(3.14)

(b) w∗
1 is a viscosity sub-solution of











min{∂tw + d|∂xw|2 + r(1 − bχ{x≤σ2t}), w} = 0, in (0,∞)× (−∞, 0),

w(0, x) = −λ−v x, on (−∞, 0],

w(t, 0) = 0, on [0,∞),

(3.15)

where σ2 is defined by (1.3) and λ−v , λ
+
v ∈ (0,∞) are given in (Hλ).

Proof. First, observe that w∗
1 is upper semicontinuous (usc) by construction.

By Remark 3.3, the initial and boundary conditions of (3.14) and (3.15) are
satisfied.

It remains to show that w∗
1 is a viscosity sub-solution of min{∂tw+d|∂xw|2+

r(1 − bχ{x≤σ2t}), w} = 0 in the domain (0,∞) × R. According to definition
of viscosity sub-solution of Hamilton-Jacobi equation, (see Appendix A), let
ϕ ∈ C∞((0,∞)×R) and let (t0, x0) be a strict local maximum point of w∗

1 − ϕ
such that w∗

1(t0, x0) > 0. By passing to a sequence ε = εk if necessary, wε
1 − ϕ

has a local maximum point at (tε, xε) such that wε
1(tε, xε) → w∗

1(t0, x0) and
(tε, xε) → (t0, x0) uniformly as ε→ 0. At the point (tε, xε), we have

εd∂xxϕ ≥ εd∂xxw
ε
1 = ∂tw

ε
1 + d|∂xwε

1|2 + r(1 − buε − e−
w

ε
1
ε )

= ∂tϕ+ d|∂xϕ|2 + r(1 − buε − e−
w

ε
1
ε ).

By the fact that e−wε

1(tε,xε)/ε → 0 (as wε
1(tε, xε) → w∗

1(t0, x0) > 0), we may pass
to the limit ε = εk → 0 so that

0 ≥ ∂tϕ(t0, x0) + d|∂xϕ(t0, x0)|2 + r(1 − bχ{(t,x):x≤σ2t}(t0,x0) − 0).

Hence w∗
1 is a viscosity sub-solution of (3.14) and (3.15).
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Lemma 3.5. Let (u, v) be a solution of (1.1) with initial data satisfying (Hλ).
Then

c1 ≥ σ1,

where σ1 is defined by (1.3).

Proof. Define the function w1 : [0,∞)× [0,∞) → [0,∞) by

w1(t, x) =







λ+v (x− (dλ+v + r
λ+
v

)t), for x
t > dλ+v + r

λ+
v

,

0, for 0 ≤ x
t ≤ dλ+v + r

λ+
v

,

when λ+v ≤
√

r
d , and by

w1(t, x) =















λ+v (x− (dλ+v + r
λ+
v

)t), for x
t > 2dλ+v ,

t
4d (

x2

t2 − 4dr), for 2
√
dr < x

t ≤ 2dλ+v ,

0, for 0 ≤ x
t ≤ 2

√
dr,

when λ+v >
√

r
d .

By construction, w1 is continuous in [0,∞) × [0,∞). Next, we claim that
the continuous w1 is a viscosity super-solution of (3.14). We will check the
latter case of λ+v >

√

r
d as the former case can be verified analogously. Un-

der the condition λ+v >
√

r
d , we have σ1 = 2

√
dr. According to definition

of viscosity super-solution of Hamilton-Jacobi equation (see Appendix A), let
ϕ ∈ C∞((0,∞)×R) and let (t0, x0) be a strict local minimum point of w1 − ϕ.

If x0/t0 /= 2
√
dr, then w1 is a classical solution of (3.14).

If x0/t0 = 2
√
dr, then w1(t0, x0) = 0 by definition. Moreover,

−ϕ(t, 2
√
drt) = (w1−ϕ)(t, 2

√
drt) ≥ (w1−ϕ)(t0, x0) = −ϕ(t0, x0) for t ≈ t0,

and we must have ∂tϕ(t0, x0) + 2
√
dr∂xϕ(t0, x0)) = 0, and hence

∂tϕ(t0, x0) + d|∂xϕ(t0, x0)|2 + r(1 − bχ{(t,x):x≤σ2t}(t0, x0))

= −2
√
dr∂xϕ(t0, x0) + d|∂xϕ(t0, x0)|2 + r

=
(√

d∂xϕ(t0, x0)−
√
r
)2

≥ 0,

where the first equality follows from the fact that x0/t0 = 2
√
dr = σ1 > σ2.

By Remark 3.3 and the expression of w1, we have

w1(t, x) = λ+v x = w∗
1(t, x) on ∂[(0,∞)× (0,∞)].

And recalling Lemma 3.4(a), w1 and w∗
1 is a pair of viscosity super and sub-

solutions of (3.14). Then, we may apply Theorem A.1 to get

0 ≤ w∗
1 ≤ w1 in [0,∞)× [0,∞),
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which implies that

{(t, x) : w∗
1(t, x) = 0} ⊃ {(t, x) : w1(t, x) = 0} = {(t, x) : 0 ≤ x ≤ σ1t}.

Letting ε→ 0, we arrive at

wε
1(t, x) = −ε log vε(t, x) → 0 locally uniformly on {(t, x) : 0 ≤ x < σ1t}.

Hence for each small η > 0, by choosing the compact sets K = {(1, x) : η ≤ x ≤
σ1 − η} and K ′ = {(1, x) : η

2 ≤ x ≤ σ1 − η
2}, we may apply Lemma 3.1(b) to

deduce that

lim inf
t→∞

inf
ηt<x<(σ1−η)t

v(t, x) = lim inf
ε→0

inf
K

vε(t, x) ≥
1− b

2
> 0. (3.16)

This implies c1 ≥ σ1.

Corollary 3.6. Let σ1 > σ2 and let (u, v) be a solution of (1.1) with initial
data satisfying (Hλ). Then for each small η > 0,

lim
t→∞

sup
x>(σ1+η)t

(|u|+ |v|) = 0, (3.17a)

lim
t→∞

sup
(c2+η)t<x<(σ1−η)t

(|u|+ |v − 1|) = 0, (3.17b)

where σ1 is defined by (1.3).

Proof. By definition, c1 ≤ c1. It follows from Proposition 2.1 and Lemma
3.5 that σ1 ≤ c1 ≤ c1 ≤ σ1. Hence, c1 = c1 = σ1. By Proposition 2.1(i),
c2 ≤ σ2 < σ1, so that (3.17a) holds. In view of (3.16) and definition of c2, we
have, for each small η > 0,

lim inf
t→∞

inf
ηt<x<(σ1−η)t

v(t, x) > 0, and lim
t→∞

sup
x>(c2+η)t

u = 0.

We may then apply Lemma B.1(d) to deduce (3.17b).

3.2 Estimating c2 from below

By Corollary 3.6, we have

χ{σ2t<x<σ1t} ≤ lim inf
ε → 0

(t′, x′) → (t, x)

vε(t′, x′) ≤ lim sup
ε → 0

(t′, x′) → (t, x)

vε(t′, x′) ≤ χ{x≤σ1t}. (3.18)

Lemma 3.7. Let (u, v) be a solution of (1.1) with initial data satisfying (Hλ).
Then, w∗

2 is a viscosity sub-solution of
{

min{∂tw + |∂xw|2 + 1− aχ{x≤σ1t}, w} = 0, in (0,∞)× R,
w(0, x) = λu max{x, 0}, on R,

(3.19)

where σ1 is defined by (1.3) and λu > 0 is given in (Hλ).
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Proof. The proof is analogous to Lemma 3.4 and we omit the details.

Lemma 3.8. Let (u, v) be a solution of (1.1) with initial data satisfying (Hλ).
Then

c2 ≥ ĉnlp,

where ĉnlp is defined in Theorem 1.3.

Proof. According to definition of ĉnlp in Theorem 1.3, we consider the three
cases separately: (a) σ1 < 2λu and σ1 < 2(

√
a +

√
1− a); (b) σ1 ≥ 2λu and

λ̃nlp ≤
√
1− a; (c) otherwise.

First, we claim that we are done in case (c). Since in that case ĉnlp =
2
√
1− a, and, according to Proposition 2.1(ii), c2 ≥ cLLW where cLLW ≥

2
√
1− a by Theorem 1.1. Thus

c2 ≥ cLLW ≥ 2
√
1− a = ĉnlp.

It remains to consider cases (a) and (b). We start by defining

c̄nlp =
σ1
2

−
√
a+

1− a
σ1
2 −

√
a

and

c̃nlp = λ̃nlp +
1− a

λ̃nlp
where λ̃nlp =

1

2

(

σ1 −
√

(σ1 − 2λu)2 + 4a
)

. (3.20)

Suppose case (a) holds, then ĉnlp = c̄nlp. Define w2 by

w2(t, x) =



























λu(x − (λu + 1
λu

)t), for x
t ≥ 2λu,

t
4 (

x2

t2 − 4), for σ1 ≤ x
t < 2λu,

(σ1
2 −

√
a)(x − c̄nlpt), for c̄nlp < x

t < σ1,

0, for x
t ≤ c̄nlp.

By construction, w2 is continuous in [0,∞)×R. We claim that continuous w2 is
a viscosity super-solution of (3.19). (Actually, it is the unique viscosity solution
of (3.19), but we do not need this fact.) Indeed, w2 is a classical solution for
(3.19) whenever x

t /∈ {σ1, c̄nlp}. Now, it remains to consider the case when
w2−ϕ attains a strict local minimum at (t0, x0) for ∀ϕ ∈ C∞(0,∞)×R), when
x0
t0

= σ1 or c̄nlp. In case x0
t0

= σ1, (w2 − ϕ)(t,σ1t) ≥ (w2 − ϕ)(t0, x0) for all

t ≈ t0, so that ∂tϕ(t0, x0) + σ1∂xϕ(t0, x0) = σ2
1
4 − 1. Hence, at (t0, x0), (note

that (−aχ{x≤σ1t})
∗ = −aχ{x<σ1t})

∂tϕ+ |∂xϕ|2 + 1− aχ{x<σ1t} =
σ2
1

4
− 1− σ1∂xϕ+ |∂xϕ|2 + 1

=
(

∂xϕ−
σ1
2

)2
≥ 0.
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On the other hand, if x0
t0

= c̄nlp, then ∇ϕ(t0, x0) · (1, c̄nlp) = 0, and

0 ≤ ∇ϕ(t0, x0) · (−c̄nlpt, 1) ≤ ∇[(
σ1
2

−
√
a)(x− c̄nlpt)] · (−c̄nlp, 1),

which means ∂tϕ(t0, x0) = −c̄nlp∂xϕ and 0 ≤ ∂xϕ(t0, x0) ≤ σ1
2 −

√
a, whence

∂tϕ+ |∂xϕ|2 + 1− aχ{x<σ1t} = −c̄nlp∂xϕ+ |∂xϕ|2 + 1− a

=

(

∂xϕ−
1− a

σ1
2 −

√
a

)

(

∂xϕ−
σ1
2

+
√
a
)

≥ 0

at (t0, x0). The last inequality holds because ∂xϕ ≤ σ1
2 −

√
a ≤

√
1− a ≤ 1−a

σ1
2 −

√
a
.

Hence, w2 is a viscosity super-solution of (3.19).
By Remark 3.3 and the express of w2, we have

w2(0, x) = λu max{x, 0} = w∗
2(0, x) for x ∈ R.

And recalling that w∗
2 is a viscosity sub-solution of (3.19), we may deduce by

Theorem A.1 that
0 ≤ w∗

2 ≤ w2 in [0,∞)× R. (3.21)

Now,

{(t, x) : w∗
2(t, x) = 0} ⊃ {(t, x) : w2(t, x) = 0} = {(t, x) : x ≤ ĉnlpt}.

Hence,

wε
2(t, x) = −ε loguε(t, x) → 0 locally uniformly on {(t, x) : x < ĉnlpt}.

Hence for each small η > 0, by choosing the compact sets K = {(1, x) : η ≤ x ≤
ĉnlp − η} and K ′ = {(1, x) : η

2 ≤ x ≤ ĉnlp − η
2}, we may apply Lemma 3.1(a) to

get

lim inf
t→∞

inf
ηt≤x≤(ĉnlp−η)t

u(t, x) = lim inf
ε→0

inf
K

uε(t, x) ≥
1− a

2
> 0,

which implies c2 ≥ ĉnlp.
Finally, for case (b), then we have ĉnlp = c̃nlp. We define

w2(t, x) =















λu(x− (λu + 1
λu

)t), for x
t ≥ σ1,

λ̃nlp(x− c̃nlpt), for c̃nlp < x
t < σ1,

0, for x
t ≤ c̃nlp.

Then one can verify that w2 is likewise a viscosity super-solution of (3.19), so
that one can repeat the arguments for case (a) to show, again, that c2 ≥ ĉnlp.

4 Estimating c2 from above and c3 from below

We assume σ1 > σ2 throughout this section. It remains to show

c2 ≤ max{cLLW, ĉnlp} and c3 ≥ −max{c̃LLW,σ3}.
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4.1 Estimating c2 from above

For δ ≥ 0, we will construct an exponent µ̂δ depending continuously on δ
such that

u(t, (σ1 − δ)t) ≤ exp (−(µ̂δ + o(1))t) for t , 1,

so that we may apply Lemma B.2(a) to estimate c2 from above.

Lemma 4.1. Let (u, v) be a solution of (1.1) with initial data satisfying (Hλ).
Then w2,∗ is a viscosity super-solution of

{

min{∂tw + |∂xw|2 + 1− aχ{σ2t<x<σ1t}, w} = 0, in (0,∞)× R,
w(0, x) = λu max{x, 0}, on R,

(4.1)

where σ1 and σ2 are defined in (1.3).

Proof. It follows from standard arguments as in Lemma 3.4.

Proposition 4.2. Let (u, v) be a solution of (1.1) with initial data satisfying
(Hλ). Then

c2 ≤ max{cLLW, ĉnlp},

where cLLW and ĉnlp are defined respectively in Theorem 1.1 and 1.3.

Proof. Step 1. Define w2 : [0,∞)× R by

w2(t, x) =



















λu(x− (λu + 1
λu

)t), for x
t ≥ 2λu,

t
4 (

x2

t2 − 4), for 2 ≤ x
t < 2λu,

0, for x
t < 2,

(4.2)

in case λu > 1, and by

w2(t, x) = λu max

{

x− (λu +
1

λu
)t, 0

}

,

in case λu ≤ 1. Then it is straightforward to verify that w2 is a viscosity sub-
solution of (4.1). Since, w2,∗(0, x) = λu max{x, 0} = w2(0, x) in R (by Remark
3.3), we may apply Theorem A.1 to deduce

w2,∗(t, x) ≥ w2(t, x) for [0,∞)× R. (4.3)

Step 2. To show that, for each ĉ ≥ 0,

u(t, ĉt) ≤ exp{−(w2(1, ĉ) + o(1))t} for t , 1. (4.4)

And that w2(1,σ1) is given by

w2(1,σ1) =

{

(σ1
2 −

√
a)(σ1 − c̄nlp), for σ1 < 2λu,

λ̃nlp(σ1 − c̃nlp), for σ1 ≥ 2λu,
(4.5)
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and c̄nlp, c̃nlp, λ̃nlp are all given in Lemma 3.8.
By definition of w2,∗ and wε

2(t, x) = −ε loguε(t, x), for each small ε > 0, by
applying Step 1, we have

−ε logu
(

1

ε
,
ĉ

ε

)

≥ w2,∗(1, ĉ) + o(1) ≥ w2(1, ĉ) + o(1)

⇐⇒ u

(

1

ε
,
ĉ

ε

)

≤ exp

(

−
w2(1, ĉ) + o(1)

ε

)

,

which implies (4.4). By the formula of w2, we can show

(i) For σ1 < 2λu, we substitute (t, x) = (1,σ1) in (4.2) to obtain

w2(1,σ1) =
1

4
(σ2

1 − 4) = (
σ1
2

−
√
a)(σ1 − c̄nlp), (4.6)

where c̄nlp = σ1
2 −

√
a+ 1−a

σ1
2 −

√
a
;

(ii) For σ1 ≥ 2λu, we substitute (t, x) = (1,σ1) in (4.2) to obtain

w2(1,σ1) = λu

(

σ1 − (λu +
1

λu
)

)

. (4.7)

Recalling the definition of λ̃nlp in (3.20), we have

λ̃nlp − λu =
1

2

[

(σ1 − 2λu)−
√

σ1 − 2λu)2 + 4a
]

,

so that
(λ̃nlp − λu)

2 − (σ1 − 2λu)(λ̃nlp − λu)− a = 0. (4.8)

Hence, (4.7) becomes

w2(1,σ1) = λu

(

σ1 − (λu +
1

λu
)

)

= λ̃nlp(σ1 − c̃nlp), (4.9)

where c̃nlp, λ̃nlp are as in (3.20).

This implies (4.5) holds, which completes Step 2.
Step 3. To show c2 ≤ max{cLLW, ĉnlp}.

It follows from Proposition 2.1 and Corollary 3.6 that for ĉ ∈ (σ2,σ1),

lim
t→∞

(u, v)(t, 0) = (k1, k2) and lim
t→∞

(u, v)(t, ĉt) = (0, 1).

By Step 2 and observation λLLWcLLW = λ2LLW+1−a, then we apply Lemma
B.2(a) in Appendix to conclude that for ĉ ∈ (σ2,σ1),

c2 ≤ cĉ,w2(1,ĉ)
=







cLLW, if w2(1, ĉ) ≥ −λ2LLW + λLLW ĉ− (1− a),

ĉ− 2w2(1,ĉ)

ĉ−
√

ĉ2−4(w2(1,ĉ)+1−a)
, if w2(1, ĉ) < −λ2LLW + λLLW ĉ− (1− a).

(4.10)
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Letting ĉ ↗ σ1, (4.10) can be expressed as (denote µ̂ = w2(1,σ1))

c2 ≤ cσ1,µ̂ =







cLLW, if µ̂ ≥ −λ2LLW + λLLWσ1 − (1− a),

σ1 − 2µ̂

σ1−
√

σ2
1−4(µ̂+1−a)

, if µ̂ < −λ2LLW + λLLWσ1 − (1− a).

(4.11)
It remains to verify cσ1,µ̂ = max{cLLW, ĉnlp}, where ĉnlp = λ̂nlp + 1−a

λ̂nlp
and

λ̂nlp =











σ1
2 −

√
a, if σ1 < 2λu and σ1 ≤ 2(

√
a+

√
1− a),

λ̃nlp, if σ1 ≥ 2λu and λ̃nlp ≤
√
1− a,√

1− a, otherwise,

(4.12)

and λ̃nlp is given in Lemma 3.8. Note that

λ̂nlp = min{λµ̂,
√
1− a}, where λµ̂ :=

{ σ1
2 −

√
a, for σ1 < 2λu,

λ̃nlp, for σ1 ≥ 2λu.
(4.13)

By (4.6) and (4.9), µ̂ = w2(1,σ1) can be expressed as

µ̂ = G(λµ̂), where G(λ) := −λ2 + σ1λ− (1− a) (4.14)

and λµ̂ is as defined in (4.13). Note that G(λ) is strictly increasing on [0, σ1
2 ].

We note for later purposes that (4.14) is a quadratic equation in λµ̂, so that

λµ̂ =
σ1 −

√

σ2
1 − 4(µ̂+ 1− a)

2
. (4.15)

Since λLLW ∈ (0,
√
1− a], we divide our discussion into two cases: (i) λµ̂ <

λLLW; (ii) λLLW ≤ λµ̂.

(i) Case λµ̂ < λLLW. (Recall that λLLW ≤
√
1− a.)

By (4.13), λ̂nlp = λµ̂ < λLLW, whence it follows from the observation

ĉnlp = λ̂nlp +
1− a

λ̂nlp
and cLLW = λLLW +

1− a

λLLW
, (4.16)

and the monotonicity of s+ 1−a
s in (0,

√
1− a] that ĉnlp ≥ cLLW. It remains

to show that cσ1,µ̂ = ĉnlp.

Now, by monotonicity of G, we have

µ̂ = G(λµ̂) < G(λLLW) = −λ2LLW + λLLWσ1 − (1− a).

By (4.11), we have cσ1,µ̂ = σ1 − 2µ̂

σ1−
√

σ2
1−4(µ̂+1−a)

. Hence,

cσ1,µ̂ = σ1 −
µ̂

λµ̂
= λµ̂ +

1− a

λµ̂
= ĉnlp,

where the first and second equalities follow from (4.15) and (4.14), respec-
tively.
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(ii) Case λLLW ≤ λµ̂.

By (4.13),

λ̂nlp = min{λµ̂,
√
1− a} ≥ min{λLLW,

√
1− a} = λLLW.

It follows from (4.16) that ĉnlp ≤ cLLW. It remains to show that µ̂ ≥
G(λLLW), so that cσ1,µ̂ = cLLW = max{cLLW, ĉnlp}. Indeed, one can check
that λLLW ≤ λµ̂ ≤ σ1/2, and we deduce

µ̂ = G(λµ̂) ≥ G(λLLW),

by the monotonicity of G in [0,σ1/2].

The proof of Proposition 4.2 is now complete.

4.2 Estimating c3 from below

For convenience, let ũ(t, x) = u(t,−x), ṽ(t, x) = v(t,−x), and define

ũε(t, x) = ũ

(

t

ε
,
x

ε

)

, ṽε(t, x) = ṽ

(

t

ε
,
x

ε

)

, wε
3 = −ε log ṽε(t, x) in [0,∞)× R.

Again we pass to the half-relaxed limit:

w3,∗(t, x) = lim inf
ε → 0

(t′, x′) → (t, x)

wε
3(t

′, x′).

Lemma 4.3. Let (ũ, ṽ) be a solution of (1.1) such that x → (ũ(0,−x), ṽ(0,−x))
satisfies (Hλ). Then, for each small η > 0,

lim
t→∞

sup
x>(dλ−

v + r

λ
−

v

+η)t

(|ũ(t, x)− 1|+ |ṽ(t, x)|) = 0. (4.17)

Proof. Let vKPP be the solution of

{

∂tvKPP − d∂xxvKPP = rvKPP(1− vKPP), in (0,∞)× R,

vKPP = min{1, Ce−λ−

v
x}, on x ∈ R.

By choosing C to be sufficiently large, we may apply comparison principle to
get 0 ≤ ṽ ≤ vKPP. Therefore, for each η > 0,

lim
t→∞

sup
x>(dλ−

v + r

λ
−

v

+η)t

|ṽ(t, x)| = 0 for each η > 0. (4.18)

Let uKPP be the solution of
{

∂tuKPP − ∂xxuKPP = uKPP(1− a− uKPP), in (0,∞)× R,
uKPP(0, x) = u0(x), on x ∈ R.
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Again the scalar comparison principle implies u ≥ uKPP. By the results in [34]
or [44], we have, for each small η > 0,

lim
t→∞

inf
x>−(2

√
1−a+η)t

ũ(t, x) = lim
t→∞

inf
x<(2

√
1−a−η)t

u(t, x) ≥
1− a

2
. (4.19)

By small η>0, we have (4.18) and (4.19) hold, thus we may apply Lemma
B.1(b) to deduce (4.17).

In view of Lemma 4.3, we obtain

χ{x>(dλ−

v + r

λ
−

v

)t} ≤ lim inf
ε → 0

(t′, x′) → (t, x)

ũε(t′, x′) ≤ lim sup
ε → 0

(t′, x′) → (t, x)

ũε(t′, x′) ≤ 1. (4.20)

Lemma 4.4. Let (ũ, ṽ) be a solution of (1.1) such that x → (ũ(0,−x), ṽ(0,−x))
satisfies (Hλ). Then, w3,∗ is a viscosity super-solution of














min{∂tw + d|∂xw|2 + r(1 − bχ{x>(dλ−

v + r

λ
−

v

)t}), w} = 0 in (0,∞)× (0,∞),

w(0, x) = λ−v x, on [0,∞),

w(t, 0) = 0, for t > 0.
(4.21)

Proof. The proof is similar to proof of Lemma 3.4(b) and is omitted.

Proposition 4.5. Let (u, v) be a solution of (1.1) with initial data satisfying
(Hλ). Then

c3 ≥ −max{c̃LLW,σ3}.

where c̃LLW and σ3 are defined in Remark 1.2 and (1.3), respectively.

Proof. Step 1. To show

w3,∗(t, x) ≥ w3(t, x) for [0,∞)× [0,∞), (4.22)

where w3 : [0,∞)× [0,∞) is defined by

w3(t, x) = λ−v max

{

x− (dλ−v +
r

λ−v
)t, 0

}

.

As in Step 1 of Proposition 4.2, one can verify that w3 is a viscosity sub-solution
of (4.21). By the expression of w3, Remark 3.3 and w1,∗(t,−x) = w3,∗(t, x), we
have w3(t, x) = λ−v max{x, 0} = w3,∗(t, x) on ∂[(0,∞) × (0,∞)]. Hence we
apply Theorem A.1 to obtain (4.22).
Step 2. To show for each ĉ ≥ 0, we have

ṽ(t, ĉt) ≤ exp{(w3(1, ĉ) + o(1))t} for t , 1. (4.23)

This can be done as in Step 2 of Proposition 4.2.
Step 3. To show c3 ≥ −max{c̃LLW,σ3}.
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Fix ĉ > (dλ−v + r
λ−

v

). By Proposition 2.1 and Lemma 4.3, we arrive at

lim
t→∞

(ũ, ṽ)(t, 0) = lim
t→∞

(u, v)(t, 0) = (k1, k2) and lim
t→∞

(ũ, ṽ)(t, ĉt) = (1, 0).

(4.24)
This verifies condition (i) of Lemma B.2(b). Next, by Step 2, we have

ṽ(t, ĉt) ≤ exp{−(µ̂2 + o(1))t} for t , 1,

where
µ̂2 = w3(1, ĉ) = λ−v (ĉ− (dλ−v +

r

λ−v
)). (4.25)

We note for later purposes that µ̂2 is a quadratic expression in λ−v , so that

µ̂2 = λ−v ĉ− d(λ−v )
2 − r, and λ−v =

ĉ−
√

ĉ2 − 4d(µ̂2 + r)

2d
. (4.26)

We may then apply Lemma B.2(b) to conclude

− c3 ≤ c̃ĉ,µ̂2 =







c̃LLW, if µ̂2 ≥ λ̃LLW(ĉ− c̃LLW),

ĉ− 2dµ̂2

ĉ−
√

ĉ2−4d[µ̂2+r(1−b)]
, if 0 < µ̂2 < λ̃LLW(ĉ− c̃LLW).

(4.27)
To complete the proof, we need to verify

lim sup
ĉ→∞

c̃ĉ,µ̂2 ≤ max {c̃LLW,σ3} .

Since 0 = −dλ̃2LLW + λ̃LLW c̃LLW − r(1 − b), then

µ̂2 − λ̃LLW(ĉ− c̃LLW) =µ̂2 − (−dλ̃2LLW + λ̃LLW ĉ− r(1 − b))

=
(

λ−v − λ̃LLW
) [

ĉ− d(λ−v + λ̃LLW)
]

− rb,
(4.28)

where (4.26) is used for the last inequality.

(i) For the case λ−v > λ̃LLW, we take ĉ → ∞ in (4.28) to get

µ̂2 ≥ λ̃LLW (ĉ− c̃LLW) ,

so that by (4.27), −c3 ≤ c̃LLW ≤ max {c̃LLW,σ3};

(ii) For the case λ−v ≤ λ̃LLW, we have λ−v ≤ λ̃LLW ≤
√

r(1−b)
d and

σ3 = dλ−v +
r(1 − b)

λ−v
≥ dλ̃LLW +

r(1 − b)

λ̃LLW
= c̃LLW.

we have
0 < µ̂2 < λ̃LLW (ĉ− c̃LLW) .
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Denote λĉ,µ̂2 =
ĉ−
√

ĉ2−4d[µ̂2+r(1−b)]

2d . Then

d(λĉ,µ̂2)
2 − ĉλĉ,µ̂2 + µ̂2 + r(1 − b) = 0, (4.29)

and λĉ,µ̂2 ≤ λ−v (by comparing with the second part of (4.26)). Hence, we
arrive at

− c3 ≤ cĉ,µ̂2 = ĉ−
µ̂2

λĉ,µ̂2

= dλĉ,µ̂2 +
r(1 − b)

λĉ,µ̂2

. (4.30)

Next, we claim that
lim
ĉ→∞

λĉ,µ̂2 = λ−v . (4.31)

To this end, subtract the first part of (4.26) from (4.29) to get

d(λĉ,µ̂2)
2 − ĉ(λĉ,µ̂2 − λ−v )− d(λ−v )

2 − rb = 0.

Dividing the above by ĉ and letting ĉ → ∞, we obtain (4.31).

By (4.31), we can take ĉ → ∞ in (4.30) to get −c3 ≤ σ3 ≤ max {c̃LLW,σ3}.

This completes the proof of Proposition 4.5.

4.3 Proof of Theorem 1.3

Proof of Theorem 1.3. For i = 1, 2, 3, let ci, ci be the maximal and minimal
spreading speeds defined in (2.1). It follows from definition directly that ci ≥ ci.
By Corollary 3.6, we have c1 = c1 = σ1. By Proposition 2.1(ii) and Lemma 3.8,
we arrive at c2 ≥ max{cLLW, ĉnlp}, which, together with c2 ≤ max{cLLW, ĉnlp}
in Proposition 4.2, we have c2 = c2 = max{cLLW, ĉnlp}. Moreover, combining
with Propositions 2.1 and 4.5 gives c3 = c3 = −max{σ3, c̃LLW}. Recalling the
ci as defined in (1.5), we have ci = ci = ci for all i = 1, 2, 3. To complete the
proof of Theorem 1.3, it remains to show (1.4).

Observe that the first two items of (1.4) is a direct consequence of Corollary
3.6. Next, we shall show that

lim inf
t→∞

inf
(c3+η)t<x<(σ1−η)t

v(t, x) > 0 for small η > 0. (4.32)

Given some small η > 0, definitions of c3 and c1 imply the existence of
c′3 ∈ (c3, c3 + η), σ′

1 ∈ (σ1 − η,σ1) and T > 0 such that

inf
t≥T

min{v(t, c′3t), v(t,σ′
1t)} > 0.

Now, define

δ := min

{

1−b
2 , inf

c′3T<x<σ′

1T
v(T, x), inf

t≥T
min{v(t, c′3t), v(t,σ′

1t)}
}

> 0.

Observe that v(t, x) and δ form a pair of super- and sub-solutions to the KPP-
type equation ∂tv = d∂xxv+ rv(1− b− v) such that v(t, x) ≥ δ on the parabolic
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boundary of the domain Ω := {(t, x) : t ≥ T, c′3t < x < σ′
1t}. It follows from

the maximum principle that v ≥ δ in Ω. In particular, (4.32) holds.
Similarly, we can show that

lim inf
t→∞

inf
x<(c2−η)t

u(t, x) > 0 for small η > 0, (4.33)

by definition of c2 and by (4.19) in Lemma 4.3. Fix small η > 0. In view
of (4.32) and (4.33), the third item of (1.4) holds by applying (a) and (c) in
Lemma B.1. Finally, since (4.33) and lim

t→∞
sup

x<(c3−η)t
v = 0 (by definition of c3),

by applying Lemma B.1(b), the fourth item of (1.4) holds true. The proof of
Theorem 1.3 is now complete.

5 The invasion mode due to Tang and Fife

In this section, we assume σ1 = σ2 and prove Theorem 1.5.

Proof of Theorem 1.5. For any small δ ∈ (0, 1), let (uδ, vδ) and (uδ, vδ) be re-
spectively any solution of

{

∂tu− ∂xxu = u(1− u− av), in (0,∞)× R,

∂tv − d∂xxv = rv(1 + δ − bu− v), in (0,∞)× R,
(5.1)

and
{

∂tu− ∂xxu = u(1− u− av), in (0,∞)× R,

∂tv − d∂xxv = rv(1 − δ − bu− v), in (0,∞)× R,
(5.2)

with initial data satisfying (Hλ). By comparison, we deduce that

(uδ, vδ) - (u, v) - (uδ, vδ) in [0,∞)× R. (5.3)

Notice that (uδ, vδ) is a solution of (5.1) if and only if

(U δ, V
δ
) =

(

u,
vδ

1 + δ

)

(5.4)

is a solution of
{

∂tU − ∂xxU = U(1− U − aδV ), in (0,∞)× R,

∂tV − d∂xxV = rδV (1 − bδU − V ), in (0,∞)× R,
(5.5)

where aδ = (1 + δ)a, rδ = (1 + δ)r and bδ = b
1+δ . Observe that σδ

1 =

d(λ+v ∧
√

rδ

d ) + rδ

λ+
v ∧

√

rδ

d

> σ1 = σ2 and 0 < aδ, bδ < 1 by choosing δ small

enough. By applying Theorem 1.3 to (5.5), we deduce that the rightward and

leftward spreading speeds cδ1 and cδ3 of V
δ

(which is the same as vδ), and the
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rightward spreading speed cδ2 of Uδ (same as uδ) exist. Furthermore, they can
be characterized by

cδ1 = σδ
1, cδ2 = max{cδLLW, ĉδnlp}, cδ3 = −max{c̃δLLW,σδ

3}.

Precisely, cδLLW (resp. c̃
δ
LLW) is the spreading speed for (5.5) as given in Theorem

1.1 (resp. Remark 1.2), σδ
3 = d(λ−v ∧

√

rδ

d ) +
rδ(1−bδ)

λ+
v ∧

√

rδ

d

and moreover

ĉδnlp =























σδ
1
2 −

√
aδ + 1−aδ

σδ
1
2 −

√
aδ

, if σδ
1 < 2λu and σδ

1 ≤ 2(
√
aδ +

√

1− aδ),

λ̃
δ

nlp +
1−aδ

λ̃
δ

nlp

, if σδ
1 ≥ 2λu and λ̃

δ

nlp ≤
√

1− aδ,

2
√

1− aδ, otherwise,
(5.6)

where λ̃
δ

nlp = 1
2

[

σδ
1 −

√

(σδ
1 − 2λu)2 + 4aδ

]

. Now, by the relation (5.3), we can

compare with the spreading speeds c1, c2 and c3 of (u, v):

c1 ≤ cδ1, c2 ≥ cδ2 and c3 ≥ cδ3. (5.7)

It remains to show that, assuming σ1 = σ2, we have ĉδnlp → σ2 as δ → 0. Divide
into the two cases:

(i) If λu > 1, then σ1 = σ2 = 2 < 2λu. Since 1 <
√
a+

√
1− a, by choosing

δ > 0 small enough, we get σδ
1 < 2λu and σδ

1 ≤ 2(
√
aδ +

√

1− aδ), which

implies ĉδnlp = σδ

1
2 −

√
aδ + 1−aδ

σδ
1
2 −

√
aδ

→ 1−
√
a+ 1−a

1−
√
a
= 2 = σ2 as δ → 0.

(ii) If λu ≤ 1, then first claim that

σδ
1 ≥ σ1 ≥ 2λu, (5.8)

which is due to σδ
1 ≥ σ1 = σ2 = λu + 1

λu
≥ 2 ≥ 2λu.

Next, we claim that
λ̃nlp <

√
1− a, (5.9)

where λ̃nlp is given in (1.7). To this end, observe that

σ1 − 2
√
1− a <

√

(σ1 − 2λu)2 + 4a (5.10)

which is a consequence of

(σ1 − 2
√
1− a)2 −

[

(σ1 − 2λu)
2 + 4a

]

= 4(2− 2a− σ1
√
1− a)

≤ 4(2− 2a− 2
√
1− a) < 0.

From definition of λ̃nlp = 1
2 [σ1 −

√

(σ1 − 2λu)2 + 4a], we deduce (5.9).
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By (5.8) and (5.9), we have σ̄δ
1 ≥ 2λu and λ̃

δ

nlp <
√

1− aδ for δ small, so

ĉδnlp = λ̃
δ

nlp +
1− aδ

λ̃
δ

nlp

→ λ̃nlp +
1− a

λ̃nlp
as δ → 0.

Since we want ĉδnlp → σ2, it remains to show that σ2 = λ̃nlp + 1−a
λ̃nlp

. To

this end, recall, from the definition of λ̃nlp (1.7), that

λ̃nlp =
σ1 −

√

(σ1 − 2λu)2 + 4a

2
=

2(σ1λu − λ2u − a)

σ1 +
√

(σ1 − 2λu)2 + 4a
.

Using σ1 = σ2 = λu + 1
λu

, we deduce

λ̃nlp =
σ2 −

√

(σ2 − 2λu)2 + 4a

2
=

2(1− a)

σ2 +
√

(σ2 − 2λu)2 + 4a
. (5.11)

This implies σ2 = λ̃nlp +
1−a
λ̃nlp

. The proof is now complete.

Hence, by the continuity of cδLLW and c̃
δ
LLW in δ (see, e.g. [52, Theorem 4.2

of Ch. 3]), letting δ → 0 in (5.7) yields

c1 ≤ σ1, c2 ≥ σ2 and c3 ≥ −max{c̃LLW,σ3}. (5.12)

By a quite similar process, we can obtain (uδ, vδ) is a solution of (5.2) if and
only if

(U
δ
, V δ) =

(

uδ,
vδ

1− δ

)

is a solution of
{

∂tU − ∂xxU = U(1− U − aδV ), in (0,∞)× R,

∂tV − d∂xxV = rδV (1 − b
δ
U − V ), in (0,∞)× R,

(5.13)

where aδ = (1 − δ)a, rδ = (1 − δ)r and b
δ
= b

1−δ . Observe that σδ
1 = d(λ+v ∧

√

rδ

d ) + rδ

λ+
v ∧

√

rδ

d

< σ1 = σ2 and 0 < aδ, b
δ
< 1 for small δ. By exchanging

the roles of u and v in (1.1), we may follow the arguments above, and apply
Theorem 1.3 once again to deduce that

c1 ≥ σ1, c2 ≤ σ2 and c3 ≤ −max{c̃LLW,σ3}. (5.14)

Theorem 1.5 follows from combining ci ≤ ci, (5.12), (5.14) and σ1 = σ2.

29



6 The case 0 < a < 1 < b due to Girardin and
Lam

The Hamilton-Jacobi approach, which we have so far applied to study the
weak competition case (0 < a, b < 1), can also be applied to tackle the case
(0 < a < 1 < b), which was previously studied by Girardin and the third
author [26]. This provides an alternative approach which is more transparent
than the involved construction of global super- and sub-solutions for the Cauchy
problem, as was done in [26]. By arguing similarly as in Theorem 1.3, one can
prove the following result.

Theorem 6.1. Assume 0 < a < 1 < b and σ1 > σ2. Let (u, v) be the solution
of (1.1) such that the initial data satisfies (Hλ). Then there exist c1, c2 ∈ (0,∞)
such that c1 > c2 and, for each small η > 0, the following spreading results hold:



























lim
t→∞

sup
x>(c1+η)t

(|u(t, x)|+ |v(t, x)|) = 0,

lim
t→∞

sup
(c2+η)t<x<(c1−η)t

(|u(t, x)|+ |v(t, x) − 1|) = 0,

lim
t→∞

sup
x<(c2−η)t

(|u(t, x)− 1|+ |v(t, x)|) = 0.

(6.1)

Precisely, the spreading speeds c1 and c2 can be determined as follows:

c1 = σ1, c2 = max{ĉLLW, ĉnlp},

where σ1 is defined in (1.3), ĉLLW denotes the minimal wave speed of (1.1)
connecting (1, 0) with (0, 1) and ĉnlp is given by

ĉnlp =















σ1
2 −

√
a+ 1−a

σ1
2 −

√
a
, if σ1 < 2λu and σ1 ≤ 2(

√
a+

√
1− a),

λ̃nlp +
1−a
λ̃nlp

, if σ1 ≥ 2λu and λ̃nlp ≤
√
1− a,

2
√
1− a, otherwise,

(6.2)

with

λ̃nlp =
1

2

[

σ1 −
√

(σ1 − 2λu)2 + 4a
]

. (6.3)

By Theorem 6.1, the spreading speed c2 is determined by σ1 (i.e., c1) and
λu. In what follows, we explore the relation of c2 and σ1 for fixed λu. Define
the following auxiliary functions:

f(σ1) =
σ1
2

−
√
a+

1− a
σ1
2 −

√
a
, g(σ1) = λ̃nlp +

1− a

λ̃nlp
,

where λ̃nlp is given by (6.3). It is easily seen that f is decreasing and bijective
in [2

√
1− a, 2(

√
1− a+

√
a)], while g is decreasing and bijective in











[

2
√
1− a,λu +

√
1− a+ 1−a

λu−
√
1−a

]

as λu ≥
√
1− a,

(

λu +
√
1− a+ 1−a

λu−
√
1−a

,∞
)

as λu <
√
1− a.
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More precisely, it follows that














f−1(c2) = c2 −
√

c22 − 4(1− a) + 2
√
a,

g−1(c2) = λu +
c2−

√
c22−4(1−a)

2 + a

λu−
c2−

√
c22−4(1−a)

2

.

In view of λ̃nlp → λu as σ1 → ∞, g∞ := g(∞) = λu + 1−a
λu

. For fixed λu
and varied λ+v (or σ1), by Theorem 6.1 we can rewrite the spreading speed c2
as follows.

(a) For g∞ ≤ ĉLLW, we have the followings:

(a1) If λu ≥ (
√
a+

√
1− a), then

c2 =

{

f(σ1), for max{2
√
dr,σ2} ≤ σ1 ≤ f−1(ĉLLW),

ĉLLW, for σ1 > f−1(ĉLLW),

independent λu;

(a2) If
√
dr ≤ λu <

√
a+

√
1− a and g−1(ĉLLW) > 2λu, then

c2 =











f(σ1), for max{2
√
dr,σ2} ≤ σ1 < 2λu,

g(σ1), for 2λu ≤ σ1 < g−1(ĉLLW),

ĉLLW, for σ1 ≥ g−1(ĉLLW);

(a3) If λu <
√
dr, then

c2 =

{

g(σ1), for max{2
√
dr,σ2} ≤ σ1 < g−1(ĉLLW),

ĉLLW, for σ1 ≥ g−1(ĉLLW);

(b) For g∞ > ĉLLW, we have the followings:

(b1) If λu ≥ (
√
a+

√
1− a), then

c2 =

{

f(σ1), for max{2
√
dr,σ2} ≤ σ1 ≤ f−1(ĉLLW),

ĉLLW, for σ1 > f−1(ĉLLW),

independent λu;

(b2) If
√
dr ≤ λu <

√
a+

√
1− a, then

c2 =

{

f(σ1), for max{2
√
dr,σ2} ≤ σ1 < 2λu,

g(σ1), for σ1 ≥ 2λu;

(b3) If λu <
√
dr, then

c2 = g(σ1) for σ1 ≥ max{2
√
dr,σ2}.
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For the case (a) g∞ ≤ ĉLLW, the relationship between the spreading speeds
σ1 and c2 given by (a1)-(a3) is illustrated in Figure 2. Therein we may obtain
the exact spreading speeds of (1.1), which are determined entirely by λu, λ+v ∈
(0,∞). Traversing all of λu, the set of admissible speeds σ1 and c2 agrees
with [26, Figure 1.1]. Particularly, a direct consequence of Theorem 6.1 is the
following proposition, which improves upon [26, Theorem 1.3] by clarifying the
role of exponential decay (λu, λ+v ) of the initial data.

Proposition 6.2. Let (c, c) ∈ (2
√
dr,∞)× (ĉLLW,∞) such that c > c.

(a) If c < f(c), then the pair of spreading speeds (c, c) is not realized by solu-
tions of (1.1) with initial data satisfying (Hλ).

(b) If c = f(c), then there exists a unique λ+v = 1
2d(c −

√

c2 − 4dr) such that
for λu ∈ [c/2,∞), the pair of spreading speeds (c, c) can be realized by
solutions of (1.1) with initial data satisfying (Hλ).

(c) If c > f(c), then there exists a unique pair (λ+v ,λu) such that the pair of
spreading speeds (c, c) can be realized by solutions of (1.1) with initial data
satisfying (Hλ).

Proof. Assertion (a) follows directly from [26, Theorem 1.2]. For assertion (b),
c > ĉLLW ≥ 2

√
1− a, so that we have c ≤ 2(

√
a +

√
1− a). Hence it follows

directly from (6.2). It remains to show (c).

First, we define λ+v = c−
√

c2−4dr
2d ∈ (0,

√

r
d ) such that c = σ1 = dλ+v + r

λ+
v

.

Since σ1 is strictly monotone in (0,
√

r
d ), the choice of such λ+v is unique. Then

we shall determine λu such that c2 = c = λ̃nlp + 1−a
λ̃nlp

.

Since c > f(c) ≥ 2
√
1− a and c > ĉLLW, to satisfy c2 = c, by (6.2) we must

have λu ∈ ( c−
√

c2−4a
2 , c

2 ) and

c = g(c) and λ̃nlp =
1

2

[

c−
√

(c− 2λu)2 + 4a
]

<
√
1− a. (6.4)

Hence, it suffices to choose the unique λu ∈ ( c−
√

c2−4a
2 , c

2 ) such that (6.4) holds.

(i) If c ≤ 2(
√
1− a +

√
a), then observe that when λu ∈ (

c−
√

c2−4a
2 , c

2 ),

λ̃nlp ∈ (0, c/2−
√
a) is increasing in λu, so that

g(c) = λ̃nlp +
1− a

λ̃nlp
∈ (f(c), c) ,

is decreasing in λu. Noting that c ∈ (f(c), c), we may select the unique

λu ∈ ( c−
√

c2−4a
2 , c

2 ) such that (6.4) holds;
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(ii) If c > 2(
√
1− a+

√
a), then to satisfy λ̃nlp <

√
1− a in (6.4), it is necessary

that λu ∈ (
c−
√

c2−4a
2 ,

c−
√

(c−2
√
1−a)2−4a

2 ). In this case,

λ̃nlp ∈
(

0,
√
1− a

)

and thus g(c) = λ̃nlp +
1− a

λ̃nlp
∈
(

2
√
1− a, c

)

,

are also strictly monotone in λu, so that there is the unique λu such that
(6.4) holds.

The proof is now complete.

Figure 2: The profile of c2(σ1) for case (a) g∞ ≤ ĉLLW, which is expressed by
the solid line with the blue one representing f and the red one representing g.
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7 An extension

In this section, we consider the following competition system with forcing:














∂tu− ∂xxu = u(1− u− av − h(t, x)), in (0,∞)× R,
∂tv − d∂xxv = rv(1 − bu− v − k(t, x)), in (0,∞)× R,
u(0, x) = u0(x), on R,
v(0, x) = v0(x), on R,

(7.1)

where
lim
t→∞

sup
x≥c0t

(|h(t, x)| + |k(t, x)|) = 0 for some c0 ∈ R. (7.2)

We will make an observation in preparation for our forthcoming work on three-
species competition systems. Recall the definitions of σi (i = 1, 2, 3) from (1.3).

Theorem 7.1. Let d, r, b > 0, 0 < a < 1 and σ1 > σ2. Suppose that
h(x, t), k(x, t) are non-negative and satisfy (7.2). Let (u, v) be the solution of
(7.1) with the initial data satisfying (Hλ). Assume

c0 < σ′
2 where σ′

2 = (λu ∧
√
1− a) +

1− a

λu ∧
√
1− a

.

Then,
c1 = c1 = σ1, c2 ≤ max{cLLW, ĉnlp}, c2 ≥ ĉnlp,

where ci, ci (i = 1, 2) are defined in (2.1). Furthermore, for each small η > 0,























lim
t→∞

sup
x>(σ1+η)t

(|u(t, x)|+ |v(t, x)|) = 0,

lim
t→∞

sup
(c2+η)t<x<(σ1−η)t

(|u(t, x)| + |v(t, x)− 1|) = 0,

lim
t→∞

inf
(c0+η)t<x<(c2−η)t

u(t, x) > 0,

(7.3)

where σ1, σ2 are defined in (1.3) and cLLW, ĉnlp are respectively given in Theo-
rem 1.1 and 1.3.

Proof. The proof can be mimicked after that of Theorem 1.3.
Step 1. The estimates c1 ≤ σ1 and c2 ≤ σ2 can be proved by rather similar
arguments as in Proposition 2.1, and the details are omitted here.
Step 2. We show that for each small η > 0,

lim inf
t→∞

u(t, (σ′
2 − η)t) > 0 and lim inf

t→∞
v(t, (σ1 − η)t) > 0. (7.4)

Here, we just show the first one since the proof of the second one is analo-
gous. For the case of λu ≥

√
1− a, by (7.2) and c0 < σ′

2, the system (7.1) is

approximately equal to (1.1) in {(t, x) : x ≥ c0+σ′

2
2 t, t ≥ T } for sufficient large T ,

so that we can deduce (7.4) by applying the similar arguments in Steps 4 of the
proof of [41, Proposition 2.1]. It remains to consider the case of λu <

√
1− a.
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Fix any c′ ∈ (max{ c0+σ′

2
2 , 2

√
1− a},σ′

2). It is enough to show that there

exist positive constants δ, λ̃1, λ̃2, T such that λ̃1 < λ̃2 and

u(t, x+ c′t) ≥
δ

4
max

{[

e−λ̃1x − e−λ̃2x
]

, 0
}

for t ≥ T, x ≥ 0. (7.5)

This implies c2 ≥ c′ for each c′ ∈ (max{ c0+σ′

2
2 , 2

√
1− a},σ′

2), i.e., c2 ≥ σ′
2.

To this end, choose δ1 > 0 small enough so that

λ̃1 :=
1

2

[

c′ −
√

(c′)2 − 4(1− a− 2δ1)
]

> λu. (7.6)

This is possible since c′ < σ′
2 and that s 6→ s−

√
s2−4(1−a)

2 is monotone, so that

1

2

[

c′ −
√

(c′)2 − 4(1− a)
]

>
1

2

[

σ′
2 −

√

(σ′
2)

2 − 4(1− a)

]

= λu.

Next, choose T > 0 large so that

|h(t, x)| ≤ δ for t ≥ T, x ≥ c′t, (7.7)

and then choose δ ∈ (0, δ1] so that

u(T, x) ≥
δ

4
e−λ̃1(x−c′T ) for x ≥ c′T, (7.8)

where (7.7) follows from (7.2) by noting c′ > c0; and that (7.8) holds due to
u(T, x) ∼ e−λux at ∞ and λ̃1 > λu (see, e.g. [52, Corollary 1 of Ch. 1]). By the
choice of λ̃1 < λ̃2, δ, δ1, T , it follows that

u(t, x) := max

{

δ

4

[

e−λ̃1(x−c′t) − e−λ̃2(x−c′t)
]

, 0

}

, (7.9)

is a sub-solution of the KPP-type equation

∂tu = ∂xxu+ ru(1− a− h(x, t)− u) in Ω, (7.10)

where Ω := {(t, x) : t ≥ T, x ≥ c′t}.
For δ ∈ (0, δ1] to be specified later, define

u(t, x) := max

{

δ

4

[

e−λ̃1(x−c′t) − e−λ̃2(x−c′t)
]

, 0

}

, (7.11)

where λ̃1 is given in (7.6) and λ̃2 = 1
2

[

c′ +
√

(c′)2 − 4(1− a− 2δ)
]

. We will

choose T > 0 and δ ∈ (0, δ1] so that







∂tu− ∂xxu− u(1 − a− h(x, t)− u) ≤ −u (2δ − h(x, t)− u) ≤ 0 in Ω,
u(t, c′t) ≥ 0 = u(t, c′t) for t ≥ T,

u(T, x) ≥ δ
4e

−λ̃1(x−c′T ) ≥ u(T, x) for x ≥ c′T,

35



i.e., u and u is a pair of super- and sub-solutions of the KPP-type equation

∂tu = ∂xxu+ ru(1− a− h(x, t)− u) in Ω, (7.12)

where Ω := {(t, x) : t ≥ T, x ≥ c′t}. Hence, by comparison, (7.5) holds.
To proceed further, as in Section 3, based on the scaling (3.1), we introduce

the WKB ansatz wε
2, which is given by

wε
2(t, x) = −ε loguε(t, x),

satisfying the equation:

{

∂twε
2 − ε∂xxwε

2 + |∂xwε
2|2 + 1− uε − avε − hε = 0, in (0,∞)× R,

wε
2(0, x) = −ε loguε(0, x), on R.

Here hε(t, x) = h( tε ,
x
ε ). By Remark 3.3, we also use the half-relaxed limit

method and introduce w∗
2 and w2,∗. By (7.4),

lim inf
ε→0

uε(t, (σ′
2 − η)t) > 0,

and uε is moreover bounded by 1. We have then, by definitions, that

w∗
2(t, (σ

′
2 − η)t) = w2,∗(t, (σ

′
2 − η)t) = 0. (7.13)

Step 3. We prove c1 ≥ σ1.
This follows from (7.4) and definition of c1.

Step 4. We prove c2 ≥ ĉnlp.
By Step 1 and h ≥ 0, we have

0 ≤ lim sup
(t′,x′)→(t,x)

ε→0

vε(t′, x′) ≤ χ{x≤σ1t}.

In view of σ′
2 > c0, we choose 0 < η 7 1 such that σ′

2 − η > c0. We then use
(7.2) to derive that

lim
ε→0

sup
x≥(σ′

2−η)t
hε(t, x) = 0.

Based on (7.13), similar to Lemma 3.4, we can deduce that w∗
2 is a viscosity

sub-solution of










min{∂tw + |∂xw|2 + 1− aχ{x≤σ1t}, w} = 0, for x > (σ′
2 − η)t,

w(0, x) = λux, for x ≥ 0,

w(t, (σ′
2 − η)t) = 0, for t ≥ 0.

We then apply the same arguments developed in Lemmas 3.8 by constructing
the same super-solutions, to deduce that c2 ≥ ĉnlp.
Step 5. We show c2 ≤ max{cLLW, ĉnlp} and (7.3).
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By (7.2) again, similar to Corollary 3.6, we can get

lim inf
(t′,x′)→(t,x)

ε→0

vε(t′, x′) ≥ χ{σ2t<x<σ1t},

so that we may use (7.13) to deduce that w2,∗ is a viscosity super-solution of











min{∂tw + |∂xw|2 + 1− aχ{σ2t<x<σ1t}, w} = 0 for x > (σ′
2 − η)t,

w(0, x) = λux, for x ≥ 0,

w(t, (σ′
2 − η)t) = 0, for t ≥ 0,

as in Lemma 4.1. Then we can get c2 ≤ max{cLLW, ĉnlp} by the same arguments
developed in Proposition 4.2. We finally deduce (7.3) by similar arguments as
in the proof of Theorem 1.3, which completes the proof.
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Appendix A Comparison principle

This section is devoted to the proof of a comparison lemma for Hamilton-
Jacobi equation for discontinuous super and sub-solutions and for piecewise
Lipschitz continuous Hamiltonian. Our proof is inspired by the arguments de-
veloped by Ishii [33] and Tourin [51] (see also [2, 11, 25]). Ishii used a crucial
observation of [2] to prove the comparison principle for discontinuous super-
and sub-soultion of Hamilton-Jacobi equations with nonconvex but continu-
ous Hamiltonian, whereas Tourin gave the uniqueness of continuous solution
of Hamilton-Jacobi equations with piecewise Lipschitz continuous Hamiltonian.
The uniqueness of viscosity solution for nonlinear first-order partial differential
equations was first introduced by Crandall and Lions in [12], then Crandall, Ishii
and Lions [13] gave a simpler proof. Ishii [32] study the discontinuous Hamil-
tonian with time measure and Tourin and Ostrov [46] studied the piecewise
Lipschitz continuous, convex Hamiltonian, based on the dynamic programming
principle.

Let Ω be a smooth domain in (0, T ]×RN , which is allowed to be unbounded
or even equal to (0, T ] × RN . We assume without loss that T = sup{t >
0 : (t, x) ∈ Ω}, and define the parabolic boundary of Ω as

∂pΩ = {(t, x) ∈ ∂Ω : t ∈ [0, T )}.
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Consider the following Hamilton-Jacobi equation:

min{∂tw +H(t, x, ∂xw), w − Lt} = 0 in Ω. (A.1)

Let H∗ and H∗ be, respectively, the upper semicontinuous (usc) and lower semi-
continuous (lsc) envelope of H with respect to its first two variables. Precisely,

H∗(t, x, p) = lim sup
(t′,x′)→(t,x)

H(t′, x′, p) and H∗(t, x, p) = lim inf
(t′,x′)→(t,x)

H(t′, x′, p).

We say that a lower semicontinuous (lsc) function w is a viscosity super-
solution of (A.1) if w − Lt ≥ 0 in Ω, and for all test functions ϕ ∈ C∞(Ω), if
(t0, x0) ∈ Ω is a strict local minimum point of w − ϕ, then

∂tϕ(t0, x0) +H∗(t0, x0, ∂xϕ(t0, x0)) ≥ 0

holds; A upper semicontinuous (usc) function w is a viscosity sub-solution of
(A.1) if for all test functions ϕ ∈ C∞(Ω), if (t0, x0) ∈ Ω is a strict local maximum
point of w − ϕ such that w(t0, x0)− Lt0 > 0, then

∂tϕ(t0, x0) +H∗(t0, x0, ∂xϕ(t0, x0)) ≤ 0

holds. Finally, w is a viscosity solution of (A.1) if and only if w is simultaneously
a viscosity super-solution and a viscosity sub-solution of (A.1).

We impose additional assumptions on the domain Ω and the Hamiltonian
H : Ω × RN → R. Namely, there exists a closed set Γ ⊂ [0, T ] × RN and, for
each R > 0, a continuous function ωR : [0,∞) → [0,∞) such that ωR(0) = 0
and ωR(r) > 0 for r > 0, such that the following holds:

(A1) H ∈ C((Ω \ Γ)× RN );

(A2) For each (t0, x0) ∈ (Ω \ Γ) ∩ ((0, T ) × BR(0)), there exist a constant
δ0 = δ0(R) > 0 such that

H(t, y, p)−H(t, x, p) ≤ ωR (|x− y|(1 + |p|))

for t, x, y, p such that ‖(t, x)−(t0, x0)‖+‖(t, y)−(t0, x0)‖ < δ0 and p ∈ RN ;

(A3) For each (t0, x0) ∈ Ω ∩ Γ ∩ ((0, T ) × BR(0)), there exist a constant δ0 =
δ0(R) > 0 and a unit vector (h0, k0) ∈ R× RN such that

H∗(s, y, p)−H∗(t, x, p) ≤ ωR ((|t− s|+ |x− y|)(1 + |p|))

for all p ∈ RN and s, t, y, x satisfying

{

‖(t, x)− (t0, x0)‖+ ‖(s, y)− (t0, x0)‖ < δ0,
∥

∥

∥

(t−s,x−y)
‖(t−s,x−y)‖ − (h0, k0)

∥

∥

∥
< δ0;
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(A4) There exists some M ≥ 0 such that for each λ ∈ [0, 1) and x0 ∈ RN , there
exists constants ε̄(λ, x0) > 0 and C̄(λ, x0) > 0 such that for all p ∈ RN ,
(t, x) ∈ Ω, if ε ∈ [0, ε̄(λ, x0)], then

H

(

t, x,λp−
ε(x− x0)

|x− x0|2 + 1

)

−M ≤ λ (H(t, x, p)−M) + εC̄(λ, x0).

Theorem A.1. Suppose that H satisfies the hypotheses (A1)-(A4). Let w and
w be a pair of super- and sub-solutions of (A.1) such that w ≥ w on ∂pΩ, then

w ≥ w in Ω.

Remark A.2. Let
H(t, x, p) = H(p) +R(x/t),

where H is convex and coercive in p, and s 6→ R(s) has bounded variation
and satisfies |R(s)| ≤ M for some M ≥ 0. Then it is easy to verify that the
hypotheses (A1)-(A4) hold. In particular, it applies for all our purposes in this
paper.

Our condition (A3) is a quantitative version of the “local monotonicity condi-
tion” that was introduced in [11]. See [11,33] for more examples of Hamiltonians
verifying the hypotheses (A1)-(A4).

Proof. Assume to the contrary that

sup
Ω

(w − w) > 0. (A.2)

Step 1. We may assume, without loss of generality, that M = 0 in the hypoth-
esis (A4). Indeed, if we make the change of variables w′(t, x) = w(t, x) + Mt
and w′(t, x) = w(t, x) +Mt, then w′, w′ are, respectively, a sub-solution and a
super-solution of (A.1) with L replaced by L′ = L+M , and H(t, x, p) replaced
by H ′(t, x, p) = H(t, x, p)−M . This function H ′ satisfies the hypotheses (A1)-
(A4) with M = 0. Henceforth in the proof we assume that the hypothesis (A4)
holds with M = 0.
Step 2. It suffices to show that w ≤ w under the additional assumption that
w ≤ K for some K > 0.

Indeed, if w is unbounded in Ω, then fix a constant K > 0 and take a
sequence {gj} of smooth functions satisfying gj(r) ↗ min{r,K} and

0 ≤ g′j(r) ≤ 1, g′j(r)r ≤ r, gj(r) ≤ min{r,K} for all r ∈ R.

Then ŵ := gj(w) is a viscosity sub-solution of (A.1), since in the region {(t, x) : ŵ−
Lt > 0} ⊂ {(t, x) : w − Lt > 0}, we may use the hypothesis (A4) to yield

∂tŵ +H∗(t, x,Dŵ) = g′k(w)∂tw +H∗(t, x, g′k(w)Dw)

≤ g′k(w) [∂tw +H∗(t, x,Dw)] ≤ 0.

By the stability of property of viscosity super and sub-solutions [1, Theorem
6.2], we may let j → ∞ to conclude that min{w,K} is a viscosity sub-solution
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of (A.1) for each K > 0. It now remains to prove Theorem A.1 for all bounded
above viscosity sub-solutions, since then

min{w,K} ≤ w for all K > 0 ⇒ w ≤ w.

For λ, δ ∈ (0, 1), denote

W (t, x) = λ2w(t, x) − w(t, x) − δ(ψ(x) + Ct+
1

T − t
)− λδCt,

where ψ(x) = 1
2 log(|x|

2 + 1) and C = C̄(λ, 0) as in the hypothesis (A4).
Step 3. We choose λ ↗ 1, δ ∈ (0, ε̄(λ, 0)], R > 0 and (t0, x0) ∈ ΩR :=
Ω ∩ [(0, T )× BR(0)] such that

W (t0, x0) = max
ΩR

W (t, x) = max
Ω

W (t, x) > 0. (A.3)

From (A.2) and Step 3, we may fix λ↗ 1 and δ ↘ 0 such that

sup
Ω

W (t, x) > 0, and W (t, x) ≤ −
δ

T − t
on ∂pΩ.

Since ψ(R) → ∞ as R → ∞ and w − w ≤ K, we arrive at

sup
(t,x)∈Ω: |x|=R

W (t, x) → −∞ as R → ∞,

whence we may fix R , 1 so that max
ΩR

W (t, x) = max
Ω

W (t, x) > 0 holds. It

remains to observe that the maximum (t0, x0) in ΩR is attained in the interior,
since W (t, x) < 0 when t = T or when (t, x) ∈ ∂pΩ.
Step 4. With x0 as being given in Step 3, fix ε > 0 small enough so that

εC̄(λ, x0) ≤ C̄(λ, 0) and δε ≤ ε̄(λ, x0), (A.4)

and define

W̃ (t, x) := W (t, x) − δλεψ(x− x0)−
1

2
|t− t0|2, (A.5)

where ψ(x) = 1
2 log (|x|

2 + 1) and C = C̄(λ, 0) is as before. Then, (t0, x0) is a

strict global maximum of W̃ (t, x). Define also

Ψα,β(t, x, s, y) =λ
2w(t, x) − w(s, y)− δ(ψ(x) + Ct+

1

T − t
)− λδ(εψ(x− x0) + Ct)

−
α

2
|x− y|2 −

β

2
|t− s|2 −

1

2
|t− t0|2.

Step 5. We claim that there exists α > 0 such that if min{α,β} ≥ α, then

(i) Ψα,β has a local maximum point (t1, x1, s1, y1) in ΩR × ΩR;

(ii) Ψα,β(t1, x1, s1, y1) ≥ W̃ (t0, x0) = W (t0, x0) > 0;
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(iii) β|t1 − s1|2 + α|x1 − y1|2 → 0, as min{α,β} → ∞;

(iv) (t1, x1) → (t0, x0) and (s1, y1) → (t0, x0) as min{α,β} → ∞,

where ΩR = Ω ∩ [(0, T ) × BR(0)]. Since w ≥ 0 and w ≤ K by Step 2, we see
that supΩR×ΩR

Ψα,β ≤ K independently of α and β, and has a maximum point

(t1, x1, s1, y1) ∈ ΩR × ΩR. Now, by (A.3),

Ψα,β(t1, x1, s1, y1) ≥ max
ΩR

Ψα,β(t, x, t, x) = W̃ (t0, x0) = W (t0, x0).

This proves assertion (ii).
Furthermore, the boundedness also yields β|t1 − s1|2 + α|x1 − y1|2 = O(1).

We claim that (t1, x1) → (t0, x0) and (s1, y1) → (t0, x0). Indeed, we may pass
to a subsequence to get (t̂, x̂) such that (t1, x1) → (t̂, x̂) and (s1, y1) → (t̂, x̂) as
min{α,β} → ∞. Now, by (ii) we can write

α

2
|x1 − y1|2 +

β

2
|t1 − s1|2 ≤ −W̃ (t0, x0) + (W̃ (t1, x1) + w(t1, x1))− w(s1, y1).

Letting min{α,β} → ∞, then (t1, x1, s1, y1) → (t̂, x̂, t̂, x̂). Using the fact that
W̃ (t, x) + w(t, x) (which is essentially λ2w(t, x) up to addition of continuous
functions) and −w(s, y) are both upper semi-continuous in Ω, we may take
limsup as min{α,β} → ∞ and deduce that

0 ≤ lim sup

[

α

2
|x1 − y1|2 +

β

2
|t1 − s1|2

]

≤ −W̃ (t0, x0) + W̃ (t̂, x̂) ≤ 0.

Since (t0, x0) is a strict maximum point of W̃ , we must have (t̂, x̂) = (t0, x0).
This proves assertions (iii) and (iv).

Finally, (t1, x1, s1, y1) → (t0, x0, t0, x0) and hence must be an interior point
of ΩR × ΩR when min{α,β} is sufficiently large. This proves (i).
Step 6. We show the following inequality:

δ

T 2
≤ H∗(s1, y1,α(x1 − y1))−H∗(t1, x1,α(x1 − y1)) + |t1 − t0|. (A.6)

Observe that (t1, x1) is an interior maximum point of the function w(t, x)−
ϕ(t, x), where

ϕ(t, x) =
1

λ2
[w(s1, y1) + δ(ψ(x) + Ct+

1

T − t
) + λδ(εψ(x − x0) + Ct)

+
α

2
|x− y1|2 +

β

2
|t− s1|2 +

1

2
|t− t0|2].

Also w(t1, x1) > 0, which is a consequence of w(s1, y1) ≥ 0 and Ψα(t1, x1, s1, y1) >
0. By definition of w being a viscosity sub-solution of (A.1), we have

1

λ2

[

δ(C +
1

(T − t1)2
+ λC) + β(t1 − s1) + (t1 − t0)

]

+H∗

(

t1, x1,
1

λ2
(δDxψ(x1) + λδεDxψ(x1 − x0) + α(x1 − y1))

)

≤ 0,
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which can be rewritten as

δ(C +
1

T 2
+ λC) + β(t1 − s1) + (t1 − t0)

+ λ2H∗

(

t1, x1,
1

λ
(δεDxψ(x1 − x0) + q̂)

)

≤ 0,
(A.7)

where q̂ = 1
λ (δDxψ(x1) + α(x1 − y1)). In the view of Dψ(x1−x0) =

x1−x0
|x1−x0|2+1 ,

we may apply the hypothesis (A4) to get

− δ(C +
1

T 2
+ λC)− β(t1 − s1)− (t1 − t0)

≥ λ
[

H∗ (t1, x1, q̂)− δεC̄(λ, x0)
]

≥ λH∗

(

t1, x1,
1

λ
(δDxψ(x1) + α(x1 − y1))

)

− λδC,

where we used εC̄(λ, x0) ≤ C̄(λ, 0) = C (due to (A.4)) in the last inequality.
Applying the hypothesis (A4) once more, we have

− δ(C +
1

T 2
+ λC)− β(t1 − s1)− (t1 − t0)

≥ [H∗ (t1, x1,α(x1 − y1))− δC]− λδC

≥ H∗ (t1, x1,α(x1 − y1))− δC − λδC,

and hence

δ

T 2
+ β(t1 − s1) + (t1 − t0) +H∗(t1, x1,α(x1 − y1)) ≤ 0. (A.8)

In the same way, (s1, y1) is a interior minimum point of the function w(s, y)−
ψ(s, y) with

ψ(s, y) =λ2w(t1, x1)− δ(ψ(x1) + Ct1 +
1

T − t
)− λδ(ψ(x1 − x0) + Ct1)

−
α

2
|x1 − y|2 −

β

2
|t1 − s|2)−

1

2
|t1 − t0|2,

whence

β(t1 − s1) +H∗(s1, y1,α(x1 − y1)) ≥ 0. (A.9)

Subtracting (A.8) from (A.9), we obtain (A.6) as claimed.
By Step 5 (iv), we have (t1, x1) → (t0, x0) and (s1, y1) → (t0, x0) as min{α,β} →

∞. On the one hand, if (t0, x0) /∈ Γ, then there exists α1 > 0 such that (t1, x1)
and (s1, y1) enter the (δ0/2)-neighborhood of (t0, x0) whenever min{α,β} ≥ α1.
Now, fix α and let β → ∞, then after passing to a sequence, we have

t1, s1 → t̄, x1 → x̄, y1 → ȳ.
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Furthermore, by Step 5, we have

t̄ → t0, x̄ → x0, ȳ → x0, and α|x̄− ȳ|2 → 0 as α → ∞. (A.10)

Hence, we deduce from (A.6) and the hypothesis (A2) that

δ

T 2
≤ H∗(t̄, ȳ,α(x̄− ȳ))−H∗(t̄, x̄,α(x̄− ȳ)) + |t̄− t0|

≤ ωR

(

α|x̄− ȳ|2 +
1

α

)

+ o(1),

from which we derive a contradiction for large enough α. This proves Theorem
A.1 in case (t0, x0) ∈ Ω \ Γ.

On the other hand, (t0, x0) ∈ Γ. Let δ0 and the unit vector (h0, k0) ∈ R×RN

be given by the hypothesis (A3). Define

Ψ̃α,β(t, x, s, y) =λ
2w(t, x)− w(s− α−1/2h0, y − α−1/2k0)

− δ(ψ(x) + Ct+
1

T − t
)− λδ(εψ(x− x0) + Ct)

−
α

2
|x− y|2 −

β

2
|t− s|2 −

1

2
|t− t0|2.

(A.11)

By repeating Steps 5 and 6, we can again obtain

δ

T 2
≤ H∗(t̄−α−1/2h0, ȳ−α−1/2k0,α(x̄−ȳ))−H∗(t̄, x̄,α(x̄−ȳ))+|t̄−t0| (A.12)

for some t̄, x̄, ȳ such that for all α large, (t̄, x̄), (t̄, ȳ) enter the (δ0/2)-neighborhood
of (t0, x0) and (A.10) holds. Furthermore, by verifying that

((t̄− α−1/2h0)− t̄, ȳ − α−1/2k0 − x̄)

‖((t̄− α−1/2h0)− t̄, ȳ − α−1/2k0 − x̄)‖
= −

(α−1/2h0, x̄− ȳ + α−1/2k0)

‖(α−1/2h0, x̄− ȳ + α−1/2k0)‖

= −
(h0,

√
α(x̄− ȳ) + k0)

‖(h0,
√
α(x̄− ȳ) + k0)‖

→ (h0, k0) as α→ ∞,

we may apply hypothesis (A3) to inequality (A.12) to get

δ

T 2
≤ ωR

([

α−1/2(h0 + |k0|) + |x̄− ȳ|
]

(1 + α|x̄− ȳ|)
)

+ |t̄− t0|

≤ ωR

(

|x̄− ȳ|+ α|x̄− ȳ|2 + C0(
√
α|x̄− ȳ|+

1√
α
)

)

+ |t̄− t0|.

Letting α → ∞, we can similarly obtain a contradiction.

A direct consequence of Theorem A.1 is the following uniqueness result.

Corollary A.3. Assume that the Hamiltonian H satisfies the hypotheses (A1)-
(A4). Suppose that (A.1) has a continuous viscosity solution w. Then, w is
the unique viscosity solution of (A.1) in the class of all (continuous) viscosity
solution.
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Appendix B Two useful lemmas from [41]

In this section, we present two lemmas from [41], which are used in this
paper. The first result is used to prove Propositions 2.1 and Corollary 3.6,
Lemma 4.3 and Proof of Theorem 1.3.

Lemma B.1 ( [41, Lemma 2.3]). Let −∞ ≤ c < c ≤ ∞, and let (u, v) be a
solution of (1.1) in {(t, x) : ct ≤ x ≤ ct}.

(a) If lim inf
t→∞

inf
(c+η)t<x<(c−η)t

v(t, x) > 0 for each 0 < η < (c− c)/2, then

lim sup
t→∞

sup
(c+η)t<x<(c−η)t

u(t, x) ≤ k1, lim inf
t→∞

inf
(c+η)t<x<(c−η)t

v(t, x) ≥ k2,

for each 0 < η < (c− c)/2;

(b) If lim
t→∞

sup
(c+η)t<x<(c−η)t

v(t, x) = 0 and lim inf
t→∞

inf
(c+η)t<x<(c−η)t

u(t, x) > 0 for

each 0 < η < (c− c)/2, then

lim
t→∞

sup
(c+η)t<x<(c−η)t

|u(t, x)− 1| = 0, for each 0 < η < (c− c)/2;

(c) If lim inf
t→∞

inf
(c+η)t<x<(c−η)t

u(t, x) > 0 for each 0 < η < (c− c)/2, then

lim inf
t→∞

inf
(c+η)t<x<(c−η)t

u(t, x) ≥ k1, lim sup
t→∞

sup
(c+η)t<x<(c−η)t

v(t, x) ≤ k2

for each 0 < η < (c− c)/2;

(d) If lim
t→∞

sup
(c+η)t<x<(c−η)t

u(t, x) = 0 and lim inf
t→∞

inf
(c+η)t<x<(c−η)t

v(t, x) > 0 for

each 0 < η < (c− c)/2, then

lim
t→∞

sup
(c+η)t<x<(c−η)t

|v(t, x)− 1| = 0, for each 0 < η < (c− c)/2.

Proof. We only prove (c) and the other assertions follow from the similar argu-
ments. Suppose (c) is false, then there exists (tn, xn) such that

cn := xn

tn
→ c ∈ (c, c) and lim

n→∞
u(tn, xn) < k1 or lim

n→∞
v(tn, xn) > k2.

Define (un, vn)(t, x) := (u, v)(tn+t, xn+x). We pass to the limit so that (un, vn)
converges in Cloc(R× R) to an entire solution (û, v̂) of (1.1). And there exists
δ > 0 such that (û, v̂)(t, x) ; (δ, 1) for (t, x) ∈ R2. Let (U, V ) be the solutions
of the Lotka-Volterra system of ODEs

Ut = U(1− U − aV ), Vt = rV (1− bU − V ),
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with initial data (U(0), V (0)) = (δ, 1), so that (U, V )(∞) = (k1, k2). By com-
parison in the time interval [−T, 0], we reveal that for each T > 0,

(û, v̂)(t, x) ; (U, V )(t+ T ) for (t, x) ∈ [−T, 0]× R,

so that we in particular have, for every T > 0,

(û, v̂)(0, 0) ; (U, V )(T ).

Letting T → ∞, we obtain (û, v̂)(0, 0) ; (k1, k2). In particular, we deduce that

lim
n→∞

(u, v)(tn, xn) = lim
n→∞

(un, vn)(0, 0) = (û, v̂)(0, 0) ; (k1, k2).

This is a contradiction and proves (c).

The following result is applied to prove Proposition 4.2 and Proposition 4.5.

Lemma B.2 ( [41, Lemma 2.4]). Let ĉ > 0, t0 > 0, and (ũ, ṽ) be a solution of














∂tũ− ∂xxũ = ũ(1 − ũ− aṽ), 0 ≤ x ≤ ĉt, t > t0,

∂tṽ − d∂xxṽ = rṽ(1 − bũ− ṽ), 0 ≤ x ≤ ĉt, t > t0,

ũ(t0, x) = ũ0(x), ṽ(t0, x) = ṽ0(x), 0 ≤ x ≤ ĉt0.

(B.1)

(a) If ĉ > 2 and there exists µ̂ > 0 such that

(i) lim
t→∞

(ũ, ṽ)(t, 0) = (k1, k2) and lim
t→∞

(ũ, ṽ)(t, ĉt) = (0, 1),

(ii) limt→∞ eµtũ(t, ĉt) = 0 for each µ ∈ [0, µ̂),

then
lim
t→∞

sup
ct<x≤ĉt

ũ(t, x) = 0 for each c > cĉ,µ̂,

where

cĉ,µ̂ =







cLLW, if µ̂ ≥ λLLW(ĉ− cLLW),

ĉ− 2µ̂

ĉ−
√

ĉ2−4(µ̂+1−a)
, if 0 < µ̂ < λLLW(ĉ− cLLW);

(b) If ĉ > 2
√
dr and there exists µ̂ > 0 such that

(i) lim
t→∞

(ũ, ṽ)(t, 0) = (k1, k2), and lim
t→∞

(ũ, ṽ)(t, ĉt) = (1, 0),

(ii) limt→∞ eµtṽ(t, ĉt) = 0 for each µ ∈ [0, µ̂),

then
lim
t→∞

sup
ct<x≤ĉt

ṽ(t, x) = 0 for each c > c̃ĉ,µ̂,

where

c̃ĉ,µ̂ =







c̃LLW, if µ̂ ≥ λ̃LLW(ĉ− c̃LLW),

ĉ− 2dµ̂

ĉ−
√

ĉ2−4d[µ̂+r(1−b)]
, if 0 < µ̂ < λ̃LLW(ĉ− c̃LLW).
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Here cLLW, c̃LLW are given in Theorem 1.1 and Remark 1.2, and

λLLW =
cLLW −

√

c2LLW − 4(1− a)

2
, λ̃LLW =

c̃LLW −
√

c̃2LLW − 4dr(1− b)

2d
.

(B.2)
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