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We study the evolution of dispersal in advective three-patch models with distinct network topologies.
Organisms can move between connected patches freely and they are also subject to the passive, directed
drift. The carrying capacity is assumed to be the same in all patches, while the drift rates could vary. We
first show that if all drift rates are the same, the faster dispersal rate is selected for all three models. For
general drift rates, we show that the infinite diffusion rate is a local Convergence Stable Strategy (CvSS)
for all three models. However, there are notable differences for three models: For Model I, the faster
dispersal is always favored, irrespective of the drift rates, and thus the infinity dispersal rate is a global
CvSS. In contrast, for Models II and III a singular strategy will exist for some ranges of drift rates and
bi-stability phenomenon happens, i.e. both infinity and zero diffusion rates are local CvSSs. Furthermore,
for both Models II and III, it is possible for two competing populations to coexist by varying drift and
diffusion rates. Some predictions on the dynamics of n-patch models in advective environments are given
along with some numerical evidence.
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1 Introduction

Since the pioneering work of Speirs and Gurney on the “drift paradox” [47], studying popu-
lation dynamics in advective environments (such as rivers) has become an active research topic,
both empirically as well as theoretically [8,11,18,21-24, 27,35-37,42, 50]. Most mathematical
models in spatial ecology assume that individuals adopt random movement, i.e. the transition
probability in all directions are the same. For the organisms in advective environments, they are
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2 Hongyan Jiang et al.

also subject to the passive, uni-directional drift. Such passive drift may push the organisms to the
downstream where the environments could become unfavorable. From the mathematical point of
view, the addition of drift makes the differential operators under consideration non-symmetric
and thus brings new challenges to the stability analysis, especially for those models for inter-
acting species [32, 33,48, 51-55,57,58]. Almost all of these studies assume that the underlying
habitat is an interval in the real line, in order to simplify the mathematical analysis. In contrast,
there are rather few studies on the population dynamics in river networks, and they are mostly
restricted to the case of a single species [25,43-45,49].

One important topic in spatial ecology is the evolution of dispersal. The seminal work of
Hastings shows that random dispersal is selected against in spatially heterogeneous but tempo-
rally constant environments [7,14], while in spatially and temporally varying environments large
dispersal rate can be selected [17,39]. See the review article [5] and the references therein. The
evolution of dispersal in advective and continuous habitats has been recently considered: when
the carrying capacity is spatially heterogeneous and the drift rates are constants, some inter-
mediate dispersal rate could be selected; see [10,26]. However, for a homogeneous environment
where both carrying capacity and drift rates are spatially uniform, it was shown that when the
loss at the downstream is not significant, the faster dispersal rate is favored [30, 34]; see [13] for
more recent progress. Again, these studies assume that the habitat is a finite interval.

Many of the above work employ the conceptual framework of adaptive dynamics theory [6,9].
A central idea of adaptive dynamics theory is the evolutionarily stable strategy (ESS) [38]. A
strategy is called a global ESS if the resident species adopting such a strategy can not be invaded
by any rare mutant species using different strategy. Another important concept is the convergence
stable strategy (CvSS). A strategy is said to be a global CvSS if the mutant species is always
able to invade a resident species when the mutant strategy is closer to the CvSS than the resident
strategy. Local ESS and CVSS can be similarly defined and interpreted.

Our aim is to study the evolution of dispersal in discrete, advective environments using
the conceptual framework of adaptive dynamics theory. Recently, the authors proposed in [20]
to study the dynamics of two competing species in three-patch models with different network
topology, and to investigate how the topology of directed river network modules may affect the
evolution of dispersal. To be specific, we considered the following three types of river network
modules in [20]:

91 |d(D)
d(D) d(D)
9@ 92
92| |d(D)
(a) Model I (b) Model II (c) Model III

Fig. 1: Three river network modules with different topology: The two-way blue arrows represent
the dispersal of species between connected patches, the one-way red arrows represent the uni-
directional drift. The parameters d, D are dispersal rates for the two competing species, and the
parameters qi, go are drift rates from an upstream patch to a downstream patch.
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Three-patch models for the evolution of dispersal 3

In Fig. 1(a)-(c) we assume that patch 1 is upstream, patch 3 is downstream, and patch 2 is
either upstream, or middle stream, or downstream. In [20] the carrying capacity of three patches
are assumed to be different and the drift rates are assumed to be equal. The main findings
in [20] are summarized as follows: when the drift rate is small, for all three models the mutant
species can invade when rare if and only if it is the slower disperser. However, when the drift
rate is large, Models I and II predict that the faster disperser wins, while Model III predicts that
fast and slow dispersers may coexist, and that there exists one intermediate strategy which is
evolutionarily singular. For the intermediate range of drift, Models I and II predict the existence
of one singular strategy, which may or may not be evolutionarily stable, depending upon the
topology of modules, while Model III predicts singular strategy may not exist and the faster
disperser wins the competition.

The rest of this paper is organized as follows: In Sec. 2 we state the main results for three-
patch models. In Sec. 3 we draw the main conclusions and also provide a single framework to
unify our main results. In Sec. 4 we present the numerical simulations of some 4-patch models
and discuss some predictions on n-patch models. The proofs of the main results for Model I to
IIT are postponed to the Appendices.

2 Main results for three-patch models

In this paper we assume that the drift rates could be different but the carrying capacity are
the same in all three patches. As in [20], in all models the two competing species are assumed to
be identical except for their dispersal rates.

Our main goal in this paper is to illustrate the effects of varying drift rates and network
topology on the evolution of dispersal. The main findings can briefly be summarized as follows:

— If all drift rates are identical, then the faster dispersal rate is selected across all three-patch
models in which the drift network do not form a closed cycle.

— For general drift rates, infinite diffusion rate is a local CvSS for all three models.

— For Models II and III, when a singular strategy (that is neither zero nor infinity) exists, it is
not a local CvSS (Numerical simulation suggests that it is not an ESS either).

— For Models II and III, when bi-stability occurs, it is possible for two competing populations
with different dispersal rates to coexist, by varying the drift rates between patches.

2.1 Main results of Model I

In Model I, the species in patches 1 and 2 are washed down to patch 3 by drift with rates
q1, g2, respectively. Two competing populations can disperse freely between the upstream patches
and the downstream patch, with respective rates d, D. The two upstream patches, however, are
not directly connected. The diagram of Model I is shown in Figure 1(a). The dynamics of two
competing populations in this river module is described by the following system of ODZEs:

B = d(ug —u1) — qrug +ug (1 — 250)

dt
dus Uz +v2 )
k

i = d(uz — uz) — qauz +uz(1 —
ﬁ = d(uy + uz — 2u3) + qruy + qauz + ug(l — 4
ﬁ:D(vg—m)—qlvl + vy (1 — ) (1)
ﬁ = D(v3 — v3) — qava + vp(1 — “2122)

G = D(v1+v2 — 2v3) + qv1 + qova + (1 — M)

ui(o) = U0, Ui(o) = v, t=1,2,3.
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Here u;(t),v;(t) (i = 1,2,3) denote the numbers of individuals of the respective species at time
t in patch i. The parameter k is the carrying capacity for all patches. For the sake of simplicity,
the intrinsic growth rates are assumed to be equal to 1. The initial data of u; and v; are assumed
to be positive for the rest of the paper so that u;(t),v;(t) are positive functions of time ¢ > 0.

It can be shown that system (1) has a unique semi-trivial steady state of the form (U*,0) =
(Uf,U5,U5,0,0,0), where U > 0 for i = 1,2,3.

Theorem 1 For any g1 > 0, ¢ > 0 and g1 + g2 > 0, if d > D, then (U*,0) is globally
asymptotically stable among all solutions of (1) with positive initial data.

This result implies that the faster dispersal is always selected for Model I, provided that
the carrying capacity is uniform in the habitat, and the conclusion is independent of the drift
rates. The underlying biological intuition is that a single population at equilibrium (i.e. resident)
is undermatching the resources in at least one of the two upstream patches and it is always
overmatching the resource in the downstream patch; i.e. the downstream patch is always a sink
and at least one of the upstream patches is a source. If a mutant with small diffusion rate is
introduced, its individuals in the upstream patches will be washed to the downstream patch,
where the mutant can not invade when rare as the downstream patch is a sink. Hence, small
diffusion rate is selected against. In contrast, faster diffusion can counterbalance the drift by
keeping more mutant individuals in upstream patches, one of which is a source patch, and thus
help the mutant populations establish in this upstream source patch.

2.2 Main results of Model II

Model II assumes that individuals in patch 1 are transported to patch 2 by drift with rate
q1, and individuals in patch 2 are transported to patch 3 by drift with rate gs. Individuals can
also move between patches ¢ and i + 1 for i = 1, 2; see Fig. 1(b). The dynamics of two competing
species in this network module is governed by the following ODE system:

B = dug — ur) — qrug +ug (1 — “15)

B — d(uy + ug — 2u2) + qrur — gous + ug(1 — “222)

% = d(u2 — Ug) + qoug + U3(1 — 7u3zv3)

ﬁ = D(’UQ — ’Ul) — (q1v1 + Ul(l — 7“17;1]1) (2)
2 = D(v1 + v — 2v2) + 11 — qava + va(1 — “2742)

Gt = D(v2 — v3) + govz + v3(1 — *2Ft2)

uZ(O) = U;0, ’Uz'(O) = V50, 1= 1, 2, 3.

For Model 11, it can also be shown that system (2) has a unique semi-trivial steady state of
the form (U*,0) = (Uy,Us,U3,0,0,0), where U > 0,i = 1,2, 3.

Theorem 2 If g1 > 1 or £ < g1 <1, then (U*,0) is globally asymptotically stable for d > D;
i.e. the faster diffuser wins.

If g1 > 1 and the diffusion rate of a species is small, then almost all of its individuals in patch
1 are washed out. Thus, small diffusion is not favored in this scenario. However, large diffusion
will be selected as it can counterbalance the uni-dimensional drift by helping more individuals
stay in patch 1. Similar intuition applies to the case ¢2/2 < ¢1 < 1, but the detail is more subtle:
when diffusion rate is small, our analysis reveals that there will be more individuals in patch 2
than patch 1 when ¢2/2 < ¢1 < 1; i.e. the population in patch 1 is undermatching the resource
more than in patch 2 (as carrying capacity in patches 1 and 2 are the same), so small diffusion
is still not favored in this scenario.
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Three-patch models for the evolution of dispersal 5

Theorem 3 If 0 < ¢1 < 1 and g2 > 2qi, there exists some d* = d*(q1,q2) > 0 which is an
evolutionarily singular strategy. Moreover, this strategy is not a CvSS, and both zero and infinity
dispersal rates are local CvSSs.

It is interesting that zero diffusion rate emerges as a local CvSS under the assumptions of
Theorem 3. Suppose the diffusion is zero or very small. On one hand, when ¢; < 1, the drift out
of patch 1 is small enough to allow the population to persist in patch 1, which is a source. On
the other hand, ¢ > 2¢; drive the population in patch 2 down and that in patch 3 up. Hence,
patch 2 becomes a source and patch 3 becomes a sink. Moreover, diffusion takes individuals out
of patch 1, but due to the uneven drift rates those individuals are more likely to end up in patch
3 (the sink) than in patch 2 (the source). Hence, increasing diffusion will move individuals from
source patch to sink patch. Thus, small diffusion can be favored in this case as the drift forces
more individuals to move from patch 1 to 2 to reduce the mismatch in patch 2.

When both zero and infinity dispersal rates are local CvSSs, a natural question is whether two
competing populations can coexist. Our next result answers this question partially but positively:

Theorem 4 Fiz any k, D, g2 > 1. Then there exists some 0 > 0 such that for any d € (0,9), 1 €
(—d, ), Model 11 has a globally asymptotically stable positive steady state, denoted by (U°,v?9),
which satisfies (U°,V°®) — (U, V) as d — 0 and q1 — 0, where

U:=(k—V50,0), and V:=(Vy,Va,Vs) (3)

such that (Vg, ‘73) is the unique positive solution of the two-patch system

%)

I
o o

{D(%VQ)QQVQ+V2(1 (4)

k
D(Va — V) + qaVo + V3(1 — Y2) =

This result suggests that when the drift from patch 1 to patch 2 is very small, slow and
fast diffusers can coexist in some interesting way: the slow diffuser will only occupy patch 1 and
the fast diffuser is dominant in patch 2 and 3, but not in patch 1. Intuitively, the underlying
mechanism for the coexistence is as follows: Consider the case d = 0 and ¢; = 0 for the sake
of clarity, so that patch 1 is disconnected from patches 2 and 3 for the species w. It turns out
that, due to d = 0 and ¢; = 0, the flux between patches 1 and 2 for the species v is also equal
to zero. As a consequence, system (2) for patches 2 and 3 is reduced to a two-patch system
for two competing species. It follows from previous work [12,41] for two-patch models that the
faster diffuser always out-competes the slower diffuser in patches 2 and 3, provided that g > 0.
As patch 2 is at the upstream for the reduced two-patch model, the equilibrium distribution of
species v, denoted by ‘72, satisfies V5 < k; i.e. it undermatches the resource in patch 2. As there is
no flux for species v between patches 1 and 2 and ¢; = 0, the equilibrium distribution of species
v at patch 1 is also equal to Vg, so that the equilibrium distribution of species u at patch 1 is
given by k — Vg > 0. The case of small d, ¢; follows from a perturbation argument.

Note that ¢; = 0 and small negative g are also covered by Theorem 4; the case of negative
q1 applies to Model III.

2.3 Main results of Model II1

Model IIT assumes patch 1 is upstream, whereas patches 2 and 3 are downstream. Both species
in patch 1 are transported to patches 2 and 3 by drift with rates ¢; and g¢o, respectively. In this
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case we have the following ODE system for two competing species:

s — d(ug +uz — 2u1) — (@1 + g2)ur +ua (1 — %)

% = d(u1 — ’LLQ) +quy + Ug(l — WTW)

% = d(u1 — U3) + qau1 + Ug(l — %TW)

ﬁ = D(vy 4 v3 —201) — (q1 + q2)v1 + v1 (1 — B2 (5)
©2 = D(v1 — v2) + o1 + v (1 — 202

G = D(v1 — v3) + qv1 +v3(1 — %T"‘”?’)

ul(O) = U;0, Ui(O) = V50, 1= 1,2,3.

The dynamics of (5) is more subtle than those for Models T and II. We first consider the
global dynamics of Model III.

Theorem 5 If g1 = g2 > 0, then the semi-trivial steady state (U*,0) is globally asymptotically
stable for d > D.

Theorem 5 seems to agree with previous results for two-patch models that the faster diffuser
always out-competes the slower diffuser [12,41]. The biological intuition is that both downstream
patches are sinks under the assumption of Theorem 5; see also Corollary 6 (in Appendix C).
Hence, any mutant in the upstream patch with smaller diffusion rate will more likely be pushed
to two downstream sinks and thus can not invade when rare.

Next we consider the local dynamics of Model III.

Theorem 6 If g1,q2 > 0, |g2 — q1] < % and % < g—f < V2, then the semi-trivial steady state
(U*,0) is locally stable for d > D and unstable for d < D.

Theorem 6 implies that infinite diffusion rate is a global CvSS when two drift rates are
comparable. This is in the same spirit as Theorem 5 since both downstream patches are still
sinks under the assumption of Theorem 6; see also Corollary 8 (in Appendix C). In contrast, our
next result shows that if two drift rates are not comparable, both zero and infinite diffusion rates
are local CvSS.

Theorem 7 If 1 < q1 + q2 < (q1 — q2)?, then there exists some d* = d*(q1,q2) > 0 which is an
evolutionarily singular strateqy. Moreover, d* is not a CvSS, and both zero and infinity dispersal
rates are local CvSSs.

To see why zero diffusion can be a local CvSS under the assumptions of Theorem 7, first fix
q1 and choose ¢o large. This will drain almost all individuals in patch 1 to drift to patch 3, so
that patch 3 becomes a sink patch due to overcrowding. Subsequently, diffusion induces a net
flux of individuals from patch 2 to patch 1, so that the population in patch 2 undermatches the
resource. Hence, any mutant with smaller diffusion rate can invade when rare by exploiting patch
2, which is a source patch. The same intuitive reasoning applies to the general situation: for the
range of ¢; in Theorem 7, our numerical results suggest that one of the two downstream patches
is a sink while the other becomes a source patch, and a mutant with smaller diffusion rate can
invade when rare in the downstream source patch.

3 Conclusions
In this section we first summarize the main analytical results, and then we provide a single

framework to unify the main results for three models. The main findings are as follows, along
with some predictions (see Sect. 4 for further discussions):
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Three-patch models for the evolution of dispersal 7

If all drift rates are identical, then the faster dispersal rate is selected across all three-patch
models in which the drift network do not form a closed cycle. A conjecture is that this result
holds for m-patch river networks with uniform carrying capacity and identical drift rates,
provided that the drift network is not divergence-free (a drift network with identical drift
rates is called divergence-free if each individual patch has the same number of upstream and
downstream patches);

For general drift rates, infinite diffusion rate is a local CvSS for all three models. Biologically
this makes good sense as with sufficiently fast dispersal, the spatial distribution of the species
approaches the ideal free distribution. However, there are some notable differences for three
models: For Model I, the faster dispersal is always favored and thus infinity is a global CvSS.
For Models IT and III, the answers depend upon the drifts rates: for some ranges of drift
rates, infinity is a global CvSS (same as Model I), while for other ranges of drift rates, there
exists some intermediate diffusion rate which is a singular strategy so that infinity is a local
CvSS but not a global one. A conjecture is that the infinite diffusion rate is a local CvSS for
n-patch river networks with uniform carrying capacity and general drift rates;

For Models II and ITI, when a singular strategy (that is neither zero nor infinity) exists, it
is not a local CvSS (Numerical simulation suggests that it is not an ESS either). In fact,
bi-stability phenomenon happens, i.e. both infinity and zero diffusion rates are local CvSSs;

For Models IT and III, when bi-stability occurs, it is possible for two competing popula-
tions with different dispersal rates to coexist, by varying the drift rates between patches. A
conjecture is that any coexistence steady state for Models II-I11, if exists, is globally stable.

Next, we provide a single framework to unify the main results for Models I-ITI. Our idea is

to use a single system of ODEs to describe all three models. Without loss of generality, consider
system (2) in the ¢; — ¢ plane, allowing the drift rates in system (2) to take both positive and
negative values. That is, we divide the ¢; — ¢2 plane into 4 quadrants. Then the first quadrant
of Fig. 2 corresponds to Model II with non-negative drift rates.

First quadrant: Theorem 2 implies that the faster diffuser always wins for ¢, g2 in the red
region; for the blue region, Theorem 3 ensures the existence of an evolutionarily singular
strategy, where both zero and infinity dispersal rates are local CvSSs.

Second quadrant: With ¢; < 0 and ¢2 > 0 in system (2), the directed flows are from patch
2 to patches 1 and 3. Hence, this corresponds to Model III with patches 1 and 2 switched.
Theorem 6 implies that the faster diffuser wins for g1, ¢2 in the red region; for the blue region,
Theorem 7 ensures the existence of an evolutionarily singular strategy, in which both zero
and infinity dispersal rates are local CvSSs.

Third quadrant: With ¢; < 0 and ¢2 < 0 in system (2), the directed flows are from patch 3 to
2, and from patch 2 to 1. Hence, this corresponds to Model II with patches 1 and 3 switched.
Hence the red and blue regions are symmetric to those in the 1st quadrant with respect to
the line ¢; + g2 = 0.

4th quadrant: With ¢; > 0 and g2 < 0 in system (2), the directed flows are from patches 1
and 3 to patch 2. Hence, this corresponds to Model I with patches 2 and 3 switched. Theorem
1 implies that the faster diffuser always wins for ¢q, g2 in 4th quadrant.

These discussions suggest that the q; — g2 plane can also be divided into three colored regions

as in Fig. 2: For the red region, the infinite diffusion rate is a global CvSS; In the blue region,
both zero and infinite diffusion rates are local CvSSs; For the white region, numerical simulations
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suggest that the infinite diffusion rate is a local CvSS but might not be a global one, and the
zero diffusion rate might not even be a local CvSS.

Model Ill g | Modelll

@
|
@‘{2:% @)q::_i_q'
@ ¢, =1 ® g, =122 N8a 1
| 5 2
. 1
@ q,=2q, @g,= _ﬁ‘ﬁ

o @ g = (1—2q|)+,f'—8q, +1 @® @ _G
7 I 2

® fh:E_‘h g, =-1

/ ©® q,=-2g, 9 =9

Maodel I Model |

Fig. 2: The dynamics for Models I-III. The red colored regions correspond to the ranges of q1, g2
for which the infinite diffusion rate is a global CvSS; In the blue colored regions, there is at least
one evolutionarily singular strategy and both infinity and zero diffusion rates are local CvSSs;
The dynamics of Model III in the white colored regions is not fully determined theoretically.

4 Discussion and numerical results for four-patch model

In this section, we will discuss possible extensions to n-patch river network models and raise
some conjectures on the evolution of faster dispersal. We will also address the issue of the invasion
of slowly diffusing populations and propose to study the coexistence of slow and fast diffusing
competing populations.

4.1 Evolution of fast dispersal in n-patch model

Theorems 1, 2 and 5 show that if ¢ = g2, the faster diffusing population always wins the
competition for Models I-I11. In particular, infinity as a diffusion rate is a global CvSS for Model
I and also for wider ranges of parameters in both Models II and III; see Theorems 2 and 6.

Consider the general n-patch river model, i.e.

Bl — d Y maguy + >0 g+ ui(1 — w1 <i<n,

G = DY miguy + X qivy +oi(L - 25, 1<i <
Here the connectivity matrix M := (m,;) is assumed to be symmetric, m;; = m;; = 1 when two
patches ¢ and j are directly connected, m;; = m;; = 0 when they are not directly connected, and
My = — Zj# m;;. The drift matrix @ := (g;;) satisfies ¢;; = — Zj# Qji,» @5 > 0 when patches ¢
and j are connected and the directed flow is from patch ¢ to j, and ¢;; = 0 otherwise. The case
m;; = 1 but g;; = 0 refers to the scenario when patches i, j are directly connected but there is
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Three-patch models for the evolution of dispersal 9

no directed passive flow in between. Note that under our assumption, the dominant eigenvalue
of @ is zero, with left eigenvector being (1,---,1), i.e.

(1,---,H)Q =0.
The positive constant k; is the carrying capacity of patch 1.

Definition 1 We say that the drift matrix @ = (g;;) is divergence-free if its right eigenvector,

corresponding to the zero eigenvalue, is given by (1,---,1)T, i.e.
Z ¢ij = Z gji  holds for each i.
JijF#i J:j#i

Conjecture 1 If all positive drift rates are equal, the carrying capacity is the same for all patches,
and the drift network (g;;) is not divergence-free, then the faster disperser always wins.

For general drift rates, Theorem 1 shows that infinite dispersal rate is a global CvSS for
Model I, while for Models IT and III, Lemmas 15 (in Appendix B) and 36 (in Appendix C) find
that infinity is always a local CvSS.

Conjecture 2 For n-patch model with general drift rates, when the drift matrix is not divergence-
free and that the carrying capacity is the same for all patches, the infinite diffusion rate is always
a local CvSS.

From the biological point of view, when k; = k for all 4, for a single species with sufficiently
fast diffusion, its equilibrium will be close to (k,---,k), which is an ideal free distribution.
Heuristically, if a strategy can help organisms reach the ideal free distribution at equilibrium,
then the strategy is likely to be a local ESS and/or CvSS; see [1,3,4,31]. Again, we may need to
exclude the exceptional case (1,---,1)7 being a right eigenvector of matrix Q.

To support the above predictions for n-patch models, we performed some numerical simu-
lations for the following four-patch models with the network topology as shown in Fig. 3:

d d(D
q q
I==O==0N0

d(D) d(D)

d(D) d(D)

(a) (b) (c)

Fig. 3: The two-way blue arrows represent the dispersal of species between connected patches,
the one-way red arrows represent the uni-directional drift. The parameter d, D are dispersal rates
for two competing species, and the parameters ¢, ¢ are drift rates. Patches 1-3 form a loop. Patch
4 is at the upstream in Fig. 3(a) and it is the downstream patch in Fig. 3(c). There is no drift
between patches 3 and 4 in Fig. 3(b).
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10 Hongyan Jiang et al.

For 4-patch model with topology Fig. 3(a), our simulation results suggest that for any ¢ > 0,
the faster diffusing species always wins the competition, and the conclusion is independent of
drift rates. In particular, the faster dispersal rate is selected when ¢ = ¢, which is consistent with
Conjectures 1 and 2.

Fig. 3(b) can also be viewed as Fig. 3(a) and 3(c) with ¢ = 0. For this special case, (k,--- , k)
is the unique positive equilibrium for the corresponding single species model. This gives an
example of the exceptional case discussed earlier for n-patch models. As predicted earlier, our
numerical simulations show that two populations with different dispersal rates coexist, i.e., the
faster diffusing species does not win the competition in this exceptional case.

The PIP for 4-patch model with topology Fig. 3(c) is shown in Fig. 4. We take d € [0, 2]
and D € [0,2], and then we discretize the interval [0,2] with the uniform step A = 0.02. The
parameter values (k1, ko, ks, k4) are set to be (7,7,7,7) and ¢ = 1, ¢ ranges from 0.01 to 2000. Our
simulations (see Fig. 4) suggest more complicated dynamics: when ¢ € (0, g, the faster diffusing
populations still wins. In particular, the fast dispersal rate is selected when § = ¢, which is
consistent with Conjectures 1 and 2. However, for ¢ larger than g, there are two evolutionarily
singular strategies, one is a local ESS and CvSS, and the other is neither an ESS not CvSS.
Furthermore, the infinite diffusion rate remains as a local CvSS as predicted, while the zero
diffusion rate is not a local CvSS.

4.2 Evolution of slow dispersal and coexistence

Theorems 3 and 7 illustrate the existence of evolutionarily singular strategy for Models II
and III, respectively. These singular strategies are not local CvSSs, and numerical simulations
suggest they are not local ESSs either. In fact, Lemmas 16 (in Appendix B) and 37 (in Appendix
C) show that zero diffusion rate can be a local CvSS for some parameter ranges in both Models
IT and III.

A natural question for general n-patch model is when zero diffusion rate can be a local CvSS.
The analysis of Model III reveals that if there are more than one downstream patches, then it
is possible for one of them to be a source patch, so that a mutant with slow diffusion rate can
invade when rare in this source patch. For n-patch models it will be of interest to find sufficient
conditions on the existence of some downstream source patch, by taking into account of the river
network topology, so that slow diffusing populations can invade such source patch when rare.

For general n-patch models, when both zero and infinite diffusion rate are local CvSSs, it is
natural to inquire whether slow and fast diffusers can coexist. It will be of interest to generalize
Theorem 4 to n-patch models and to reveal the impact of network topology on the coexistence
of competing species.

Appendix A The global dynamics of Model I

In this section, we mainly study the global dynamics of Model I. By the monotone dynamical
system theory [16, Theorem 1.5] (see also [19,28,46]), in order to show the global stability of the
semi-trivial steady state (U*,0), we need to show the linear instability of the other semi-trivial
steady state (0,V*) and the non-existence of positive steady state of (1).

By replacing u; and v; by ku; and kv;, for all ¢, we may assume without loss of generality
that £ = 1. Henceforth, we will prove our theorems concerning Models I, IT and III
only for the case k = 1.
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4 4 4

(a) §=0.01 ) d= ) d=

d.d.

=}
I|
»-Q
»Q

(g) =20 = (i) g = 2000

Fig. 4: Pairwise invasion plots (PIPs) for the four-patch model with network topology Fig. 3(c).
ki = ko = k3 = ks =7, q =1 and ¢ ranges from 0.01 to 2000. The horizontal axis is d and
the vertical axis is D. The black regions represent the range of (d, D) for which (U*,0) is locally
stable.

A.1 Preliminary estimates on non-negative, non-trivial steady states

In this subsection, we consider non-negative and non-trivial solutions of Model I. After
setting k = 1, they satisfy the following system:

dUs —Uh) —qquUi +U1(1-U; — V1) =0

d(Ug — UQ) —q2U2 +U2(1 - U2 — ‘/2) =0
d(U1+U2*2U3)+Q1U1+QQU2+U3(1*U3*V3):0 (6)
DVs=Vi)—g1Vi+Vi(1-Uy = V1) =0
D(Vz—Va) = Vo +Vo(1=Uz —V5) =0
DVi+Vo=2V3) + iVi + q2Vo + V3(1 = Uz — V3) =0

When d,D > 0, it follows from irreducibility of system (6) that there are at most three
types of non-negative and non-trivial solutions, namely: semi-trivial equilibria (U*,0), (0,V*)
and positive solutions for which U; > 0, V; > 0, i = 1, 2, 3. Hence, for the simplicity of notation,
in this subsection we may denote all of these different types of solutions as (U, V'), with the
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understanding that there are only three possibilities for all ¢+ = 1,2,3: U; > 0 and V; = 0, or
U;=0and V; >0, or U; > 0 and V; > 0. We shall establish some a prior estimates of (U, V).

Lemma 1 Assume q1,q92 > 0, (¢1,92) # (0,0) and d,D > 0.

(i) If 1 > q2, then Uy < Uy and Vi < V3.
(ii) If ¢1 < qo, then Uy > U and Vi > Vs.

In particular, if 1 = q2, then Uy = Uy and Vi = V5.

Proof For part (i) we shall prove U; < Uy only, as V3 < V5 follows from a similar argument.
We argue by contradiction: if not, assume that there exist some ¢; > ¢2 and a non-negative,
non-trivial solution of (6) such that U; > Us,. By the first and second equations of (6), we get

(7d*(]1+1*U1*V1)U1:(*d*Q2+1*U2*‘/2)U2:*dU3<O, (7)
sothat —d —¢; +1—-U; = V; < 0,4 =1,2. Due to U; > Us, (7) implies
(—d—Q1+1—U1—V1)U1>(—d—QQ+1—U2—‘/2)U1, (8)

and thus
g2 —q1 > U1+ V1) — (Uz + Vo), 9)

which together with ¢; > ¢o implies that Uy + V) < Uz + V,. This implies (V7, V2) # (0,0) and
Vo > V4 > 0. Therefore, similar to (8), the equations of V; and V5 from (6) imply

(—D—ql+1—U1—V1)V1<(—D—QQ+1—U2—‘/2)V1,

which implies g2 —q1 < (U3 4+ V1) — (Us 4+ V2). This, however, contradicts (9). Therefore, U; < Us
holds. This proves (i). The conclusion in (i7) follows by exchanging patches 1 and 2.

Lemma 2 Assume q1,q2 > 0 and (q1,¢2) # (0,0). For any d,D > 0,

(i) if g1 > qo, then Uy + V1 <1 < Us + Vs;
(ii) if 1 < qo, then Us + Vo < 1 < Us + V5.

In particular, when g1 = q2, Uy + V1 =Us + Vo <1 < Us + V3.
Proof As the proofs of (i) and (ii) are similar, we only prove (i). Firstly, we show
Ur+Vi <1l (10)

We argue by contradiction: If not, there exist some q; > g2 and a non-negative non-trivial solution
such that U; + Vi > 1;i.e. 1 — Uy — V3 < 0. We claim that

Us+Vs>U+ V7 > 1. (11)

Without loss of generality, we may assume (U;) is non-trivial, so that the first equation of (6)
implies that Us > d'thlUl > Uy. If (V;) is trivial then (11) holds. If not, then applying similar
reasoning to the fourth equation of (6), we also get V3 > %Vl > V3. This proves (11) for any
non-negative solutions. Due to q1 > q2, we get Uy + Vo > Uy + V3 > 1 by Lemma 1, thus

Ul(l—U1—V1)+U2(1—UQ—‘/Q)+U3(1—U3—V3) < 0.
However, adding the equations of Uy, Us, Us in (6), we get
U1(1—U1—V1)+U2(1—U2—‘/2)+U3(1—U3—V3):0. (12)
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This is a contradiction. This proves (10).
Next, we claim
Us + V5 > 1. (13)

We again argue by contradiction and assume that there exist some ¢; > g2 and a non-negative
non-trivial solution such that (U;) is non-trivial and Us + V3 < 1. From the third equation of
(6), we obtain

d(Uy + Uy — 2U3) + q1Uy + q2U2 <0,
which together with U; < Us (Lemma 1) implies
2d(Uy — Usz) + iUy + ¢2U2 < 0.

Hence U; < Us. If (V;) is non-trivial, then we can get V3 < V3 by the same method. Therefore,
Ui+ V1 <Us+ V3 < 1. In view of (12), we have also

Uy +Vo >12>Us+ Vs,

Using the second equation of (6), we get Us > Us, which implies V3 < V5. Hence, by the equation
of V5 in (6), we get 1 — Uy — Vo > 0, i.e., Us + Vo < 1, which is again impossible. Hence, we
proved (13). The proof of (i) is completed.

Lemma 3 Assume q1,q2 > 0, (¢1,92) # (0,0), and d, D > 0.

(1) Ifql > q2, and (Ul,UQ,Ug) # (0,0,0), then U1 < U2 < Ug,
(11) IfCh > q2, and (V17Vv27‘/3) 7& (07030)) then ‘/1 < ‘/2 < ‘/3

355 (111) If @1 < qo2, and (U17 U27 U3) 7é (0a070)} then Us <Up < Us.
36 (iv) If ¢1 < qo, and (V1,Va,V3) # (0,0,0), then Vo < Vi < V3.

357

358

359

360

361

362

363

364

365

366

In particular, if 1 = q2 then every positive equilibrium satisfies Uy = Uy < Us, V1 = Vo < V3.

Proof We only prove (i) as (ii)-(iv) follow from a similar argument. To this end, we assume
(U1,Us,Us) # (0,0,0) and prove U; < Us < Us. From Lemma 1, it suffices to prove Us > Us.
Suppose to the contrary that g; > g2 and there is a nonnegative solution such that (U, Us, Us) #
(0,0,0) and Us < Us. We claim that Us + V3 < U + Va. This is immediate if (V) is trivial. If
(V;) is non-trivial, then the second equation of (6) implies

—q@2+1-Us—-V5>0.

By way of the fifth equation of (6), we obtain V3 < V5, which again implies Uz + V3 < Us + V5.

By Lemma 2, we have 1 — Uy — Vo <1 — Us — V3 < 0. Again using the second equation of
(6), we get Us > Us, a contradiction. The assertions (ii)-(iv) are analogous, by exchanging the
role of U and V or the patches one and two.

Lemma 4 Assume q1,q2 > 0, (q1,92) # (0,0), and d, D > 0. Then we have

3
3-) (Ui+V;)>0. (14)

i=1

Proof By exchanging the two species if necessary, we may assume without loss of generality that
(U;) is non-trivial. Adding the equations of U;, i = 1,2,3, in (6), we get

Ui(1-Uy = Vi) +Us(1 = Uy — Vo) + Us(1 — U3z — V3) = 0. (15)

If g1 > qo, applying (15), U1 + V4 < 1 < Us + V53 (Lemma 2) and U; < Uy < Us (Lemma 3).
Hence
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Ug(l —U; — Vl) + Ug(l - Uy — ‘/2) + Ug(l —Us — Vg) > 0,
that is, (14) holds. The proof of the case ¢; < g2 is similar and thus omitted.

Lemma 5 Assume q1,q2 > 0, (¢1,492) # (0,0) and d, D > 0.

(i) If (U;) is non-trivial, then —qn +1 —U; — V4 < 0.
(i) If (Vi) is non-trivial, then —g2 +1 — Uz — V2 < 0.

Proof By Lemma 3 and the first and second equation of (6), we get
(=i +1-U = V))U; =d(U; — Us) <0, i=1,2.
This proves (i). The proof of (ii) is omitted.
From the above results, we can establish the non-existence of positive solution of (6).

Lemma 6 Assume q1,q2 > 0, (q1,92) # (0,0), and d,D > 0 satisfy d # D. Then (6) has no
positive solution.

Proof If there exists a positive solution (U, V) with U; > 0 and V; > 0, then we can rewrite (6)
as Eo(Up,Us, U3)T = (0,0,0)T and Fy(Vy, Vo, V3)T = (0,0,0)”, where the matrices Ey and Fy
are defined as

—d-q+1-U, -V, 0 d
Ey = 0 —d—q+1-U;—V; d
d+q d+ g2 —2d+1-U3z - Vs 16
D—-—q+1-U,-W 0 D (16)
Fo = 0 Dot 1-Us—Vp D
D+q D+ g —2D+1-Us—-V3

Direct calculation gives

3
0 = det(Ey) =d? <3 - Z(Ui + W)) +dP
1=1
+ (—q1 +1-— U1 — Vl)(_q2 +1-— U2 — VQ)(l — U3 — VE),)7
and
3
0 = det(Fy) =D? (3 - Z(Ui + W)) +DP
1=1

+ (_(]1 +1-— U1 — Vl)(—QQ +1-— U2 — VQ)(]. — U3 — va)7

for some constant P depending only on U;,V; (i = 1,2,3) and ¢; (j = 1,2). Multiplying the
above two equations by D, d, respectively and subtracting the resulting equations, in view of
D # d, we obtain

3
Dd (3 - Z(Ui + VJ) (17)

i=1

= (*Q1+1*U1*Vﬂ(*(]g‘kl*Ug7‘/2)(17U37V3).

From Lemmas 2 and 5, it follows that the right hand side of (17) is negative. However, the left
hand side of (17) is positive, as implied by Lemma 4. This contradiction finishes the proof.
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A.2 The global stability of semi-trivial steady state

In this subsection, we mainly establish Theorem 1. We first study the linear instability of
the semi-trivial steady state (0, V*) := (0,0,0, V¥, V5, V) for Model I, where V* satisfies

(Vi Ve Vit =(0,0,0)7, (18)
with matrix Fj given by
—-D—-qg+1-Vf 0 D
F1: 0 _D_q2+1_‘/2* D
D+aq D + g2 —2D+1-Vy

The linear instability of (0, V*) is determined by the sign of the principal eigenvalue, denoted
as /Aj, of the eigenvalue problem

1 1 0
Eilp| +A w2 =10], (19)
¥3 ©3 0
where matrix F; is given by
—d-—q+1-V 0 d
E = 0 —d—q+1-Vy d
d+ ¢ d+ qo —2d+1-V5

Note that A; = A;(d, D) depends on D by way of V;*. We first study the sign of A; for the
case q1 = g2 = ¢. From [20], we recall the following two results concerning Aj:

Proposition 1 ( [20, Proposition 1]) Suppose ¢ = g2 = q > 0. Then the derivative of A;
with respect to d, at d=D, is given by
oa = VO W+ - BV - V) )
dd la=p (V)2 + (V5?2 + 5 (V)2

Proposition 2 ( [20, Proposition 2]) Assume ¢; = q2 = ¢ > 0 and Vi* + V5 + V5" # 3. Then
det(E7) = 0 if and only if either d = D, or d = F(D), where function F' is given by

(=q+1-=V{)(—q+1-V5)(1 - Vy)

F(D) = , D>0. 21
(D) DB —Vy = Vy =Vy) 2y
Corollary 1 Assume g = g2 = q > 0. For any d, D > 0, we have 66/}; |d:D <0.

Proof By Lemma 3, we have V5" — Vi* > 0 and V5 — V5* > 0. Using (i) of Lemma 1 and Lemma
2, we get V5" = V}* < 1, which together with the equations of V;* and V5" in (18) yields

D D
V¥ i— ——V >0 and Vo — —VoF > 0.
L' D+gqg? 2 D+gq?

Therefore, the right hand side of (20) is negative.

Corollary 2 Assume g1 = g2 = q > 0. Then for any d, D > 0, the right hand side of (21) is
strictly negative.
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Proof This lemma is a direct consequence of Lemmas 2, 4 and 5.

Theorem 8 Assume g1 = qo = q > 0. Then for any d, D > 0, we have

+ D > d;

Aild, D) = { D < d.

Proof Since the right hand side of (21) is strictly negative (by Corollary 2), Proposition 2 says
that A;(d, D) = 0 if and only if d = D. Therefore, by Corollary 1 and the continuity of A,
Ay(d, D) > 0 holds for D > d > 0 and A;(d, D) < 0 holds for 0 < D < d.

Next, we consider the sign of A; for any ¢1,g92 > 0 and (¢1,¢2) # (0,0).
Lemma 7 For any q1,q2 > 0 and (g1, ¢2) # (0,0), we have A1(d,D) <0 for d > D > 0.

Proof Fix d > D > 0. By Theorem 8, if g1 = g2 = ¢, then A;(d, D) < 0. Then by the continuity
of Ay in q1, g2, it is sufficient to show A; # 0 for any g1 # ¢o. If not, we assume there exist some
q1 # q2 such that A; = 0. By direct calculation, we get

0=det(Br) =d* (3 = V{" = V5" = V§') + MD + (—=q1 + 1 = V{") (g2 + 1 = V5')(1 = V&).
By (18), we also get
0 = det(Fy) =D* (3= V' — Vi — V§) + Md + (—q1 +1 = V) (—gz + 1 — V5)(1 = V§).

Here M depends on V;*(i = 1,2,3),¢; and g2. Multiplying the above two equations by d, D
respectively and subtracting them, we obtain

D=d)B-V"=Vy =V5)Dd = (—q1 +1 = V{")(=q2 + 1 = V5))(1 = V)| = 0.
Due to d > D, we have
BV =V =Vi)Dd = (—q1 + 1 = V") (—g2 + 1 = V5')(1 = V). (22)

Lemmas 2 and 5 imply that the right hand side of (22) is negative. However, the left hand side
of (22) is positive, as implied by Lemma 4. This contradiction finishes the proof.

Proof of Theorem 1. Fix d > D. By Lemmas 6 and 7, (0, V*) is linearly unstable, and Model

I has no positive equilibria. By the theory of monotone dynamical systems [16, Theorem 1.5],
(U*,0) is globally asymptotically stable among all non-negative, non-trivial solutions of (1).

Appendix B The dynamics of Model I1

In this section, we mainly study the dynamics of Model II and establish Theorems 2 to 4.
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B.1 Preliminary estimates on non-negative, non-trivial steady states

In this subsection, we study the non-negative and non-trivial solutions of the system

d(Ug — Ul) —qul +U1(1 — U1 — ‘/1) = 0
d(Ul + U — 2U2) + q U1 — qoUs + U2(1 —U; — VQ) =0
d(Uz = U3) + qUa + Us(1 = Uz — V3) =0
DVo—Vi)—qVi +Vi(1-U; = V1) =0
DI+ Vs =2Va) + 1Vi — @2Vo + Vo (1 = Uz — V2) = 0
D(Va —V3) + q2Va + Va(1 — Uz — V3) = 0.

Once again, we set kK = 1 and observe that system (23) has at most three types of non-
negative and non-trivial solutions, that is, semi-trivial solution (U*,0), (0, V*) and positive solu-
tions for which U; > 0,V; > 0 (i = 1,2, 3). In the following, we denote by (U, V) a non-negative
non-trivial solution of (23), in which U; > 0 and V; = 0, or U; = 0 and V; > 0, or U; > 0 and
Vi > 0 for all i = 1,2, 3. We shall establish a priori estimates of the non-negative and non-trivial
solutions (U, V).

Lemma 8 For any d,D >0 and q1,q2 > 0, we have Uy + V1 <1 < Uz + V3.

Proof We will prove this conclusion for the case U; > 0. The case U; = 0 and V; > 0 can be
proved by a similar argument.
Step 1: We prove U; + V7 < 1. We argue by contradiction and assume that there exist some ¢1, g2
such that Uy + V7 > 1. Then by the first equation of (23), we have d(Uy — Uy) — iUy > 0, i.e.,
Uy > dfiql Uy, > U;. Following from the similar argument, we also get V; = 0 for all ¢, or Vo > V.
Hence Us + Vo > U +V; > 1.

Clearly, we have Us + V3 > 1. If not, assume that Us + V5 < 1 for some ¢1,¢q2. By the
equations of Uz and V3, we have Us > dtl‘“ Us > Uy and V3 > %Vg > V5 (where equality
holds in case V; = 0 for all 4), which imply Us + V3 > Us + V5 > 1, a contradiction.

Therefore, we get

U1(1 —U; — Vl) +U2(1 —U; — Vz) +U3(1 —Us — Vg) < 0.

However, adding the equations of U;, i = 1,2,3, in (23), we find that the left hand side of the
above inequality is equal to zero. This is a contradiction. Hence, U; + V; < 1 holds.

Step 2: We show Us + V3 > 1. If not, we assume Us + V3 < 1 for some ¢, g2. By the equations
of Uz and V3 in (23), we deduce that Us < Us and V5 < V3 (with equality holds if V; = 0). Thus
Us + Vo < Us + V3 < 1, which together with Uy + V; < 1 implies

Uy(1=Uy = V1) + Uz(1 — Uy — Vo) + Us(1 — Us — V) > 0.

Similarly, adding the equations of U;, i = 1,2,3, in (23), we find that the left hand side of the
above inequality is equal to zero. This is a contradiction.

Lemma 9 For any d,D >0, q1,q2 > 0, it holds that
—qp+1—-Us — V5 <0. (24)

Proof We consider two cases:

Case 1. Either U3z > Us or V3 > V5. Without loss of generality, assume Us > U, so that U; > 0
for all i. Adding equations of Uy and Us in (23), we have

d(Ug—U2)+U1(1—U1—Vl)—‘rUg(—qQ—f—l—UQ—va):O. (25)
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It is easy to see that (24) follows from (25), U3 > Uy and Uy + V; < 1 (Lemma 8).

Case II. U3 < U, and V3 < V5. For this case,
—q+1-Us = Vo< —qp+1-Us—V3<0.

The last inequality follows from Lemma 8. This completes the proof.

Lemma 10 Let d, D >0, and either g > 1 or £ < q; < 1.

(i) Either U; =0 or Uy < Us.

(ii) Either V; =0 or Vi < V.

Proof We only prove (i), as (ii) follows in a completely analogous manner. Assume U; > 0 for all
1, we need to show U; < Us. Obviously, for g; > 1, this conclusion is true from the first equation
of (23). Next, assume to the contrary that there exist some 2 < ¢; < 1 such that U; > Us. By
the first equation of (23), —q1 +1-U; = V1 >0,ie., U1 + V1 <1—qi. Hence Uy + V1 <1 - £.
Using the 4th equation of (23), we get Vo < V4. So we have

U2+V2§U1—|—V1<1—%2. (26)

From the second equation of (23), we get
d(Ul +U; — 2U2) + U — qUs + %ZUQ <0,

which together with Uy > U, indicates d(Us — Uz) + (g1 — %)Us < 0. Since ¢1 > %, we have
Uz < Us.

We claim that Us + V5 > Uz + V3. If V; = 0, then it follows from Uz < Us and we are done.
If V; > 0 for all ¢, then we can repeat the above argument to show that V3 < V5. Using Lemma
8, we have Us + Vo > Us + V3 > 1. This is in contradiction with (26).
Lemma 11 For any d,D >0, ifq1 > 1 or £ <q1 <1, then

3
3-Y (Ui+V;)>0. (27)

i=1
Proof Adding all six equations of (23), we have
U +Vi) A =Uy = V1) + (U + Vo) (1 = Us = Vo) + (Us + V3)(1 = Us — V3) = 0. (28)
We consider two cases:

Case I. Uy 4+ V4 < Uz + V3. For this case, by Us 4+ V3 > 1 we have

(Us +V3)(1 = Uz — V3) < (Uz + Va)(1 — Uz — V3). (29)
By Lemma 10, we have Uy + V; < Us 4 V5. This together with U; + V3 < 1 implies
(U1+%)(1—U1—V1)< (Ug—i—‘/g)(l—Ul—‘/l). (30)

It is easy to see that (27) follows directly from (28), (29) and (30).
Case II. Uy + Vo > Us + V;. For this case, by Us + V53 > 1 > U; + V; (by Lemma 8) we have

(U3+V3)(1—U3—Vfg) < (U1+V1)(1—U3—V3). (31)
Since Us + Vo > Uz + V3 > 1 > Uy + V7, we can similarly derive
U+ Vo)1 =Usy — Vo) < (U1 + V1)(1 — Uy — Va). (32)

It is easy to see that (27) follows directly from (28), (31) and (32). Note that the above reasoning
is valid also when Uy = Uy =Uz =0o0r Vi = Vo = V3 =0.
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Note that the above results are valid when ¢; = g2 > 0. The following result implies that
(23) has no positive solution when ¢; > 1 or & < ¢ < 1.

Corollary 3 Ifq1 > 1 or & < q1 <1, then system (23) has no positive solutions for d # D.

Proof We argue by contradiction. If there exists some positive solution, denoted by (U, V), for
(23). Direct calculation, as in the proof of Lemma 6, gives

Dd(3 =Y (Ui + Vi)
i=1
=(—q+1-U1—WV)(—q2+1—-Us — Vo)(1 = U3 — V3).

(33)

Due to Uy < U, the equation of Uy implies —q1+1—(U1+V1) < 0. By Lemma 8, 1—(Us+V3) < 0.
By Lemma 9, we see —¢q2 + 1 — (U2 + V2) < 0. Hence, the right hand side of (33) is negative.
However, the left hand side of (33) is positive from Lemma 11, which is a contradiction.

B.2  The global dynamics of Model II when ¢; > 1or £ < ¢ <1
In this subsection, we shall show that the faster diffuser always wins when ¢; > 1 or & <

q¢1 < 1. We first study the local instability of (0,V*) := (0,0,0, V;*, V5*, V5*), as determined by
the sign of the principal eigenvalue A5 of the eigenvalue problem

1 1 0
E2 QOQ + /1 QDQ = 0 5 (34)
©3 ©3 0
where matrix Fs is given by
—d-—q+1-V d 0
Ey = d+q1 —2d—q+1-V5 d
0 d+q —d+1-Vs
Proposition 3 When d = D, the derivative of Ay with respect to d satisfies
2
DA, D +a)Wr (Ve = V) + DV (VT + W —2V3) + 5 Vi (Vs = V5) (35)
dd la=p (D + @) (V)2 + D(V3)? + gy (V)2
Proof Differentiate (34) with respect to d, we get
P2 — 1 Y1\ a4, (P h 0
Y1+ 93 =202 | + Eo <,0/2 + d w2 | + Ao SD/Q =101, (36)
P2 — @3 o5 ©3 P 0
where ¢} = 65(’;, 1 =1,2,3. Note that when d = D,
E2|d:D Vz* =10],
Vi 0
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(D + q)Vy' 0
(E2|d:D)T D2V2* =10}, (37)
vy ) o
and when d = D, we may choose
©1 v
g2 = | V5 |- (38)
©3 Vs

Set d = D in (36) and multiplying it by ((D+q1)V1*,DV2*, %1@) using (37), (38) and
As(D, D) = 0, we obtain (35). This completes the proof.

B.2.1 The sign of Ay when q1 = qo

Our goal in this subsection is to determine the sign of Ay when ¢; = ¢2. We first recall the
following result:
Proposition 4 ( [20, Proposition 4]) Assume q1 = g2 = q and Vi* + V5 + V5" # 3. Then
det(E2) = 0 if and only if either d = D, or d = F(D), where F(D) is given by (21).
Lemma 12 Suppose d,D > 0 and q1 = g2 = q > 0, then V5 < V5*.

Proof We argue by contradiction. If not, we assume there exist some d, D, g > 0 such that V; > 0
for all i and V5 > V3. By the sixth equation of (23), we get

qVs + V(1= V5) < qV5 + V5 (1= V5') <0,
which implies that V3" > 14 ¢ > 1. Therefore, V5* > V5* > 1. Hence,
d(Vi" + V5" =2V5") +qVi" —qV5 + V5 (1 = V5)
=(d+q(Vy =V5) +d(Vs = V) + V5 (1-V5) <0,

where we also used the assumption V5 > V5" and Vi* < V5 (Lemma 10). This is in contradiction
with the fifth equation of (23).

Corollary 4 Suppose ¢1 = g2 = q > 0, then for any d, D > 0, the quantity F(D) given in (21)
18 strictly negative.

Proof By Lemmas 8 and 9, we have
Vi>1 and —q+1-Vy<O.

By Lemma 10 and the first equation of (23), we get —g+ 1 — V;* < 0. Using also Lemma 11, the
quantity F'(D), given in (21), is strictly negative.

Lemma 13 Suppose q1 = g2 = q > 0, then for any d, D > 0, we have %Vl* > Vs> DL_WV;.
Proof By the fourth equation of (23) and Lemma 8, we get d(V5* — V*) — ¢V;* < 0, which implies
Vs < %Vf. Similarly, by the sixth equation of (23) and Lemma 8, we have d(V5" — V5 ) +¢V5* >
0, ie. V5" > g Vs

Corollary 5 Suppose q1 = qo = q > 0, then for any d, D > 0, we have 8(9/(112 <0.

d=D
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Proof If g1 = g2 = g, (35) can be rewritten as

ady) BBV V) VSV -2V + 5 W (Vs - V)
od la=p PHL(Vi?+ (V)2 + 525 (V)?
Note that
5 TV =V + V(7 V5 = 2V5) 4 5 Ve (V5 = V5)
= (V3 _Vl)(Tvl = V) + (V5 = Va) (V3 _D—i—q‘é)’

which together with Lemmas 10, 12 and 13 yields the conclusion.
Theorem 9 Assume g1 = g2 = q¢ > 0. Then for any d, D > 0, we have

+ D > d;

As(d, D) =
(4, D) {— D <d.

Proof Since the quantity F'(D), which is given in (21), is strictly negative (by Corollary 4),
Proposition 4 says that As(d, D) = 0 if and only if d = D. Therefore, by Corollary 5 and the
continuity of Az, As(d, D) > 0 holds for D > d > 0 and As(d, D) < 0 holds for 0 < D < d.

B.2.2  The proof of Theorem 2

In this subection we will study the global dynamics of Model IT for ¢; > 1 or £ < ¢; < 1.

Lemma 14 If g1 > 1 or & < q <1, Ax(d,D) <0 for d > D.

Proof The proof is similar as that of Lemma 7. It follows from Theorem 9 that, if ¢ = go, then
Ay(d, D) < 0 for d > D. Since Ay is continuous with respect to parameters ¢, ge, it suffices to
show that Ay # 0 for any ¢ # g2 and ¢1 > 1 or £ < ¢; < 1. We argue by contradiction and
assume that there exists some ¢ satisfying the assumptions such that A; = 0. By proceeding
similarly as in Lemma 7, we derive (22) again. Note that 3 — V}* — V5* — V5 > 0 holds, which
implies the left hand side of (22) is positive. Using V* < V5" and the first equation of (23), we
deduce —g; +1 — V{* < 0. By Lemma 9, —¢2 + 1 — V5 < 0. These together with V5* > 1 imply
the right hand side of (22) is negative, which is a contradiction.

Proof of Theorem 2. By Corollary 3 and Lemma 14, the equilibrium (0, V*) is linearly unstable
and Model II has no positive equilibria. By the theory of monotone dynamical systems [16,
Theorem 1.5], the equilibrium (U*, 0) is globally asymptotically stable.

B.3 Existence of evolutionarily singular strategy
In this subsection, we consider the existence of evolutionarily singular strategy and establish

Theorem 3. The linear stability of the semi-trivial steady state, (U*,0) := (Uy,Us,U3,0,0,0), is
determined by the sign of the principal eigenvalue A, of the eigenvalue problem

¥1 P1 0
Fo oo | + A w2l =101, (39)
¥3 ¥3 0

where matrix F is given by
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-D—-q¢q+1-Uf D 0
Fy = D+q —2D —q2+1-U; D
0 D+ g -D+1-U3
539 Note that U}, ¢ =1, 2, 3, satisfy
Uy 0
Fylp=a (Us | =10 (40)
Us 0
540
541 By exchanging the role of the two species, we can rewrite Proposition 3 as follows:
s Proposition 5 When D = d, the deriwative of Ay with respect to D satisfies
Ody| __(d+a)Ui U] - Up) + dUS (UL + U5 —205) + U0 - 05)
0D |p=d (d+q)(UF)?2 4+ d(U3)? +d+q2(U*)
ss Lemma 15 For any q1,q2 > 0, we have %115 (d,d) < 0 for sufficiently large d.
saa - Proof Set
2
= @+ @)VT (U5 = U7) + dUS (U + U5 = 205) + 75— U505 = 05). (42)
By (23), we can rewrite (42) as
- (U; = U7) { d Ui _U2] + (U3 = Us) [d‘F(DUS _Uz}
ur(-uy) Us(1-U3)
=U; -U))————+ (U; - U])——== 43
(U5 = Un) = U - U= (13)

Note that (Uf,Us,Us) — (1,1,1) as d — oo. As (Uf,Us,Us) is the unique stable positive
solution of (40), it can be shown that it is smooth at d = co so that we can expand U; as
U; 1
UZ*:1+F+O(d72) fori:172,3.

sis ' To determine U;, we substitute the above expansion of U; into the first and third equation in
546 (40) to get B B B B

Uy —Uy=—q¢ and U;—Us=—¢q. (44)
s«v By adding the first three equations of (40), we obtain Z?Zl Ur(1 —Uy) = 0, from which we
s deduce Z?Zl U; = 0. Combining this with (44), we obtain

- 20+ 5 G- 5 a2
0, =072 g,- Uy = L2482
1 3 U2 3 Us 3
Having determined Uh we may substitute U = 1+ U;/d + O(1/d?) into (43) to get
U)(=U1) + (U = Us)(=Us) + o(1)

(@2 +q1ga+¢3) +0(1) >0 ford>> 1.

(45)

= (U
2
~3

se0 Therefore, by Proposition 5, we have %/}32 (d,d) <0 for d > 1.
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04s (d,d) > 0 for sufficiently small d.

Lemma 16 If0 < ¢ <1 and g2 > 2q1, we have 55

Proof When d — 0, we have U — Uy := 1 — q; and, passing to a subsequence if necessary,
Uy — Uy for some non-negative Us. We claim that if 2¢1 < qo, then Uy < Ujy. If not, we assume
for some 2¢; < g2, Uz > U;. By the equation of U3 and let d — 0,

U1 — Us + Us(1 —TUs) = 0.

Then we have q;Us — qoUs + Us(1 — Us) > 0, which implies that Us < 1+ q; — ¢o. Therefore,
14+qi—qgo>1—gqi,ie 2¢; > ¢o. This contradiction shows that Uy < Uj.
Note that M — qU,(Uy — U;y) < 0 as d — 0, where M is given by (42). Note that

0 < g1 < 1. Hence, for sufficiently small d, we have %/}32 (d,d) > 0.

Proof of Theorem 3. Since d — %—%(d, d) is analytic, all the roots are discrete. By Lemmas 15

and 16, %/1‘)2 (d,d) < 0 for d > 1 and %% (d,d) > 0 for 0 < d < 1. This says that the infinity and

zero diffusion rates are local CvSSs. Furthermore, there exists at least one d* = d*(¢1, g2) such

that %% (d*,d*) = 0, and %%’ (d,d) change sign from positive to negative in a neighborhood of
d*; i.e. d* is an evolutionary singular strategy which is not a CvSS.

B.4 The proof of Theorem 4

The proof of Theorem 4 is divided into a series of lemmas. First, we recall that (Vg, Vg,) is
the unique positive solution of (4) with k£ = 1.

Lemma 17 Letd=q; =0 and D,dy > 0 and let (Va, V3) be the unique positive solution of (4).
Then Vy <1 < Vs and (1 —V5,0,0, Vs, Va, Vg) is a non-negative solution of system (23).

Proof Tt is clear that (1 — VQ,O,O,VQ,VQ,V;),) is a non-negative solution of system (23) when
d = ¢1 = 0. Adding the equations of (4), we have

Va(1 — Va) + V3(1 — V3) = 0. (46)

In view of (46), it is enough to show Vs > 1. Suppose not, then V3 < 1 and the 2nd equation of
(4) implies Vs < V3 < 1, which contradicts (46).

Lemma 18 The matriz

o —D— g +1-2V, D
e D —D+qg+1-2V3

is invertible.
Proof Observe that zero is an eigenvalue of the cooperative matrix

. . V2 0
FEy =F N
2 1+<0V}3>

with a strictly positive eigenvector (VQ, Vg) Hence, zero is the principal eigenvalue of E». Since
the principal eigenvalue is strictly monotone with respect to the diagonal entries, we deduce that
zero is not an eigenvalue of Fj.
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573 Set U = (Uy,Us,Us) and V = (Vi, Vi, V3). Define map F(d,q1,U,V) : R® — RS by

AUy —Uh) —quUi + U1 (1 = Uy — 7)
d(Uy + Uz — 2U3) + iUy — q2Ua + Uz (1 — Uz — Va)
d(Uz = Us) + Uz + Us(1 — U3z — V3)
DVo=Vi) —qiVi +Vi(1 =Uy — V1)
DL+ Vs =2Va) + 1 Vi — 2 Vo + Vo (1 = Uy — Va)
D(Vo —V3) + @2Vo + V3(1 — Us — Va)

F(d7 q1, U7 V) =

It is clear that (U,V) = (Ui, Uz, Us, Vi, V2, V3) is a steady state of Model II if and only if
F(d,q1,U,V) = 0. Now, observe that F(0,0,U,V) = 0. One can further compute

Dy F(0,0,U,V)
Va)

—(1— 0 0 —(1—Va) 0 0
0 —qp+1-V, 0 0 0 0
_ 0 q2 1-V3 0 0 0
B —Va 0 0 -D-V, D 0
0 —Vs 0 D —2D — g2 +1-2V, D

0 0 —V3 0 D+ q -D+1-2V3

sn. Lemma 19 Let D > 0 and g2 > 1 and consider the eigenvalue problem
D F Y 2 o 2 3
wv)F(0,0,U,V) w) = A b for p, 9 € R°. (48)

5 Then every eigenvalue of (48) lies in {z € C: Rez < 0}. In particular, D,y F(0,0,U, V) 18
st invertible.

s7 Proof First, note that the system (4) implies

D WV D-1+V4

N £~ (49)
Dtg—1+Vy, Vs D+q

se It suffices to show that the principal eigenvalue of (48), denoted as A}, is strictly negative.
s Suppose to the contrary that (48) holds for some ¢, € R? and A} € R such that

3
ZI%IH% =1, ¢ <0, ¥; >0, fori=1,23 and A >0. (50)

s We will show that D = 0, which gives a contradiction.
Now, multiply both sides of the equation (48) with A = A} on the left by the row vector

Vi X R X
7= <_1 217 (D—1+V3),—M2,—M,D—1+\/3,D—1+V3,D>,
— V2

sss - with M > 0 to be chosen later. We obtain

RT (i) = A\ <:‘;) and 7 (i) >0, (51)
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where the strict inequality follows from (50), and R can be computed (using (49) for Rs) as

Ry 0

R» M?(q2 — 1+ Va) — Mgz—Va(D — 1+ V3)
Ao |Bs|_ M(Vs —1) = V3D

Ry 0

Rs ~Va(D =1+ V3)

RG —VgD

Next choose M > 1 so that Ry, R3 < 0 and Rs, Rg < 0. By inspecting (51) in conjunction with
(50), we deduce that

1 1 *
pr=—g5, P2=¢3=Yp=93=0, ¢p=5 and A1 = 0.
But if we substitute this into the 5th component of (48), we have D/2 = 0. This is a contradiction.

Lemma 20 Fiz any D > 0 and go > 1. Then there exists some 6 > 0 such that for any d € (0, 9),
q1 € (=96,9) and d + q1 > 0, Model I has a positive steady state, denoted by (U%, V), which
satisfies (U°, V) — (U, V) as (d,q1) — (0,0), where (U,V) is given in (3) and (4) with k = 1.

Proof 1t is easy to check that F(0,0, U,V) = 0. Moreover, we have shown in Lemma 19 that
Dw,vyF(0,0,U,V) is invertible. By the implicit function theorem, there exists some ¢ > 0 such
that for |d|, |q1| < 6, there exists (U%,V?) € RS such that

F(d,q,U°,V°) = (0,0,0,0,0,0)7T,

and (U, V%) — (U,V) as d,q1 — 0. Finally we show that for all d,q1 small such that d > 0
and d + ¢1 > 0, each component of (U?,V?) is also positive. Since U1, VQ, Vs > 0, it suffices to
show that U$ > 0 and U{ > 0. Recall from Lemma 17 that Vo < 1 < V3. By setting the second
component of (47) to zero we have

(2d+qo — 1+ UL+ V3)US = (d+ q)U{ + dUs = (d + q1)(1 — Vo + o(1)) + o(d) > 0.
Using ¢z > 1, we deduce that U$ > 0. Next, we set the third component of (47) to get

(d—1+173+o(1))U§=(d—1+U3+V3) = (d+ ¢2)US > 0.

Since 173 > 1, we deduce that Ug > 0. In summary, we have proved that Ug > 0 and Ug‘f > 0 for
d e (0,6),q1 € (—0,6) and d + q; > 0.

Lemma 21 Suppose that go > 1. Let (U, V) denote any positive solution of Model 11. Then as
d—0andq — 0, (U,V)— (U,V).

Proof First it is easy to see that U;, V;, ¢« = 1,2, 3, are uniformly bounded with respect to small
d,q,. Hence, passing to a sub-sequence if necessary we may assume U; — U; and V; — V; as
d,q1 — 0, where U;, V; > 0 satisfy F(0,0,U,V) =0, with F' defined in (47).

Step 1: Uy = 0.

This is a consequence of assumption g2 > 1 and

—qUa +Us(1 = Uy — Vo) =0

Step 2: If Us > 0, then U; > 0.
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Suppose to the contrary that Us > 0 and U; = 0. The first component of F(0,0,U,V) =0
yields Us + V3 = 1. Therefore, the 4th to 6th component of F'(0,0,U, V) = 0 can be rewritten as
D(Va—V1)+Vi(1-=V1) =0
D(Vi + Vs —2Va) — q2Va + Va(1 = Vo) =0
D(Va = V3) +q2V2 = 0.

By Us+V3 = 1 and Uz > 0, we have V3 < 1. By the third equation above, Vo = D/(D+q2)V3 < 1.
Adding three equations we find

Vi(1 = V1) + Vo(1 = Vo) =0,
which together with V5 < 1 implies V; > 1. By the first equation we then obtain V5 > V;, which
is a contradiction. This completes Step 2.
Step 3: If Us = 0, then U; > 0.
Suppose to the contrary that U; = Us = 0. Then Us and V; satisfy
Ty(1— Ty — V) = 0
D(Va = Vi) +Vi(1=V4) =0
D(Vi + V3 —2Va) — gaVa + Vo (1 = Vo) = 0
D(Vo — V3) 4 goVa+ V3(1 = Us — V3) = 0

If U3 = 0, then either V; = 0 for i = 1,2,3, or V; = V;* > 0 for i = 1,2,3, where (0,V*) is
one of the semi-trivial steady states of Model II. We rule out both cases as follows:

1. For the case (U,V) = (0,0,0,0,0,0), we have (U,V) — (0,0,0,0,0,0) as d,q; — 0, which
implies that 1 — (U; + V;) > 0 for small d, ¢;. Adding the equations of U; for i = 1,2,3, we
have

U(1—-U; = V) +Us(1 = Uy — Vo) + Us(1 — Uz — V3) =0,

which is a contradiction as each term in the left hand side is positive.

2. For the case (U, V) = (0,V*), we normalize U; by setting U, = Ui/(Uy + Uz + Us). Then by
simil{xr argument we llave,vby passing to a subsequence if necessary, U; — U; > 0as d,q; — 0,
and U; satisfy Uy + Uy + Uz = 1 and

Ur(1 = Vi) = —qoUs + Uz (1 = Vi) = qoUs + Us(1 = V') = 0
Since V¥ < 1, so Uy =0. It follqws from ¢o > 1 that U, =0 VThis vtogether with the last
equation and V5 > 1 imply that Us = 0. This contradicts U; + Uy + Uz = 1.
Having ruled out both cases above, we proved Step 3.
Step 4: U, > 0.
This is a consequence of Steps 2 and 3.
M: U; = 0.
If not, then Us > 0, which leads to Us + V3 = 1. Therefore,
D(Vs —Va) — gaVa + Vo(1 = Vo) =0
D(Vo —V3) + q2Va = 0.

Adding the above two equations we find Vo(1— V_g) = 0. Since Vo < 1, the only possibility is V5 =
0, from which we have V; =0 for i = 1,2,3 and U; = U3 = 1. That is, (U, V) — (1,0,1,0,0,0) as
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d,q1 — 0. We normalize V; by setting V; = V/(V1 + V2 + Vg) Then by passing to a subsequence
if necessary, Vi—>V;>0asd,qg — 0, and V; satisfy Vi + Vo + V3 =1, and

V=V,
D(Vy+ Vs = 2V2) — g2V + V2 =0
D(Vs — Vo) + 2V =0,

from which we conclude that V; = 0 for all i, which is a contradiction. This completes Step 5.
Step 6: Vi = Vo and Uy =1 — V.
AsU; >0 and Uy = Uz = 0, we have U; + V; = 1, V| = V5, and

D(Vs — V) = Vs + Va(1 — V) = 0
D(Va — V3) + q2Va 4 V3(1 — V3) = 0.

By similar qormalizgtion argument we can show that V; > 0 for all 4. Hence, V; = Vl fori=2,3.
Thus V3 = V5 and U; = 1 — V,. This completes the proof.

Lemma 22 Fiz any D,qy > 0. Then there exists some 6 > 0 such that for any d € (0,0) and
q1 € (—d,0), the positive steady state (U°, V), which is given by Lemma 20, is locally stable.

Proof By previous result, there exists some § > 0 such that for |d|,|q:1| < d, there exist (U°,V?) €
RS such that F(d, g1, U, V%) = (0,0,0,0,0,0)7. Since the two-species competition models IT and
III are strongly monotone, the linearized system at (U9, V?) has a principal eigenvalue (it is real,
simple and has the largest real part among all eigenvalues), which we denote as \J; i.e.

6 6
D(U,V)F(da QIaU67V6) <¢ ) = )‘6 (¢5>

where ¢° = ( 03, 03T and ¢ = (9, @3, #3)T. Furthermore, we may choose ¢ < 0 and
¢ > 0 for i = 1,2,3, and normalize by

3

D (el + 160 =

i=1

We proceed to show that (U%,V?) is stable, that is, A{ < 0. To this end, we argue by
contradiction and assume )\‘5 >0.Let 6 — 0 (sothatd — 0 g1 — 0), by passing to a subsequence,
we may assume that A — \i > 0, so that Dw,vyF(0,0, U, V) has at least one non-negative
eigenvalue, i.e. that (48) holds for some non-trivial eigenvector (¢, %) and non-negative eigenvalue
Al. However, Lemma 19 asserts that A7 < 0. This is a contradiction.

Therefore, \{ < 0 for sufficiently small § > 0, i.e. (U°,V?) is stable.

In the following two results, we consider the linear instability of the semi-trivial steady states
of (2), denoted by (U*,0) := (Uy,Us,U;,0,0,0) and (0,V*) := (0,0,0, V*, V5*, V).

Lemma 23 If g3 > 1, then there exists § > 0 such that (U*,0) is linearly unstable for every
0 S d7 q1 S d.
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Proof Setting d = 0,q; = 0, (U;,Us,U3) is the unique solution of

Ui (1-Uf) =0
—qUs +Us;(1-U3)=0
U3 + U (1 - U3) = 0.

By direct calculations and using g2 > 1, we get
(Uf,U5,U5) = (1, max(1 — go,0), Q)

For g2 > 1, we have (Uf,Us,Us) = (1,0,1), and its linear stability of (U*,0) is determined by
eigenvalue problem

E2<,0+/1<p =0,
where ¢ = (¢1, 2, 03)T and
~ [/-D D 0
Er=| D —2D-¢+1 D
0 D+ q -D

We will test Ey by multiplying on the right with the vector (VQ —¢, Vs, Vg)T, where Vs, Vs
is given in Theorem 4 and ¢ is a small positive constant.

} Vo —¢ ) eD
E2 V2 = (Y2)A2 — €D
Vs Va(Vz —1)

Since all of the entries of the right hand side is positive, we can apply the Collatz-Wielandt
Formula [40, P. 667] to get

. o
. . [EW]lzmin{ €D (Va)* —eD Va(Vs 1)}>07

max ‘min - , ~ ,
{920:p7#0} 1<i<3,0:>0 Vo —e€ Vs V3

that is, (U*,0) is linearly unstable when d = ¢; = 0. By continuity, it remains linearly unstable
for all small d and ¢;.

Lemma 24 For each D,qs > 0, there exists 6 > 0 such that (0, V™) is linearly unstable for every
0 S da q1 S J.

Proof Setting d = 0 and ¢; = 0, the linear instability of (0,V*) is determined by the principal
eigenvalue of the following problem

1-— Vl* 0 0 ¥1 $1 0
0 —qo+1— ‘/2* 0 w2 | + A w2l =10
0 q2 1-Vs) \es ©3 0

Clearly, A = V5 —1 is an eigenvalue with eigenfunction (0,0, 1)7. Recalling that V;* < 1 (Lemma
8), we deduce that there is at least one negative eigenvalue. Thus (0, V*) is linearly unstable.

Proof of Theorem 4. By Lemma 20, there exists some § > 0 such that for any d € (0, ),
q1 € (—d,5), Model II has a unique positive steady state (U?,V?) in a small neighborhood of
(Tj , V) Lemma 21 further ensures that this is the only positive steady state for small positive d
and ¢;. By Lemma 22, (U%, V?) is locally stable. We can then conclude by the theory of monotone
dynamical systems [15,16,46] and Lemmas 23 and 24 that (U°,V?) is globally stable.
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Appendix C The dynamics of Model III

In this section, we mainly consider the dynamics of Model I1I, i.e., system (5), in homoge-
neous environments. We consider the non-negative and non-trivial solutions of

d(Uz + Uz —2U1) — (1 + @)U + U1 (1 = U1 = V1) =0
d(U1 — UQ) + q1 Uy +U2(1 —U; — VQ) =0
AUy —Us) + U1 + Uz(1=Us —V3) =0
D(Vo+ Vs —=2Vi) — (1 + @2)Vi +Vi(1 = Uy = V1) =0
DV —Va)+ Vi +Vo(l1—=Uz—V3) =0
D(Vi —V3) + V1 + V3(1 = U3z — V3) =0

There are three types of non-negative and non-trivial solutions of this system. We denote three
different types of solutions as (U, V), in which U; > 0 and V; = 0, or U; = 0 and V; > 0, or
U; >0 and V; > 0 for all i = 1,2,3. The semi-trivial steady state (U*,0) := (U5, U, U3, 0,0,0)
satisfies

dUs + U3 =2U7) — (@1 + @)Uy + U (1= U7) =0

AUy U +qUy+U;(1-U3)=0 (53)

AU —U5)+ Uy +U5(1-U3) =0

The linear stability of (Uy,U3,U5,0,0,0) is determined by the sign of the principal eigen-
value A3 of the eigenvalue problem

P1 P1 0
Fs5lpa| +A w2l =10], (54)
Y3 Y3 0
where matrix Fj is given by
—2D — (g1 +¢q2) +1-U7 D D
F3 = D+q -D+1-U;j 0
D + g2 0 —D+1-Us
Proposition 6 When D = d, the derivative of Az with respect to D satisfies
dAs __Uf(U5+U§—2Uf)+ﬁU§(Uf—U5)+ﬁU§(Uf—U§) (55)
9D |p=d (U1)? + g (Us)? + 0 (U3)?
Proof Differentiate (54) with respect to D, we get
P2 + 3 — 201 ©1 04, (%1 (¥ 0
Y1 — P2 + F3 | ¥5 t2p | #2 +Az 5| =101, (56)
Y1 — @3 o ®3 ©3 0
where ¢} = g%', 1 =1,2,3. Note that when D = d,
Uy 0
F3|D:d Uy |=10].
Us 0
Ui 0
F?T’D:d d—qu U; =1(0], (57)
d+q2 U3 0
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and when D = d, we may choose

©1 Uy
w2 | = | Us |- (58)
©3 Us

Set D = d in (56) and multiplying it by (Ul*, ﬁ‘lquQ*, ﬁdqu;), using (57), (58) and Asz(d, d) = 0,
we obtain (55). This completes the proof.

Next, we establish some a prior estimates of U}, i = 1,2, 3.

Lemma 25 For any d, D > 0 and q1,q2 > 0, the following results hold:

(i) If @ > qa, then Us > U3;
(ii) If a1 < go, then U3 < U3.

In particular, if g1 = q2, U5 = U3 holds.

Proof We prove (i) only and (i) can be shown similarly. We will assume Uj < Uj and deduce
¢1 < ¢2. By the second and third equation of (53),

(—d+1—-UU; = —(d+ q)UF <0,
(—d+1-UHUF = —(d+ ¢2)U; < 0.

This implies
0<U;y <U; and 0>—-d+1-U;>-d+1-U;.
Combining the above, we have
—(d+@)Uf = (—d+1-U3)U; > (—d+1-U;)U; = —(d+ ¢2)Uy.
This implies g2 > ¢;. This proves (i).
Lemma 26 For any d, D > 0 and q1,q2 > 0, Uy < 1 always holds.

Proof By exchanging patches 2 and 3 if necessary (the river network is symmetric), we may
assume without loss of generality that q1 > ¢o.
We argue by contradiction and assume that Uy > 1 for some ¢; > g2 > 0. By the first
equation of (53), we get
AUz + Uz = 2U7) = (1 + ¢2)U7 > 0.
Using U > U5 (from Lemma 25), we have
24Uy = UY) 2 (a1 + q2)U7 >0,

so Uy > Uy > 1. In view of Zle U (1 —=U;) =0 (upon summing (53)), we must have U < 1.
By the third equation of (53), we get Ui > CP?%’QU{‘ > Uy > 1. This is a contradiction. This
finishes the proof for the case q; > g2, and the case ¢; < g2 can be treated similarly.

C.1 The global dynamics of Model III when ¢; = ¢

In this part, we shall show Theorem 5. We first establish some a priori estimates of non-
negative and non-trivial steady state of (52) as ¢1 = go.
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C.1.1 Preliminary results on non-negative, non-trivial steady states

Lemma 27 Suppose ¢1 = g2 > 0, then for any d, D > 0, we have Us = Us and Vo = V3.
Proof By the similar argument in the proof of Lemma 1, we can obtain this lemma.
Lemma 28 Suppose ¢1 = g2 := q > 0, then for any d,D > 0, we have Us + V3 > 1.

Proof Assume that (U;) is non-trivial and is thus positive for all i. The same argument applies to
the case Uy = Uy = Uz = 0. Assume to the contrary that Us + V3 < 1 for some d, D, q > 0, then
by the third equation of (52), we get d(U; — Us) + qU; < 0. Thus Us > %Ul > U;. Similarly,
we can show V3 > Vi, if V; > 0 for all 4. Hence 1 > Us+ V3 > Uy + V7 holds. By the first equation
of (52) and Lemma 27, we obtain

2d(U3 — U1) —2qU; = d(UQ + Uz — 2U1) —2qU; <0,

i.e., d(Us—U;)—qU; < 0. This together with the third equation of (52) implies that Us+V5 > 1,
which is a contradiction with our assumption.

Lemma 29 Suppose ¢ = g2 = q > 0, then for any d, D > 0, we have U; + V1 < 1.

Proof We argue by contradiction. If Uy + V7 > 1 for some d, D, q > 0, then by the first equation
of (52) and Lemma 27, we have

2d(U2 - Ul) - 2qU1 = d(U2 + U3 - 2U1) - 2qU1 2 07

so that d(Uy—Uy)—qU;y > 0, which together with the second equation of (52) implies Us+V5 < 1.
Using Lemma 27, we have Uz + V3 = Uy + Vo < 1. But this contradicts Lemma 28.

Lemma 30 Suppose ¢1 = q2 :=q >0 and d, D > 0.

(i) If U; > 0 for all i, then Uy < Us.
(i) If V; > 0 for all i, then V1 < V3.

Proof In case of (U*,0) and (0,V*), the lemma follows from Lemmas 28 and 29. It therefore
suffices to consider positive equilibria (U, V). We will prove (i), as (ii) follows from a similar
argument. If U; > Us for some d, D,q > 0, by Lemmas 28 and 29, we have V3 > Vi, which
together with the 6th equation of (52) implies

(q+1—Us—Va)Vs > qVi + Va(1 = Us — Vi) = D(V — V1) > 0;

ie. ¢+ 1—Us — V3 > 0. However, by the third equation of (52) and U; > Us, we get
(q+1—=Us—=V3)Us < qUy + Us(1 = Us — V3) = d(Us — Uy) < 0;

i.e. g+ 1—U;— V3 <0. This is a contradiction.

The following result is a direct consequence of Lemmas 27 and 30, and it provides some
insight for the biological interpretation of Theorem 5.

Corollary 6 Assume g1 = q2 > 0 and d, D > 0. Then we have

U <1<U;=U; and Vi <1< Vy,="Vs.



684

685

686

687

688

689

690

691

692

693

694

695

696

32 Hongyan Jiang et al.

Lemma 31 Suppose q1 = g2 > 0, then for any d, D > 0, we have

3
3-) (Ui+ Vi) (59)
=1

Proof By possibly exchanging the role of U and V, we may assume U; > 0 for all i. Adding
the equations of U; (i = 1,2,3) in (52) and using Uy + Vo = U3 + V3 > 1 (Lemmas 27 and 28),
Ui + Vi <1 (Lemma 29) and U; < Us = Uy (Corollary 6), we obtain

Us(1=Uy = V1) +Us(1 = Uz = Vo) + Us(1 — Uz — V3)
>Ul(].—Ul—V1)+U2(1—U2—‘/2)+U3(1—U3—‘/3):0

which establishes (59).

Lemma 32 Suppose ¢ = g2 :=q >0 and d, D > 0. Then we have —2q+1—U; — V7 < 0.
Proof Corollary 6 and the first equation of (52) indicate that —2¢+1—U; — V; < 0.
Theorem 10 If ¢ = g2 > 0 and d, D > 0, then system (52) has no positive solution.

Proof We argue by contradiction. If there exists a positive solution (U, V') for (52), by direct
calculation, we obtain

3
Dd(3 =Y (Ui + Vi) = (=2¢ + 1= Uy = Vi)(1 = Uy — Va)(1 — Us — V). (60)
=1

Lemma 31 shows that the left hand side of (60) is positive, but the right hand side of (60) is
negative, due to Lemmas 27, 28 and 32. This completes the proof.

C.1.2  Global stability of (U*,0) when ¢1 = g2

We assume q; = ¢o := ¢ throughout this subsection. The local instability of (0,V™*) is
determined by the sign of the principal eigenvalue, denoted as Az, of the system

Y1 1 0
Esloa| +A 2| =1(0],
3 ©3 0
where Fj3 is rewritten as
—2d—-2¢q+1-V d d
E; = d+q —d+1-Vy 0
d+gq 0 —d+1-Vs

Setting g1 = ¢2 := g and exchanging the role of the two species, (55) can be rewritten as

/5 (V5 — Zhay

My _ (VI = V) + (V5 = 29V (Vi = V)
od la=D D7+(V1 )2 + (V)2 + (Vi)? :

We can obtain the following result by direct calculations:
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Proposition 7 ( [20, Propositon 6]) Assume ¢ = g2 :=q > 0 and V{* + V5 + V5" # 3. Then
det(E3) =0 if and only if either d = D, or

—2¢+1-Vr)(1 -V - Vy)

q—1
DB -V = V5 = Vy)

(62)

Corollary 7 Suppose g1 = q2 :== q > 0, then for any d, D > 0, 0£13

liep <0

Proof By Corollary 6, we have Vi* — V5 < 0, V" — V5 < 0. Using V5 > 1 and the fifth equation
of (52), we get
D+gq
D
Similarly, by V5" > 1 and the sixth equation of (52), we get

V-V >o0.

D+q,.
Tvl - V5 >0.
Therefore, the right hand side of (61) is strictly negative.

Lemma 33 Suppose g1 = q2 > 0, then for any d, D > 0, the right hand side of (62) is negative.

Proof Using Lemmas 27 and 28, we get V5* = V5* > 1, hence (1—V5")(1—V5*) > 0, which together
with Lemmas 31 and 32 shows that the right hand side of (62) is strictly negative.

Theorem 11 Suppose g1 = g2 > 0, then for any d, D > 0, we have

+ D > d;
- D < d;

— D > d;

As(d, D) =
3(d, D) { + D < d.

and As(d,D) = {

Proof The equation (62) cannot hold since the right hand side is strictly negative, by Lemma 33.
Hence, Proposition 7 says that As(d, D) = 0 if and only if d = D. Therefore, by Corollary 7 and
the continuity of As, As(d, D) > 0 holds for D > d > 0 and As(d, D) < 0 holds for 0 < D < d.
The result for Ag follows from the identity As(d, D) = As(D,d) for all d, D.

Proof of Theorem 5. For d > D, Theorems 11 and 10 says that (0, V*) is linearly unstable,
and that Model III has no positive equilibria. It follows from the theory of monotone dynamical
systems [16, Theorem 1.5] that the equilibrium (U*,0) is globally asymptotically stable.

C.2  The local stability of (U*,0)

In this subsection, we determine the local stability of the semi-trivial steady sate (U*,0) for
more general qj, gs.

Lemma 34 Suppose 0 < ¢ < ¢1 + %, 0< % < /2. Then Us > 1 holds for all d > 0.

Proof Since we have shown Uy > 1 for q1 = ¢q, it is sufficient to show Uy # 1 for any gq1, g2
satisfying the assumptions. We argue by contradiction: Suppose that Us = 1 for some ¢1, g2. By
the second equation of (53), we have

d
d+Q1.

(63)

Uy
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Adding the equations of U7, U3, U5 in (53) and using U = 1, we get
Ur(1=Uy) + Uz (1 - U3) = 0. (64)

Substituting (63) and (64) into the third equation of (53), we get

1 an
Uj=———(d+q— 20— 65
b Fan A e (©)

By Uy < 1 (from (63)) and (64), we see that Us > 1. This, together with (65), implies that

q1
d+q1

<q2—q1. (66)

Hence, g2 — ¢1 > 0. Therefore, we can rewrite (66) to get

a(l—qg+aq)
q2 — 1

d> > 0, (67)

which the last inequality follows from 0 < go—q1 < % By (63), (64) and (65), after simplifications,
we have

q1 q1
d —qg1— —)(d+q2 — . 68
a=(-a it q )( g2 d+q1) (68)

It follows from (68) that dg1 < (g2 — ¢1)(d + g2), which can be rewritten as

d(2q1 — q2) < g2(q2 — q1)- (69)

By (67) and (69), note that 2¢; — g2 > 0 by assumption, we have
0< ( an —Ch) (2q1 — ¢2) < q2(q2 — @1)- (70)

q2 — g1

By assumption 0 < g2 — ¢; < 3, we have q2qj - > 2¢;. Hence, by (70)

q1(2q1 — q2) < q2(q2 — q1),
which is equivalent to g2 > v/2¢1, a contradiction to assumption ¢ < v/2¢;.

Lemma 35 Suppose that 0 < ¢1 < g2 + 2 and q2 then U3 > 1 holds for all d > 0.

- f}

Proof This proof is similar to Lemma 34, by exchanging the role of patches 2 and 3. We omit
the proof.

Directly by Lemmas 34, and 35, we obtain the following result, which also provides some
insight for the biological interpretation of Theorem 6.

Corollary 8 Let q1,q2,d, D be positive. If |g2 — q1| < = and % f < V2, then Ui > 1 and
Ui > 1 hold.
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Proof of Theorem 6. Fix d > D. We have shown that if ¢; = ¢o, Ag(d D) > 0 in Theorem
11. By the continuity of A3 in ¢, g2, we just need to prove Az # 0. By contradiction, we assume
that there exist some g1, g2 such that A3 = 0. Then by direct calculation, we get

Dd(3 — Uf — Uz — U3) = [~(a1 + ae) + (1 — U)](1 — U3)(1 — U3). (71)

Adding the equations of (53), we get
Uy -U)+U;1-U3)+U;(1-U3) =0. (72)
Due to Uy > 1 and U5 > 1, we have U < 1, so
ur(1-uvr)<1-0}), fori=1,23.
Substituting this into (72), we obtain 3 — U — Uy — U5 > 0. Again using Uy < U3y, U < U3
and the first equation of (53), —(¢1 + g2) + (1 — U{") < 0. This together with Uy > 1 and U5 > 1
(Corollary 8) yields the right hand side of (71) is negative. This contradiction finishes the proof.
C.3 Existence of evolutionarily singular strategy
The goal of this subsection is to establish Theorem 7.

Lemma 36 For any q1,q2 > 0, we have %—%(d, d) < 0 for sufficiently large d.

Proof By Proposition 6, the sign of 6/13 7 (d, d) is the opposite of that of N, where

* * * * d * * * * * *
N:=U;(Us +Us —2U7) + mUz Uy =U3) + @Us(Ul = U3). (73)
By (53), we can rewrite (73) as
= (Us = U7)(Uy _mUz)"’(% = Un)(Uy — ar 2U3)
1 * * * * * * * *
= i+ a (Us =UD)U; (U3 —1) + m(Ug - Un)U3 (Us - 1) (74)

Note that (Uf,Us,Us) — (1,1,1) as d = oo. As (U5, U5, Uy3) is the unique stable positive
solution of (53), it can be shown that it is smooth at d = oo so that we can expand U; as
Ur =1+4U;/d+0O(1/d?), i = 1,2,3, for sufficiently large d. From the second and third equation
of (53) we have 3 . . 3

Up=Ur+q, Us=Ui+q. (75)

Recall (72) (resulting from adding three equations in (53)), it follows that
ﬁ1+02+03 =0. (76)

By solving (75) and (76), U, = —(q1 + q2)/3, Uy = (2¢1 — ¢2)/3, Us = (2¢2 — q1)/3. Hence, for
large d it holds that
q1+ q2 9
O(1/d
2q1 — qo
3d

2 —
Ur=1+ % FO(1/d?).

U =1-

Uy =1+ +0(1/d?),
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Substituting into (74), we obtain

2
fN—+§ﬁ+q§—m@)>o as d — 0o, (77)

provided that (g1, q2) # (0,0). Therefore, we conclude by Proposition 6 that %/}33 (d,d) < 0 for
sufficiently large d.

Lemma 37 Let q1,q2 > 0. For sufficiently small d, we have

i - fqg1+q2 <1 +q > (1 — @)%
8/13,(7 ){ ifgr+q <1 or g1 +q2> (g1 — q2) (78)

oD + ifl<ate<(a-e)
Proof We consider three cases:

Case L. ¢1 + ¢2 < 1. By the first equation of (53), we see that Uy — U, =1 (@1 +¢q) >0

as d — 0. By the second and third equation of (53), U3 — Uz > 1,U; — Us > 1. Thus
N - U(U2+Us —2U;) > 0 as d — 0, where N is given by (73). Here we used ¢; > 0 and

%/}33 (d,d) < 0 for sufficiently small d when ¢; + g2 < 1.

Case II. g1 + g2 = 1. For this case, we have U; — 0 and U} — 1 (i = 2,3) as d — 0. By the first
equation of (53), we get

g2 > 0. By Proposition 6, we have

Ur
=2 as d— 0. 79

Thus N = 2v/2d"/? + o(1) is positive for sufficiently small d. Therefore, %—%(d, d) < 0 when
G t+q=1

Case III. ¢ + g2 > 1. For this case, we have Uf — 0 and U} — 1 (i = 2,3) as d — 0. By the first
equation of (53), we get

Ur 2
%77
d g1 +q2—1

as d—0. (80)

Substituting into (73), we get
N 2 1 1
St A+ 1-0)+ 1
d Q1+Q2—1( 1) d+q

Hence,

lim — =
d=0+ d (@a2)(n + g2 — 1)
Having determined the sign of N for d sufficiently small, (78) follows from Proposition 6.

N (1+q)— (g1 — Q2)2.

Proof of Theorem 7. Since d %—%(d, d) is analytic, all the roots are discrete. By Lemmas

36 and 37, %/g” (d,d) > 0 for d small and %/ig (d,d) < 0 for d > 1. This says that the infinity and

zero diffusion rates are local CvSSs. Furthermore, there exists at least one d* = d*(¢1, ¢2) such

that %/1173 (d*,d*) =0, and %/11)3 (d,d) change sign from positive to negative in a neighborhood of
d*; i.e. d* is an evolutionary singular strategy which is not a CvSS.
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