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ABSTRACT. Many Markov Chain Monte Carlo (MCMC) methods leverage gra-
dient information of the potential function of target distribution to explore
sample space efficiently. However, computing gradients can often be computa-
tionally expensive for large scale applications, such as those in contemporary
machine learning. Stochastic Gradient (SG-)MCMC methods approximate gra-
dients by stochastic ones, commonly via uniformly subsampled data points, and
achieve improved computational efficiency, however at the price of introducing
sampling error. We propose a non-uniform subsampling scheme to improve the
sampling accuracy. The proposed exponentially weighted stochastic gradient
(EWSQG) is designed so that a non-uniform-SG-MCMC method mimics the sta-
tistical behavior of a batch-gradient-MCMC method, and hence the inaccuracy
due to SG approximation is reduced. EWSG differs from classical variance re-
duction (VR) techniques as it focuses on the entire distribution instead of just
the variance; nevertheless, its reduced local variance is also proved. EWSG
can also be viewed as an extension of the importance sampling idea, successful
for stochastic-gradient-based optimizations, to sampling tasks. In our prac-
tical implementation of EWSG, the non-uniform subsampling is performed
efficiently via a Metropolis-Hastings chain on the data index, which is coupled
to the MCMC algorithm. Numerical experiments are provided, not only to
demonstrate EWSG’s effectiveness, but also to guide hyperparameter choices,
and validate our non-asymptotic global error bound despite of approximations
in the implementation. Notably, while statistical accuracy is improved, conver-
gence speed can be comparable to the uniform version, which renders EWSG
a practical alternative to VR (but EWSG and VR can be combined too).
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1. Introduction. Consider the construction of algorithms that sample a target
probability distribution 7 ~ Z lp(x)dx, where Z is a normalization constant
and the unnormalized density p is assumed to be nonzero on the domain. Let
V(x) := —logp(x) and then the target density can be rewritten in the form of
Gibbs distribution, i.e. Z~!exp(—V(z)), where V will be referred to as the poten-
tial function.

For this purpose, many MCMC algorithms use physics-inspired evolution such
as Langevin dynamics [9] to utilize gradient information (i.e., VV) in order to effi-
ciently explore the target distribution over continuous parameter space. However,
gradient-based MCMC methods are often limited by the computational cost of eval-
uating the gradient on large data sets, which often correspond to specific potentials
of the form V' (x) = .1, V;(x), where n is very large; this type of additive potential
with many terms will be the setup of this paper.

Motivated by the great success of stochastic gradient methods for optimization,
which uses a stochastic estimator of the batch gradient VV instead of evaluating all
VV; terms, stochastic gradient MCMC methods (SG-MCMC) for sampling have also
been gaining increasing attention. More precisely, when the accurate but expensive-
to-evaluate batch gradients in a MCMC method are replaced by computationally
cheaper estimates based on a subset of the data, the method is turned to a stochastic
gradient version. Classical examples include SG (overdamped) Langevin Dynamics
[42] and SG Hamiltonian Monte Carlo [12], both designed for scalability suitable
for machine learning tasks.

However, directly replacing the batch gradient by a (uniform) stochastic one
without additional mitigation generally causes a MCMC method to sample from
a statistical distribution different from the target, because the transition kernel
of the MCMC method gets corrupted by the noise of subsampled gradient. In
general, the additional noise is tolerable if the learning rate/step size is tiny or
decreasing. However, when large steps are used for better efficiency, the extra noise
is non-negligible and undermines the performance of downstream applications such
as Bayesian inference.

In this paper, we present a state-dependent non-uniform SG-MCMC algorithm
termed Exponentially Weighted Stochastic Gradients method (EWSG), which con-
tinues the efforts of uniform SG-MCMC methods for scalable sampling. Our ap-
proach is based on designing the transition kernel of a SG-MCMC method to approx-
imate the transition kernel of a full-gradient-based MCMC method. This approxi-
mation leads to non-uniform (in fact, exponential) weights that aim at capturing the
entire state-variable distribution of the full-gradient-based MCMC method, rather
than providing unbiased gradient estimator and reducing its variance. Neverthe-
less, if focusing on the variance, the advantage of EWSG is the following: recall
the stochasticity of a SG-MCMC method can be decomposed into the intrinsic
randomness of MCMC and the eztrinsic randomness introduced by gradient sub-
sampling; in conventional uniform subsampling treatments, the latter randomness
is independent of the former, and thus when they are coupled together, variances
add up; EWSG, on the other hand, dynamically chooses the weight of each datum
according to the current state of the MCMC, and thus the variances do not add
up due to dependence. However, the gained accuracy is beyond reduced variance,
as EWSG, when converged, samples from a distribution close to the invariant dis-
tribution of the full-gradient MCMC method (which has no variance contributed
by the extrinsic randomness), because its transition kernel (of the corresponding
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Markov process) is close to that of the full-gradient-MCMC method. This is how
better sampling accuracy can be achieved.

Our main demonstration of EWSG is based on 2nd-order Langevin equations
(a.k.a. inertial, kinetic, or underdamped Langevin), although it works for other
MCMC methods too (e.g., Appendix E,F). To concentrate on the role of non-
uniform SG weights, we will work with constant step sizes only. The fact that
EWSG has locally reduced variance than its uniform counterpart is rigorously shown
in Theorem 4.2. Furthermore, a global non-asymptotic error analysis is given in
Theorem 4.3 to quantify the convergence and improved accuracy of EWSG, as well
as to provide insights about hyperparameter choices.

Practically, the non-uniform gradient subsampling of EWSG is efficiently im-
plemented via a Metropolis-Hastings chain over the data index. A number of ex-
periments on synthetic and real world data sets, across downstream tasks includ-
ing Bayesian logistic regression and Bayesian neural networks, are conducted to
demonstrate the effectiveness of EWSG and validate our theoretical results, despite
the approximation used in the implementation. In addition to improved accuracy,
the convergence speed was empirically observed, in a fair comparison setup based
on the same data pass, to be comparable to its uniform counterpart when hyper-
parameters are appropriately chosen. The convergence (per data pass) was also seen
to be clearly faster than a classical Variance Reduction (VR) approach (note: for
sampling, not optimization), and EWSG hence provides a useful alternative to VR.
Additional theoretical study of EWSG convergence speed is provided in Appendix
H.

Notation-wise, VV will be referred to as the full/batch-gradient, nVV; with
random I € [n], which is a statistical estimator of VV, will be called stochas-
tic gradient (SG), and when [ is uniformly distributed it will be called a uniform
SG/subsampling, otherwise non-uniform. When uniform SG is used to approximate
the batch-gradient in underdamped Langevin, the method will be referred to as
(vanilla) Stochastic Gradient Underdamped Langevin Dynamics (SGULD/SGHMC'),
and it serves as a baseline in experiments.

2. Related works.

Stochastic Gradient MCMC Methods (SG-MCMC). Based on approximating gra-
dients by uniformly subsampled ones, stochastic gradient methods are computa-
tionally more favorable than their full gradient counterparts and have been widely
studied and used in the field of optimization. Inspired by the great success of sto-
chastic gradient methods in optimization, people also have also applied stochastic
gradient methods to sampling problems. Since the seminal work of Stochastic Gra-
dient Langevin Dynamics (SGLD) [42], much progress [1, 34] has been made in
the field of SG-MCMC. [40] theoretically justified the convergence of SGLD and
offered practical guidance on tuning step size. [25] introduced a preconditioner and
improved stability of SGLD. We also refer to [30] and [20] which will be discussed in
Sec. 5. While these work were mostly based on 1st-order (overdamped) Langevin,
other dynamics were considered too. For instance, [12] proposed Stochastic Gra-
dient Hamiltonian Monte Carlo (SGHMC), which is closely related to 2nd-order
Langevin dynamics [8, 6], and [29] put it in a more general framework. 2nd-order

ISGULD is the same as the well-known SGHMC with B = 0, see eq. (13) and Sec. 3.3 in
[12] for details. To be consistent with existing literature, we will refer SGULD as SGHMC in the
sequel.
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Langevin was recently shown to be faster than the 1st-order version in appropriate
setups [14, 13, 27] and began to gain more attention.

Variance Reduction (VR). For optimization, vanilla SG methods usually find ap-
proximate solutions quickly but the convergence slows down (due to variance) when
an accurate solution is needed [2, 22]. SAG [38] improved the convergence speed
of stochastic gradient methods to linear, which is the same as gradient descent
methods with full gradient, at the expense of large memory overhead. SVRG [22]
successfully reduced this memory overhead. SAGA [17] furthers improved conver-
gence speed over SAG and SVRG. For sampling, [19] applied VR techniques to
SGLD (see also [3, 10]). However, many VR methods have large memory overhead
and/or periodically use the whole data set for gradient estimation calibration, and
hence can be resource-demanding.

EWSG is derived based on matching transition kernels of MCMC and improves
the accuracy of the entire distribution rather than just the variance. However, it
does have a consequence of variance reduction and thus can be implicitly regarded
as a VR method. When compared to the classic work on VR for SG-MCMC [19],
EWSG converges faster when the same amount of data pass is used, although its
sampling accuracy is below that of VR for Gaussian targets (but well above vanilla
SG; see Sec. 5.1). In this sense, EWSG and VR suit different application domains:
EWSG can replace vanilla SG for tasks in which the priority is speed and then
accuracy, as it keeps the speed but improves the accuracy; on the other hand, VR
remains to be the heavy weapon for accuracy-demanding scenarios. Importantly,
EWSG, as a generic way to improve SG-MCMC methods, can be combined with
VR too (e.g., Sec. F); thus, they are not exclusive or competing with each other.

Importance Sampling (IS). IS methods employ nonuniform weights to improve the
convergence speed of stochastic gradient methods for optimization. Traditional IS
methods use fixed weights that do not change along iterations, and the weight
computation requires prior information of gradient terms, e.g., Lipschitz constant
of the gradient [33, 37, 15], which are usually unknown or difficult to estimate.
Adaptive IS was also proposed in which the importance was re-evaluated at each
iteration, whose computation usually required the entire data set per iteration and
may also require information like the upper bound of gradient [46, 47].

For sampling, it is not easy to combine IS with SG [20]; the same paper is, to our
knowledge, the closest to this goal and will be compared with in Sec. 5.3. EWSG
can be viewed as a way to combine (adaptive) IS with SG for efficient sampling. It
require no oracle about the gradient, nor any evaluation over the full data set. In-
stead, an inner-loop Metropolis chain maintains a random index that approximates
a state-dependent non-uniform distribution (i.e. the weights/importance).

Other Mini-batch MCMC Methods. Besides SG-MCMC methods, there are also
many non-gradient-based MCMC methods that use only a subset of data in each
iteration so that the MCMC methods can scale to large data sets. For example,
austerity MH [23] formulates Metropolis-Hastings step as a statistical hypothesis
testing problem and proposes to use only a subset of data to make statistically
significant accept/reject decision. Using a subsampled unbiased estimator of the
likelihood in a pseudo-marginal framework to accelerate the Metropolis-Hastings
algorithm is proposed in [4]. A notable ezact MCMC method is FlyMC [30], which
introduces an auxiliary binary random variable for each datum and only the subset
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of data whose corresponding auxiliary binary indicator “light” up, are used in iter-
ation. Some more recent advances on exact MCMC methods include [45, 44]. We
also refer to [4] for an excellent review on subsampling MCMC methods.

3. Underdamped Langevin: The continuous time backbone of a MCMC
method. Underdamped Langevin Dynamics (ULD) is given by the SDE

dg =rdt (1)
dr =—(VV(0)+~r)dt + cdW

where 8,7 € R? are state and momentum variables, V is a potential energy function
which in our context is, as originated from cost minimization or Bayesian inference
over many data, the sum of many terms V(0) = Y1 | V;(0), v is a friction coef-
ficient, ¢ is intrinsic noise amplitude, and W is a standard d-dimensional Wiener

process. Under mild assumptions on V', Langevin dynamics admits a unique invari-

2
ant distribution 7(0,r) ~ exp (f%(V(O) + @)) and is in many cases geometric

ergodic [35]. T is the temperature of system determined via the fluctuation dissi-
pation theorem o2 = 29T [24].

We consider ULD instead of the overdamped version mainly for two reasons: (i)
one may think ULD is more complicated, and we’d like to show it is still easy to be
paired with EWSG (EWSG can work for many MCMC methods; Appendix E has
an overdamped version); (ii) it is believed that ULD has faster convergence than
overdamped Langevin for instance in high-dimensions where (local) condition num-
ber is likely to be larger (e.g., [14, 13, 39]). Like the overdamped version, numerical
integrators for ULD with well captured statistical properties of the continuous pro-
cess have been extensively investigated (e.g, [36, 7]), and both the overdamped and
underdamped integrators are friendly to derivations that will allow us to obtain
explicit expressions of the non-uniform weights.

4. Method.

4.1. Motivation: An illustration of non-optimality of uniform subsam-
pling. Uniform subsampling of gradients have long been the dominant way of sto-
chastic gradient approximations mainly because it is intuitive, unbiased and easy
to implement.

However, uniform gradient subsampling can introduce large noise, and is sub-
optimal even in the family of unbiased stochastic gradient estimator, as the fol-
lowing Theorem 4.1 will show. One intuition is, consider for example cases where
data size n is larger than dimension d. In such cases, {VV;}iz1,2...n C R< are
linearly dependent and hence it is likely that there exist probability distributions
{pi}ti=1,2,... n other than the uniform one such that the gradient estimate is unbi-
ased, however with smaller variance because linearly dependent terms need not to
be all used. This is a motivation for us to develop non-uniform subsampling schemes
(weights may be 6 dependent), although we will not require n > d later.

Theorem 4.1. Suppose given @ € R?, the errors of SG approrimation b; =
nVV;(0) — VV(0),1 <i <n are i.i.d. absolutely continuous random vectors with
possibly-0-dependent density p(-|@) and n > d. We call p € R™ a sparse vector if
the number of non-zero entries in p is no greater than d + 1, i.e. |00 < d+ 1.
Then with probability 1, the optimal probability distribution p* that is unbiased and
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minimizes the trace of the covariance of nNVVi(8), i.e. p* which solves the following,
s a sparse vector.
ngnTr(EINp[b[b}F]) s.t. Eroplbr] = 0, (2)
Despite the sparsity of p*, which seemingly suggests one only needs at most
d + 1 gradient terms per iteration when using SG methods, it is not practical
because p* requires solving the linear programming problem (2) in Theorem 4.1,
for which an entire data pass is needed. Nevertheless, this result motivates us to
seek alternatives to uniform SG. For example, the EWSG method we will develop
will have reduced local variance with high probability, and at the same time remain
efficiently implementable without having to use all data per parameter update; it
can be biased though, but a global error analysis (Thm.4.3) will show that trading
bias for variance can still be worthy.

4.2. Exponentially weighted stochastic gradient. MCMC methods are char-
acterized by their transition kernels. In traditional SG-MCMC methods, uniform
SG is used, which is independent of the intrinsic randomness of MCMC methods
(e.g. diffusion in ULD), as a result, the transition kernel of SG-MCMC is quite
different from that with full gradient. Therefore, it is natural to ask — is it possible
to couple the two originally independent randomness, so that the transition ker-
nel of the SG-MCMC better matches that of the batch-gradient-MCMC, and the
sampling accuracy is thus improved?

Here is one way to do so. Consider Euler-Maruyama (EM) discretization? of Eq.

(1):
{0k+1 =0y +rih 3)

Tt =1, — (VV(0r) +yri)h + VR,

where h is step size and §;,,’s are i.i.d. d-dimensional standard Gaussian random
variables. Denote the transition kernel of EM discretization with full gradient by
PEM (01, 7141100k, 7).

Then consider a SG version: replace VV(0) by a weighted SG nVVy, (0y),
where Ij is the index chosen to approximate full gradient and has p.m.f. P(I; =
|0k, 71) = p;. Denote the new transition kernel by PEM(0k+1,rk+1|0k, Tr).

It is not hard to see that

PEM(@4 11,7110k, 7k)

[7k1 — i + (VV(Or) +yri)h|?
202h

lz + 325 ai||2>
2

1
=1{0,+ren} (Ors1) — €XP (-

1
=110, +ren} (Ok+1) 7 eXP (

and

- T + na;
PEM(Or 11, r14 1|0k, 7)) = Lgo, 4ron} (Ori1) ZP eXp( H 5 I ) ;

2EM is not the most accurate or robust discretization, see e.g., [36, 7], but since it may still be
the most used method, demonstrations here will be based on EM. The same idea of EWSG can
easily apply to most other discretizations such as GLA [7].
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Trt1—Tr+HhyTE
] . ovh
From these two expressions, one can see that if we could choose

Jz+>  aill® | =+ nai||2>
B 2 + 2 ’

5 VRVVi(6r)

ot . . A
where Z and Z are normalization constants, x = and a;

(4)

pPi X exXp (

we would have PEM (0,1, 7141]0k,71) = PEM(0k+1,rk+1|0k,rk) and be able to
recover the transition kernel of full gradient with that of stochastic gradient. How-
ever, Eq.(4) is only formal and infeasible, because x is dependent on the future
state variable r;4; which we do not know. Therefore, to obtain a practically
implementable algorithm, we will fix  as a hyper-parameter and hope that the
approximation is good enough so that we still have PEM (0,1, 711|105, 71) ~
PEM(GkJrh Tk+1|0]€7 ’l"k).

We refer to the choice of p; in eq.4 Exponentially Weighted Stochastic Gradient
(EWSG). Unlike Thm.4.1, EWSG does not require n > d to work. Note the
idea of designing non-uniform weights of SG-MCMC to match the transition kernel
of full gradient can be suitably applied to a wide class of gradient-based MCMC
methods; for example, Sec. E shows how EWSG can be applied to Langevin Monte
Carlo (overdamped Langevin), and Sec. F shows how it can be combined with VR.
Therefore, EWSG complements a wide range of SG-MCMC methods.

Since the weight choice of EWSG is motivated by approximating the transition
kernel of a full-gradient MCMC method, we anticipate EWSG to be statistically
more accurate than a uniformly-subsampled stochastic gradient estimator. As a
special but commonly interested accuracy measure, the smaller variance of EWSG
is shown with high probability*:

Theorem 4.2. Assume {VV;(0)}i=1,2.... n are i.i.d random vectors and |VV;(0)| <
R for some constant R almost surely. Denote the uniform distribution over [n] by
pY, the exponentially weighted distribution by p¥, and let A = Trlcovpe[nVV(0)
0] — covypu [nVV7(8)]0]]. If x = O(Vh), we have E[A] < 0, and 3C > 0 indepen-
dent of n or h such that Ve > 0,

2
€
P(IA —E[A]| > €) <2exp| ———= | .
(1A - BLA] > < 2000 (-5 )
It is not surprising that less non-intrinsic local variance correlates with better
global statistical accuracy, which will be made explicit and rigorous in the next
subsection.

4.3. Non-asymptotic error bound. We now establish a non-asymptotic global
sampling error bound (in mean square distance between arbitrary test observables)
of SG underdamped Langevin algorithms (the bound applies to both EWSG and
other methods e.g., SGHMC). The full proof is deferred to the Appendix C, but the
main tool we will be using is the Poisson equation machinery [32, 41, 11]. A brief
overview is the following:

3‘With high probability’ but not almost surely because Theorem 4.2 in fact suits a class of
weights, which includes but is not limited to EWSG.
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Let X = (2) The generator £ of diffusion process (1) is

L(F(X.1)) = Jim Elf <Xt+h)]h— E[f(X,)]

=rTVof — (yr + VV(0) TV, f +7A,f.

Given a test function ¢(x), its posterior average is ¢ = [ ¢(x)m(x)dx, approx-

imated by its time average of samples (;ASK = % Z,[f:l H(XF), where X is the
sample path given by EM integrator. Then the Poisson equation £i = ¢ — ¢ can
be a useful tool for the weak convergence analysis of SG-MCMC. The solution
characterizes the difference between ¢ and its posterior average ¢.

Our main theoretical result is the following:

Theorem 4.3. Assume E[||VV;(09)|'] < My, E[|rZ Y] < M, ¥l =1,2,---,12,Vi
=1,2,---,n and Yk > 0. Assume the solution to the Poisson equation, 1, ex-
ists, and its derivatives up to Srd-order are uniformly bounded |D'| o < Ms,1 =
0,1,2,3. Then there exist constants C1,Cs,C3 > 0 depending on My, Ms, M3, such
that
~ - 1 h Y E[Tr VVi | F

]E(d)K _ ¢)2 S le + 027216—0 [ [CZ(n Ik| k)]] + 03h2 (5)
where T = Kh s the corresponding time in the underlying continuous dynamics,
I is the index of the datum wused to estimate the gradient at k-th iteration, and
cov(nV Vg, | Fi) is the covariance of stochastic gradient at k-th iteration conditioned
on the current sigma algebra Fy, in the filtration.

Remark 1. (interpreting the three terms in the bound) Unlike a typical VR method
which aims at finding unbiased gradient estimator with reduced variance, EWSG
aims at bringing the entire density closer to that of a batch-gradient MCMC. As a
consequence, its practical implementation may correspond to SG that has reduced
variance but a small bias too. Eq.(5) quantifies this bias-variance trade-off. How
the extrinsic local variance and bias contribute to the global error is respectively re-
flected in the 2nd and 3rd terms, although the 3rd term also contains a contribution
from the numerical discretization error. With or without bias, the 3rd term remains
O(h?) because of this discretization error. However, for moderate T', the 2nd term
is generally larger than the 3rd due to its lower order in h, which means reducing
local variance can improve sampling accuracy even if at the cost of introducing a
small bias. Since EWSG has a smaller local variance than uniform SG (Thm.4.2,
as a special case of improved overall statistical accuracy), its global performance is
also favorable. The 1st term is for the convergence of the continuous process (eq.1
in this case).

Remark 2. (innovation and relation with the literature) Thm.4.3; to the best of
our knowledge, is the first that incorporates the effects of both local bias and local
variance of a SG approximation (previous SOTA bounds are only for unbiased SG).
It still works when restricting to unbiased SG, and in this case our bound reduces to
SOTA [41, 11]. Some more facts include: [32], being the seminal work from which
we adapt our proof, only discussed the batch gradient case, whereas our theory
has additional (non-uniform) SG. [41, 11] studied the effect of SG, but the SG
considered there did not use state-dependent weights, which would destroy several
martingales used in their proofs. Unlike in [32] but like in [41, 11], our state space

~

is not the compact torus but R%. Also, the time average ¢x, to which our results
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apply, is a commonly used estimator, particularly when using a long time trajectory
of Markov chain for sampling. However, if one is interested in an alternative of using
an ensemble for sampling, techniques in [14, 16] might be useful to further bound
difference between the law of X and the target distribution.

4.4. Practical implementation. In EWSG, the probability of each gradient term
-~ x T a? T+na;
isp; = Z lexp {— ! +ZJ2:1 il + 1 +2 ill? } Although the term ||a:+z?:1 a;ll?/2

depends on the full data set, it is shared by all p;’s and can be absorbed into
the normalization constant Z~1 (we still included it explicitly due to the needs in
proofs); unique to each p; is only the term || + na;||?/2. This motivates us to
run a Metropolis-Hastings chain over the possible indices i € {1,2 --- ,n}: at each
inner-loop step, a proposal of index j is uniformly drawn, and then accepted with
probability P(i — j) =

12 112
mm{l,exp (Ilf'3 +;wg|| = +2naz|| >} (6)

if accepted, the current index i is replaced by j. When the chain converges, the index
will follow the distribution given by p;. The advantage is, we avoid passing through
the entire data sets to compute each p;, but the index will still approximately sample
from the non-uniform distribution.

In practice, we often perform only M = 1 step of the Metropolis index chain per
integration step, especially if h is not too large. The rationale is, when h is small,
the outer iteration evolves slower than the index chain, and as 6 does not change
much in, say, N outer steps, effectively N x M inner steps take place on almost
the same index chain, which makes the index r.v. equilibrate better. Regarding
the larger h case (where the efficacy of local variance reduction via non-uniform
subsampling is more pronounced; see e.g., Thm. 4.3), M = 1 may no longer be
optimal, but improved sampling with large h and M =1 is still clearly observed in
various experiments (Sec. 5).

Another hyper-parameter is @ (see earlier discussion in Sec.4.2). Our heuristic
recommendation is x = @ The rationale is, as long as rg4+1 — ri’s density is
maximized at 0 (which will be the case at least for large k as r; will converge to a
Gaussian), this choice of « is a maximum likelihood estimator. This approximation
appeared to be a good one in all our experiments with medium h and M = 1.

Sec. 5.1 further investigates hyperparameter selection empirically and shows that
approximations due to M and x is not detrimental to our non-asymptotic theory
in Sec. 4.3.

Practical EWSG is summarized in Algorithm 1. For simplicity of notation, we
restrict the description to mini batch size b = 1, but an extension to b > 1 is
straightforward. See Sec. D in appendix. Practical EWSG has reduced variance
but does not completely eliminate the extrinsic noise created by SG due to its
approximations. A small bias was also created by these approximations, but its
effect is dominated by the variance effect (see Sec. 4.3). In practice, if needed,
one can combine EWSG with other VR technique to further improve accuracy.
Appendix F describes how EWSG can be combined with SVRG.

5. Experiments. In this section, the proposed EWSG algorithm will be compared
with SGHMC [12], SGLD [42], as well as several more recent popular approaches,
including FlyMC [30], pSGLD [25], CP-SGHMC [20] (a method closest to the goal of
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Algorithm 1 EWSG

Input: {the number of data terms n, gradient functions V;(-),i = 1,2,--- ,n,
step size h, the number of data passes K, index chain length M, friction and
noise coefficients v and o}
Initialize 8¢, o (arbitrarily, or use an informed guess)
for k=0,1,--- ,[;ﬁ_‘l] do
i < uniformly sampled from 1,--- ,n, compute and store nVV;(0y)
I+
form=1,2,--- ,M do
Jj < uniformly sampled from 1,---,n, compute and store nVV;(6y)
I < j with probability in Equation 6
end for
Evaluate V(6;) = nV;(8;)
Update (0gy1,7+1) < (0, 7)) via one step of Euler-Maruyama integration
using V (0;)
end for

applying IS idea to SG-based sampling) and SVRG-LD [19] (overdamped Langevin
improved by VR). Sec. 5.1 is a detailed empirical study of EWSG on simple mod-
els, with comparison and implication of two important hyper-parameters M and
x, and verification of the non-asymptotic theory (Theorem 4.3). Sec. 5.2 demon-
strates EWSG for Bayesian logistic regression on a large-scale data set. Sec. 5.3 is
a Bayesian Neural Network (BNN) example. It serves only as a high-dimensional,
multi-modal test case, and we do not intend to compare Bayesian and non-Bayesian
neural nets. As FlyMC requires a tight lower bound of likelihood, known for only
a few cases, it will only be compared against in Sec. 5.2 where such a bound is
obtainable. CP-SGHMC requires heavy tuning on the number of clusters which
differs across data sets/algorithms, so it will only be included in the BNN exam-
ple, for which the authors empirically found a good hyper parameter for MNIST
[20]. SVRG-LD is only compared to in Sec. 5.1, because SG-MCMC methods can
converge within only one data pass in Sec. 5.2, rendering control-variate based VR
technique inapplicable, and it was suggested that VR leads to poor results for deep
models (e.g., Sec. 5.3) [18].

For fair comparison, all algorithms use constant step sizes and are allowed fixed
computation budget, i.e., for L data passes, all algorithms can only call gradient
function nL times. All experiments are conducted on a machine with a 2.20GHz
Intel(R) Xeon(R) E5-2630 v4 CPU and an Nvidia GeForce GTX 1080 GPU. If
not otherwise mentioned, o = /27 so only v needs specification, the length of the
index chain is set M = 1 for EWSG and the default values of two hyper-parameters
required in pSGLD are set A = 107 and a = 0.99, as suggested in [25].

5.1. Gaussian examples. Consider sampling from a simple 2D Gaussian whose
potential function is

n

V()= Y vie) = 3 50 il

i=1

We set n = 50 and randomize ¢; from a two-dimensional standard normal N (0, I3).
Due to the simplicity of V(6), we can write the target density analytically and will
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FIGURE 1. Performance quantification (Gaussian target)

use KL divergence KL(p|lq) = [ p(8)log %d@ to measure the difference between
the target distribution and generated samples.

For each algorithm, we generate 10,000 independent realizations for empirical
estimation. All algorithms are run for 30 data passes with minibatch size of 1. Step
size is tuned from 5 x {107%,1072,1073,107*} and 5 x 1073 is chosen for SGLD and
pSGLD, 5 x 10~2 for SGHMC and EWSG and 5 x 10~* for SVRG-LD. SGHMC and
EWSG use v = 10. Results are shown in Fig. 1a and EWSG outperforms SGHMC,
SGLD and pSGLD in terms of accuracy. Note SVRG-LD has the best accuracy”
but the slowest convergence, and that is why EWSG is a useful alternative to VR:
its light-weight suits situations with limited computational resources better.

Figure 1b shows the performance of several possible choices of the hyper-
parameter x, including the recommended option = \/Efyrk/a, and x =0, x =1,
x = (=1 + hy)ry/ovh (which corresponds to 741 = 0). Step size h = 7 x 1072
is used for this experiment. The recommended option performs better than the
others.

Another important hyper-parameter in EWSG is M. As the length of index
chain M increases, the subsampling distribution approaches that given by Eq.4.
Considering that larger M means more gradient evaluations per step®, there could
be some M value that achieves the best balance between speed and accuracy. Fig.1lc
shows a fair comparison of four values of M = 0,1,9,19, and the recommended
M =1 case converges as fast as SGHMC (when M = 0, EWSG does not run the

4For Gaussians, mean and variance completely determine the distribution, so appropriately
reduced variance leads to great accuracy for the entire distribution.

5in each iteration of the outer MCMC loop, EWSG consumes M + 1 data points, and hence in
a fair comparison with fixed computation budget (e.g. F total gradient calls), EWSG runs MLH
iterations which is decreasing in M.
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Method SGLD pSGLD SGHMC EWSG FlyMC
Accuracy (%) 75.283 + 0.016 75.126 + 0.020 75.268 + 0.017 75.306 + 0.016 75.199 + 0.080
Log Likelihood -0.525 4+ 0.000 -0.526 £+ 0.000 -0.525 £+ 0.000 -0.523 + 0.000 -0.523 + 0.000
Wall Time (s) 3.085 + 0.283 4.312 £+ 0.359 3.145 £+ 0.307 3.755 £+ 0.387 291.295 + 56.368

TABLE 1. Accuracy, log likelihood and wall time of various algo-
rithms on test data after one data pass (mean + std).

Metropolis-Hastings index chain and hence degenerates to SGHMC) but improves
its accuracy. It is also clear that as M increases, sampling accuracy gets improved.

As approximations are used in Algorithm 1, it is natural to ask if results of
Thm. 4.3 still hold. We empirically investigate this question (using M = 1 and
variance as the test function ¢). Eq.5 in Thm.4.3 is a nonasymptotic error bound
consisting of three parts, namely an (’)(%) term corresponding to the convergence at
the continuous limit, an O(h/T) term coming from the SG variance, and an O(h?)
term due to bias and numerical error. Fig.1d plots the mean squared error (MSE)
against time T' = Kh to confirm the 1st term. Fig.le plots the MSE against h with
fixed T in the small h regime (so that the 3rd term is negligible when compared
to the 2nd) to confirm that the 2nd term scales like O(h). For the 3rd term in
Eq. (5), we run sufficiently many iterations to ensure all chains are well-mixed, and
Fig.1f confirms the final MSE to scale like O(h?) even for large h (as the 2nd term
vanishes due to T'— o). In this sense, despite the approximations introduced by
the practical implementation, the performance of Algorithm 1 is still approximated
by Thm. 4.3, even when M = 1. Thm. 4.3 can thus guide the choices of h and T'
in practice.

5.2. Bayesian logistic regression (BLR). Consider Bayesian logistic regression
for the binary classification problem. The probabilistic model for predicting a label
yr given a feature vector zy is p(yx = 1|@x,0) = 1/(1 + exp(—07xy)). We set
a Gaussian prior with zero mean and covariance ¥ = 101, for 6, and hence the
potential function of the posterior distribution of @ is

V(0) =5[6]> > wilogp(y; = 1|@,6) + (1 — yi) log (1 — p(y; = 1|z, 6)).
=1

We conduct our experiments on Covertype data set®, which contains n = 581,012
data points and 54 features (which is the dimension of 8). Given the large size of
this data set, SG is needed to scale up MCMC methods. We use 80% of data for
training and the rest 20% for testing.

The FlyMC algorithm” uses a lower bound derived in [30] for likelihood function.
For underdamped Langevin based algorithms, we set friction coefficient v = 50.
After tuning, we set the step size as {1,3,0.02,5,5} x 1073 for SGULD, EWSG,
SGLD, pSGLD and FlyMC. All algorithms are run for one data pass, with minibatch
size of 50 (for FlyMC, it means 50 data are sampled in each iteration to switch state).
100 independent samples are drawn from each algorithm to estimate statistics. To
further smooth out noise, all experiments are repeated 1000 times with different
seeds.

Results are in Fig. 2a and 2b and Table 1. EWSG outperforms others, except
for log likelihood being comparable to FlyMC, which is an eract MCMC method.

Shttps://archive.ics.uci.edu/ml/datasets/covertype
"https://github.com/HIPS/firefly-monte-carlo/tree/master/flymc
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The wall time consumed by EWSG is only slightly more than that of SGLD and
SGHMC, but less than pSGLD and orders-of-magnitude less than FlyMC.

5.3. Bayesian neural network (BNN). Bayesian neural network is a compelling
model for deep learning [43]. Here two popular architectures of BNN are experi-
mented — multilayer perceptron (MLP) and convolutional neural nets (CNN). In
MLP, a hidden layer with 100 neurons followed by a softmax layer is used. In CNN,
we use standard network configuration with 2 convolutional layers followed by 2
fully connected layers [21]. Both convolutional layers use 5 x 5 convolution kernel
with 32 and 64 channels, 2 X 2 max pooling layers follow immediately after convo-
lutional layer. The last two fully-connected layers each has 200 neurons. We set
the standard normal as prior for all weights and bias.

We test algorithms on the MNIST data set, consisting of 60,000 training data
and 10,000 test data, each datum is a 28 x 28 gray-scale image with one of the ten
possible labels (digits 0 ~ 9). For ULD based algorithms , we set friction coefficient
v =0.1 in MLP and v = 1.0 in CNN. In MLP, the step sizes are set h = {4,2,2} x
1073 for EWSG, SGHMC and CP-SGHMC, and h = {0.001,1} x 10~* for SGLD
and pSGLD, via grid search. For CP-SGHMC , (clustering-based preprocessing is
conducted [20] before SGHMC) we use K-means with 10 clusters to preprocess the
data set. In CNN, the step sizes are set h = {4,2,2} x 10~ for EWSG, SGHMC
and CP-SGHMC, and h = {0.02,8} x 1076 for SGLD and pSGLD, via grid search.
All algorithms use minibatch size of 100 and are run for 200 epoches. For each
algorithm, we generate 100 independent samples to make posterior prediction. To
smooth out noise and obtain more significant results, we repeat experiments 10
times with different seeds.

The learning curve of training error is shown in Fig. 3a and 3b. EWSG con-
sistently improves over its uniform counterpart (i.e., SGHMC) and CP-SGHMC
(an approximate IS SG-MCMC). Moreover, EWSG also outperforms two standard
benchmarks SGLD and pSGLD. The improvement over baseline on MNIST data
set is comparable to some of the early works [12, 25].

Note: in the MLP setup, the model has d > 78,400 parameters whereas there are
n = 60, 000 data points, which shows EWSG does not require n > d to work and can
still outperform its uniform counterpart in the overparametrized regime (Thm.4.1
demonstrates the underparametrized case only because the sparsity result is easy
to understand, but EWSG doesn’t only work for underparameterized models).
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Appendix A. Proof of Theorem 4.1.

Proof. Denote the set of all n-dimensional probability vectors by %™, the set of
sparse probability vectors by &, and the set of non-sparse (dense) probability vectors
by D = X"\ S. Denote B = [by,- - ,b,], then the optimization problem can be
written as

n
mianiHbiHQ
i=1

Bp=0
st.epll, =1

i ZOaZ: 172a"' y 1
Note that the feasible region is always non-empty (take p to be a uniform distribu-
tion) and is also closed and bounded, hence this linear programming is always solv-
able. Denote the set of all minimizers by M. Note that M depends on by, --- , b,
and is in this sense random.

The Lagrange function is
L(p, A\, p,w) =p"s = X' Bp — u(p"1,) —w'p

where s = [||b1]|2, [|b2]|%, - - -, [|bn]|?]T and A, u, w are dual variables. The optimality
condition reads as

oL
Op
Dual feasibilty and complementary slackness require
w; <0,i=1,2,---,n
pr =0

Consider the probability of the event {a dense probability vector can solve the
above minimization problem}, i.e., P(M N D # (). It is upper bounded by

P(MND #0) <P(p €D and p solves KKT condition)

Since p € D, complementary slackness implies that at least d + 2 entries in w
are zero. Denote the indices of these entries by J. For every j € J, by optimality
condition, we have s; — )\Tbj —pn=0,1ie.,

1651 = ATb; — =0
Take the first d + 1 indices in 7, and note a geometric fact that d + 1 points in
a d-dimensional space must be on the surface of a hypersphere of at most d — 1

dimension, which we denote by S = S9=! + & for some vector & and integer ¢ < d.
Because b;’s distribution is absolutely continuous, we have

P(p € D and p solves KKT condition)
<P(p € D and b; € S,Vj € J)
SP(bJ € va.] € j)
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:P(bjk € Sak:d+2a 7|j|)
|71
= H P(b,, € 95) (independence)
k=d-+2
=0 (absolute continuous)

Hence P(IM ND # () =0 and
=P(M #£0)
=P(MNS)U(MND)+#0D)
PMNS #0)+P(MND #0)
=PMNS #0)
Therefore we have
PMNS#0)=1

O
Appendix B. Proof of Theorem 4.2.

Proof. Let b; = nVV; and assume ||b;||2 < R for some constant R. Denote B =
[b1,ba, -, by,]. For any probability distribution p over {1,--- ,n}, we have

coViap[br|b1, -+, by]

n n n T
=> pibib] — (Zpibi> (Zpﬂh‘)
i=1 i=1 i=1

n n n n T
=> pibib] > pi— (Zpibi> <Zpibi>
i=1 i=1 i=1 i=1
= (b = b;)(bi — b)) pip;

i<j

Therefore we let

1
F(B) ="Tr | 3 (bi = bj)(bi — b)) pip; — Y _(bi = bj)(bi = b;)" —
i<j i<j
1
=3 b bylPpips = ST b = bylPoy (THAB] = Te{BA)
i<j 1<J
and use it to compare the trace of covariance matrix of uniform- and nonuniform-

subsamplings.
First of all,

E[f(B)]

=E[||b: — b,[*] D (pipj - nl2>

i<j

=E[||b; — b;|I”] | Y _pip; —

i<j

1->,p n-1
=E[||bi—bj||21( T )

2 2n
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1-1 n-1
<Ellbs - b,17) (5= - 5
=0

where the inequality is due to Cauchy-Schwarz and it is a strict inequality unless all
p;’s are equal, which means uniform subsampling on average has larger variablity
than a non-uniform scheme measured by the trace of covariance matrix.

Moreover, concentration inequality can help show f(B) is negative with high
probability if A is small. To this end, plug & = O(v/h) in and rewrite

1 ly + 2 2 bill> [ly + bl
i — — Fh n 1= _
b=z eXp{ [ 2 2

where y = Zx = 0(1), F = —% and Z is the normalization constant. Denote

Vh
the unnormalized probability by

5 :exp{m [lly+i2?_1 bil> ||y+bi||2]}

2 2

and we have

o IR (v )

=1 j=1
pip; 1
D S DI LB
=1 j=1 =1 j=1
To prove concentration results, it is useful to estimate
C; = sup |f(b1,--+ ,bi,- ,by)
by, b, €B(0,R)
b,€B(0,R)

_f(bla 7/57,7 ;bn)‘
where B(0, R) is a ball centered at origin with radius R in Rd
Due to the mean value theorem, we have C; < 2R sup| . | By symmetry, it

suffices to compute sup | 6f | to upper bound C;. Note that

Ip; ~
aTJ_2 Fh ~(y+ - Zb (y + b;)d1;] = O(h)p;

where 615 is the Kronecker delta functlon. Thus

of pP1D; . 2 iDj
S = =) s = (b= by S b by Z( JPip;

— j=1 ij=1 k=1P k]
DiD;j
23 by by 3Zm0
ij=1 [Ek 1 k k=1

n n n2 n2
=D1 Z(b1 — bj)m — Z(bl — bj)% + O(n")O(n) + of )O(n)O(h)

Jj=1

)+ O(h) + O(h)
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where O(%) in the 2nd last equation comes from the difference of the first two terms
in the 3rd last equation. This estimation shows that C; < 2RO(h) = O(h).
Therefore, by McDiarmid’s inequality, we conclude for any e > 0,

P(f — E[f]l > ©) < 2exp (ch> 2o ().

Any choice of h(n) = o(n~/2) will render this probability asymptotically vanishing
as n grows, which means that f will be negative with high probability, which is
equivalent to reduced variance per step. O

Appendix C. Proof of Theorem 4.3.

Proof. We rewrite the generator of underdamped Langevin with full gradient as

Vo f(X)

LX) = F(X)T [vr e

] + %A : VVF(X)
where

T T ded ded
F(X)= A=GG and G =
(X) [’YT - VV(H)} ’ o |:Od><d V2’dexd:|

Rewrite the discretized underdamped Langevin with stochastic gradient in vari-
able X, i.e.,

Xy — X7 = hF(XP) + VhGimyiq

where

B0= | ove] O=6= (o0 i,
and 1, is a 2d dimensional standard Gaussian random vector. Note that this rep-
resentation include both SGHMC and EWSG, for SGHMC I}, follows uniform distri-
bution and for EWSG, Ij, follows the MCMC-approximated exponentially weighted
distribution.

Denote the generator associated with stochastic gradient underdamped Langevin
at the k-th iteration by

r Oaxa  Odxd }

Luf(X) = Fy(X)T [ge;‘g;} A VVIX)

and the difference of the generators of full gradient and stochastic gradient under-
damped Langevin at k-th interation is denoted by

ALLf(X) = (Lr — L) f(X) = (Fr(X) - F(X))" [Vof(X)Vyf(X)]
= (VV(6) —nVV,(0), V., f(X))
For brevity, we write ¢p = ¢(X5), FE = Fi.(XZ), p = »(X7) and D'¢p =

(D) (X ) where (D"))(2) is the I-th order derivative. We write (D'))[s1, 82, - ,
s;] for derivative evaluated in the direction s;,j =1,2,---,l. Define

O = X2 — XP =hFE +VhGymy .

Under the assumptions of Theorem 4.3, we show that the vector field F, ,;E also
has bounded momentum up to p-th order.
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Lemma C.1. Under the assumption of Theorem 4.3, there exists a constant M
such that up to §-th order moments of random vector field Fk are bounded

BIPEI < M, v =0,1,2, 5 vk =0,1,20+

Proof. Tt suffices to bound the highest moment, as all other lower order moments
are bounded by the highest one by Holder’s inequality.
First notice that

< V12l + IV V(0812

1FEll2 =

[— %Vu (67) }

Hence

s

EIFFIS <E( 1+v2||r£||2+||vvf,c<ak>u)

ks

b . L_;
203 ()it iovi e

=

()

p .
< (2> \/E [||VVI,c (95)\\127_21} E [[|[r£]|3] (Cauchy-Schwarz inequality)
i

=0

(M)

. M\’U

E[IVVi, 0915~ IrE 1]

1=

(NS}

By assumption, we know each E [|[VV, (67)[5] . E|r£|4,1 = 0,1,--- ,p is bounded,
so we conclude there exists a constant M > 0 that bounds the 7—th order moment

of FE VE=0,1,---, O
Using Taylor’s expansion for ¢, we have
1 1
Vi1 = Pr + Dip[dy] + §D2¢k[5k,5k] + 6D3wk[6k75ka5k] + Ria

where

1 1
Ry = (6 / S DX + (1 - s)XkEH)ds) (8. Ok, 81, 6]
0

is the remainder term. Therefore, we have
Yit1 =i + hLpy + h%Dwk[Gknk-q-l] + h3 Dy, [FE, Genjin) (7)
1 1
+§h2D2wk[FkEa FkE] + 6D3wk[6k7 (skv 5k] + Tk4+1 + Rk+l

where
h
Tk4+1 = §(D2¢k[Gknk+1a Gknk+1] —A: vak)

Summing Equation (7) ove the first K terms, dividing by Kh and use Poisson
equation, we have

K-1 3

K—1
(d’K 1/’0*12@«* +*ZAEH/%+ Z M; k + Sik), (8)
k=0

k=0 i=1
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where
M
K— K-1
= Z Thit, Mo = h? Z UlGimia], Mac = h2 Y D*Gu[FY, Grmyp),
k=0 k=0
S1,x
h2 K—1 1 K—1
Z D[y, Fil, Soxc =D Riyr, Ssac = ¢ Y D*0n[0k, 81, 6]
= k=0 k=0

Furthermore, it will be convenient to decompose
S3.x = Mok + So, K

where
So,x =h’ Z (hD3¢k [FkEv ng FkE] + 3D37/’k[FkEa Gknk+la Gknk+1])
k=0

3
Mo,k =h> (DP9 [Grmps 1> GiMiey 1> Gimyer ] + 3RD* ) [FY Fr Grmyy])

Rearrange terms in Equation (7), square on both sides, use Cauchy-Schwarz
inequality and take expectation, we have

E@K - 5)2
<c |pl¥r %0 +LR Kz_:l(Ac Vi) 2
< (Kh)? K2 2 EYk

2 3
1 2 1 2
o L+ ZEMK]
K-1 2 2 3
P P 1 1
s (Y anwn) + 3 estr 3 ey
1=0 1=0

k=0
(9)

where T' = kh, the corresponding time of the underlying continuous dynamics.
We now show how each term is bounded. By boundedness of v, we have

Y — 41/12 1
]E( KT2 0) < HT! _O(ﬁ)

The second term %E( kK;Ol(AEkwk))z is critical in showing the advantage of
EWSG, and we will show how to derive its bound in detail later.
The technique we use to bound ESZ x,? =0,1,2 are all similar, we will first

show an upper bound for |S; x| in terms of powers of ||[F'y||, then take square and
expectation, and finally expand squares and use Lemma C. 1 extensively to derive
bounds. As a concrete example, we will show how to bound ESg k- Other bounds
follow in a similar fashion and details are omitted.
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To bound the term containing Sy i, we first note that

K-1
|So.ic| <h® > (R D>y [FE FE FP| + 3| D%y [F, Gemyeyy, Gemy 4]
k=0
K-—1

<K D*lloe D (BIFEI3 + 3IFE |21 Grmall3)
k=0

Square both sides of the above inequality and take expectation, we obtain

1
T2ElSokcl? (10)
h 3,112 = B3 E 2\2
<7 ID*CIRE( D RIS + 31 FE 2 G I3)
k=0

h4 K—-1
<D K > ERIFLIS +3IFE |2l Grmpal3)?
k=0

(Cauchy-Schwarz inequality)
K-1

h4
=T ID IR E Y BRI FE (S + 6| F L3I Guny i I3+ N FE I3 Gy 3]
k=0
h4 K—-1
=7z D™V K > BE|FF|5 + 6E| FF3E|Grmp a3 + OB FE 3B Grmyea 13
k=0
1
:ﬁO(Kthl)
=0(h?)

To bound the term containing S; x and S2 g, we have

h2 K-1
S0kl <2 D20l FE
k=0

K-1

1
|92, <510 W lloe D 10k
k=0

K—-1

1

<gih* 1D llse Y IVAFE + Grm |3
k=0

Then we can obtain the following bound in a similar fashion as in Equation (10)

L e
T2 ESE ke =O(h?)
1
T2
Now we will use martingale argument to bound %]EME x4t =0,1,2,3. There
are two injected randomness at k-th iteration, the Gaussian noise 7;,; and the

stochastic gradient term determined by the stochastic index I;. Denote the sigma
algebra at k-th iteration by Fj. For both SGHMC and EWSG we have

ES3 x =O(h?)

M1 L Frand Iy Lomy
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hence

E[7)41/Fk]

E[D*Yk[Grnyi 1, Ginyrr, Grmr | Fi]
E[D*$y[F;, Gimyeia ]| Fi]

E[D* k[ Fi, Fi, Gung ]| Fi]

Therefore, it is clear that M; k,7 = 0,1, 2,3 are all martingales. Due to martin-
gale properties, we have

=0
=0
=0
=0

1
T2 EMG
= }LBKAE(D% G G G | + 3hD3yy[FE, FE.G ))?
= T2 ElGEMe+1, GeNE+1, GkTg41 kL g g GeNgy1
k=0
1 h?
—75 K)=O(—
LOWK) 0<T>
K-1
1 1 h
k=0
1E27hK_1E 2 Lo — o)
T2 Mz,K =72 (D¢k[Gknk+1]) = ﬁO( K)= O(?)
k=0
K-1 1 B2
I[“M\/f:s K =2 h3 Z E D2¢k Fk 7Gk77k:+1D ﬁ(’)(h?’K) O<T)
=0
We now collect all bounds derived so far and obtain
- —\ 2
E(¢ox — ¢)
I 1 (& ’ ) h 1 h2
< — —E A —
<C|O(7) + 7 %;( Ligpr) | +O(h?) + O(5) + O() + O ()
[ 1 1 K-1 2
< Y4+ = 2 11
<C10(7) + K2E<;(A£k¢k)> +0(r7) (11)

In the above inequality, we use % < % and % < %, %2 < % as typically we assume
T > 1 and h < 1 in non-asymptotic analysis.
Now we focus on the remaining term %E( kK:_(Jl A£k¢k)2. For SGHMC, we

have that E[ALg¢y|Fr] = 0, hence 25;01 ALYy is a martingale. By martingale
property, we have

1 K-1 2 | K=l
KQE(Z A/.Zkz/)k> = %3 E(AL)?

k=0

For EWSG, Z 50 Aﬁkwk is no longer a martingale, but we still have the following

K-1 2
LE (Z A&M) =% Z (ALyr)” ZE (ALiwn) (ALj;)
k=0

i<J
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1 K-1

=73 2 E (ALp)? ZE (AL E[AL; ;| F;]]

k=0 i<j
(12)
For the term E[AL;1);|F;], we have
E[AL;;|F;] = BE(VV(0)) — nVVL, (0F), Veh;) | F]
= (E[VV(85) — nV Vi, (67)|F;], Vetoy)

as ¥; € F;. Then by Cauchy-Schwarz inequality, boundedness of ¢ and the fact
IVV(0F) — E[nVV1, (07 )|F;ll2 = O(h) as shown in the proof of Theorem 4.2, we
conclude E[AL;v;|F;] = O(h).

Now plug the above result in Equation (12), we have

K—1 2 K-1
%E (Z Aﬁk¢k> ;2 Z E(ALyr)? 2 Z]E [(ALihi)E[ALji; | F5]]
k=0 =

i<J
1 K—-1
=7z 2 E(ALww)* + 5 ZEAL $i]O(h)
k=0 1<j
1 K—-1
=3 E(ALr)? Z(’) (h?)
k=0 i<j
1 K-1
== E(ALtpy)? Z(’) (h?)
k=0 i<j
1 K—-1

=3 Z E(ALpty)? + O(h?)

Combine both cases of SGHMC and EWSG, we obtain

K-1

K—1 2
iIE (Z AE!@"/’k) = % Z E(ALpy)? + O(h?)
k=0 k=0

Note that O(h?) term will later be combined with other error terms with the same
order.

The final piece is to bound 7 k 0 E(ALjx)?, and we have

K-1 K-1
1

K2 Z (ALpy)? = e > E(VV(67) — nVVL, (67), Vetr)®
k=0
1 K-1
< 2 D ElIVV(67) = nVVi (0)113 - [IVrve3)
k=0

(Cauchy-Schwarz inequality)

Mz A 5 B2
& ST EIIVV(6E) - n 9V, (6F))

IN
[ V)
e
H!J

M5 N~ BBV (0F) - nvVi, (072 7l

=
i
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< 205 N B[E[IVV (6F) — BInvVs, (0F) | Al 7
h=0 oS
E[ |E[nVV;, (6F) | Fil - nVi, (6F) 3| 7]

Q2

The term () captures the bias of stochastic gradient. For SGHMC, uniform gra-
dient subsamping leads to an unbiased gradient estimator, so @1 = 0 for SGHMC.
For EWSG, same as in the proof of Theorem 2, we have that

E[IVV(6F) ~ EnVVL, (67) | I | F| = 0(h?)
Combining two cases, we have
Q1= 0(h?)
For a random vector v with mean E[v] = 0, we have
E[|[v]*] = E [Tr[vv”]] = Tr [E[vv”]] = Tr [cov(v)]
where cov(v) is the covariance matrix of random vector v. Therefore, we have that
Q2 = Tr[cov(nV Vi, | Fi)],

i.e., Q2 is the trace of the covariance matrix of stochastic gradient estimate condi-
tioned on current filtration Fj.
Combining @7 and @2, we have that

LE (i AEm/m) <2M2 [E[Tr[cov(nV V7, | Fi)]] + O(h?)]
k=0

K2
k=0
2M3h Z E[Tr[cov(nV V1, | Fi)]] h?
T K + O( T )

Now plug this bound into Equation (11) and we obtain
K—1
; I E |Tr %
E(px — )" < 01% L o1 Xicg B[Trleov(nV Vi, | F)]]

for some constants C7,Cy, C3 > 0 depending on My, Ms, Mj. O

+ C3h2

Appendix D. Mini batch version of EWSG. When mini batch size b > 1, for
each mini batch {iy,d2, -+ ,ip}, we use %Z;’-:l VV;, to approximate full gradient
VV, and assign the mini batch {i1,42,- - ,4} probability p; i,.... i,- We can easily
extend the transition probability of b = 1 to general b, simply by replacing nVV;
with 7 Z?:l VV;, and end up with

P(Brs1,7r1110k, k) = 0(Ors1 = Op + Tih)x

1
Z pmz iy $C+nai1i2~~ib)m

’Ll ’LZ
where

_ Tgy1 — TR+ Ty

Qiiio...q
) 1112 (2
U\/E

N

1b
BZ
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Therefore, to match the transition probability of underdamped Langevin dynamics
with stochastic gradient and full gradient, we let p;,iy...;, =

%exp {; [liﬂ Fnaina P —lle+ Y @i, |2] }
i1dg-ip
where Z is a normalization constant.
To sample multidimensional random data indices I,---, I from p;,,...;,, We
again use a Metropolis chain, whose acceptance probability only depends on a;,,...;
and aj, j,...;, but not the full gradient.

b

Appendix E. EWSG version for overdamped Langevin. Overdamped
Langevin equation is the following SDE

do, = —VV(0,)dt + V2dB,

where V(0) = > | Vi(0) and B, is a d-dimensional Brownian motion. The Euler-
Maruyama discretization is

011 =0, — hVV(0y) + V2h&; 4

where &, ; is a d-dimensional random Gaussian vector. When stochastic gradient
is used, the above numerical schedme turns to

Ory1=0r —hVVy (0r) + V2hE,

where [ is the datum index used in k-th iteration to estimate the full gradient.

61 y1—6x VhVV;(8x)
V2

N . If we set

Denote x = and a; =

lz+37 1 al* |z + nay?
2 + 2 }

and follow the same steps in Sec.4.2, we will see the transition kernel of the full
gradient method being approximated by that of the stochastic gradient version.

pi =PIy = i) ocexp { —

Appendix F. Variance reduction (VR). We have seen that when step size h
is large, EWSG still introduces extra variance. To further mitigate this inaccuracy,
we provide in this section a complementary variance reduction technique.

Locally (i.e., conditioned on the state of the system at the current step), we have
increased variance

cov[rit1|rE] = Elcov[riy1|I]] + cov[E[rgi1]1]]
= h(S7,1 + heov[nVVi(6y))) (13)

where 7., = ;E[cov[rgi1|I]]. The extra randomness due to the randomness
of the index I enters the parameter space through the coupling of 8 and r and
eventually deviates the stationary distribution from that of the original dynamics.
Adopting the perspective of modified equation [5, 31, 26], we model this as an
enlarged diffusion coefficient. To correct for this enlargement and still sample from
the correct distribution, we can either, in each step, shrink the size of intrinsic noise
to B € R¥? such that 021 = 2 + hcov[nVVy(6,_1)], or alternatively increase
the dissipation. More precisely, due to the matrix version fluctuation dissipation
theorem %2 = 2I'T, one could instead increase the friction coefficient I' € R¥x¢
rather than shrinking the intrinsic noise. The second approach is computationally
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more efficient because it no longer requires square-rooting / Cholesky decomposition
of (possibly large-scale) matrices. Therefore, in each step, we set

Ty = ﬁ(UQI + heov[nV Vi (0x-1)])-
Accurately computing cov[nVV;(0k—_1)] is expensive as it requires running [
through 1,--- ,n, which defeats the purpose of introducing a stochastic gradient.

To downscale the computation cost from O(n) to O(1), we use an SVRG type
estimation of the this variance instead. More specifically, we periodically compute
cov[nVV;(0;—_1)] only every L data passes, in an outer loop. In every iteration of
an inner loop, which integrates the Langevin, an estimate of cov[nVVj(0y_1)] is
updated in an SVRG fashion. sof See Algorithm 2 for detailed description. We
refer variance reduced variant of EWSG as EWSG-VR.

Algorithm 2 EWSG-VR

1: Input: {number of data terms n, gradient functions VV;(-), step size h, number
of data passes K, period of variance calibration L, index chain length M, friction
and noise coefficients v and o}

2: initialize 0g, g, 70 = 7

3: initialize inner loop index k =0

4: for 1 =1,2,--- K do

5. if (I—1) mod L =0 then

6: compute m; < ]EI[nVVI(Hk)], mo < ]E][?’L2VV](0k)VV[(0k)T]

T w <« 0,

8: else

9: fort:1,2,~~~,[ﬁ+1] do

10: i < uniformly sampled from 1,--- ,n, compute and store nVV;(0y)

11: form=1,2,---,M do

12: Jj + uniformly sampled from 1,--- ,n, compute and store nVV;(0y)

13: 1 < j with probability in Equation 6

14: end for

15: update (011, Tkr1) < (0k, Tk) according to Equation 3, using nVV;(0y)
as gradient and I'y as friction

16: mq < my + V%(Ok) — V\/;(w)

17: my < my +nVV;(0;)VV;(0r)T — nVV;(w)VV,(w)T

18: covar < mgy — mim?

19: Lit1 < 57 (0?1 + hcovar)

20: k+—k+1

21: end for

22:  end if

23: end for

To demonstrate the performance of EWSG-VR, we reuse the setup of simple
Gaussian example in subsection 5.1. As shown in Algorithm 2, the only hyper-
parameter of EWSG-VR additional to EWSG is the period of variance calibration,
for which we set L = 1. All other hyper-parameters (e.g. step size h, friction
coefficient ) are set the same as EWSG. We also run underdamped Langevin dy-
namics with full gradient (FG) using the same hyper-parameters of EWSG. We
plot the KL divergence in Figure 4. We see that EWSG-VR further reduces vari-
ance and achieves better statistical accuracy measured in KL divergence. Although
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0.200

0.175

5 10 15 20 25 30

Number of Data Pass

FicURE 4. KL divergence

EWSG-VR periodically use full data set to calibrate variance estimation, it is still
significantly faster than the full gradient version. Note that KL divergence of SGLD,
pSGLD and SGHMC are too large so that we can not even see them in Figure 4

We also consider applying EWSG-VR to Bayesian logistic regression problems.
We run experiments on two standard classification data sets parkinsons ®, pima’
from UCI repository [28].

sssss

std of posterior log likelihood

mean of posterior log likelihood

mean of posterior log likelihood
std of posterior log likelihood

% W fw R T N 3 R R e N AU B T B B W S B S
number of data pass number of data pass number of data pass number of data pass

(A) parkinsons (B) pima

FIGURE 5. Posterior prediction of mean (left) and standard devia-
tion (right) of log likelihood on test data set generated by SGHMC,
EWSG and EWSG-VR on two Bayesian logistic regression tasks.
Statistics are computed based on 1000 independent simulations.
Minibatch size b = 1 for all methods except FG. M = 1 for EWSG
and EWSG-VR.

From Figure 5, we see stochastic gradient methods (SGHMC, EWSG and EWSG-
VR) only take tens of data passes to converge while full gradient version (FG)
requires hundreds of data passes to converge. Compared with SGHMC, EWSG
produces closer results to FG for which we treat as ground truth, in terms of statis-
tical accuracy. With variance reduction, EWSG-VR is able to achieve even better
performance, significantly improving the accuracy of the prediction of mean and
standard deviation of log likelihood. It, however, converges slower than EWSG
without VR.

One downside of EWSG-VR is that it periodically use whole data set to cali-
brate variance estimation, so it may not be suitable for very large data sets (e.g.

8https://archive.ics.uci.edu/ml/datasets/parkinsons
9https://archive.ics.uci.edu/ml/datasets/diabetes
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Covertype data set used in subsection 5.2) for which stochastic gradient methods
could converge within one data pass.

Appendix G. Additional experiments.

G.1. A misspecified Gaussian case. In this subsection, we follow the same setup
as in [4] and study a misspecified Gaussian model where one fits a one-dimensional
normal distribution p(#) = N (0|0, 02) to 10° i.i.d points drawn according to X; ~
log A/(0,1), and flat prior is assigned p(uog,logog) o 1. It was shown in [4] that
FlyMC algorithm behaves erratically in this case, as “bright” data points with large
values are rarely updated and they drive samples away from the target distribution.
Consequently the chain mixes very slowly. One important commonality FlyMC
shares with EWSG is that in each iteration, both algorithms select a subset of data
in a non-uniform fashion. Therefore, it is interesting to investigate the performance
of EWSG in this misspecified model.

For FlyMC'Y, a tight lower bound based on Taylor’s expansion is used to mini-
mize “bright” data points used per iteration. At each iteration, 10% data points are
resampled and turned “on/off” accordingly and the step size is adaptively adjusted.
FlyMC algorithm is run for 10000 iterations. Figure 6a shows the histogram of
number of data points used in each iteration for FlyMC algorithm. On average,
FlyMC consumes 10.9% of all data points per iteration. For fair comparison, the
minibatch size of EWSG is hence set 10° x 10.9% = 10900 and we run EWSG for
1090 data passes. We set step size b = 1 x 10~* and friction coefficient v = 300
for EWSG. An isotropic random walk Metropolis Hastings (MH) is also run for
sufficiently long and serves as the ground truth.

Figure 6b shows the autocorrelation of three algorithms. The autocorrelation
of FlyMC decays very slowly, samples that are even 500 iterations away still show
strong correlation. The autocorrelation of EWSG, on the other hand, decays much
faster, suggesting EWSG explores parameter space efficiently than FlyMC does.
Figure 6¢ and 6d show the samples (the first 1000 samples are discarded as burn-in)
generated by EWSG and FlyMC respectively. The samples of EWSG center around
the mode of the target distribution while the samples of FlyMC are still far away
from the true posterior. The experiment shows EWGS works quite well even in
misspecified models, and hence is an effective candidate in combining importance
sampling with scalable Bayesian inference.

G.2. Additional results of BNN experiment. We report the test error of var-
ious SG-MCMC methods after 200 epochs in Table 2. For both MLP and CNN
architecture, EWSG outperforms its uniform counterpart SGHMC as well as other
benchmarks SGLD, pSGLD and CP-SGHMC. The results clearly demonstrate the
effectiveness of the proposed EWSG on deep models.

G.3. Additional experiment on BNN: Tuning M. In each iteration of EWSG,
we run an index Markov chain of length M and select a “good” minibatch to
estimate gradient, therefore EWSG essentially uses b x (M + 1) data points per
iteration where b is minibatch size. How does EWSG compare with its uniform
gradient subsampling counterpart with a larger minibatch size (b x (M + 1))?

We empirically answer this question in the context of BNN with MLP architec-
ture. We use the same step size for SGHMC and EWSG and experiment a large

Onttps://github.com/rbardenet/2017- JMLR-MCMCForTallData
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FIGURE 6. (a) Histogram of data used in each iteration for FlyMC

algorithm. (b) Autocorrelation plot of FlyMC, EWSG and MH. (c)
Samples of EWSG. (d) Samples of FlyMC.

TABLE 2. Test error (mean + standard deviation) after 200 epoches.

Method Test Error(%), MLP  Test Error(%), CNN

SGLD 1.976 £+ 0.055 0.848 £ 0.060
pSGLD 1.821 + 0.061 0.860 £ 0.052
SGHMC 1.833 £ 0.073 0.778 £ 0.040

CP-SGHMC 1.835 £ 0.047 0.772 £ 0.055

EWSG 1.793 £ 0.100 0.753 £ 0.035

range of values of minibatch size b and index chain length M. Each algorithm is
run for 200 data passes and 10 independent samples are drawn to estimate test
error. The results are shown in Table 3. We find that EWSG beats SGHMC with
larger minibatch in 8 out of 9 comparison groups, which suggests in general EWSG
could be a better way to consuming data compared to increasing minibatch size
and may shed light on other areas where stochastic gradient methods are used (e.g.

optimization).
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b |M+1=2 M+1=5 M+1=10
1.86% 1.83% 1.80%
100 1.94% 1.92% 1.97%
1.90% 1.87% 1.80%
200 1.87% 1.97% 2.07%
1.79% 2.01% 2.36%
500 1.97% 2.17% 2.37%

TABLE 3. Test errors of EWSG (top of each cell) and SGHMC
(bottom of each cell) after 200 epoches. b is minibatch size for
EWSG, and minibatch size of SGHMC is set as b x (M + 1) to
ensure the same number of data used per parameter update for
both algorithms. Step size is set h = b(}\}ig_l) as suggested in [12],
different from that used to produce Table 2. Results with smaller
test error is highlighted in boldface.

Appendix H. EWSG does not necessarily change the speed of conver-
gence significantly. Changing the weights of stochastic gradient from uniform to
non-uniform, as we saw, can increase the statistical accuracy of the sampling; how-
ever, it does not necessarily increase or decrease the speed of convergence to the
(altered) limiting distribution. Numerical examples already demonstrated this fact,
but on the theoretical side, we note the non-asymptotic bound provided by Theo-
rem 4.3 may not be tight in terms of the speed of convergence due to its generality.
Therefore, here we quantify the convergence speed on a simple quadratic example:
Consider V;(0) = (6 — p;)?/2 where p;’s are constant scalars. Assume with-
out loss of generality that >, u; = 0, and thus V() = Y, V;(0) = 6%/2 +
some constant. We will show the convergence speed of £ is comparable for uniform
and a class of non-uniform SG-MCMC (including EWSG) applied to second-order
Langevin equation (overdamped Langevin will be easier and thus omitted):

Theorem H.1. Consider, for 0 <~ < 2, respectively SGHMC and EWSG,

Gos = Oh+hi

T;C*‘rl =1}, — hyry, — h(8), — /“;;) + \/Eagl/c+1
and

Okt1 =0+ hrg

Thk+1 =Tk — hq/rk — h((‘)k — ,UJ,C) + \/Edkarl ’
where I}, are i.i.d. uniform random variable on [n], I, are [0,7] dependent random
variable on [n] satisfying P(Iy = i) = 1/n+O(hP), and 11,8}, are standard i.i.d.
Gaussian random variables. Denote by 0’y = EO,, r'y, = Er}, 0, = EO, 71, = Ery,
zh, = [0k, 7"k, and x = [0k, 7|7, then

zf = (I + Ah)*zf,, where A= {_01 _17] , (14)
for small enough h, ||z} || converges to 0 exponentially with k — oo, and z, converges
at a comparable speed in the sense that ||z, — x}|| = O(hP) if xo = xp.

Proof. Taking the expectation of the [#’,7'] iteration and using the fact that >, p; =
0 and hence Epy; = 0, one easily obtains (14). The geometric convergence of z),
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thus follows from the fact that eigenvalues of I + Ah have less than 1 modulus for
small enough h.
Let e, = [0,Eur,]? and then

ex = [0, Y P(Ix = i)ui]" = [0,0(h")]"
i=1
Now we take the expectation of both sides of the [0, 7] iteration and obtain x4 =
(I + Ah)zy + hey. Therefore
xp =(I + Ah)*zo + (I + AR)*heg + --- + (I + Ah)hep_o + hep_y
=) + h((l + Ah)*leg + - 4 (I 4+ Ah)ep_o + 6k_1)

To bound the difference, note I + Ah is diagonalizable with complex eigenvalues
A1,2 satisfying

Ml = ol = VI—hy+h2=1-9h/2+O(h?).
Projecting e; to the corresponding eigenspaces via e; = vy j + v j, we can get
Bl + AR)*eo + -+ exa |
< (I + AR el + -+ llex-all)
= h (M Mool + Al Hlvzoll + - + o k-1l + llvzp-1l)

_ 1L— |\ * 1
< hCRP(IM )Pt 4+ -4+ 1) = hCh? ——— < hChP
< hOR (|| ) T— [ =777 1=
< Ch?
for some constant C' and C. O

Important to note is, although this is already a nonlinear example for EWSG
(as nonlinearity enters through the py, term), it is a linear example for SGHMC.
For the fully nonlinear cases, a tight quantification of EWSG’s convergence speed
remains to be an open theoretical challenge (a loose quantification is already given
by the general Theorem 4.3).
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