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ABSTRACT

We describe a tiled architecture that can fluidly transition between
manycore (MIMD) and vector (SIMD) execution. The hardware
provides a software-defined vector programming model that lets
applications aggregate groups of manycore tiles into logical vector
engines. In manycore mode, the machine behaves as a standard
parallel processor. In vector mode, groups of tiles repurpose their
functional units as vector execution lanes and scratchpads as vector
memory banks. The key mechanism is an instruction forwarding
network: a single tile fetches instructions and sends them to other
trailing cores. Most cores disable their frontends and instruction
caches, so vector groups amortize the intrinsic hardware costs
of von Neumann control. Vector groups also use a decoupled ac-
cess/execute scheme to centralize their memory requests and issue
coalesced, wide loads.

We augment an existing RISC-V manycore design with a minimal
hardware extension to implement software-defined vectors. Cycle-
level simulation results show that software-defined vectors improve
performance by an average of 1.7X over standard MIMD execution
while saving 22% of the energy. Compared to a similarly configured
GPU, the architecture improves performance by 1.9%.

CCS CONCEPTS

« Computer systems organization — Multicore architectures;
Reconfigurable computing; Multiple instruction, multiple data; Single
instruction, multiple data.
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1 INTRODUCTION

Tiled manycore processors [8, 21, 29, 31] and vector machines [18,
19, 24] represent contrasting approaches to scalable parallel com-
putation. The difference is between MIMD and SIMD parallelism:
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Figure 1: A manycore fabric with two software-defined vec-
tor groups. Cores can be in one of three modes: scalar cores
lead vector groups, vector cores follow scalar cores, and inde-
pendent cores operate in a plain manycore style. Cores can
change which mode they are in during run time.

manycores offer flexible programmability, while vector machines
exploit control and data regularity to amortize control overheads.

In practice, workloads are neither perfectly regular nor entirely
irregular—computations exist on a spectrum of regularity. Success-
ful parallel machines therefore tend to combine aspects of both
SIMD and MIMD parallelism. GPGPUs augment vector engines
with sophisticated runtime monitoring to cope with irregularity,
and Larrabee and its descendants [25, 33] augment manycore tiles
with small SIMD functional units. These standard approaches, how-
ever, “bake in” a specific point in the trade-off space between regular
and irregular parallelism and suffer low utilization for other points
in the spectrum.

We propose a manycore architecture that can flexibly adopt the
efficiency advantages of a vector machine. The architecture sup-
ports run-time configuration to group together small, independent
computation tiles to form large, SIMD-optimized vector engines.
We introduce software-defined vectors: an architectural abstraction
that lets a single manycore fabric operate as completely indepen-
dent processors, large aggregate vector engines, and as flexible
combinations of these two extremes.

Figure 1 gives the software view of a 4x4 tiled machine with
software-defined vectors. The software can coalesce tiles into vector
groups that execute in lockstep and disable the processors’ front-
ends, including their instruction caches. A vector group consists of
one scalar core, which runs scalar computations and issues mem-
ory accesses for the group, and several vector cores that share a
single SIMD instruction stream. A vector group emulates a classic
vector-thread architecture [16]: the scalar core controls execution
by launching data-parallel microthreads that run on the vector cores.
Tiles that are not part of a vector group execute in an independent
mode where they continue to behave as in a typical manycore.
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Figure 2: Execution in a Rockcress vector group using a clas-
sic RISC pipeline. The scalar core starts a microthread with a
vector issue instruction, which tells the first vector core (the
expander) to begin fetching instructions. The expander core
fetches an instruction from its instruction cache and sends
it to the second vector core over the instruction forwarding
network (inet). Subsequent vector cores disable their fetch
logic and accept instructions from the inet instead.

Vector machines offer three main efficiency advantages: com-
pute density, coalesced wide memory accesses, and control cost
amortization. Compared to standard per-core hardware SIMD units,
software-defined vector groups sacrifice sheer compute density but
more flexibly amortize memory and control overheads. The key
research challenge in this paper is realizing these benefits while
reusing the distributed computational resources in the manycore
fabric. The control coupling within a vector group allows the scalar
core to centralize regular, wide memory requests on the vector
cores’ behalf. Software-defined vectors also naturally support a
configurable vector length: applications can choose an ideal hard-
ware vector length according to their regularity. They naturally
compose with per-core SIMD by grouping small, fixed-size vector
units into larger logical vector engines.

This paper instantiates the software-defined vector abstraction
in Rockcress, a processor consisting of minimal modifications on
top of an existing RISC-V manycore processor. The key addition
in Rockeress is an instruction forwarding network (inet): vector
cores pass each instruction they execute directly to their neighbors
in the vector group. One core fetches an instruction and sends it
to its immediate neighbors, those cores then begin executing the
instruction and forward it to their neighbors, and so on. Figure 2
shows how Rockcress uses the inet to forward instructions from
the first vector core in a group, called the expander core, to the
other vector cores. Only the expander needs a full fetch stage: the
remaining cores disable their instruction cache and fetch logic,
instead accepting instructions from the inet.

To keep vector groups busy, Rockcress relies on the indepen-
dently controlled scalar core to perform shared computations and
issue memory requests on behalf of the group. We augment the
manycore’s scratchpads with cheap bookkeeping to support a de-
coupled access/execute [26] arrangement.

Contributions. The contributions in this paper encompass the
design of a hardware—software abstraction for software-defined
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vectors (Section 2) and a hardware implementation that augments a
simple manycore processor with instruction forwarding to support
the abstraction (Section 3). We demonstrate a C-based programming
model and compiler that targets the augmented manycore machine
to support both MIMD and SIMD parallelism (Section 4).

Relative to manycore execution, Rockcress vector groups offer
these efficiency advantages: (1) Performance and energy savings
by aggregating word-sized loads into wide vector loads. (2) En-
ergy savings from disabling vector cores’ frontends and instruction
caches. (3) Performance improvement from overlapping scalar com-
putation and data accesses with vector computation in a decoupled
access/execute arrangement. The scheme’s overheads consist of the
cost to set up vector groups and invoke microthreads. Our evalua-
tion (Section 6) uses cycle-level modeling to investigate whether
the benefits consistently outweigh the costs.

On the 15 benchmarks in the PolyBench/GPU suite [10], we find
that software-defined vectors improve performance by an average
of 1.7x over optimized manycore baselines that exploit memory-
level parallelism (MLP). The scheme also reduces the total dynamic
energy by 22%. We also compare against a GPU model configured
to match the memory and execution resources of the manycore.
Rockcress outperforms the GPU by an average of 1.9x.

2 SOFTWARE-DEFINED VECTORS

We describe the software-defined vector ISA from the programmer’s
perspective. The goal is to let software dynamically form flexibly-
sized vector units by reserving portions of a standard manycore
machine. The ISA abstracts the concrete hardware implementation
in Section 3. There are three main components: forming vector
groups (Section 2.1), using them to run microthreads of vectorized
computation (2.2), and feeding them with vectorized memory ac-
cesses (2.3). We describe the ISA as an extension to RISC-V [34],
but the principle applies to any RISC-like machine.

2.1 Vector Groups

The first component of the software-defined vector ISA is the in-
structions for creating vector groups. A vector group is a contiguous
region of tiles in the manycore fabric that are logically coupled so
that they can run SIMD computations.

Forming a vector group. The programmer can create a vector
group from a rectangular region of tiles by instructing each con-
stituent core to enter vector mode. Cores compute a bitmask that de-
scribes the vector group configuration, the instruction forwarding
path, frontend configuration (e.g., whether the I-cache is enabled),
and the group coordinate and size. The scalar core and the first vec-
tor core in the group, called the expander core, leave their frontends
enabled; the other vector cores disable their I-cache. To enter vector
mode, cores write the bitmask to a special control/status register
(CSR), vconfig.

When adjacent cores write to the vconfig CSR, a vector group is
formed. Each core determines a thread id to distinguish itself from
the other cores in the group. The cores then wait for a signal on
the inet indicating that their neighboring cores have also entered
vector mode and then begin forwarding instructions. The latency to
form a group is similar to that of a software barrier; all of the cores
in the future group must reach the same configuration instruction.
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Disbanding a vector group. Cores need to exit vector mode to
return to MIMD execution or to participate in global synchroniza-
tion. Since cores in vector mode do not maintain a program counter,
they need to receive an up-to-date PC and control signal to resume
normal execution. The scalar core indicates that the vector group
should disband by sending a special devec instruction along with
a valid PC. When a core receives this signal, the core forwards
it to adjacent cores, resets the vconfig CSR, and begins normal
execution from the given PC.

2.2 Vectorized Computation

Vector groups support a vector-thread execution model [16]. The
scalar core uses the vissue instruction to launch microthreads on
the vector cores:
vissue imm
The vissue instruction includes an instruction pointer indicating
the beginning of the microthread. On commit, the scalar core sends
the starting PC to the vector group via the inet. Vector threads are
asynchronous: the vissue instruction retires immediately, and the
scalar core executes concurrently while the microthread runs.

The expander core is responsible for fetching the instructions in
the microthread. It fetches and executes instructions itself, but it
also forwards them via the inet to the other cores in the vector group.
During microthread execution, all cores in the vector group share
a single instruction stream, so control divergence is not possible.
Only jumps to consistent addresses (i.e., function calls) are allowed
within microthreads. If the application needs divergent control flow,
it must disband the vector group and return to MIMD execution.

The microthread ends when the expander core encounters a
thread termination instruction vend.

Instruction forwarding not only amortizes frontend energy, but
also enables efficient synchronization across cores in a vector group
(Section 4.2).

2.3 Vectorized Memory Access

A key advantage of vector architectures is their ability to exploit
regular memory access patterns. Vector groups need a way to ag-
gregate many small memory demands from all the cores and emit a
single, wide request. Our ISA relies on the scalar core to centralize
vector memory requests, which entails two main mechanisms: (1)
a decoupled access/execute (DAE) scheme to let the scalar core run
ahead and feed data to the vector cores, and (2) support for wide
load instructions that run on the scalar core.

2.3.1 Decoupled Access/Execute for Vector Groups. Vector groups
centralize their regular memory requests on the scalar core to amor-
tize their overhead. To make this work, we adopt a lightweight
decoupled access/execute (DAE) [26] scheme that lets the scalar
core run ahead and load data to be delivered to the vector cores.

Our scheme reuses the vector cores’ local scratchpads as a queue
for the incoming data. To simplify the queue’s bookkeeping, the
architecture organizes the loaded data into chunks of memory called
frames. Each frame contains the data that a single microthread needs
to consume.

Figure 3 shows a logical view of the frame queue. The scalar
core issues loads to fill frames, and vector cores consume frames in
creation order—but the order that data arrives within a given frame
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Figure 3: A logical view of frames and microthreads. The vec-
tor cores read frame 0 (F0) to execute microthread 0 (MO).
Concurrently, the scalar core issues memory requests to
fill the next frame (F1) and initiates the corresponding mi-
crothread (M1) that will consume this frame.

]

Figure 4: An example state of the frame queue with four
frames each containing four words. Older frames are farther
left. The first frame is freed and awaiting memory. The vec-
tor core is currently accessing the second, full frame. The
third and fourth frames are partially full (data is still arriv-
ing) and the vector core cannot read them yet.

does not matter. Vector cores maintain a circular buffer of frame-
sized regions in their scratchpads. Figure 4 illustrates an example
state of this circular buffer: the core can read from the head of the
queue while the memory system concurrently fills future frames.

Before forming a vector group, all cores configure their frame
size and total number of frames by writing to a CSR. This event
allocates a fixed amount of space on the scratchpad to be used as a
logical frame queue. The rest of the scratchpad is free to be used
for programmer-allocated data and the stack.

Within microthread code, the vector cores consume frames from
their scratchpads. The instruction frame_start stalls the current
microthread until the frame at the head of the queue is ready, i.e.,
all its data has arrived. Each vector core executes frame_start to
receive a base offset to the current frame on writeback. The vector
core can then freely read and write the frame’s region of memory
in the scratchpad. When it finishes using the memory, the vector
core uses another instruction, remem, to free the current frame.

At the C level, using frames on vector cores looks like this:
int frame_ptr = FRAME_START();

int a = spad[frame_ptr + 0];
int b = spad[frame_ptr + 1];
int ¢ = a+b;

REMEM () ;

Our architecture’s DAE mechanism is only for the load path—stores
do not use it. The primary reason is that loads are on the critical
path for vector computations, but stores typically are not, so it
is possible to use simple non-blocking store operations that hide
memory latency without a DAE setup. Standard non-blocking stores
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Figure 5: A scalar core sends a request to a cache line and
generates multiple responses to the vector cores. (Left) Sin-
gle load of fetch width 2. (Middle) Group load of fetch width
1. (Right) Group load of fetch width 2.

also avoid the cost for execution units to synchronize and forward
output data for coalescing on a central access unit.

2.3.2 Wide Vector Loads. The reason for centralizing a vector
group’s loads is to coalesce them into wide accesses for contigu-
ous chunks of data. We augment our architecture with a simple
way to issue wide loads that reuses the existing memory network on
the manycore. The key component is a new vector load instruction
that the scalar core can run on behalf of its vector group. A vector
load requests an entire cache line from the LLC and distributes the
results to the vector cores in the group, one chunk at a time. We
limit the length of a vector load to the cache line size: aligned loads
(beginning at offset 0 in the line) request data from a single cache
line and unaligned loads request data from at most two cache lines.

We add a new instruction for non-blocking vector accesses:
addr, off, width,
The operands are: (1) the offset in the receiving scratchpads, (2) the
source memory address, (3) the core offset in the vector group to
receive the first response, (4) the access width per vector core, and
(5) the variant (see below). Operands (1), (2), and (3) allow data to
be loaded from main memory directly into a scratchpad memory.
Operands (4) and (5) configure the style of vector access. We pack
these operands into two registers and an immediate in order to fit
within a standard RISC-V instruction format.

While v1oad by default only supports aligned cache lines, we also
support unaligned loads using pairs of instructions. Two additional
variants load a suffix of one line and a prefix of a second line that
combine to form a full line-sized block. The program issues both
instructions with the same arguments to achieve an unaligned load.

Vector loads support three variants which instruct the LLC where
to send each part of the accessed cache line:

vload sp, var

e Single: Sends part of the line to a single vector core.

e Group: Sends consecutive parts of the line to each core in
the vector group.

o Self: Sends all data back to the core that sent the request.

Figure 5 illustrates the variants’ request and response paths.

We find that the supported variants can map effectively to many
patterns, and code that does not fit them can fall back to single-
word loads. The work division strategy determines what type of

load can be used. Consider this sum example:
for (int i = tid; i < N; i += VLEN)
for (int j = @; j < M; j += FLEN)
c[i] += alixM+j];

Each vector core performs a separate sum across the j dimension.

The scalar core must issue a separate vector load of size FLEN for

each vector core.
for (int core = 0; core < VLEN;
vload sp, al(i+core)*N+j], core,

core++)

FLEN, SINGLE;
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However, if the work division strategy was changed, then a more

efficient variant could be employed.
for (int i = 0; i < N; i++)
for (int j = tid*FLEN; j < M; j += FLEN*VLEN)
c_partiall[i] += al[i*M+j];

Here, the vector cores work on the same sum across j. The scalar
core can fetch consecutive chunks of j to each core to generate a par-
tial sum. In this case, a group load can be used to fetch FLEN*VLEN
worth of data:
vload sp, alixN+jl, o,
The added cost is the need for a reduction of the partial sums, but
this can be done somewhat cheaply.

In some cases such as a single-level loop nest, any variant can
suffice—the choice comes down to performance rather than cor-
rectness. Groups loads can be more efficient because they require

fewer scalar instructions and memory requests.

FLEN, GROUP;

2.4 Vector Odds and Ends

Vector groups emulate classical vector machines and can support
traditional vector operations, including prediction, gather/scatter,
and shuffles.

Predication lets vector machines implement conditional execu-
tion without resorting to divergent control flow. Our microthreads
support predication using a single mask that consists of a 1-bit flag
on each vector core. Two predication instructions set the per-core
flag based on a comparison between two registers:
pred_eq rs1, rs2
pred_neq rsl, rs2
When the flag is 0, a vector core executes all instructions as nops
until a subsequent predication instruction sets the flag back to 1.
At the C level, a simple condition:

1) {c=a+b; 3}

Can be implemented this way:

PRED_EQ(cond, 1);

c = a + b;
PRED_EQ (0,

if (cond ==

9);

By using a single, implicit mask, our ISA’s predication feature avoids
the need for special predicated instructions, as in other vector ISAs,
that would make the core more complex even in MIMD mode. The
scheme adds more instruction overhead than a typical predication
scheme, but the worst cases are for nested conditionals where the
kernel is better suited to standard manycore mode anyway.

Vector groups perform scatters/gathers by performing word-
sized memory operations on the vector cores (not the scalar core).
The accesses are non-blocking to avoid stalling the entire vector
group to wait for each component memory access.

To perform a shuffle, vector cores execute remote stores to other
cores’ scratchpads (a common feature in manycore architectures).
To ensure consistent access to shuffled data, the vector group must
synchronize (Section 4.2).

3 THE ROCKCRESS ARCHITECTURE

This section describes a design implementing the software-defined
vector ISA from Section 2. The key architectural mechanism is
instruction forwarding: vector cores share a single instruction stream
by passing each instruction directly to one another, hop by hop.
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Figure 6: The scalar (S), expander (E), and vector (V) roles in
a vector group of length four. The expander is a vector core
but also fetches instructions.

3.1 A Manycore Baseline

Our extensions start with a minimal set of assumptions about a
standard manycore processor. We base our assumptions on a mature
open-source design [5], which consists of a tiled grid of simple in-
order RISC-V CPUs. Each CPU has a local instruction cache but an
explicitly managed scratchpad for data—we do not assume cache
coherence. We assume a NoC connecting the cores and the global
memory system. The array shares a set of LLCs in front of off-chip
DRAM,; these caches partition the global address space by striping.

3.2 Instruction Forwarding

We add a systolic instruction forwarding network (inet) that is
separate from the manycore’s existing data network. Whereas the
data network may be a dynamic, packet-switched network, the inet
is a simple static network of direct 1-cycle connections between
neighboring tiles. Forwarding an instruction consists of a 32-bit
register read and write, which consumes significantly less energy
than an I-cache hit.

A vector group consists of one scalar core, one expander core, and
many vector cores. Figure 6 illustrates an example vector group of
length four. Only the scalar core and the expander core need active
processor frontends and I-caches; the remaining non-expander
vector cores receive instructions from the inet. Energy efficiency
scales with vector length as more cores become vector cores.

Figure 7 shows how we modify cores’ fetch stage to take advan-
tage of the inet. A vector core receives instructions in its fetch stage
via a single inet queue. The queue is driven by a multiplexer that
selects between the output of each of the four adjacent cores. A
vector core bypasses the I-cache directly to the decode stage, while
the expander core uses PCs received from the scalar core to fetch
instructions from the I-cache. The instructions sent to the decode
stage are also output on the inet to be used by adjacent cores.

The rest of this section describes how instruction forwarding
works from the perspective of each of the three roles.

Scalar core. Scalar cores act independently and fetch from the
scalar instruction stream. Its instructions include both normal scalar
computations and vissue instructions, which launch microthreads
on the vector cores (Section 2.2). It is not possible to cancel a spec-
ulatively launched microthread, so the scalar core sends the launch
message after the vissue commits. The scalar core can execute all

396

MICRO 21, October 18-22, 2021, Virtual Event, Greece

m

en

inet

Decode

w

I-Cache

NPC inet

Figure 7: Modifications to the fetch stage to interface with
the inet and form vector groups. The black components are
additions; gray indicates parts of an ordinary fetch stage.

RV-G instructions; it is typically responsible for integer address
calculations and memory requests.

Expander core. The expander core can run most RV-G instruc-
tions, including direct jumps and function calls. It may also execute
conditional branches, but the program must ensure that the branch
outcome is the same for the entire vector group. The expander
core pauses instruction fetch when it encounters a branch to avoid
sending the wrong instructions to other vector cores and resumes
fetching when the branch path is resolved later in the pipeline. The
expander core does not forward control flow instructions because
other vector cores cannot diverge. The microthread finishes when
the expander core encounters a vend instruction.

The main purpose of the expander core is to enable asynchronous
computation. The scalar core need not facilitate instruction fetch
for the vector cores, so it can freely run ahead.

Vector core. Vector cores act as vector computation lanes. Their
task is to do arithmetic work with low control overhead. They
automatically forward every instruction they receive to their down-
stream vector cores—they never squash instructions. Arithmetic,
memory, and predication instructions are allowed in a vector core’s
instruction stream: control flow is not allowed.

3.3 Scratchpad-Based Decoupled Access

We augment the cores’ scratchpads to support the logical DAE
queue described in Section 2.3. The key hardware support is meta-
data that tracks when data is available and ready for consumption.
A straightforward but costly approach would be to add per-word
full/empty bits to the entire scratchpad. Rockeress opts for a lower-
complexity solution that tracks readiness at a frame granularity.

The hardware maintains a set of counters that track the number
of words that have arrived in a given frame. Whenever a word
arrives to the scratchpad from the data network, the core increments
the counter for the frame containing the destination address. When
the counter’s value equals the configured frame size, the entire
frame is ready and the core can begin using the data. When the core
frees the frame, the values of each counter are shifted to the left
by one and the rightmost count is set to zero. This counter-based
mechanism allows data to arrive out of order within a frame while
still enforcing in-order consumption of frames themselves.

The number of frame counters in the hardware limits the number
of frames that can be open (i.e., receiving data) simultaneously. More
counters let the DAE scheme run farther ahead and tolerate more
variability in memory latency. Our Rockcress implementation has
five 10-bit frame counters.
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for (int i = 0; i < 128;
process(i, alil);

}

++i) {

(a) Original DOALL loop.

VECTORIZE (get_vector_config(...));
VECTOR_ISSUE ({
int vec_i = 0;
float a_spad;
N
for (int i = 0;
VECTOR_LOAD (a_spad,
VECTOR_ISSUE ({
process(vec_i + thread_id,
vec_i += VECTOR_LENGTH;
DN
}
DEVECTORIZE();

(b) Simplified Rockcress vectorized code.

i < 128; i += VECTOR_LENGTH) {
&(alil), GROUP);

a_spad);

Figure 8: Example code for a simple DOALL loop.

3.4 Architecture Support for Wide Accesses

Our baseline processor has a collection of shared LLCs that sit be-
tween the manycore array and main memory. We modify these
caches to support the wide access instructions described in Sec-
tion 2.3. The caches need to send multiple chunked responses for a
single line-sized request.

We add a counter to each cache, which it uses to serially generate
responses for consecutive words in a line. When a wide access hits in
the cache, it initializes this counter. Each cycle, the cache generates
a response based on the base address plus the current count and
then increments the counter. Accesses generate serial responses to
a given base core and base scratchpad offset (Core, Offset) as:

(Addr + Cnt) — (BC + Cnt/RPC, BO + Cnt%RPC)

where Addr is the memory address, Cnt is the current response
count, BC is the base core to respond to, RPC is the responses per
core, and BO is the base scratchpad offset.

Caches can generate responses to any rectangular vector group
layout, but this layout must be provided by a wide access packet.
The scalar core’s memory unit generates a wide access packet us-
ing the vector group’s configuration (vconfig) and the in-flight
vloadinstruction. vconfig provides the base core of the vector
group, which is the top-left vector core, and the group’s dimensions.
This is combined with the number of responses and the offset (from
the base core) specified in the vload. The unit also determines the
proper access widths and offset in the case of unaligned loads.

4 PROGRAMMING WITH
SOFTWARE-DEFINED VECTORS

This section covers two programming concerns: compilation and
synchronization within vector groups.

4.1 Compiling Vector Microthreads

We use C preprocessor macros and a custom assembly-manipulation
pass to provide a programming model for implementing code for
Rockcress. The workflow first compiles application C code to RISC-V
assembly using stock GCC, and then our custom pass runs on the
assembly to produce executable Rockcress code.
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Figure 9: The scalar core cannot fetch words for frames that
are ahead of the active frame by more than the number of
frame counters.

Figure 8 shows a simple DOALL loop in sequential C and its
vectorization for Rockcress. The vectorized code strip-mines the
loop to move by VECTOR_LENGTH steps. C macros VECTORIZE and
DEVECTORIZE wrap inline assembly to manipulate the vconfig CSR
(Section 2.1) to create and destroy a vector group. We provide a
VECTOR_LOAD macro that emits a wide load instruction to copy data
from main memory to the vector cores’ scratchpads.

Next, the code uses VECTOR_ISSUE to delimit microthread code.
The compiler splits the program into code that runs on the scalar
core and the microthread bodies that run on the vector cores. Criti-
cally, the two different contexts maintain separate state. For exam-
ple, the loop induction variable, i, resides on the scalar core, so the
vector code maintains its own copy, declared as vec_i. The code
uses one microthread to initialize the vector state and a second
microthread for the loop body, including the increment to vec_i.

The Rockcress compiler must generate assembly for individual
microthreads while preserving their semantics in the context of
the entire program. For example, to generate correct and efficient
assembly for the statement vec_i += VSIZE, the compiler needs
to allocate a register for vec_i that persists across invocations of
the microthread. It does not suffice to compile each microthread
in isolation, such as in a separate function—the compiler must be
aware that the body microthread is invoked in a loop, and that the
loop follows the setup microthread. Instead, the Rockcress compiler
preprocesses the program to extract the microthread bodies into
a separate C source file, compiles it separately, and then uses an
assembly post-processing pass to merge the microthreads back into
the main scalar code.

4.2 Intra-Group Implicit Synchronization

The cores within a vector group occasionally need to synchronize.
Most prominently, scalar cores performing decoupled accesses (Sec-
tion 2.3.1) need to ensure that they do not run too far ahead of
vector core execution; as Figure 9 illustrates, the scalar core could
overrun the number of hardware counters allocated to the frames.
Shuffles must also synchronize to avoid freeing frames that other
cores need.

We implement a compiler-driven scheme that implicitly syn-
chronizes vector groups by waiting for instructions to propagate
through the inet. The key insight is that the inet forms a bounded
queue: it is impossible to send instructions into it indefinitely, so
slow cores later in the group will cause earlier cores to block. There-
fore, a core can only stay a bounded number of instructions “behind”
any other core in the vector group. To synchronize, each core can
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wait until it has seen enough instructions execute such that all
cores in the group must have passed a given barrier point.

To perform implicit synchronization, we first need a bound on
this instruction delay: a value n such that any two instructions in
the pipelines of any cores in the vector group may be separated by
at most n dynamic instructions. To find this bound, we identify the
longest path from any core to any other core in a mxm vector group
and include every source of queueing along the path, including the
inet queue itself and the stages of the CPUs’ pipelines. We derive
this bound:

stages
n=(2m=-2) Qe+ », (bufy)+ROB
l
Here, 2m — 2 is the longest instruction forwarding path in the
vector group, g, is the size of the inet queues, buf; is the length
of pipeline buffers in the decode, rename, issue and commit stages,
and ROB is the number of entries in each core’s reorder buffer. This
n bounds the number of instructions that can be accommodated in
the buffers before stalling the inet.

Our compiler-driven implicit synchronization scheme imple-
ments a vector-group barrier by ensuring that code before and after
the barrier is separated by at least n microthread instructions. To
prevent excessive scalar-core runahead, for example, we need to
ensure that the scalar core does not request too many data frames
without issuing microthreads to consume them. We first compute
the maximum number of in-flight frames:

n

num_active_frames = | - -
instructions_per_frame

where instructions_per_frame is the length of a vi ssue microthread.

Using this value, the compiler can determine how many frames the
scalar core can safely run ahead:

ahead_offset = max_frames — (num_active_frames + qj.;)

where max_frames is the number of frame counters and q;,.; ac-
counts for the maximum number of queued microthreads between
the scalar and expander cores. The compiler uses this bound to
ensure that the scalar core does not exhaust the frame counters in
the vector cores.

5 EXPERIMENTAL SETUP

We model a baseline manycore machine, the software-defined vec-
tor extensions, and a competitive GPU using the gem5 cycle-level
simulation infrastructure [6].

5.1 Manycore & Rockcress

For the cycle-level model of Rockcress, we start with a baseline
manycore that reflects the assumptions in Section 3.1: the Celerity
open-source RISC-V manycore [5, 8]. Our gem5 model uses the
Ruby memory system and the Garnet2.0 mesh NoC. Each tile has
an I-cache, a scratchpad, and an 8-stage CPU with in-order issue,
out-of-order writeback, and in-order commit. At the top and bottom
of each mesh column, there is a shared LLC. DRAM is connected to
each LLC slice and uses a fixed-latency, fixed-bandwidth model. Ta-
ble 1a lists the microarchitectural parameters. The SRAM latencies
are estimated using CACTI 6.5 [20] assuming a 32 nm process at
1 GHz. We augment the baseline model to support software-defined
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Table 1: Microarchitectural parameters for the models.

(a) Manycore. (b) APU.
Component Setting Component Setting
Cores 64 Compute Units (CUs) 4
ALU Latency 1 Lanes per vALU 16
Multiply Latency 2 vALUs per CU 4
Divide Latency 20 VvALU Latency 4
FP ALU Latency 3 Wavefront Size 64
FP MUL Latency 3 Wavefronts per CU 4
SIMD Width 4 words Registers per CU 8192
SIMD ALU Latency 3 Cacheline Size 64 bytes
Load Queue Entries 2 TCP Capacity 16kB
inet Queue Entries 2 TCP Hit Latency 1 Cycle
Cache line Size 64 bytes TCP Ways 16
I-Cache Capacity 4kB TCC Capacity 256kB
I-Cache Hit Latency 1 Cycle TCC Hit Latency 2 Cycles
I-Cache Ways 2 LLC Capacity 4MB
Spm Capacity 4kB LLC Hit Latency 2 Cycles
Spm Hit Latency 1 Cycle LLC Ways 16
Router Hop Latency 1 CPU L2 Capacity 512kB
On-Chip Net Width 4 words CPU L2 Hit Latency 2 Cycles
LLC Capacity 256kB CPU L2 Ways 8
LLC Banks 16 CPU L1D Capacity 64kB
LLC Hit Latency 1 Cycle CPU L1I Capacity 32kB
LLC Ways 4 DRAM Latency 60ns
DRAM Latency 60ns DRAM Bandwidth 16GB/s

DRAM Bandwidth 16GB/s

vectors by modifying the CPUs, scratchpads, and LLCs as described
in Section 3.

The LLCs represent disjoint address spaces and thus do not
require cache coherence. They are write-back, pseudo-LRU replace-
ment caches with 64-byte lines, which limits wide accesses to 16
words. We also experiment with longer lines to increase the amount
of coalescing that can occur.

A vector request can only generate one word response per cycle
per port (CPU-side or memory-side). We experiment with various
on-chip network widths to increase the number of words that can
be sent per cycle to a single core.

We also consider manycore configurations with standard fixed-
length SIMD units in each core using the RISC-V vector exten-
sion [1]. These configurations, unlike Rockcress, optimize for com-
pute density. Rockcress’s extensions can also apply to this baseline,
aggregating short per-core SIMD units into wider vector groups.

5.2 Energy Model

We develop a first-order energy model to complement our cycle-
level simulation. The model assigns energy costs to simulation
statistics, such as memory accesses and instruction executions, and
computes a total dynamic energy for a benchmark execution. When
a core is in vector mode, it omits the energy costs for fetch and
I-cache accesses.

We use CACTI 6.5 [20] to model the access costs of the I-caches,
scratchpads, and LLCs. A 4-wide vector load consumes as much
energy in the LLC as 4 scalar loads in our model. We model a single
I-cache fetch per instruction.

For CPU energy, we use a published breakdown for Ariane [35].
Ariane is a single-issue RISC-V core with in-order issue, out-of-
order writeback, and in-order commit, like our gem5 model. It has
been used in a manycore [2]. Zaruba and Benini [35] break down
Ariane’s energy per component, per instruction, per cycle. We use
the energy costs as follows:
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o The I-cache and D-cache costs are substituted for our mod-
eled I-cache and scratchpad respectively.

e We omit virtual memory (VM) and performance counter
(CTS) costs because our architecture lacks them.

o Four different instructions costs (integer ALU, integer MUL,
integer DIV, and load/store) are mapped to corresponding
statistics from the gem5 simulation.

o Floating-point operations map to costs for integer operations
(including FMA, which counts as multiply).

e For MUL and DIV, we scale the multiplier energy cost to the
maximum number of cycles the operation takes (2 cycles for
multiply and up to 64 cycles for divide).

e Vector instruction costs are estimated by multiplying the
functional unit and writeback costs by the vector length. The
rest of the instruction cost is left unchanged.

53 GPU

We use an existing gem5 APU model [12] to model a GPU. The
APU consists of CPUs coupled to a GPU via a shared LLC. The GPU
is divided into compute units (CUs) with four vector ALUs (VALUs)
each. Each vALU has 16 lanes and executes a 64-thread wavefront
every four cycles.

We tune the microarchitectural parameters to make a rough
comparison with the manycore. Table 1b lists the model’s param-
eters. The DRAM model is identical to the one in the manycore
model. The L2s (called LLC in the manycore and TCC in the GPU)
have the same capacity. The L1s (scratchpad in manycore, TCP in
GPU) have different sizes but remain that way due to architectural
differences. The GPU also has an additional L3 (GPU LLC) that is
shared with two CPUs in the system. We model hit latencies using
CACTI, assuming a 1 GHz frequency and 32 nm process.

The number of CUs in the GPU is determined by arithmetic
intensity per area, which will be higher than a manycore. In Ariane,
only 15% of the core area is devoted to the integer arithmetic unit.
We roughly estimate that there should be 4X more ALU lanes in
the GPU configuration than there are ALUs in the manycore.

Each GPU CU has four wavefronts of 64 threads each. Larger
GPU designs typically have more wavefronts to hide memory la-
tency, however, these designs require significant resources and
would be unfairly provisioned compared to the manycore.

6 EVALUATION

This section uses our cycle-level models to compare manycore,
GPU, and software-defined vector execution efficiency.

6.1 Benchmarks

We evaluate Rockeress on all 15 benchmarks in the PolyBench/GPU
suite [10] (Table 2). We compile the C code using GCC 10.1.0 with
-03 optimization, targeting the uncompressed RV-G ISA and vector
extensions. We optimize the benchmarks for each target by un-
rolling loops using the canonical GCC pragma. We translate the
GPU benchmarks from CUDA to HIP and compile using HIPCC.
On the software-defined vector architecture, we identify kernels,
form vector groups at the beginning of each kernel, and disband
them at the end. The cores use a global barrier between kernels.
The typical mapping strategy is to partition a kernel’s outer loops
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among vector groups and inner loops among the cores within the
groups. In general, microthreads consist of multiple inner loop
iterations to reduce the communication cost between vector and
scalar cores. We compare 4- and 16-wide vector groups and create
the maximum number of vector groups that fit within 64 cores.
We strip-mine the loops in the kernels according to the configured
vector length.

We check correctness using a serial version of each kernel. Float-
ing point errors never exceed the thresholds specified in the Poly-
Bench/GPU implementations.

6.2 Configurations

We compare multiple versions of the benchmarks running on the
manycore and a separate GPU version (Section 5.3). Table 3 enu-
merates the naming convention and corresponding features. We
consider a basic MIMD baseline (NV), a competitive baseline op-
timized with non-blocking wide accesses for MLP (NV_PF), and a
baseline with narrow per-core SIMD units (PCV_PF). The MLP op-
timized baselines use the vioad instruction to fetch full cache lines
into their private scratchpads. NV_PF approximates the Celerity
manycore [5, 8] which supports non-blocking scalar loads. Vector
group lengths can be configured at compile time, so we compare
the baselines with the fastest Rockcress configuration (BEST_V).
BEST_V includes both V4 and V16 and the ability to choose a larger
cache line size. All MLP optimized benchmarks were able to use
SIMD extensions with the exception of gramschm. We choose the
closest valid configuration in place of them for completeness (PCV
without MLP for PCV_PF, V4 for V4_PCV, and V16 for V16_PCV).

In the vector configurations, the vector groups leave some un-
used cores. In V16, for example, we can create 3 groups of 17 tiles,
so we use only 80% of the tiles in total. V4 uses 94% while NV and
NV_PF use 100%. While it is possible to use the remaining cores in
independent mode or a smaller vector group, our evaluation leaves
them idle for simplicity.

6.3 Performance

Figure 10a shows the speedup over the basic manycore baseline.
Both NV_PF and the vector configurations outperform the NV
baseline by exploiting MLP. However, the vector configurations are
the fastest and outperform the manycore baseline optimized with
non-blocking wide loads (NV_PF) by 1.7x on average.

The benefit of software-defined vectors varies by application.
For example, 3dconv using 16-wide vector groups outperforms the
NV_PF baseline by 2.0%, while 2mm only approximately matches
the performance of NV_PF. Along with 3dconv, bicg and mvt per-
form exceptionally well in a vector configuration, with 4.1X and
3.8x speedup over NV_PF respectively. The only benchmark that
did not improve due to decoupled access was gramschm. This bench-
mark is not able to take advantage of vector loads due to its access
pattern and must resort to scalar loads.

6.4 Energy

Rockcress saves energy by reducing the total cost of fetching in-
structions. Figure 10b shows the number of I-cache accesses in each
configuration. V4 and V16 reduce I-cache accesses compared to NV
by 2.2x and 4.7 respectively. NV_PF increases I-cache accesses
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Table 2: PolyBench/GPU applications used in the evaluation.

Name Input Description Algorithm opt. Mem opt.  Kernels
2dconv 2048x2048 image 3x3 filter applied to an image 1
2mm 256X256 matrix Two matrix multiplies Tiled Outer Product.  Transpose 2
3dconv 256X256X256 volume 3x3 filter applied to a volume 1
3mm 256X256 matrix Three matrix multiplies Tiled Outer product ~ Transpose 3
atax 2048%2048 mat, 2048 vec  Mat-transpose vec (y = AT Ax) Loop reordering 2
bicg 2048x2048 mat, 2048 vec  Biconjugate Gradient Method 2
corr 512X512 matrix Matrix correlation Kernel fusion Transpose 2
covar 512X512 matrix Matrix covariance Kernel fusion Transpose 2
fdtd-2d 512X512 mat, 30 tmax Finite-difference Time-domain 3
gemm 256X256 matrix Matrix mul. (C = aAB + C) Tiled Outer product ~ Transpose 1
gesummv  4096X4096 mat, 4096 vec  Matrix vector (y = aAx + Bx) 1
gramschm 320 vectors of length 320 ~ Gram-Schmidt decomposition 3
mvt 4096x4096 mat, 4096 vec  Mat-vec(Ax; ), transpose(AT x3) 1
syr2k 256X256 matrix Symmetric Rank-2K Update 1
syrk 256X256 matrix Symmetric Rank-K Update 1
17 22
14 L\ L\ - 25 L\
NV_PF < NV_PF 2 NV_PF
- BEST V 225 - BEST V b m— BEST.V
8 % é 15
.; 8 éle §
g ¢ E gl.o
E gre H
3 e < £
& g 05 g 05
Tt UL L AL ?
o L TN TN AWM I N NN NN NNY 0ol ln I ||I|| cl AL Rl 00
AN 5 o AN 5 N INIPAIN 5 N
& W@:&@ PO aﬁ&gv}:‘;i&&@ & ,;:j; T & W@i@ s "eﬁk“y}:::"i;‘a&& & L,;\;’ & S w@*: S "eﬁ@yb“@:;"i;"p& &4 i; T
(a) Speedup relative to NV baseline (b) I-cache accesses. (c) Total on-chip energy.

Figure 10: Performance, I-cache statistics, and energy results for our benchmarks.

Table 3: Benchmark configurations evaluated.

Group SIMD Wide Long
Config. Name Size Words  Access DAE Lines
NV 1 1
NV_PF 1 1 X
PCV_PF 1 4 x
V4 4 1 X X
V16 16 1 X X
V4_PCV 4 4 X x
V16_PCV 16 4 X X
V4_LL PCV 4 4 X X x
V1e6_LL 16 1 X X X
Vi1e_LL_PCV 16 4 X X X
BEST V 4or16 1 x x 2
BEST V_PCV 4or16 4 X X ?
GPU 1 16

over the baseline because it adds instructions to stage data to the
scratchpad before moving it to a register. The vector configurations
incur the same cost but amortize it over fewer frontends. V4 and
V16 reduce I-cache accesses over NV_PF by 2.7x and 5.6X.

Figure 10c shows the resulting changes in total energy according
to our energy model. The reductions in fetch costs translate to a
22% reduction in energy versus the NV_PF baseline, approximately
matching the NV baseline. Vector configurations are not more

400

energy efficient than NV because the energy the inet saves is offset
by the additional energy required by the scratchpad to exploit MLP.

6.5 Scalability

This section evaluates the viability of the NV_PF baseline and high-
lights its main bottlenecks.

Baseline Scalability. We evaluate the scalability of our baseline
manycore system (NV_PF). Figure 11 shows the speedup for an
increasing number of cores over a single core (with the same mem-
ory system capacity and bandwidth). The scability of 2mm, 3mm,
and gemm increases linearly, while the majority of benchmarks are
sub-linear after 16 cores.

Figure 12 details the core performance for different manycore
sizes using a CPI stack.! Benchmarks that do not scale well see a
significant increase in stalls due to memory past 16 cores. At larger
core counts, the majority of stalls are waiting on loads (labeled
frame stall in the figure).

DRAM bandwidth. DRAM bandwidth is the main bottleneck
for larger core counts. The effective DRAM bandwidth per core
decreases from 16 GB/s/core at one core to 0.25 GB/s/core at 64
cores. While this is enough bandwidth for benchmarks with high
reuse, such as 2mm, 3mm, and gemm, it bottlenecks others.

! Each stacked bar in the CPI stack shows the relative number of cycles where an
event occurs in a core’s issue stage (normalized to cycles where an instruction was
issued). Each total stacked bar height indicates the actual CPI of the core.
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Figure 11: The relative speedup for an increasing number of
cores compared to a single core processor.

A recent iteration of Celerity [5] dedicates two HBM2 channels
per 128 cores which, yields 0.5 GB/s/core (double our system’s band-
width). We experiment with increasing the memory bandwidth for
the 64-core baseline and compare it to using a vector configuration.
Figure 13 shows the effects on memory performance. The additional
memory bandwidth provides a linear performance improvement for
most benchmarks, indicating that they are bottlenecked by DRAM
bandwidth. However, we find that using a vector configuration can
improve memory performance with no additional DRAM band-
width. Benchmarks such as 2dconv, 3dconv, covar, syr2k, and syrk
see better overall performance with a vector configuration than
with additional DRAM bandwidth. Other benchmarks such as atax,
corr, fdtd-2d, and gesummv see a reduction in memory stalls, but
the overhead from using the inet overshadows this improvement
overall. Section 6.6 shows how our DAE system and group wide
accesses improve memory performance.

Software-defined vectors provide a way for DRAM-bottlenecked
manycore architectures to make better use of memory bandwidth.
For applications with regular parallelism, then, the technique facili-
tates scalability to larger core counts.

6.6 Characterization

Wide access performance. Wide accesses can improve the cache
hit rate and better utilize DRAM bandwidth. Figure 17a shows the
cache miss rate for various configurations. Vector groups have a
better hit rate than NV_PF for two reasons. First, loads can be
coalesced across a vector group. Three benchmarks, atax, bicg, and
mvt, use group loads where NV_PF cannot. The second reason is
that fewer requests are sent per cycle in V4 because there are fewer
scalar cores than independent cores in NV_PF.

Both bicg and mvt see the largest reductions in LLC misses. These
benchmarks access the critical matrix column-wise which results in
poor cache line utilization. Grouped loads are able to extract spatial
locality across cores for these types of loads.

DAE performance. DAE reduces the effective memory latency
for vector cores, but we find that it does not completely eliminate
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memory stalls. Figure 15¢ shows the number of stalls in vector cores
due to waiting for a frame to fill for V4 and NV_PF. Ideally, every
vector core would never stall as is the case for 2mm, 3mm, and
gemm. V4 reduces frame stalls by about 2x over NV_PF. This plot
does not show the absolute stall reduction, but instead is normalized
to each configuration’s run time. For example, bicg V4 is 2.3x faster
than NV_PF and has about the same ratio in the plot. However, V4
actually has about 2.7Xx fewer absolute stalls.

Per-core hardware prefetchers could achieve similar speedups
to our DAE techniques. However, software DAE offers flexibility:
fixed hardware may be over- or under-utilized for a given kernel.
Our DAE system’s overhead is also amortized by having only one
scalar core (access core) for multiple vector cores (execute cores).

Hardware vector units and GPU. We compare Rockcress to tra-
ditional, fixed-length SIMD units in each core. Figure 14a shows
the performance impact of adding SIMD units to both the baseline
(PCV_PF) and Rockeress (BEST_V_PCV), along with the GPU.

Versus a GPU, Rockcress achieves 1.9X speedup on average.
Benchmarks with high arithmetic intensity perform well on the
GPU, as expected. These include 2mm, 3mm, gemm, 2dconv, and
3dconv. However, most benchmarks are memory-bound and are
slower on the GPU. GPUs rely on massive multithreading and
register files to hide memory latency; a larger GPU design would
perform better on memory-bound benchmarks. We compare to an
under-provisioned GPU design to highlight the area efficiency of
Rockeress’s DAE mechanism. Software-based DAE is more efficient
at hiding memory latency because it only requires one additional
run-ahead thread.

Narrow SIMD units do not improve performance in most cases.
The problem is that manycores already have high compute density,
and the bottleneck is memory bandwidth—so adding SIMD units
does not help. As with the GPU, compute-bound kernels such as
2mm, 3mm, and gemm see some benefit. However, most kernels
are memory bound and SIMD units exacerbate the issue.

We also experiment with adding SIMD to Rockeress vector groups,
so that RISC-V vector instructions are forwarded on the inet. This
design point adjusts the vector length by a coarser amount per
added core. SIMD units composed in vector groups also have a
negligible impact on performance.

Figures 14b and 14c compare the I-cache accesses and energy
consumption of SIMD units and vector groups. All configurations
significantly reduce the number of I-cache accesses, but the en-
ergy reduction per vector length is superior for SIMD units. Vec-
tor groups only amortize fetch energy whereas SIMD instructions
amortize all of the pipeline energy besides the functional units
and register file. SIMD units composed within vector groups do
not significantly impact the total energy consumption because it is
already well amortized.

Vector length flexibility. Rockcress can adapt to different optimal
vector widths for different applications. The average speedup is
1.1x for V16 alone and 1.5X for V4, but by allowing benchmarks to
choose the best among the two options, the mean rises to 1.7X.

Increasing the vector length can help amortize frontend costs (cf
Figure 10b), but it can also make performance worse. There are three
main reasons: (1) fewer cores are active in our V16 configuration
(see Section 6.1), (2) the scalar core falls behind and becomes a
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Figure 12: A CPI stack showing the core pipeline stalls for various manycore sizes and benchmarks. As the number of cores
increases, most benchmarks are dominated by frame/memory stalls.

2594 B: NV_PF = Il Issued
2X: NV_PF_2xBW [ Frame Stall
v4: v4 [ [ INET Stall

204 I Other Stall

¥ 151
8
(%2}
T
o ]
10
0- B 2X V4 B 2X V4 B 2X V4 B 2XVv4 B 2XVva B 2X V4 B 2X V4 B 2XVva B 2X V4 B 2X V4 B 2XVv4 B 2XVv4 B 2XVv4 B 2XVv4 B 2X V4 B 2X V4
S & 3 & o+ & & S N Q & & « & o
S @ C S & v & xS & KN 2
) ,1,6‘ & ,,’6‘ 2 S & S ¥ & & I3 & K\ S &
S o < & & & ’b&e s {\&\Y‘
) S ¥

Figure 13: A CPI stack showing the core pipeline stalls for the baseline (NV_PF), the baseline with 2x the DRAM bandwidth
(NV_PF_2xBW), and vector groups of size four (V4). V4 with 16GB/s of DRAM bandwidth outperforms the baseline with 32GB/s
of DRAM bandwidth due to better utilization of the existing memory bandwidth. The vector configurations only average the
events from the expander cores because the root cause of a stall is not apparent in a non-expander vector core.
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Figure 14: Performance, I-cache statistics, and energy results for our benchmarks with SIMD units.
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Figure 16: Speedup for various vector group configurations.

bottleneck, (3) there is a longer forwarding network, which could
create more opportunities for inet stalling and backpressure. To
investigate these possibilities, Figure 15a compares the number of
cycles the inet input buffer is empty between V4 and V16. The scalar
bottleneck is worse in V16, as indicated by the number of inet stalls
at hop 1 (the expander core). However, the trend plateaus after
two hops, which suggests that all of the inet stalls are generated
by the expander core pipeline and these persist through the entire
forwarding network. Thus, the scalar bottleneck is the problem
rather than the longer forwarding network: The scalar core has to
fetch the data to more cores and cannot keep up with the vector
core demand.

Figure 15b compares the number of cycles forwarding cores are
stalled due to backpressure on the inet. V4 configurations have
more backpressure than V16 because microthreads are launched at
a slower rate in V16 (scalar bottleneck) and V16 has more buffer
space within the group (Section 4.2).

The best vector configuration is V16 for atax, bicg, and mvt; it
outperforms V4 by 1.5%, 1.8, and 1.6X respectively. They perform
better at V16 because they use group loads. The number of group
loads does not increase as vector groups grow (unlike single core
loads), so amortization is free.
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Hops are the traveled inet distance from the scalar core (hop 0 is the scalar core).

Long cache lines. We experiment with increasing the cache line
size to allow for longer vector loads and more request amortization.
Without any changes to the existing algorithms, the performance
would decrease due to cache thrashing. We modify five benchmarks:
2dconv, fdtd-2d, gesummyv, syr2k, and syrk with wider loads to take
advantage of the longer lines. Group vector loads must be used
because larger lines will not fit into a single core’s scratchpad. Thus,
longer lines are exclusive to vector groups and not as practical for
independent cores. We envision a system with reconfigurable cache
line sizes [32] to realize long lines for amenable kernels.

Figure 16 shows the performance of long lines using a cache line
size of 1024 bytes. Long lines can minimize the scalar bottleneck
because fewer load instructions are needed per microthread. Long
lines also improves the cache hit rate as shown in Figure 17a. How-
ever, the hit rate was already high with the baseline configurations,
so the benefits may be limited in this setup. The benchmarks see
modest overall improvement over the non-long-line configurations.

Memory system. We evaluate our system’s sensitivity to the on-
chip network width and LLC capacity. Figures 17b and 17¢ shows
the impact of varying the cache size and network width for various
software configurations. Certain benchmarks like syr2k and syrk
are very sensitive to the cache size and network width, while most
others show little performance improvement. Increasing the cache
size for syr2k has a similar effect to using long lines due to the
reduction in miss rate. In general, the on-chip network width is
not critical to the performance of vector loads and Rockeress could
feasibly be designed with a single word-wide network.

Irregular algorithms. As an example of an irregular application
that would waste a standard vector machine, we measure bfs: a
breadth-first graph search. A pure manycore (NV) version of bfs
is 2.9% faster than either vector version (V4, V16). In Rockcress, a
single machine can efficiently execute both regular, vector work-
loads and irregular, graph-like workloads such as bf's via run-time
configuration.

7 RELATED WORK

Two recent vector ISAs, the RISC-V vector extension [1] and ARM’s
scalable vector extension (SVE) [27], let programs stay agnostic
to the hardware’s vector length. However, this flexibility is only
in the abstraction: the hardware does not change the compute
resources it dedicates to a vector engine. We see it as future work to
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Figure 17: Memory performance.

support such a traditional vector ISA using Rockcress’s instruction
forwarding approach.

Other architectures can dynamically compose multiple small
compute engines into one larger machine. Several efforts reconfig-
ure a multicore processor to trade-off single-thread performance
with thread-level parallelism (TLP) [11, 13, 15, 30, 36]. These designs
do not target SIMD parallelism, and they require tight coupling
between the coalesced components. Software-defined vectors need
less invasive modifications to cores. The closest work to ours tightly
couples a small group of cores to allow a master core to multicast
instructions and scalar work [3]. They do no exploit MLP like in
our vector DAE scheme and the tight coupling limits the scalabil-
ity of large vector lengths. The Cray X1 [9] consists of two-wide
vector units that can be optionally coalesced in groups of four to
form a single eight-wide vector engine. Rockcress achieves a simi-
lar effect but permits a more flexible range of vector widths while
also offering a completely independent manycore mode. Libra [22]
reconfigures a group of PEs to execute SIMD or VLIW instructions
but does not support TLP. Flexible vector lengths have also been
proposed for GPUs [14, 17, 23]. The amount of flexibility between
MIMD and SIMD is limited due to the centralized controllers and
data paths inherent in GPU architectures.

Vector-thread architectures [16, 18] enable a somewhat flexi-
ble vector length where each thread can operate independently in
MIMD mode or in lockstep SIMD mode to amortize control over-
head. Rockcress realizes classic vector-thread architectures as a
flexible overlay over a standard manycore machine and provides
additional vector length flexibility.

Rockcress’s memory system adapts ideas from decoupled access-
execute architectures [4, 26] and runahead schemes that use regular
cores to implement DAE [7, 28] and applies them to the software-
defined vector setting.

8 CONCLUSION

Software-defined vector architectures aim to compete with GPUs
for general-purpose parallel programming. By combining a simple
MIMD mode and a flexible SIMD mode on the same silicon substrate,
architectures can avoid complex hardware thread schedulers and
rely on software to choose its own parallelism strategy.
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A ARTIFACT APPENDIX
A.1 Abstract

This artifact describes the environment and experiments required
to reproduce our published results.
We include the following materials:

o The architectural model.

The benchmarks.

Simulation and data extraction scripts.

Compilation stack.

Instructions for how to reproduce our simulation environ-
ment in a Docker container or natively.

Using the artifact, you can compile RISC-V benchmarks, run them
on our simulator, and analyze the resulting data. We have provided
a script to streamline the generation of Figure 10, the key results
plot in the main paper.
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A.2 Artifact check-list (meta-information)

Algorithm: Cycle-level simulator.

Program: gem5 [6].

Data set: Polybench/GPU [10].

Run-time environment: Docker or Unix-based system.
Hardware: Recommend at least 4 cores.

Metrics: Simulator event counts (cycles, cache accesses, etc.).
Output: Plots showing the main results of the paper.
Experiments: A subset or all of the data required for the headline
result (Figure 10).

How much disk space required (approximately)?: 15GB.

30 minutes.
o How much time is needed to complete experiments (approx-
imately)?: 50-300 CPU hours.
Publicly available?: Yes.
Code licenses (if publicly available)?: BSD.
Workflow framework used?: Python.
Archived (provide DOI)?:
https://doi.org/10.5281/zenodo.5149289

A.3 Description

This artifact contains the cycle-level architecture model, bench-
marks, and scripts used to evaluate Rockcress.

A.3.1 How to access. Our artifact is available as an open-source
code repository hosted on GitHub:

https://github.com/cucapra/gem5-mesh

An external RISC-V cross-compiler is needed to compile the pro-
vided benchmarks. The compiler can be obtained via an open source
repository:

https://github.com/riscv/riscv-gnu-toolchain

A.3.2  Hardware dependencies. No special hardware is required to
run the simulator. However, low core-count CPUs will not be able
to run all simulations in a reasonable amount of time. A system
with at least 4 cores is required, but higher core-count systems are
recommended.

A.4 Installation

The installation entails building the gem5 simulator and RISC-V
cross-compiler. The setup instructions are outlined in the top-level
README. We also provide a Docker container with all the needed
packages and pre-built RISC-V compiler.

A.5 Experiment workflow

This artifact reproduces the key results (Figure 10) from the paper.
Each data point consists of a benchmark, software setting (i.e.,
compilation flags like vector length), and hardware setting. The
following steps are executed per data point:

o Compile benchmark with software configuration.

e Simulate the binary using gem5 with hardware configura-
tion.

o Extract simulation statistics.

We provide Python scripts to automate the data generation process.
Each data point can be simulated in parallel; however, binaries are
first compiled serially to avoid conflicts between different software
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How much time is needed to prepare workflow (approximately)?:

Philip Bedoukian, Neil Adit, Edwin Peguero, and Adrian Sampson

settings. It takes approximately 300 CPU hours (hours on a single
CPU) to generate the key results.

For smaller systems, we provide data generation for subsets of
the configurations and benchmarks used in the key results. The
top-level artifact evaluation script offers the following simulation
options:

e small: 50 CPU hours (recommended for 4-core system).
e medium: 150 CPU hours (recommended for 16-core system).
e large: 300 CPU hours (recommended for 32-core system).

A.6 Evaluation and expected results

The artifact evaluation script will produce a speedup, icache, and
energy comparison plot. Each experiment size will generate the
plots with different data. The large evaluation size will completely
reproduce Figure 10 in the paper. The smaller experiments (small
and medium) will compare the baseline to one of the optimized
configurations. Note that one series in Figure 10 (BEST_V) chooses
the best optimized configuration, but the smaller experiments do
not simulate all of these potential configurations.

A.7 Experiment customization

We provide a JSON interface to describe experiments. A user can
choose software, hardware, and benchmarks to test. Examples are
shown in:

https://github.com/cucapra/gem5-mesh/blob/scalar/scripts-
phil/eval/experiments/full json

A.8 Methodology
Submission, reviewing and badging methodology:

o https://www.acm.org/publications/policies/artifact-review-badging
o http://cTuning.org/ae/submission-20201122.html
o http://cTuning.org/ae/reviewing-20201122.html
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