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Figure 2: Execution in a Rockcress vector group using a clas-

sic RISC pipeline. The scalar core starts amicrothreadwith a

vector issue instruction, which tells the �rst vector core (the

expander) to begin fetching instructions. The expander core

fetches an instruction from its instruction cache and sends

it to the second vector core over the instruction forwarding

network (inet). Subsequent vector cores disable their fetch

logic and accept instructions from the inet instead.

Vector machines o�er three main e�ciency advantages: com-

pute density, coalesced wide memory accesses, and control cost

amortization. Compared to standard per-core hardware SIMD units,

software-de�ned vector groups sacri�ce sheer compute density but

more �exibly amortize memory and control overheads. The key

research challenge in this paper is realizing these bene�ts while

reusing the distributed computational resources in the manycore

fabric. The control coupling within a vector group allows the scalar

core to centralize regular, wide memory requests on the vector

cores’ behalf. Software-de�ned vectors also naturally support a

con�gurable vector length: applications can choose an ideal hard-

ware vector length according to their regularity. They naturally

compose with per-core SIMD by grouping small, �xed-size vector

units into larger logical vector engines.

This paper instantiates the software-de�ned vector abstraction

in Rockcress, a processor consisting of minimal modi�cations on

top of an existing RISC-V manycore processor. The key addition

in Rockcress is an instruction forwarding network (inet): vector

cores pass each instruction they execute directly to their neighbors

in the vector group. One core fetches an instruction and sends it

to its immediate neighbors, those cores then begin executing the

instruction and forward it to their neighbors, and so on. Figure 2

shows how Rockcress uses the inet to forward instructions from

the �rst vector core in a group, called the expander core, to the

other vector cores. Only the expander needs a full fetch stage: the

remaining cores disable their instruction cache and fetch logic,

instead accepting instructions from the inet.

To keep vector groups busy, Rockcress relies on the indepen-

dently controlled scalar core to perform shared computations and

issue memory requests on behalf of the group. We augment the

manycore’s scratchpads with cheap bookkeeping to support a de-

coupled access/execute [26] arrangement.

Contributions. The contributions in this paper encompass the

design of a hardware–software abstraction for software-de�ned

vectors (Section 2) and a hardware implementation that augments a

simple manycore processor with instruction forwarding to support

the abstraction (Section 3).We demonstrate a C-based programming

model and compiler that targets the augmented manycore machine

to support both MIMD and SIMD parallelism (Section 4).

Relative to manycore execution, Rockcress vector groups o�er

these e�ciency advantages: (1) Performance and energy savings

by aggregating word-sized loads into wide vector loads. (2) En-

ergy savings from disabling vector cores’ frontends and instruction

caches. (3) Performance improvement from overlapping scalar com-

putation and data accesses with vector computation in a decoupled

access/execute arrangement. The scheme’s overheads consist of the

cost to set up vector groups and invoke microthreads. Our evalua-

tion (Section 6) uses cycle-level modeling to investigate whether

the bene�ts consistently outweigh the costs.

On the 15 benchmarks in the PolyBench/GPU suite [10], we �nd

that software-de�ned vectors improve performance by an average

of 1.7× over optimized manycore baselines that exploit memory-

level parallelism (MLP). The scheme also reduces the total dynamic

energy by 22%. We also compare against a GPU model con�gured

to match the memory and execution resources of the manycore.

Rockcress outperforms the GPU by an average of 1.9×.

2 SOFTWARE-DEFINED VECTORS

Wedescribe the software-de�ned vector ISA from the programmer’s

perspective. The goal is to let software dynamically form �exibly-

sized vector units by reserving portions of a standard manycore

machine. The ISA abstracts the concrete hardware implementation

in Section 3. There are three main components: forming vector

groups (Section 2.1), using them to run microthreads of vectorized

computation (2.2), and feeding them with vectorized memory ac-

cesses (2.3). We describe the ISA as an extension to RISC-V [34],

but the principle applies to any RISC-like machine.

2.1 Vector Groups

The �rst component of the software-de�ned vector ISA is the in-

structions for creating vector groups. A vector group is a contiguous

region of tiles in the manycore fabric that are logically coupled so

that they can run SIMD computations.

Forming a vector group. The programmer can create a vector

group from a rectangular region of tiles by instructing each con-

stituent core to enter vector mode. Cores compute a bitmask that de-

scribes the vector group con�guration, the instruction forwarding

path, frontend con�guration (e.g., whether the I-cache is enabled),

and the group coordinate and size. The scalar core and the �rst vec-

tor core in the group, called the expander core, leave their frontends

enabled; the other vector cores disable their I-cache. To enter vector

mode, cores write the bitmask to a special control/status register

(CSR), vconfig.

When adjacent cores write to the vconfig CSR, a vector group is

formed. Each core determines a thread id to distinguish itself from

the other cores in the group. The cores then wait for a signal on

the inet indicating that their neighboring cores have also entered

vector mode and then begin forwarding instructions. The latency to

form a group is similar to that of a software barrier; all of the cores

in the future group must reach the same con�guration instruction.
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wait until it has seen enough instructions execute such that all

cores in the group must have passed a given barrier point.

To perform implicit synchronization, we �rst need a bound on

this instruction delay: a value n such that any two instructions in

the pipelines of any cores in the vector group may be separated by

at most n dynamic instructions. To �nd this bound, we identify the

longest path from any core to any other core in am×m vector group

and include every source of queueing along the path, including the

inet queue itself and the stages of the CPUs’ pipelines. We derive

this bound:

n = (2m − 2) · qinet +

stages
�

i

(bufi ) + ROB

Here, 2m − 2 is the longest instruction forwarding path in the

vector group, qinet is the size of the inet queues, bufi is the length

of pipeline bu�ers in the decode, rename, issue and commit stages,

and ROB is the number of entries in each core’s reorder bu�er. This

n bounds the number of instructions that can be accommodated in

the bu�ers before stalling the inet.

Our compiler-driven implicit synchronization scheme imple-

ments a vector-group barrier by ensuring that code before and after

the barrier is separated by at least n microthread instructions. To

prevent excessive scalar-core runahead, for example, we need to

ensure that the scalar core does not request too many data frames

without issuing microthreads to consume them. We �rst compute

the maximum number of in-�ight frames:

num_active_frames =

�

n

instructions_per_frame

�

where instructions_per_frame is the length of a vissuemicrothread.

Using this value, the compiler can determine how many frames the

scalar core can safely run ahead:

ahead_o�set = max_frames − (num_active_frames + qinet)

where max_frames is the number of frame counters and qinet ac-

counts for the maximum number of queued microthreads between

the scalar and expander cores. The compiler uses this bound to

ensure that the scalar core does not exhaust the frame counters in

the vector cores.

5 EXPERIMENTAL SETUP

We model a baseline manycore machine, the software-de�ned vec-

tor extensions, and a competitive GPU using the gem5 cycle-level

simulation infrastructure [6].

5.1 Manycore & Rockcress

For the cycle-level model of Rockcress, we start with a baseline

manycore that re�ects the assumptions in Section 3.1: the Celerity

open-source RISC-V manycore [5, 8]. Our gem5 model uses the

Ruby memory system and the Garnet2.0 mesh NoC. Each tile has

an I-cache, a scratchpad, and an 8-stage CPU with in-order issue,

out-of-order writeback, and in-order commit. At the top and bottom

of each mesh column, there is a shared LLC. DRAM is connected to

each LLC slice and uses a �xed-latency, �xed-bandwidth model. Ta-

ble 1a lists the microarchitectural parameters. The SRAM latencies

are estimated using CACTI 6.5 [20] assuming a 32 nm process at

1 GHz. We augment the baseline model to support software-de�ned

Table 1: Microarchitectural parameters for the models.

after

instructions. To

need to

frames

compute

othread.

frames the

ac-

etween

ound to

counters in

(a) Manycore.

Component Setting

Cores 64
ALU Latency 1
Multiply Latency 2
Divide Latency 20
FP ALU Latency 3
FP MUL Latency 3
SIMD Width 4 words
SIMD ALU Latency 3
Load Queue Entries 2
inet Queue Entries 2
Cache line Size 64 bytes
I-Cache Capacity 4kB
I-Cache Hit Latency 1 Cycle
I-Cache Ways 2
Spm Capacity 4kB
Spm Hit Latency 1 Cycle
Router Hop Latency 1
On-Chip Net Width 4 words
LLC Capacity 256kB
LLC Banks 16
LLC Hit Latency 1 Cycle
LLC Ways 4
DRAM Latency 60ns
DRAM Bandwidth 16GB/s

(b) APU.

Component Setting

Compute Units (CUs) 4
Lanes per vALU 16
vALUs per CU 4
vALU Latency 4
Wavefront Size 64
Wavefronts per CU 4
Registers per CU 8192
Cacheline Size 64 bytes
TCP Capacity 16kB
TCP Hit Latency 1 Cycle
TCP Ways 16
TCC Capacity 256kB
TCC Hit Latency 2 Cycles
LLC Capacity 4MB
LLC Hit Latency 2 Cycles
LLC Ways 16
CPU L2 Capacity 512kB
CPU L2 Hit Latency 2 Cycles
CPU L2 Ways 8
CPU L1D Capacity 64kB
CPU L1I Capacity 32kB
DRAM Latency 60ns
DRAM Bandwidth 16GB/s

vectors by modifying the CPUs, scratchpads, and LLCs as described

in Section 3.

The LLCs represent disjoint address spaces and thus do not

require cache coherence. They are write-back, pseudo-LRU replace-

ment caches with 64-byte lines, which limits wide accesses to 16

words. We also experiment with longer lines to increase the amount

of coalescing that can occur.

A vector request can only generate one word response per cycle

per port (CPU-side or memory-side). We experiment with various

on-chip network widths to increase the number of words that can

be sent per cycle to a single core.

We also consider manycore con�gurations with standard �xed-

length SIMD units in each core using the RISC-V vector exten-

sion [1]. These con�gurations, unlike Rockcress, optimize for com-

pute density. Rockcress’s extensions can also apply to this baseline,

aggregating short per-core SIMD units into wider vector groups.

5.2 Energy Model

We develop a �rst-order energy model to complement our cycle-

level simulation. The model assigns energy costs to simulation

statistics, such as memory accesses and instruction executions, and

computes a total dynamic energy for a benchmark execution. When

a core is in vector mode, it omits the energy costs for fetch and

I-cache accesses.

We use CACTI 6.5 [20] to model the access costs of the I-caches,

scratchpads, and LLCs. A 4-wide vector load consumes as much

energy in the LLC as 4 scalar loads in our model. We model a single

I-cache fetch per instruction.

For CPU energy, we use a published breakdown for Ariane [35].

Ariane is a single-issue RISC-V core with in-order issue, out-of-

order writeback, and in-order commit, like our gem5 model. It has

been used in a manycore [2]. Zaruba and Benini [35] break down

Ariane’s energy per component, per instruction, per cycle. We use

the energy costs as follows:
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• The I-cache and D-cache costs are substituted for our mod-

eled I-cache and scratchpad respectively.

• We omit virtual memory (VM) and performance counter

(CTS) costs because our architecture lacks them.

• Four di�erent instructions costs (integer ALU, integer MUL,

integer DIV, and load/store) are mapped to corresponding

statistics from the gem5 simulation.

• Floating-point operations map to costs for integer operations

(including FMA, which counts as multiply).

• For MUL and DIV, we scale the multiplier energy cost to the

maximum number of cycles the operation takes (2 cycles for

multiply and up to 64 cycles for divide).

• Vector instruction costs are estimated by multiplying the

functional unit and writeback costs by the vector length. The

rest of the instruction cost is left unchanged.

5.3 GPU

We use an existing gem5 APU model [12] to model a GPU. The

APU consists of CPUs coupled to a GPU via a shared LLC. The GPU

is divided into compute units (CUs) with four vector ALUs (vALUs)

each. Each vALU has 16 lanes and executes a 64-thread wavefront

every four cycles.

We tune the microarchitectural parameters to make a rough

comparison with the manycore. Table 1b lists the model’s param-

eters. The DRAM model is identical to the one in the manycore

model. The L2s (called LLC in the manycore and TCC in the GPU)

have the same capacity. The L1s (scratchpad in manycore, TCP in

GPU) have di�erent sizes but remain that way due to architectural

di�erences. The GPU also has an additional L3 (GPU LLC) that is

shared with two CPUs in the system. We model hit latencies using

CACTI, assuming a 1 GHz frequency and 32 nm process.

The number of CUs in the GPU is determined by arithmetic

intensity per area, which will be higher than a manycore. In Ariane,

only 15% of the core area is devoted to the integer arithmetic unit.

We roughly estimate that there should be 4× more ALU lanes in

the GPU con�guration than there are ALUs in the manycore.

Each GPU CU has four wavefronts of 64 threads each. Larger

GPU designs typically have more wavefronts to hide memory la-

tency, however, these designs require signi�cant resources and

would be unfairly provisioned compared to the manycore.

6 EVALUATION

This section uses our cycle-level models to compare manycore,

GPU, and software-de�ned vector execution e�ciency.

6.1 Benchmarks

We evaluate Rockcress on all 15 benchmarks in the PolyBench/GPU

suite [10] (Table 2). We compile the C code using GCC 10.1.0 with

-O3 optimization, targeting the uncompressed RV-G ISA and vector

extensions. We optimize the benchmarks for each target by un-

rolling loops using the canonical GCC pragma. We translate the

GPU benchmarks from CUDA to HIP and compile using HIPCC.

On the software-de�ned vector architecture, we identify kernels,

form vector groups at the beginning of each kernel, and disband

them at the end. The cores use a global barrier between kernels.

The typical mapping strategy is to partition a kernel’s outer loops

among vector groups and inner loops among the cores within the

groups. In general, microthreads consist of multiple inner loop

iterations to reduce the communication cost between vector and

scalar cores. We compare 4- and 16-wide vector groups and create

the maximum number of vector groups that �t within 64 cores.

We strip-mine the loops in the kernels according to the con�gured

vector length.

We check correctness using a serial version of each kernel. Float-

ing point errors never exceed the thresholds speci�ed in the Poly-

Bench/GPU implementations.

6.2 Con�gurations

We compare multiple versions of the benchmarks running on the

manycore and a separate GPU version (Section 5.3). Table 3 enu-

merates the naming convention and corresponding features. We

consider a basic MIMD baseline (NV), a competitive baseline op-

timized with non-blocking wide accesses for MLP (NV_PF), and a

baseline with narrow per-core SIMD units (PCV_PF). The MLP op-

timized baselines use the vload instruction to fetch full cache lines

into their private scratchpads. NV_PF approximates the Celerity

manycore [5, 8] which supports non-blocking scalar loads. Vector

group lengths can be con�gured at compile time, so we compare

the baselines with the fastest Rockcress con�guration (BEST_V).

BEST_V includes both V4 and V16 and the ability to choose a larger

cache line size. All MLP optimized benchmarks were able to use

SIMD extensions with the exception of gramschm. We choose the

closest valid con�guration in place of them for completeness (PCV

without MLP for PCV_PF, V4 for V4_PCV, and V16 for V16_PCV).

In the vector con�gurations, the vector groups leave some un-

used cores. In V16, for example, we can create 3 groups of 17 tiles,

so we use only 80% of the tiles in total. V4 uses 94% while NV and

NV_PF use 100%. While it is possible to use the remaining cores in

independent mode or a smaller vector group, our evaluation leaves

them idle for simplicity.

6.3 Performance

Figure 10a shows the speedup over the basic manycore baseline.

Both NV_PF and the vector con�gurations outperform the NV

baseline by exploiting MLP. However, the vector con�gurations are

the fastest and outperform the manycore baseline optimized with

non-blocking wide loads (NV_PF) by 1.7× on average.

The bene�t of software-de�ned vectors varies by application.

For example, 3dconv using 16-wide vector groups outperforms the

NV_PF baseline by 2.0×, while 2mm only approximately matches

the performance of NV_PF. Along with 3dconv, bicg and mvt per-

form exceptionally well in a vector con�guration, with 4.1× and

3.8× speedup over NV_PF respectively. The only benchmark that

did not improve due to decoupled access was gramschm. This bench-

mark is not able to take advantage of vector loads due to its access

pattern and must resort to scalar loads.

6.4 Energy

Rockcress saves energy by reducing the total cost of fetching in-

structions. Figure 10b shows the number of I-cache accesses in each

con�guration. V4 and V16 reduce I-cache accesses compared to NV

by 2.2× and 4.7× respectively. NV_PF increases I-cache accesses
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A.2 Artifact check-list (meta-information)
• Algorithm: Cycle-level simulator.

• Program: gem5 [6].

• Data set: Polybench/GPU [10].

• Run-time environment: Docker or Unix-based system.

• Hardware: Recommend at least 4 cores.

• Metrics: Simulator event counts (cycles, cache accesses, etc.).

• Output: Plots showing the main results of the paper.

• Experiments: A subset or all of the data required for the headline

result (Figure 10).

• How much disk space required (approximately)?: 15GB.

• Howmuch time is needed to preparework�ow (approximately)?:

30 minutes.

• Howmuch time is needed to complete experiments (approx-

imately)?: 50–300 CPU hours.

• Publicly available?: Yes.

• Code licenses (if publicly available)?: BSD.

• Work�ow framework used?: Python.

• Archived (provide DOI)?:

https://doi.org/10.5281/zenodo.5149289

A.3 Description

This artifact contains the cycle-level architecture model, bench-

marks, and scripts used to evaluate Rockcress.

A.3.1 How to access. Our artifact is available as an open-source

code repository hosted on GitHub:

https://github.com/cucapra/gem5-mesh

An external RISC-V cross-compiler is needed to compile the pro-

vided benchmarks. The compiler can be obtained via an open source

repository:

https://github.com/riscv/riscv-gnu-toolchain

A.3.2 Hardware dependencies. No special hardware is required to

run the simulator. However, low core-count CPUs will not be able

to run all simulations in a reasonable amount of time. A system

with at least 4 cores is required, but higher core-count systems are

recommended.

A.4 Installation

The installation entails building the gem5 simulator and RISC-V

cross-compiler. The setup instructions are outlined in the top-level

README. We also provide a Docker container with all the needed

packages and pre-built RISC-V compiler.

A.5 Experiment work�ow

This artifact reproduces the key results (Figure 10) from the paper.

Each data point consists of a benchmark, software setting (i.e.,

compilation �ags like vector length), and hardware setting. The

following steps are executed per data point:

• Compile benchmark with software con�guration.

• Simulate the binary using gem5 with hardware con�gura-

tion.

• Extract simulation statistics.

We provide Python scripts to automate the data generation process.

Each data point can be simulated in parallel; however, binaries are

�rst compiled serially to avoid con�icts between di�erent software

settings. It takes approximately 300 CPU hours (hours on a single

CPU) to generate the key results.

For smaller systems, we provide data generation for subsets of

the con�gurations and benchmarks used in the key results. The

top-level artifact evaluation script o�ers the following simulation

options:

• small: 50 CPU hours (recommended for 4-core system).

• medium: 150 CPU hours (recommended for 16-core system).

• large: 300 CPU hours (recommended for 32-core system).

A.6 Evaluation and expected results

The artifact evaluation script will produce a speedup, icache, and

energy comparison plot. Each experiment size will generate the

plots with di�erent data. The large evaluation size will completely

reproduce Figure 10 in the paper. The smaller experiments (small

and medium) will compare the baseline to one of the optimized

con�gurations. Note that one series in Figure 10 (BEST_V) chooses

the best optimized con�guration, but the smaller experiments do

not simulate all of these potential con�gurations.

A.7 Experiment customization

We provide a JSON interface to describe experiments. A user can

choose software, hardware, and benchmarks to test. Examples are

shown in:

https://github.com/cucapra/gem5-mesh/blob/scalar/scripts-

phil/eval/experiments/full.json

A.8 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-badging

• http://cTuning.org/ae/submission-20201122.html

• http://cTuning.org/ae/reviewing-20201122.html
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