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Abstract—As customized accelerator design has become
increasingly popular to keep up with the demand for high
performance computing, it poses challenges for modern simu-
lator design to adapt to such a large variety of accelerators.
Existing simulators tend to two extremes: low-level and general
approaches, such as RTL simulation, that can model any
hardware but require substantial effort and long execution
times; and higher-level application-specific models that can be
much faster and easier to use but require one-off engineering
effort.

This work proposes a compiler-driven simulation workflow
that can model configurable hardware accelerator. The key
idea is to separate structure representation from simulation by
developing an intermediate language that can flexibly represent
a wide variety of hardware constructs. We design the Event
Queue (EQueue) dialect of MLIR, a dialect that can model ar-
bitrary hardware accelerators with explicit data movement and
distributed event-based control; we also implement a generic
simulation engine to model EQueue programs with hybrid
MLIR dialects representing different abstraction levels. We
demonstrate two case studies of EQueue-implemented acceler-
ators: the systolic array of convolution and SIMD processors in
a modern FPGA. In the former we show EQueue simulation is
as accurate as a state-of-the-art simulator, while offering higher
extensibility and lower iteration cost via compiler passes. In the
latter we demonstrate our simulation flow can guide designer
efficiently improve their design using visualizable simulation
outputs.

Keywords-Programming Language; MLIR; Multi-level Ab-
stractions; Simulation; Accelerators; Reconfigurable Hardware

I. INTRODUCTION

Hardware accelerators are a central tool for improving
efficiency in the post-Moore era. Successful accelerators
cannot be designed in a vacuum: realizing their full potential
requires simultaneous advances in algorithms and compilers.
Co-design between hardware and its accompanying software
stack requires a way to rapidly simulate a proposed hardware
accelerator before finalizing its design.

However, standard approaches to hardware simulation,
can impede this kind of rapid iteration. For instance, al-
though RTL simulation [15], [16], [23], [33] is valuable
when the hardware is being finalized at the end of the
design process, it tends to be too detailed and too slow to
be practical for earlier hardware—software co-design phases.
Designers often build custom high-level simulators [4]-[6],

[32] for specific applications and architectures that sacrifice
accuracy for greater flexibility and faster simulation times.
However, these custom simulators specialize for a specific
architecture model-—changing the modeled hardware, such
as introducing a new level in a memory hierarchy, re-
quires rewriting substantial parts of the simulator. General-
purpose simulation frameworks, in contrast, tend to focus
on processor-centric architectures like CPUs and GPUs [2],
[27], [34], meaning that modeling a custom accelerator
architecture still requires a custom specialized implementa-
tion of the simulation logic. Finally, traditional simulators
do not expose an intermediate representation, so it can
be challenging to integrate them with a compiler stack to
measure performance on real software.

This paper presents a general framework for rapidly
implementing high-level simulators for arbitrary hardware
accelerators. This framework shares basic discrete-event
semantics with many existing simulation systems [28], [37]
and focuses on implementation in a multi-level compiler in-
frastructure, MLIR [20]. This implementation enables rapid
iteration and efficient, low-effort simulation of generated
architectures and is intended to exist as part of an end-to-end
toolchain, rather than as a standalone simulation framework.

The system has two main components: an MLIR di-
alect for representing hardware accelerators, and a generic
simulation engine that interprets those representations. Our
core contribution is an event queue (EQueue) dialect in
MLIR: an intermediate language that represents accelerators
at many levels of detail, from simple first-order models
to detailed, multi-component simulations. The dialect fo-
cuses on expressing memory allocation, data movement,
and parallel execution with event-based control. The dialect
is directly executable by a generic timed discrete-event
simulation engine, enabling arbitrary architectures to be
executed. The simulation can provide estimates of overall
execution time taking into account data dependencies and
resource limitations. The simulation engine also produces
visualizable operation-level traces for detailed performance
analysis.

By building on MLIR, the EQueue dialect leverages a
broad ecosystem of transformations, analyses, and other di-
alects. Designers can quickly prototype compilers from high-
level languages to lower-level accelerator configurations.
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Figure 1: An example of EQueue simulation on different
levels of hardware abstraction.

As a software compiler infrastructure, MLIR also enables
analysis and transformation tools that are not possible with
one-off simulators. For example, Fig. 1 shows a lowering
pipeline for progressive optimization of tensor computations
using existing MILR dialects: the high-level Linalg dialect
to represent tensor operations, the Affine dialect to express
explicit loop tiling, and finally our new EQueue dialect to
model explicit data movement among hardware components.
Critically, such a lowering pipeline enables simulation at
multiple levels of detail: users can get quick-and-dirty per-
formance estimates at the Linalg level on tensor behavior, or
they can lower gradually to more detailed EQueue hardware
simulations for more accurate but costly estimation.

Compared to traditional one-off accelerator simulators, we
see several advantages in the compiler-based approach:

1) We can simulate at different points in a compilation
flow, representing a hardware at multiple abstraction
levels.

2) Changes to the architecture are decoupled from
changes to the simulation logic, so design iteration
can be easier.

3) By reusing compiler passes with different parameters
to transform the architecture, designers can easily
switch among different architectures for the same
computation.

This paper presents the EQueue dialect and its open-source!
implementation using MLIR. We explain the core constructs
via a running example (Section II) and then detail the dialect
(Section III) and its simulation engine (Section IV). We
show the flexibility of programming with two case studies:
a systolic array for deep learning computations , and a
model of the AI Engine cores in Xilinx’s Versal ACAP
fabric. In the first case, we compare our EQueue-based
simulator against a traditional, special-purpose systolic array
simulator, SCALE-Sim [32]. The EQueue approach matches
its accuracy while offering better flexibility to rapidly change
the modeled data flow (Section VI). In the second case, we
demonstrate how EQueue’s flexibility can guide designers
to improve their designs on a real-world reconfigurable
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architecture (Section VII).

II. OVERVIEW BY EXAMPLE

This section summarizes our simulation flow. We write
an EQueue program (Fig. 2a) and show how our simulation
engine executes it. Fig. 2b depicts the modeled architecture.

A. Structure Specification

The first main part of an EQueue program is a set of
structural declarations, which define the hardware resources
that make up an accelerator. Fig. 2a lists an EQueue program
describing a toy accelerator in Fig. 2b. First, create_x
operations instantiate components like processing elements
(PEs) and memories. Then, 1aunch operations map work
onto this structure to specify the computation.

We start with structure specification @ The program
uses several create_s operations to declare components
including processors, memories, and direct memory access
(DMA) units. These create_ operations select from a
range of primitive component types (ARMr6, SRAM, Register
, etc.). These tags correspond to performance models in
the simulation engine: for example, the simulation model
for sram components has slower warm-up time, slower
reads, and higher power usage than the rRegister model.
Programs can assemble these components into hierarchies
using create_comp to create a new component and add_comp
to add one to an existing component.

B. Control Flow

The second part of a EQueue program is its control flow.
The core operation is launch. The launch operation takes
a dependency, a processor component, and a block of code.
The simulation engine implements launch by issuing code
blocks on processors, which execute sequentially.

launch Or memcpy are event operations executed out of
order. Every processor in the simulation has an event
queue; launching a code block enqueues it for the given
processor. At simulation, the engine checks the dependency
and executes code blocks when their dependencies are ready.
Processors communicate by spawning events with 1aunch or
memcpy.

For example, the control flow @ illustrates how the
Kernel processor distributes its work to pva, PE0, and PE1.
Fig. 2b indicates the communication using arrows. DMa, PEO,
and pE1 are all independent processors but can communicate
through their event queues. As the launch of PE0 and PE1
both depend on mempcy operation of pma, PEO and PE1 start
simultaneously.

Benefits. This example shows how EQueue describes ac-
celerator structure and control flow separately from the
simulation logic. Designers can change the architecture
without needing to modify the simulation engine, which
reduces the cost of exploring alternative designs. It also
shows how EQueue programs can intermix code from other



1) Structure
Specification

kernel = equeue.create_proc(ARMré)
sram = equeue.create_mem(SRAM, [64], 4)
dma = create_dma()
accel = create_comp(“Kernel SRAM DMA”,

host, sram, dma)
pe@ = equeue.create_proc(MAC)
regd = equeue.create_mem(Register, [4], 4)
pel = equeue.create_proc(MAC)
regl = equeue.create_mem(Register, [4], 4) ¥
add_comp(accel, “PE@ Reg@ PEl Regl, pe®,
regd, pel, regl)

@ Control Flow

equeue.return()

}

(a) An EQueue program as input to our generic simulator.

start = equeue.control_start()

done = equeue.launch(...) in (start, kernel){
copy_dep = equeue.control_start()
launch_dep = equeue.memcpy(copy_dep, DMA, ..)
pe@_dep = equeue.launch(...) in (launch_dep, pe@){

ofmap = addi(ifmap, 4)

pel_dep = equeue.launch(...) in (launch_dep, pel) { .. }
equeue.await(pe@_dep, pel_dep)

Reg1

(b) Accelerator.

Figure 2: Modeling an accelerator with an EQueue program and the model created by the simulation engine. Code listings

omit types and the % prefix for legibility.

MLIR dialects for core accelerator logic: namely, the addi

operation is from MLIR’s standard dialect. The MLIR
ecosystem offers operations from many abstraction levels,
from linear algebra to machine code. These help to express
architectures at different levels, from abstract black boxes to
low-level implementation details.

III. EQUEUE DIALECT

We illustrate the EQueue dialect with four parts: modeling
hardware, expressing data movement, launching computa-
tion and concurrency between controllers.

A. Modeling Structure

The EQueue dialect lets programs declare structural com-
ponents to model hardware. For example, this code creates
the structure from Fig. 3:
kernel = equeue.create_proc (ARMr5)
mem = equeue.create_mem([4096], 32, 4, SRAM)
dma = equeue.create_dma ()

accel = equeue.create_comp ("Memory Kernel DMA",
mem, kernel, dma)

There are three kinds of components: processors, memories,
and DMA engines. A processor is a component that can ex-
ecute commands, via the 1aunch operation described in Sec-
tion III-D. A DMA component is a specialized processor that
is only used for data movement. A memory stores data; its
speed is affected by its type, size, and ports. Each create_
= operation encodes component properties in its arguments.
For instance, create_mem([4096], 32, 4, sraM) declares
a memory component of SRAM type with 4 banks and 4096
data elements of 32 bits each.

The create_comp composes smaller components into a
hierarchy of larger components. The example code declares a
component accel with three subcomponents with the names
“Memory”, “Kernel” and “DMA”. Later, code can look up
components in the hierarchy using a get_comp operation:

dma = equeue.get_comp (accel, "DMA")

Finally, connections model bandwidth constraints:

connection = equeue.create_connection (Streaming,
32)

The create_connection operation has two arguments: their
type and their bandwidth in bytes per cycle. The two types
are streaming, which allows simultaneous reads and writes,
and window, which models a buffer that requires locking for
exclusive access. Streaming interfaces typically offer lower
latency while windowed interfaces offer higher bandwidth.
The simulation engine outputs profiling statistics for each
connection’s bandwidth utilization over time. The bandwidth
limit is optional; the simulation engine can also model
infinite-bandwidth connections and still collect statistics, as
we show in Section VII-C.

B. Explicit Data Movement

Given the hardware structure, we can specify data move-
ment using allocation, deallocation, and read/write opera-
tions on memories. For example, consider two memories:
memO = equeue.create_mem([4096], 32, 4, SRAM)

meml = equeue.create_mem([4096], 32, 4, SRAM)
conn = equeue.create_connection(Streaming, 32)

We will model the data movement shown in Fig. 4. To
associate a buffer with a memory, we use alloc:

buffer0 = equeue.alloc (memO,
bufferl = equeue.alloc (meml,

(641, 32)
[64], 32)

The alloc operation specifies the memory, buffer size in
elements, and element size in bits.

To model data movement, we use read and write op-
erations to transfer data into a buffer, optionally through a
connection:

data = equeue.read(buffer0, conn)
equeue.write (data, bufferl, conn)

Both operations take a buffer and, optionally, a connection;
write also takes the value to write. Here, we use connection
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Figure 3: Simple one-core accelerator.

(b) Data movement controlled by DMA.

Figure 4: Expressing explicit data movement using EQueue dialect.
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Figure 5: Three stages of the timeline of execution of the accelerator in Fig. 6.

whose bandwidth is 32 bytes per cycle. Finally, programs
use dealloc to free buffers:

equeue.dealloc (buffer0)
equeue.dealloc (bufferl)

So far, these operations specify how data moves, but not
the processors executing the operations. The next subsection
shows how to assign this code to processors.

C. Launching Computations

The 1aunch operation schedules blocks of code onto
processors. This code runs a block on the kernel processor:

equeue. launch (buffer0, bufferl = b0, bl)
in (kernel) {
data equeue.read (buffer0)
equeue.write (data, bufferl)

equeue.return

}

The arguments to 1aunch pass resources that the code block,
represented by an MLIR region, may access. The code in
the region will be dispatched to the particular processor for
execution. When the region is executed, the resources will
be available, enabling the region to run to atomically run
to completion. Although most The code runs sequentially.
Fig. 3a illustrates the above data movement.

The memcpy operation is syntactic sugar for a 1aunch that
reads and then writes data. memcpy is mostly used with DMA
units. Fig. 3b shows the data movement in this code:

equeue.memcpy (mem0, meml, dma)

Launching a code block enqueues it for later execution; the
next section describes how this queueing work.

D. Concurrent Event Scheduling

Concurrency in the EQueue dialect occurs at the granular-
ity of events. While the code within a 1aunch block executes
sequentially, it can use event operations to spawn asyn-
chronous, concurrent work. Event operations include 1aunch
and memcpy described above, and also logical operations on
events: control_start, control_and and control_or.

Event operations can have dependencies, indicating other
events they depend on that must finish before the event
can start. launch and memcpy each have one dependency,
and control_start has none: it is a special operation for
beginning a chain of events. control_or and control_and

are ready when any or all of their dependencies finish,
respectively.

During simulation, launching an event pushes it onto a
given processor’s event queue. Different processors can exe-
cute events from their queues in parallel, but each processor
only executes one event at a time. Events can launch other
events, so simulations can nest 1aunch operations in arbitrary
ways to reflect their control hierarchy.

The EQueue dialect includes an await operation that
blocks execution until a different event completes. Finally, a
launch block can pass values out with the return operation.

Example. Fig. 6 shows an example accelerator that uses
concurrent tasks, and Fig. 5 illustrates the timeline of its
execution. One ARMTrS processor uses a DMA unit for data
transfer and a small MAC kernel using 1aunch operations.
The control_» operations encode the execution order while
allowing parallel execution on the DMA and MAC kernel.

Fig. 4a highlights the event queue of arMr5 when it waits



start = equeue.control_start ()

// Event in Fig. 5(a).
done, ret = equeue.launch (buf0, bufl, dma,
kernel, mac = b0, bl, d, k, m) in (start,
ARMrS5) {
// Event in Fig. 5(b).
start_event = equeue.control_start ()
done_dma = equeue.memcpy (start_event,
buf0, bufl, dma)
done_kernel = equeue.launch (MAC=mac) in
(start_event, kernel) {
// Event in Fig. 5(c).
start_mac = ...
done_mac = equeue.launch(...) in
(start_mac, MAC){ ... }

}

done_compute = equeue.control_and (
done_kernel, done_dma)

equeue.await (done_kernel)

equeue.return (done_compute)

Figure 6: Example showing concurrent execution of an
ARMTrS5 control processor, a DMA engine, and a MAC unit.

on start event to issue launch. Fig. 4b shows when start
is generated, the 1aunch is removed from the event queue of
arMr5. Then, control_start and control_or are pushed to
the queue of ARMr5, 1aunch is pushed to the queue of kernel
, and memcpy is pushed to the queue of dma. This way, the
event operations run concurrently since they do not block
the execution of other operations in ARMr5’S launch block.
Fﬁnaﬂy,since memcpy of dma and launch of kernel both
depend on start_event, once it finishes, both memcpy and
launch can be issued from their corresponding event queues,
as indicated by Fig. 4c. Fig. 4c also shows that 1aunch of
Mac, after its dependency finishes, is pushed to event queue
of mac. The return operation passes done_compute back to
the top level as the result value, ret. Notice that done, the
first return value of 1aunch, is the dependency generated by

launch.

E. Introducing External Operations

Sometimes there are special cases where existing MLIR
dialects cannot express a specific hardware operation. We
introduce op to address this situation:

resO, ... = equeue.op("mac", {arg0, argl, ...})

op takes in a signature specifying the operation name and an
arbitrary number of inputs and outputs. Here the signature is
"mac", which can be modeled as multiplication and addition
in the one cycle in the simulator library. The simulation
engine checks the signature to jump to the operation’s
implementation specifying cycle counts and the simulated
behavior.

IV. SIMULATION

This section introduces the EQueue simulation engine.
Fig. 7 shows an overview of the simulation workflow.

A. Inputs

The simulation engine takes in an EQueue program. As
Fig. 7 shows, an EQueue program is composed of a structure
definition and a control flow. Designers can produce EQueue
programs by writing simple generators in C++, as we
demonstrate in Section VI-A. Alternatively, compilers can
translate to EQueue from high-level dialects such as Linalg,
as we show in Section VI-D. The infrastructure includes
many reusable passes (Section V) to enable these lowering
pipelines.

B. Outputs

The simulation engine outputs a profiling summary and a
visualizable tracing file. The profiling summary includes the
simulation execution time, the simulated runtime in cycles,
read and write bandwidth for each connection, maximum
bandwidth, and the total bytes read or written for each
memory. We also report a max bandwidth portion for both
read and write bandwidth, which is the fraction of the total
simulated runtime spent at a channel’s maximum bandwidth.
The designer can use this statistic to adjust bandwidth ac-
cordingly to avoid waste or increase computation utilization.

The trace is a JSON file with operation-wise records in
event trace format [9]. The Chrome browser can visualize
this event trace format [10]. We show in Section VII on how
to use this visualization to address a performance bottleneck.

C. Simulation Engine

The simulation engine loops over four stages: set up entry,
check event queue, schedule operation, and finish operation.
The first stage sets up an operation entry for each processor’s
current and next operation. The second stage checks the head
of each processor’s event queue to decide whether to issue
it. The third stage models operations’ execution time by
updating the time logs in the operation entry. To estimate
execution time, the simulation engine uses a state object for
each component. For instance, a memory component uses
banks, cycles per access, and read/write ports to calculate the
time for a read or write operation. Each component uses a
schedule queue to track operations and to model delay when
contention happens, such as when two concurrent writes
contend for the same memory. The final stage models the
effect of each operation by resetting its operation entry when
it finishes.

D. Extending the Simulator Library

The simulation engine implements the primitives for
EQueue programs using an extensible set of operation func-
tions and a component library. The interface for operation
functions consists of a cycle count and a stall signal. In the
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Figure 7: The simulation workflow.

simulator’s third stage, where it schedules operations (see
previous section), it queries each operation function to obtain
timing information. At this point, the operation function may
invoke a component object.

The EQueue infrastructure provides a standard library
of components, such as SRAM memories and processors.
Designers can extend the library with custom components
to introduce custom simulation logic. To introduce a cache
component, for example, a user would add a new cache

class to the component library and define an operation
function to support create_mem("Cache", ...) in EQueue
programs. The operation function simply instantiates the
cache component object. The cache class can inherit from a
base Memory component class; the user only needs to over-
ride a method called getReadorWriteCycles to determine
whether the access is a hit or a miss and report a latency
accordingly. The Memory class inherits from a more general
Device class that manages one or more scheduling queues
to avoid conflicts. In the case when there is conflict, the
operation function returns a stall signal instead of a cycle
count. By extending these base classes, users can specify
arbitrary behavior for components in EQueue programs.

V. LOWERING PASSES

The EQueue dialect provides a set of reusable compiler
passes. Designers can combine these passes to build acceler-
ators for simulation. We will show how to use these passes
with the case study of systolic array in Section VI-D.

1) EQueue Read Write Pass: This pass translates 1oad
and store in MLIR’s Affine dialect to EQueue’s read and
write.

2) Allocate Memory Pass: This pass allocates buffers on
a specified memory component.

3) Launch Pass: This pass adds launch operations by
taking in a specified processor component and a code block.

4) Memcpy Pass: This pass adds memcpy operations given
specified source and destination buffer and a DMA compo-
nent.

5) Memcpy to Launch Pass: This pass changes a memcpy
operation to launch with a block containing reads and write
S.

6) Split Launch Pass: This pass splits the specified launch
block at the specified place.

7) Merge Memcpy Launch Pass: This pass merges
memcpy to the specified 1aunch operation. It avoids repetition
if the 1aunch block accesses the same buffer as the memcpy.

8) Reassign Buffer Pass: This pass replaces the uses of
a buffer to another buffer. For instance, a SRAM read can
be replaced with a register read.

9) Parallel to EQueue Pass: This pass converts Affine
dialect’s parallel to EQueue’s launch with event depen-
dencies.

10) Lower Extraction Pass: This pass unrolls compo-
nents denotation in vector form.

VI. CASE STUDY: SYSTOLIC ARRAY

Systolic array is a widely-used mapping strategy to
implement efficient multiplications and additions among
matrices [17]. As the communication is limited to neighbor
processing elements (PEs), there is no cycle wasted on
global communication and address matching. Because of
their extremely broad design space of application-specific
mapping strategies, memory systems, and PE designs, rapid
simulation is critical to effectively exploiting systolic array
designs.

In this section, we build and study an EQueue model of a
systolic array. We aim to answer these questions about the
EQueue dialect for this case study:

1) Does embedding a simulator into a compiler frame-

work help facilitate exploration of algorithmic map-
ping options? (Sections VI-B and VI-D)
2) Can the simulation accurately estimate performance?
(Section VI-C)
3) Is the simulation useful to help designers find the best
design and does it scale? (Section VI-E)
To answer question 1, we first show how to model a systolic
array accelerator for convolutions using a generator that
emits a variety of configurations as EQueue programs. We
then also demonstrate a lowering pipeline that translates
from a high-level MLIR dialect into an EQueue model via
a series of reusable compiler passes. For question 2, we
compare the EQueue simulation to a state-of-the-art custom
simulator. To address question 3, we measure our model to
explore a design space of convolution accelerators.

A. Background: Dataflows

A key design decision in a systolic accelerator imple-
mentation is the dataflow, which determines how loops in
the algorithm are mapped spatially onto processing elements
(PEs) [3], [36]. In this case study, we consider three widely-
used dataflows: Weight Stationary (WS), Input Stationary
(IS), and Output Stationary (OS) [36]. The difference is
which tensor remains in each PE’s register file: the weights,
input feature map (ifmap), or output feature map (ofmap).

Fig. 8 illustrates the data movement for each dataflow. On
each cycle, each PE computes a part of final result and passes
the partial result to its neighbor [22]. We use E}j, E,, for
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Figure 8: Dataflows mapping on systolic array.

the ofmap height and width, F},, F, for the filter height and
width, N for number of weights, and C' for channels. Fig. 8a
shows that for WS, on each cycle, ifmaps and ofmaps are
passed to the neighbor PEs, while each weight is stationary
until By, x E,, ifmaps convolve with it:

pe[i+l] [j].ofmap = pe[i] [j].ofmap + pe[i] []].

ifmap * pel[il[j].weight
pel[i] [j+1] .ifmap = pe[i] []].ifmap

Fig. 8b shows IS. On each cycle, weights and ofmaps are
passed to the neighbor PEs, while every ifmap is stationary
until NV weights convolve with it:

peli+l] []].ofmap = pe[i] []].ofmap + pe[i][]].

ifmap * pel[i][]].weight
pe[i] [j+1] .weight = pe[i][]j].weight

Fig. 8c shows OS. On each cycle, ifmaps and weights are

passed to the neighbor PEs, while every ofmap is stationary

until F, x F,,, x C ifmaps and are convolved:

pel[i] [j].ofmap += pe[i] [j].ifmap * pe[i] []].
weight

pel[i+1][Jj].ifmap = pe[i][j].1ifmap

pe[i] [j+1] .weight = pe[i][]j].weight

B. Systolic Array Generator

This section demonstrates a generator that emits EQueue
code to model systolic array architectures. We start with
simple parallelism and build up to the full generator to
illustrate the simplicity relative to a traditional, custom
simulator.

1) Parallelization: We first show how to construct paral-
lelism using EQueue dialect. We use MLIR’s builder API,
which lets C++ code construct MLIR programs. This pseudo
code shows a generator for a simple parallel architecture:

start = control_start ()
for h in arr_height:
for w in arr_width:
done = equeue.launch (...)
in (start, pelh][w]){...}
// assume there is a PE array
if w ==0 && h==0:
prev_done = done
else:
prev_done = equeue.control_and (done,
prev_done)
equeue.await (prev_done)

The for loop iterates over the dimension of the processing
element (PE) array (arr_height by arr_width). Each PE
runs in parallel since they are all “launched” by the same
control_start event. On each loop, control_and collects
the 1aunch events of the current and previous PE. An await
barrier ensures that the current processor waits for all 1aunch
events to finish. We later denote this pattern as par_for.

2) Systolic passing: We next extend the generator to pass
values systolically between PEs. We use two stages: one
reads values from a buffer and compute results, and a second
stage passes values to neighboring PEs. This generator code
shows WS dataflow and omits boundary conditions for
simplicity:

//reading stage
par_for (h, w) in arr_height-1, arr_width-1:
done, weight_value[h] [w], ofmap_valuel[h] [w]=
equeue. launch (
weight_buffer = pe[h] [w] .weight_buffer,
ifmap_buffer = pelh] [w].ifmap_buffer,
ofmap_buffer = pe[h] [w].ofmap_buffer)
in (start, pel[h][w].kernel) {
ifmap = equeue.read(ifmap_buffer)
weight = equeue.read(weight_buffer)
ofmap_old = equeue.read(ofmap_buffer)
ofmap = ifmap * weight + ofmap_old
equeue.return weight, ofmap
}
//writing stage
par_for (h, w) in 1 to arr_height, 1 to arr_width

done = equeue.launch (
weight = weight_valuel[h] [w],
ofmap = ofmap_value[h] [w],
weight_buffer = pe[h] [w+l].weight_buffer,
ofmap_buffer = pe[h+tl] [w] .ofmap_buffer)
in (start, pelh][w].kernel) {
equeue.write (ofmap, ofmap_buffer)
equeue.write (weight, weight_buffer)

}

In the read stage, each PE reads ifmap, weight and ofmap
values from corresponding buffers and computes an ofmap.
In the write stage, the PEs in each column (pe[h] [w]) pass
weights to the next column (pe[h] [w+1]). PEs in a given
row write ofmaps to buffers in the next row (pe [h+1] [w]).

3) Model SRAM Bandwidth: So far, we have a com-
plete and cycle-accurate model of the core PE array logic.
The next step is to model the PE array’s interaction with
associated SRAMs to measure read and write bandwidth.



Extending our EQueue generator, we can change the 1aunch
input in our read stage to make the first column of PEs read
from an SRAM:

par_for (h, w) in arr_height, arr_width:

if w == 0: buffer = sram.ifmap_buffer
else: buffer = pel[h] [w].ifmap_buffer
done, ... = equeue.launch( ifmap_buffer =
buffer,
...){ ... } // other code same as before

Similarly, we can modify the write stage to store ofmaps
from the last row of PEs to an SRAM:
par_for (h, w) in arr_height, arr_width:

if w == arr_height-1: obuffer=sram.ofmap_buffer

else: obuffer=pel[h+1l][w].ofmap_buffer

done = equeue.launch( ofmap_buffer = obuffer,

..) {...} // other code same as before

With these small changes, the simulation engine can model
communication between SRAMs and the PE array.
Benefits. EQueue programs can modularize hardware com-
ponents (e.g., SRAM interfaces and processors) and thereby
study the individual effect of a component. Separating
representation from simulation allows a programmer to
concentrate on architecture design; no changes are necessary
to the simulation engine to evolve the modeled hardware.

C. Comparison with SCALE-Sim

To check the accuracy of our systolic array EQueue
model, we compare to a validated simulator SCALE-
Sim [32] specific to WS, IS, and OS convolutions on systolic
array.

Fig. 9 compares the simulated cycles and average band-
width for our model and SCALE-Sim, both modeling a 4x4
WS systolic array with various ifmap and weight sizes. Our
EQueue-based simulation matches SCALE-Sim’s results.
Benefits and Costs. When exploring design alternatives, an
EQueue-based simulator has a lower programming cost than
a custom one-off simulator. SCALE-Sim [32]’s WS and IS
implementation have little code overlap: WS is implemented
in Python in 569 lines of code (LOC), but switching from
WS to IS requires changing 410 LOC. In contrast, our
EQueue program for WS is implemented in C++ in 281
LOC only needs 11 LOC to switch from WS to IS.

In exchange, the one-off simulator has a performance
advantage: for experiments in Fig. 9, SCALE-Sim takes at
most 1.1 second, while the EQueue simulator takes at most
7.2 seconds. The speed comes at the cost of complex mod-
ifications while exploring the architectures and algorithm
mappings.

D. Lowering Pipeline

Rationale. The benefit of a compiler-driven approach is not
limited to lowering the bar of programming: more impor-
tantly, it makes it possible to program the simulator using
compiler passes. Integrating with a compiler stack’s shared

passes avoids the need for tedious, manual modification to
explore different program mappings.

This section constructs a lowering pipeline that compiles
from high-level algorithmic specifications to EQueue hard-
ware models. Critically, the pipeline can produce different
dataflows for the same input program by applying different
sequences of compiler passes.

Implementation. IS, WS, and OS all share a core systolic
design: on each cycle, each PE reads a value, modify it,
and writes to a neighbor PE. Fig. 10 shows how the systolic
dataflows share stages along a lowering pipeline. The first 3
stages (Linalg, Affine, and Reassign) are the same. The final
stage (Systolic) diverges, but lowering from Reassign stage
allows different dataflows to share lowering passes with dif-
ferent orders and parameters. This way, hardware designers
can only implement the highest level abstraction and then
explore design spaces with no programming overhead.

1) Linalg to Affine: We start with a convolution in Linalg
dialect, an MLIR dialect that can express arbitrary linear
algebra. The Linalg dialect can be first lowered to the Affine
dialect with the standard --convert-linalg-to-affine-
loops, which lowers the convolution to explicit nested loops.
We then apply --equeue-read-write to change 1oad and
store operations in Affine dialect to read and write in
EQueue dialect to model data movement.

2) Affine to Buffer Reassign: Next, we apply the —-
allocate-buffer and --reassign-buffer passes to replace
direct SRAM reads and writes with PE local register ac-
cesses. At this stage, we also flatten the 6 convolutional
dimensions (Ey, E,, N, Fy, F,,C) into 3: £, x E,, N,
Fy, x F, xC. This flattening reflects the stationary dimension
on PEs for each dataflow: for WS, each weight is stationary
on a PE until computed with E} x E,, ifmaps; for IS, each
ifmap is stationary for N weights; for OS, each ofmap is
stationary until accumulated with Fj, x F,, x C ifmaps and
weights.

3) Buffer Reassign to Systolic Array: After flattening, for
WS and IS, we first need to copy weights or ifmaps from
the SRAM into the PE array registers. We generate the nec-
essary memcpy operations with a ——mem-copy pass and merge
them with 1aunch operations using --merge-memcpy-launch
. Then, we implement systolic communication. For WS, we
need to pass the ifmaps and ofmaps to the right and down
on every cycle. Similarly, for IS, N weights and ofmaps
are passed, while for OS, F}, x Fy, x C ifmaps and weights
are passed. The —--split-launch and —--reassign-buffer

passes implement this systolic communication. Finally,
we apply --parallel-to-equeue and --lower-extraction
passes to complete lower operations to EQueue dialect.

The key advantage of the lowering pipeline approach is
the reduced effort for implementing different dataflows. In a
traditional simulator, changing the mapping strategy requires
extensive rewriting of the simulation engine. In the compiler-
driven approach, designers can apply different combinations
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Figure 10: Lowering pipeline for WS, IS, OS dataflow. They share the same lowering stages except the last one.

of reusable passes to try out different dataflows.

Results. Fig. 11 plots the simulator execution time, simu-
lated runtime, and read and write bandwidth on the four
convolution settings at the four stages (Linalg, Affine,
Reassign, and Systolic). This compiler pipeline does not
take a significant amount of time (it typically finishes in
microseconds).

The first three lowering stages are identical for different
dataflows, so they have the same bandwidth and runtime.
This sharing reflects the framework’s reusability for common
parts of different accelerator implementations. At the final
stage, the runtime differs from the simpler generator-based
approach from Section VI-B by 1.2% on average, up to 2%.
The difference lies in warm-up and cool-down phases that
the passes do not model. Register and SRAM bandwidth
differs for the same reason.

Fig. 11 also reflects the transition of hardware at each
stage. From Linalg stage to Affine stage, the execution time
grows, the runtime reduces, and the SRAM bandwidths
grow, since affine stage models explicit nested loops and
data movements. At the Reassign stage, we model reads
and writes on registers rather than SRAM, so the register

bandwidth changes from 0 to 1 byte per cycle and the
execution time grows. At systolic stage, we introduce a grid
of PEs running concurrently, resulting in higher execution
time, lower runtime in cycles and differentiated bandwidth.
Benefits. The availability of reusable lowering passes lets
designers rapidly switch between program—accelerator map-
pings and enables efficient design space exploration. In con-
trast, one-off simulators would require custom modifications
to support these transformations.

E. Scalability Evaluation

For hardware designers, information on different dataflow
performance patterns is essential when designing new
mapping strategies. To test our simulator’s general-
ity and scalability, we measure runtime and bandwidth
for 4,050 combinations of array configuration (Ap,
2,4,8,16,32, A, = 64/Ap) and convolutions (H/W =
2,4,8,16,32, F,/F,/C = 1,2,4, N = 1,2,4,8,16,32)
on the three dataflows.

Simulator scalability. Fig. 12a plots the simulator execution
time versus the cycle counts for each simulation. The exe-
cution time is roughly proportional to the cycle count, since
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Figure 12: Given various convolution and array configuration, plotting different parameters versus cycles for three dataflows.

our simulator faithfully reflects behavior of each processor.
At most, our simulator may require over 10 minutes for
simulation. Future work could reduce execution time by
building a lookup table to skip duplicated behavior or by
adding parallelism to the simulation engine.

Dataflows. Fig. 12b plots the SRAM read bandwidth at peak
(the maximum bandwidth times the duration) versus cycle
time. OS has the highest read bandwidth overhead while
WS requires the least. Though Fig. 12a highlights OS can
achieve the shortest runtime in cycles, designers can choose
the dataflow according to hardware requirements.

Array configuration. Our simulator can help designers ob-
serve general “rules” about performance. Figures 12c to 12e
plot the relationship between cycles and array structures.
The loop iteration count is proportional to cycle count. We
can calculate loop iterations as [D1/Ap] X [ Ds/A,, ], where
Dy =Fyg-F,-C,D2= N for WS, Dy = Fy-F,,-C, Dy =
EpxE, forlIS and D1 = N, Dy = Fy-F,,-C for OS. With
this general rule, we can always get the minimal execution
time by choosing the array structure that minimizes loop
iterations.

Benefits. The evaluation on 4050 data points shows that
our simulator scales to various convolutions. Algorithm
designers can use it to choose the best dataflows and array
configuration for a convolution.

VII. CASE STUDY: ACAP Al ENGINE

A common approach to hardware—software co-design is
to start simple and, guided by bottlenecks, build up a more
sophisticated architecture. This section uses the EQueue
dialect to simulate a real-world architecture: Xilinx’s Al
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Engine in Versal ACAP [35]. We show our simulation result
matches the Al Engine simulator [38], while the high-level
simulator allows architectures ignore real-word constraints
like bandwidth and gradually introduce them with low pro-
gramming cost. During this process, the EQueue visualized
tracing can guide designers to improve their designs.

A. Versal ACAP

Xilinx’s Versal adaptive compute acceleration platform
(ACAP) is a reconfigurable platform that includes pro-
grammable logic, ARM cores, and Al Engines, which are
specialized vector units [8], [35], [40]. The AI Engine is
a fixed array of interconnected VLIW SIMD processors
optimized for signal processing and machine learning.

B. FIR

A finite impulse response (FIR) filter is a common signal
processing primitive that responds to inputs of finite dura-
tion. An FIR operation filters and accumulates on a sliding-
window. Given a series of discrete input samples = and N
coefficients c, the output samples y are calculated as:

N-1
Yn = § Ck - Tn+tk
k=0

Xilinx’s Al Engine programming tutorial [38] uses a FIR
filter as an example to demonstrate the hardware’s flexibility
and capabilities. In this case study, we implement the same
FIR example using the EQueue dialect dialect to demonstrate
how the language and simulation engine can easily model
an existing programmable architecture. We compare our



simulator’s reports to those from Xilinx’s own, hand-written,
closed-source simulator to ground the results.

The Xilinx FIR tutorial uses a filter with 32 complex,
asymmetric coefficients and a digital series of length 512.
Each value occupies 32 bits.

C. Case 1: Unlimited Resources

We start with a basic 1-processor implementation and
use empirical measurements to improve the design. We can
use the AI Engine’s intrinsics: mul4 and mac4. On each
cycle, mul4 computes on 4 parallel lanes to perform 8
multiplications where each lane performs 2 [39]. mac4 works
in the same way. Analytically, therefore, it should take 16
cycles to compute 4 outputs for a filter length of 32.

We follow Section III-E to self-define mu14 with equeue
{ofmap, ifmap, filter}). In the simulator
library, an operation with the “mul4” signature reads from a
buffer, computes 4 lanes with 2 computation at each lane per
cycle, and writes to the buffer. We define the mac4 operation
the same way. This pseudocode shows the MLIR generator
for a single-core implementation, where ifmap, ofmap and
filter are buffers:

.op("mul4d",

start = equeue.control_start ()
equeue.launch(...) in (start, ai_engine) {
equeue.op ("muld4", {ofmap, ifmap, filter})
for 0 to 11:
equeue.op ("mac4", {ofmap, ifmap, filter})
ifmap_tensor = equeue.read(sin)
equeue.write (ifmap_tensor, ifmap)
for 0 to 4:
equeue.op ("mac4", {ofmap, ifmap, filter})

ofmap_tensor = equeue.read(ofmap);
equeue.write (ofmap_tensor, sout)

}

Our EQueue simulation reports 2048 cycles to generate 512
outputs, close to Xilinx AI Engine simulator’s result of
2276 cycles [38]. The Xilinx simulator also models other
factors in performance, including loop control costs, syn-
chronization overhead, etc. The EQueue simulation engine’s
throughput is slightly higher because it does not model these
overheads.

D. Case 2: Optimizing Case 1

The next step for a hardware designer is to incrementally
increase the design’s complexity to attain higher throughput.
In an ideal world, since mul4/mac4 computes 4 lanes, each
with 2 operation per cycle, we could pipeline 32/2 = 16
processors to maximize throughput. Due to bandwidth con-
straints, Xilinx’s FIR tutorial simulates 4 processors rather
than 16. Using the EQueue model, we can first model the
full 16-processor pipelined system and then introduce more
realistic constraints to measure their effect on performance.

The modification to our EQueue program is straightfor-
ward. Instead of one processor executing 16 sequential op-
erations, we now create 16 processors, where each processor
completes one mul4/maca operation. We show the simplified
control flow:
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Figure 13: Visualizing operation-wise tracing of FIR imple-
mented with 16 processors with limited bandwidth.

start = equeue.control_start ()
for k in 0..16:
equeue.launch(...) in (start, ai_enginel[k]) {

ifmap_tensor = equeue.read(sin)
equeue.write (ifmap_tensor, ifmap)
equeue.op ("mac4", {ofmap, ifmap, filter})
ofmap_tensor = equeue.read(ofmap);
equeue.write (ofmap_tensor, sout)

}

equeue.await ()
The simulation engine reports 143 cycles to produce outputs
for 512 inputs. This matches the expected performance
because pipelining 16 processors requires 15 cycles to warm
up.
E. Case 3: Limited Bandwidth

The AI Engine is constrained by the 32-bit bandwidth
of its AXI4-Stream I/O interfaces [39]. To add bandwidth
constraints, we need only add a connection (Section III-A)
and update the reads and writes accordingly:

conn_in =
conn_out =

connection ("Streaming",
connection ("Streaming",

32);
32)) &

ifmap_tensor = equeue.read(sin,
equeue.write (ofmap_tensor, sout,

conn_out)
conn_out)

Adding this bandwidth constraint entails only simple, lo-
cal changes to the EQueue program; extending a custom
simulator, in contrast, could require invasive modifications.
According to our simulation engine, it takes 588 cycles to
generate 512 outputs, including 79 cycles to warm up.

To understand the reason for reduced throughput, Fig. 13
shows the operation-wise tracing with visualized via the
Chrome browser, where green slots are mul operations,
red slots are mac operations, blue slots indicate installing
and the z-axis shows cycle counts where 1lus stands for
one cycle. For every 4 cycles, each processor operation
stalls for 3 cycles. The stalls are the result of the 32-bit
bandwidth constraint: it takes 4 cycles to transmit 4 inputs,
but computation only takes 1 cycle to consume these values.
For each Al Engine’s attempt to start computation, it waits
for its preceding core compute (1 cycle) and pass values to
it (4 cycles), so the warm-up stage takes 5 x 16 — 1 = 79
cycles.

F Case 4: Optimizing Case 3

Our bandwidth-constrained model shows that 75% of the
hardware’s computation power is wasted, i.e., we stall on 3



AlEngine:
host

Figure 14: Visualizing operation-wise tracing of FIR imple-
mented with 4 processors with limited bandwidth.

of every 4 cycles. To balance the system and avoid wasting
area and power, a designer can reduce the 16 processors to
4:

start = equeue.control_start ()
for k in 0..4: // 16 —> 4
// 1 > 4 sequential comput
equeue.launch(...) in (start, ai_engine[k]) {
ifmap_tensor = equeue.read(sin,
connection_in[k])
equeue.read (ifmap_tensor, ifmap)
equeue.op ("mac4", {ofmap, ifmap, filter})
equeue.op ("mac4", {ofmap, ifmap, filter})
ofmap_tensor = equeue.read(ofmap);
equeue.write (ofmap_tensor, sout,
connection_out [k])
equeue.op ("mac4", {ofmap, ifmap,
equeue.op ("mac4", {ofmap, ifmap,

cores

ations

filter})
filter})
}

equeue.await ()

Our EQueue simulation engine reports that generating 512
outputs requires 538 cycles, which matches Xilinx’s simu-
lator result of 539 cycles. Warm-up takes 26 cycles, which
is much faster than the previous case. Fig. 14 visualizes the
operation trace for the balanced 4-processor system: there is
no stalling once the processors have warmed up.

Benefits. Typical simulation tools can make it challenging
for software designers to identify hardware bottlenecks. This
case study advocates an opposite approach: designers can
start with a simple design and gradually add real-world
constraints to examine their effects on performance. Our
EQueue approach requires modest modification at each step,
but effectively guides users to improve their design.

Our EQueue-based approach matches the results of Xil-
inx’s existing Al Engine simulator tool. Thanks to its high-
level abstraction, the EQueue-based simulator is much faster:
the 4 processor implementation takes 0.07 seconds, while
the AIE simulator first requires 5 minutes for compilation
and then 3 minutes for simulation. Also, due to its focus on
low-level details, the Al Engine implementation is spread
across six separate files. Any updates to the interface or
mapping strategy requires substantial work to implement and
recompile.

VIII. RELATED WORK

Because simulation is a critical part of a hardware design
workflow, it is an old and well-studied research topic. Space
precludes a complete census of all approaches to simulation,
but we discuss the most closely related techniques here.

The EQueue simulation flow takes inspiration from hard-
ware modeling languages [1], [11], [12], [19], [21], [29],
[31]. It differs from RTL simulation with its higher-level
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representation and focus on an intermediate representation
that can be transformed by compiler passes. We designed
the EQueue dialect because existing languages and MLIR
dialects cannot represent the core concepts required for flex-
ible, high-level simulation: fine-grained concurrency, con-
tention for shared heterogeneous hardware resources, and
data movement constraints.

RTL simulators: Most RTL development tools have
accompanying simulators [13], [15], [16], [41], [42]. RTL
simulation can faithfully model a complete hardware design,
but implementing a design in RTL requires specialized
hardware expertise and carries a high engineering burden.
An alternative is integrating a more abstract simulation with
RTL using a multi-level tool such as PyMTL [23]. We view
the EQueue dialect as a complement to these frameworks
that makes it easier to generate and transform higher-level
models before completing a more detailed implementation.

Application-specific simulators: Many efforts have
constructed architecture-specific simulators, for domains in-
cluding sparse linear algebra [4], stencils [6], and DNN
inference [5], [18], [26], [32]. While these simulators are
fast and accurate, they are challenging to construct from
scratch. The EQueue dialect dialect provides a faster way to
build simulators.

MLIR methodology: It is appealing to use existing
MLIR dialects that already offers various transformations
and ways to express computations and hardware. For ex-
ample, MLIR’s Async dialect [25] models asynchronous
execution. It cannot, however, associate code with specific
processing units in a hardware structure. CIRCT [7] is an
ongoing project to apply MLIR’s methodology to hardware
design tools. It encompasses many dialects, including a
Handshake dialect representing asynchronous processes that
can compile to a FIRRTL dialect for circuit-level transfor-
mations and then to LLHD dialect to describe RTL. The
HIR dialect [24] describes hardware with explicit scheduling
and binding, which serves as a better IR than pure LLVM
for HLS-like compilation from software to hardware. Both
HIR and the CIRCT dialects are abstractions for generating
concrete hardware implementations, not high-level abstrac-
tions for modeling concurrency and data movement for
efficient simulation. The EQueue dialect differs by explicitly
representing execution units and mapping event-triggered
computations onto them.

Compiler-driven DSE: Compilation is an efficient way
to perform design space exploration (DSE), especially in the
specific domain of tensor computations. Interstellar [43] uses
Halide [30] to explore DNN accelerator designs. Union [14]
uses MLIR programs as inputs to optimize spatial DNN ac-
celerators by analyzing tensor operations expressed in Linalg
or Affine dialect with MAESTRO [18] and Timeloop [26]
as cost models. Similar to the EQueue methodology, these
frameworks benefit from separating modeling from represen-
tation for rapid iteration. However, all of these approaches



target a specific category of computation and hardware: they
map high-level DNN dataflow mappings to synchronous PE
arrays of regular structures. The EQueue dialect aims to ad-
dress general hardware simulation, including programmable
architectures that do not resemble systolic arrays, such as
the AI Engine (Section VII). EQueue may also be a good fit
for extending Union with support for explicit representations
of hardware components.

IX. CONCLUSION

Hardware simulation frameworks need a separation of
simulation from representation. The simulation flow for
EQueue programs lowers the bar for designers with abstract
representations, exposes intermediate optimization stages,
and makes it easy to apply changes with reusable compiler
passes.

ACKNOWLEDGEMENTS

This work was supported by CRISP, one of six centers in
JUMP, a Semiconductor Research Corporation (SRC) pro-
gram sponsored by DARPA. This research is also partially
supported by the Intel and NSF joint research center for
Computer Assisted Programming for Heterogeneous Archi-
tectures (CAPA). It was supported by NSF awards #1845952
and #1723715.

REFERENCES

[1] J. Auerbach, D. F. Bacon, P. Cheng, and R. Rabbah, “Lime:
a Java-compatible and synthesizable language for heteroge-
neous architectures,” in Proceedings of the ACM interna-
tional conference on Object oriented programming systems
languages and applications, 2010, pp. 89-108.

[2] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,

A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti

et al., “The gem5 simulator,” ACM SIGARCH computer

architecture news, vol. 39, no. 2, pp. 1-7, 2011.

[3] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An

energy-efficient reconfigurable accelerator for deep convolu-

tional neural networks,” IEEE Journal of Solid-State Circuits,

vol. 52, no. 1, pp. 127-138, 2016.

[4] J. W. Choi, A. Singh, and R. W. Vuduc, “Model-driven

autotuning of sparse matrix-vector multiply on GPUs,” in

Principles and Practice of Parallel Programming (PPoPP),

2010.

[5] S. B. Choi, S. S. Lee, and S. J. Jang, “CNN inference

simulator for accurate and efficient accelerator design,” in

2019 International SoC Design Conference (ISOCC), 2019,

pp. 283-284.

[6] K. Datta, S. Kamil, S. Williams, L. Oliker, J. Shalf, and

K. Yelick, “Optimization and performance modeling of stencil

computations on modern microprocessors,” SIAM review,

vol. 51, no. 1, pp. 129-159, 2009.

13

[7]1 S. Eldridge, P. Barua, A. Chapyzhenka, A. Izraelevitz,
J. Koenig, C. Lattner, A. Lenharth, G. Leontiev, F. Schuiki,
R. Sunder et al., “MLIR as hardware compiler infrastructure,”
in Workshop on Open-Source EDA Technology (WOSET),
2021.

[8] B. Gaide, D. Gaitonde, C. Ravishankar, and T. Bauer, “Xilinx
adaptive compute acceleration platform: Versal architecture,”
in Proceedings of the 2019 ACM/SIGDA International Sympo-

sium on Field-Programmable Gate Arrays, 2019, pp. 84-93.

[9] Google, “Trace event format,” https://github.com/catapult-
project/catapult/blob/master/tracing/docs/getting-started.md,

accessed: 4-29-2021.

[10] Google, “The trace event profiling tool,” http://dev.chromium.
org/developers/how-tos/trace-event-profiling-tool, accessed:

5-28-2021.

[11] J. Hegarty, J. Brunhaver, Z. DeVito, J. Ragan-Kelley, N. Co-
hen, S. Bell, A. Vasilyev, M. Horowitz, and P. Hanrahan,
“Darkroom: compiling high-level image processing code into
hardware pipelines.” ACM Trans. Graph., vol. 33, no. 4, pp.

144-1, 2014.

[12] J. Hegarty, R. Daly, Z. DeVito, J. Ragan-Kelley, M. Horowitz,
and P. Hanrahan, “Rigel: Flexible multi-rate image processing
hardware,” ACM Transactions on Graphics (TOG), vol. 35,

no. 4, pp. 1-11, 2016.

[13] Intel Inc., “Intel software development emulator,”
https://software.intel.com/content/www/us/en/develop/
articles/intel-software-development-emulator.html, accessed:

5-8-2021.

[14] G. Jeong, G. Kestor, P. Chatarasi, A. Parashar, P.-A. Tsai,
S. Rajamanickam, R. Gioiosa, and T. Krishna, “Union: A
unified HW-SW co-design ecosystem in MLIR for eval-
uating tensor operations on spatial accelerators,” in 2021
30th International Conference on Parallel Architectures and

Compilation Techniques (PACT). 1EEE, 2021, pp. 30-44.

[15] D.Kim, C. Celio, D. Biancolin, J. Bachrach, and K. Asanovic,
“Evaluation of RISC-V RTL with FPGA-accelerated simula-
tion,” in First Workshop on Computer Architecture Research

with RISC-V, 2017.

[16] D. Kim, A. Izraelevitz, C. Celio, H. Kim, B. Zimmer, Y. Lee,
J. Bachrach, and K. Asanovicc, “Strober: Fast and accurate
sample-based energy simulation for arbitrary RTL,” in 2016
ACM/IEEE 43rd Annual International Symposium on Com-

puter Architecture (ISCA). 1EEE, 2016, pp. 128-139.

[17] H. Kung, “Why systolic architectures?”” IEEE Annals of the

History of Computing, vol. 15, no. 01, pp. 3746, 1982.
[18] H. Kwon, P. Chatarasi, M. Pellauer, A. Parashar, V. Sarkar,
and T. Krishna, “Understanding reuse, performance, and
hardware cost of DNN dataflow: A data-centric approach,”
in Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, 2019, pp. 754-768.



(19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

Y.-H. Lai, Y. Chi, Y. Hu, J. Wang, C. H. Yu, Y. Zhou, J. Cong,
and Z. Zhang, “HeteroCL: A multi-paradigm programming
infrastructure for software-defined reconfigurable computing,”
in Proceedings of the 2019 ACM/SIGDA International Sym-
posium on Field-Programmable Gate Arrays, 2019, pp. 242—
251.

C. Lattner, M. Amini, U. Bondhugula, A. Cohen, A. Davis,
J. Pienaar, R. Riddle, T. Shpeisman, N. Vasilache, and O. Zi-
nenko, “MLIR: A compiler infrastructure for the end of
Moore’s law,” arXiv preprint arXiv:2002.11054, 2020.

J. Li, Y. Chi, and J. Cong, “HeteroHalide: From image pro-
cessing DSL to efficient FPGA acceleration,” in Proceedings
of the 2020 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, 2020, pp. 51-57.

R.J. Lipton and D. Lopresti, “A systolic array for rapid string
comparison,” in Proceedings of the Chapel Hill Conference
on VLSI. Chapel Hill NC, 1985, pp. 363-376.

D. Lockhart, G. Zibrat, and C. Batten, “PyMTL: A unified
framework for vertically integrated computer architecture
research,” in 2014 47th Annual IEEE/ACM International
Symposium on Microarchitecture. 1EEE, 2014, pp. 280-292.

K. Majumder and U. Bondhugula, “HIR: An mlir-based inter-
mediate representation for hardware accelerator description,”
arXiv preprint arXiv:2103.00194, 2021.

MLIR Project, “Async dialect,” https://mlir.llvm.org/docs/
Dialects/AsyncDialect/, accessed: 5-11-2021.

A. Parashar, P. Raina, Y. S. Shao, Y.-H. Chen, V. A. Ying,
A. Mukkara, R. Venkatesan, B. Khailany, S. W. Keckler, and
J. Emer, “Timeloop: A systematic approach to DNN accel-
erator evaluation,” in 2019 IEEE international symposium
on performance analysis of systems and software (ISPASS).
IEEE, 2019, pp. 304-315.

J. Power, J. Hestness, M. S. Orr, M. D. Hill, and D. A.
Wood, “gem5-gpu: A heterogeneous CPU-GPU simulator,”
IEEE Computer Architecture Letters, vol. 14, no. 1, pp. 34—
36, 2014.

C. Ptolemaeus, System design, modeling, and simulation:
using Ptolemy II. Ptolemy.org, Berkeley, 2014, vol. 1.

J. Pu, S. Bell, X. Yang, J. Setter, S. Richardson, J. Ragan-
Kelley, and M. Horowitz, “Programming heterogeneous sys-
tems from an image processing DSL,” ACM Transactions on
Architecture and Code Optimization (TACO), vol. 14, no. 3,
pp- 1-25, 2017.

J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand,
and S. Amarasinghe, “Halide: a language and compiler for
optimizing parallelism, locality, and recomputation in image
processing pipelines,” Acm Sigplan Notices, vol. 48, no. 6,
pp. 519-530, 2013.

H. Rong, “Programmatic control of a compiler for gen-
erating high-performance spatial hardware,” arXiv preprint
arXiv:1711.07606, 2017.

14

(32]

(33]

[34]

(35]

(36]

(37]

(38]

(39]

[40]

(41]

(42]

[43]

A. Samajdar, Y. Zhu, P. Whatmough, M. Mattina, and
T. Krishna, “SCALE-Sim: Systolic cnn accelerator simulator,”
arXiv preprint arXiv:1811.02883, 2018.

F. Schuiki, A. Kurth, T. Grosser, and L. Benini, “LLHD: A
multi-level intermediate representation for hardware descrip-
tion languages,” in Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Imple-
mentation, 2020, pp. 258-271.

Y. S. Shao, S. L. Xi, V. Srinivasan, G.-Y. Weli, and D. Brooks,
“Co-designing accelerators and SoC interfaces using gem5-
Aladdin,” in 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). 1EEE, 2016,
pp- 1-12.

1. Swarbrick, D. Gaitonde, S. Ahmad, B. Gaide, and Y. Arbel,
“Network-on-chip programmable platform in Versal ACAP
architecture,” in Proceedings of the 2019 ACM/SIGDA In-
ternational Symposium on Field-Programmable Gate Arrays,
2019, pp. 212-221.

V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient
processing of deep neural networks: A tutorial and survey,”
Proceedings of the IEEE, vol. 105, no. 12, pp. 2295-2329,
2017.

A. Varga, “Discrete event simulation system,” in Proc. of the
European Simulation Multiconference (ESM’2001), 2001, pp.
1-7.

Xilinx Inc., “Super sampling rate FIR filters implementation
on the Al Engine.” https://github.com/Xilinx/Vitis-Tutorials/
tree/master/Al_Engine_Development/Design_Tutorials/02-
super_sampling_rate_fir, accessed: 7-21-2021.

Xilinx Inc., “Versal ACAP Al Engine programming
environment - user guide,” https://www.xilinx.com/support/
documentation/sw_manuals/xilinx2020_2/ug1076-ai-engine-
environment.pdf, accessed: 4-28-2021.

Xilinx Inc., “Versal: The first adaptive compute accel-
eration platform (ACAP),” https://www.xilinx.com/support/
documentation/whitepapers/wp505-versal-acap.pdf, accessed:
5-1-2021.

Xilinx Inc., “Vivado high-level synthesis,” https://www.
xilinx.com/products/design-tools/vivado/integration/esl-
design.html, accessed: 5-8-2021.

Xilinx Inc., “Vivado simulator,” https://www.xilinx.com/
products/design-tools/vivado/simulator.html, accessed: 5-8-
2021.

X. Yang, M. Gao, Q. Liu, J. Setter, J. Pu, A. Nayak,
S. Bell, K. Cao, H. Ha, P. Raina et al., “Interstellar: using
Halide’s scheduling language to analyze DNN accelerators,”
in Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and
Operating Systems, 2020, pp. 369-383.



