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Abstract—As customized accelerator design has become
increasingly popular to keep up with the demand for high
performance computing, it poses challenges for modern simu-
lator design to adapt to such a large variety of accelerators.
Existing simulators tend to two extremes: low-level and general
approaches, such as RTL simulation, that can model any
hardware but require substantial effort and long execution
times; and higher-level application-specific models that can be
much faster and easier to use but require one-off engineering
effort.

This work proposes a compiler-driven simulation workflow
that can model configurable hardware accelerator. The key
idea is to separate structure representation from simulation by
developing an intermediate language that can flexibly represent
a wide variety of hardware constructs. We design the Event
Queue (EQueue) dialect of MLIR, a dialect that can model ar-
bitrary hardware accelerators with explicit data movement and
distributed event-based control; we also implement a generic
simulation engine to model EQueue programs with hybrid
MLIR dialects representing different abstraction levels. We
demonstrate two case studies of EQueue-implemented acceler-
ators: the systolic array of convolution and SIMD processors in
a modern FPGA. In the former we show EQueue simulation is
as accurate as a state-of-the-art simulator, while offering higher
extensibility and lower iteration cost via compiler passes. In the
latter we demonstrate our simulation flow can guide designer
efficiently improve their design using visualizable simulation
outputs.

Keywords-Programming Language; MLIR; Multi-level Ab-
stractions; Simulation; Accelerators; Reconfigurable Hardware

I. INTRODUCTION

Hardware accelerators are a central tool for improving

efficiency in the post-Moore era. Successful accelerators

cannot be designed in a vacuum: realizing their full potential

requires simultaneous advances in algorithms and compilers.

Co-design between hardware and its accompanying software

stack requires a way to rapidly simulate a proposed hardware

accelerator before finalizing its design.

However, standard approaches to hardware simulation,

can impede this kind of rapid iteration. For instance, al-

though RTL simulation [15], [16], [23], [33] is valuable

when the hardware is being finalized at the end of the

design process, it tends to be too detailed and too slow to

be practical for earlier hardware–software co-design phases.

Designers often build custom high-level simulators [4]–[6],

[32] for specific applications and architectures that sacrifice

accuracy for greater flexibility and faster simulation times.

However, these custom simulators specialize for a specific

architecture model—changing the modeled hardware, such

as introducing a new level in a memory hierarchy, re-

quires rewriting substantial parts of the simulator. General-

purpose simulation frameworks, in contrast, tend to focus

on processor-centric architectures like CPUs and GPUs [2],

[27], [34], meaning that modeling a custom accelerator

architecture still requires a custom specialized implementa-

tion of the simulation logic. Finally, traditional simulators

do not expose an intermediate representation, so it can

be challenging to integrate them with a compiler stack to

measure performance on real software.

This paper presents a general framework for rapidly

implementing high-level simulators for arbitrary hardware

accelerators. This framework shares basic discrete-event

semantics with many existing simulation systems [28], [37]

and focuses on implementation in a multi-level compiler in-

frastructure, MLIR [20]. This implementation enables rapid

iteration and efficient, low-effort simulation of generated

architectures and is intended to exist as part of an end-to-end

toolchain, rather than as a standalone simulation framework.

The system has two main components: an MLIR di-

alect for representing hardware accelerators, and a generic

simulation engine that interprets those representations. Our

core contribution is an event queue (EQueue) dialect in

MLIR: an intermediate language that represents accelerators

at many levels of detail, from simple first-order models

to detailed, multi-component simulations. The dialect fo-

cuses on expressing memory allocation, data movement,

and parallel execution with event-based control. The dialect

is directly executable by a generic timed discrete-event

simulation engine, enabling arbitrary architectures to be

executed. The simulation can provide estimates of overall

execution time taking into account data dependencies and

resource limitations. The simulation engine also produces

visualizable operation-level traces for detailed performance

analysis.

By building on MLIR, the EQueue dialect leverages a

broad ecosystem of transformations, analyses, and other di-

alects. Designers can quickly prototype compilers from high-

level languages to lower-level accelerator configurations.
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Figure 1: An example of EQueue simulation on different

levels of hardware abstraction.

As a software compiler infrastructure, MLIR also enables

analysis and transformation tools that are not possible with

one-off simulators. For example, Fig. 1 shows a lowering

pipeline for progressive optimization of tensor computations

using existing MILR dialects: the high-level Linalg dialect

to represent tensor operations, the Affine dialect to express

explicit loop tiling, and finally our new EQueue dialect to

model explicit data movement among hardware components.

Critically, such a lowering pipeline enables simulation at

multiple levels of detail: users can get quick-and-dirty per-

formance estimates at the Linalg level on tensor behavior, or

they can lower gradually to more detailed EQueue hardware

simulations for more accurate but costly estimation.

Compared to traditional one-off accelerator simulators, we

see several advantages in the compiler-based approach:

1) We can simulate at different points in a compilation

flow, representing a hardware at multiple abstraction

levels.

2) Changes to the architecture are decoupled from

changes to the simulation logic, so design iteration

can be easier.

3) By reusing compiler passes with different parameters

to transform the architecture, designers can easily

switch among different architectures for the same

computation.

This paper presents the EQueue dialect and its open-source1

implementation using MLIR. We explain the core constructs

via a running example (Section II) and then detail the dialect

(Section III) and its simulation engine (Section IV). We

show the flexibility of programming with two case studies:

a systolic array for deep learning computations , and a

model of the AI Engine cores in Xilinx’s Versal ACAP

fabric. In the first case, we compare our EQueue-based

simulator against a traditional, special-purpose systolic array

simulator, SCALE-Sim [32]. The EQueue approach matches

its accuracy while offering better flexibility to rapidly change

the modeled data flow (Section VI). In the second case, we

demonstrate how EQueue’s flexibility can guide designers

to improve their designs on a real-world reconfigurable

1https://github.com/cucapra/EventQueue

architecture (Section VII).

II. OVERVIEW BY EXAMPLE

This section summarizes our simulation flow. We write

an EQueue program (Fig. 2a) and show how our simulation

engine executes it. Fig. 2b depicts the modeled architecture.

A. Structure Specification

The first main part of an EQueue program is a set of

structural declarations, which define the hardware resources

that make up an accelerator. Fig. 2a lists an EQueue program

describing a toy accelerator in Fig. 2b. First, create_*

operations instantiate components like processing elements

(PEs) and memories. Then, launch operations map work

onto this structure to specify the computation.

We start with structure specification 1 . The program

uses several create_* operations to declare components

including processors, memories, and direct memory access

(DMA) units. These create_* operations select from a

range of primitive component types (ARMr6, SRAM, Register

, etc.). These tags correspond to performance models in

the simulation engine: for example, the simulation model

for SRAM components has slower warm-up time, slower

reads, and higher power usage than the Register model.

Programs can assemble these components into hierarchies

using create_comp to create a new component and add_comp

to add one to an existing component.

B. Control Flow

The second part of a EQueue program is its control flow.

The core operation is launch. The launch operation takes

a dependency, a processor component, and a block of code.

The simulation engine implements launch by issuing code

blocks on processors, which execute sequentially.

launch or memcpy are event operations executed out of

order. Every processor in the simulation has an event

queue; launching a code block enqueues it for the given

processor. At simulation, the engine checks the dependency

and executes code blocks when their dependencies are ready.

Processors communicate by spawning events with launch or

memcpy.

For example, the control flow 2 illustrates how the

Kernel processor distributes its work to DMA, PE0, and PE1.

Fig. 2b indicates the communication using arrows. DMA, PE0,

and PE1 are all independent processors but can communicate

through their event queues. As the launch of PE0 and PE1

both depend on mempcy operation of DMA, PE0 and PE1 start

simultaneously.

Benefits. This example shows how EQueue describes ac-

celerator structure and control flow separately from the

simulation logic. Designers can change the architecture

without needing to modify the simulation engine, which

reduces the cost of exploring alternative designs. It also

shows how EQueue programs can intermix code from other
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start = equeue.control_start()

// Event in Fig. 5(a).

done, ret = equeue.launch (buf0, buf1, dma,

kernel, mac = b0, b1, d, k, m) in (start,

ARMr5){

// Event in Fig. 5(b).

start_event = equeue.control_start()

done_dma = equeue.memcpy(start_event,

buf0, buf1, dma)

done_kernel = equeue.launch(MAC=mac) in

(start_event, kernel){

// Event in Fig. 5(c).

start_mac = ...

done_mac = equeue.launch(...) in

(start_mac, MAC){ ... }

...

}

done_compute = equeue.control_and(

done_kernel, done_dma)

equeue.await(done_kernel)

equeue.return(done_compute)

}

Figure 6: Example showing concurrent execution of an

ARMr5 control processor, a DMA engine, and a MAC unit.

on start event to issue launch. Fig. 4b shows when start

is generated, the launch is removed from the event queue of

ARMr5. Then, control_start and control_or are pushed to

the queue of ARMr5, launch is pushed to the queue of kernel

, and memcpy is pushed to the queue of dma. This way, the

event operations run concurrently since they do not block

the execution of other operations in ARMr5’s launch block.

Finally, since memcpy of dma and launch of kernel both

depend on start_event, once it finishes, both memcpy and

launch can be issued from their corresponding event queues,

as indicated by Fig. 4c. Fig. 4c also shows that launch of

MAC, after its dependency finishes, is pushed to event queue

of MAC. The return operation passes done_compute back to

the top level as the result value, ret. Notice that done, the

first return value of launch, is the dependency generated by

launch.

E. Introducing External Operations

Sometimes there are special cases where existing MLIR

dialects cannot express a specific hardware operation. We

introduce op to address this situation:

res0, ... = equeue.op("mac", {arg0, arg1, ...})

op takes in a signature specifying the operation name and an

arbitrary number of inputs and outputs. Here the signature is

"mac", which can be modeled as multiplication and addition

in the one cycle in the simulator library. The simulation

engine checks the signature to jump to the operation’s

implementation specifying cycle counts and the simulated

behavior.

IV. SIMULATION

This section introduces the EQueue simulation engine.

Fig. 7 shows an overview of the simulation workflow.

A. Inputs

The simulation engine takes in an EQueue program. As

Fig. 7 shows, an EQueue program is composed of a structure

definition and a control flow. Designers can produce EQueue

programs by writing simple generators in C++, as we

demonstrate in Section VI-A. Alternatively, compilers can

translate to EQueue from high-level dialects such as Linalg,

as we show in Section VI-D. The infrastructure includes

many reusable passes (Section V) to enable these lowering

pipelines.

B. Outputs

The simulation engine outputs a profiling summary and a

visualizable tracing file. The profiling summary includes the

simulation execution time, the simulated runtime in cycles,

read and write bandwidth for each connection, maximum

bandwidth, and the total bytes read or written for each

memory. We also report a max bandwidth portion for both

read and write bandwidth, which is the fraction of the total

simulated runtime spent at a channel’s maximum bandwidth.

The designer can use this statistic to adjust bandwidth ac-

cordingly to avoid waste or increase computation utilization.

The trace is a JSON file with operation-wise records in

event trace format [9]. The Chrome browser can visualize

this event trace format [10]. We show in Section VII on how

to use this visualization to address a performance bottleneck.

C. Simulation Engine

The simulation engine loops over four stages: set up entry,

check event queue, schedule operation, and finish operation.

The first stage sets up an operation entry for each processor’s

current and next operation. The second stage checks the head

of each processor’s event queue to decide whether to issue

it. The third stage models operations’ execution time by

updating the time logs in the operation entry. To estimate

execution time, the simulation engine uses a state object for

each component. For instance, a memory component uses

banks, cycles per access, and read/write ports to calculate the

time for a read or write operation. Each component uses a

schedule queue to track operations and to model delay when

contention happens, such as when two concurrent writes

contend for the same memory. The final stage models the

effect of each operation by resetting its operation entry when

it finishes.

D. Extending the Simulator Library

The simulation engine implements the primitives for

EQueue programs using an extensible set of operation func-

tions and a component library. The interface for operation

functions consists of a cycle count and a stall signal. In the
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Figure 7: The simulation workflow.

simulator’s third stage, where it schedules operations (see

previous section), it queries each operation function to obtain

timing information. At this point, the operation function may

invoke a component object.

The EQueue infrastructure provides a standard library

of components, such as SRAM memories and processors.

Designers can extend the library with custom components

to introduce custom simulation logic. To introduce a cache

component, for example, a user would add a new Cache

class to the component library and define an operation

function to support create_mem("Cache", ...) in EQueue

programs. The operation function simply instantiates the

cache component object. The Cache class can inherit from a

base Memory component class; the user only needs to over-

ride a method called getReadOrWriteCycles to determine

whether the access is a hit or a miss and report a latency

accordingly. The Memory class inherits from a more general

Device class that manages one or more scheduling queues

to avoid conflicts. In the case when there is conflict, the

operation function returns a stall signal instead of a cycle

count. By extending these base classes, users can specify

arbitrary behavior for components in EQueue programs.

V. LOWERING PASSES

The EQueue dialect provides a set of reusable compiler

passes. Designers can combine these passes to build acceler-

ators for simulation. We will show how to use these passes

with the case study of systolic array in Section VI-D.

1) EQueue Read Write Pass: This pass translates load

and store in MLIR’s Affine dialect to EQueue’s read and

write.

2) Allocate Memory Pass: This pass allocates buffers on

a specified memory component.

3) Launch Pass: This pass adds launch operations by

taking in a specified processor component and a code block.

4) Memcpy Pass: This pass adds memcpy operations given

specified source and destination buffer and a DMA compo-

nent.

5) Memcpy to Launch Pass: This pass changes a memcpy

operation to launch with a block containing reads and write

s.

6) Split Launch Pass: This pass splits the specified launch

block at the specified place.

7) Merge Memcpy Launch Pass: This pass merges

memcpy to the specified launch operation. It avoids repetition

if the launch block accesses the same buffer as the memcpy.

8) Reassign Buffer Pass: This pass replaces the uses of

a buffer to another buffer. For instance, a SRAM read can

be replaced with a register read.

9) Parallel to EQueue Pass: This pass converts Affine

dialect’s parallel to EQueue’s launch with event depen-

dencies.

10) Lower Extraction Pass: This pass unrolls compo-

nents denotation in vector form.

VI. CASE STUDY: SYSTOLIC ARRAY

Systolic array is a widely-used mapping strategy to

implement efficient multiplications and additions among

matrices [17]. As the communication is limited to neighbor

processing elements (PEs), there is no cycle wasted on

global communication and address matching. Because of

their extremely broad design space of application-specific

mapping strategies, memory systems, and PE designs, rapid

simulation is critical to effectively exploiting systolic array

designs.

In this section, we build and study an EQueue model of a

systolic array. We aim to answer these questions about the

EQueue dialect for this case study:

1) Does embedding a simulator into a compiler frame-

work help facilitate exploration of algorithmic map-

ping options? (Sections VI-B and VI-D)

2) Can the simulation accurately estimate performance?

(Section VI-C)

3) Is the simulation useful to help designers find the best

design and does it scale? (Section VI-E)

To answer question 1, we first show how to model a systolic

array accelerator for convolutions using a generator that

emits a variety of configurations as EQueue programs. We

then also demonstrate a lowering pipeline that translates

from a high-level MLIR dialect into an EQueue model via

a series of reusable compiler passes. For question 2, we

compare the EQueue simulation to a state-of-the-art custom

simulator. To address question 3, we measure our model to

explore a design space of convolution accelerators.

A. Background: Dataflows

A key design decision in a systolic accelerator imple-

mentation is the dataflow, which determines how loops in

the algorithm are mapped spatially onto processing elements

(PEs) [3], [36]. In this case study, we consider three widely-

used dataflows: Weight Stationary (WS), Input Stationary

(IS), and Output Stationary (OS) [36]. The difference is

which tensor remains in each PE’s register file: the weights,

input feature map (ifmap), or output feature map (ofmap).

Fig. 8 illustrates the data movement for each dataflow. On

each cycle, each PE computes a part of final result and passes

the partial result to its neighbor [22]. We use Eh, Ew for
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Extending our EQueue generator, we can change the launch

input in our read stage to make the first column of PEs read

from an SRAM:

par_for (h, w) in arr_height, arr_width:

if w == 0: buffer = sram.ifmap_buffer

else: buffer = pe[h][w].ifmap_buffer

done, ... = equeue.launch( ifmap_buffer =

buffer,

...){ ... } // other code same as before

Similarly, we can modify the write stage to store ofmaps

from the last row of PEs to an SRAM:

par_for (h, w) in arr_height, arr_width:

if w == arr_height-1: obuffer=sram.ofmap_buffer

else: obuffer=pe[h+1][w].ofmap_buffer

done = equeue.launch( ofmap_buffer = obuffer,

...) {...} // other code same as before

With these small changes, the simulation engine can model

communication between SRAMs and the PE array.

Benefits. EQueue programs can modularize hardware com-

ponents (e.g., SRAM interfaces and processors) and thereby

study the individual effect of a component. Separating

representation from simulation allows a programmer to

concentrate on architecture design; no changes are necessary

to the simulation engine to evolve the modeled hardware.

C. Comparison with SCALE-Sim

To check the accuracy of our systolic array EQueue

model, we compare to a validated simulator SCALE-

Sim [32] specific to WS, IS, and OS convolutions on systolic

array.

Fig. 9 compares the simulated cycles and average band-

width for our model and SCALE-Sim, both modeling a 4×4

WS systolic array with various ifmap and weight sizes. Our

EQueue-based simulation matches SCALE-Sim’s results.

Benefits and Costs. When exploring design alternatives, an

EQueue-based simulator has a lower programming cost than

a custom one-off simulator. SCALE-Sim [32]’s WS and IS

implementation have little code overlap: WS is implemented

in Python in 569 lines of code (LOC), but switching from

WS to IS requires changing 410 LOC. In contrast, our

EQueue program for WS is implemented in C++ in 281

LOC only needs 11 LOC to switch from WS to IS.

In exchange, the one-off simulator has a performance

advantage: for experiments in Fig. 9, SCALE-Sim takes at

most 1.1 second, while the EQueue simulator takes at most

7.2 seconds. The speed comes at the cost of complex mod-

ifications while exploring the architectures and algorithm

mappings.

D. Lowering Pipeline

Rationale. The benefit of a compiler-driven approach is not

limited to lowering the bar of programming: more impor-

tantly, it makes it possible to program the simulator using

compiler passes. Integrating with a compiler stack’s shared

passes avoids the need for tedious, manual modification to

explore different program mappings.

This section constructs a lowering pipeline that compiles

from high-level algorithmic specifications to EQueue hard-

ware models. Critically, the pipeline can produce different

dataflows for the same input program by applying different

sequences of compiler passes.

Implementation. IS, WS, and OS all share a core systolic

design: on each cycle, each PE reads a value, modify it,

and writes to a neighbor PE. Fig. 10 shows how the systolic

dataflows share stages along a lowering pipeline. The first 3

stages (Linalg, Affine, and Reassign) are the same. The final

stage (Systolic) diverges, but lowering from Reassign stage

allows different dataflows to share lowering passes with dif-

ferent orders and parameters. This way, hardware designers

can only implement the highest level abstraction and then

explore design spaces with no programming overhead.

1) Linalg to Affine: We start with a convolution in Linalg

dialect, an MLIR dialect that can express arbitrary linear

algebra. The Linalg dialect can be first lowered to the Affine

dialect with the standard --convert-linalg-to-affine-

loops, which lowers the convolution to explicit nested loops.

We then apply --equeue-read-write to change load and

store operations in Affine dialect to read and write in

EQueue dialect to model data movement.

2) Affine to Buffer Reassign: Next, we apply the --

allocate-buffer and --reassign-buffer passes to replace

direct SRAM reads and writes with PE local register ac-

cesses. At this stage, we also flatten the 6 convolutional

dimensions (Eh, Ew, N , Fh, Fw, C) into 3: Eh × Ew, N ,

Fh×Fw∗C. This flattening reflects the stationary dimension

on PEs for each dataflow: for WS, each weight is stationary

on a PE until computed with Eh ×Ew ifmaps; for IS, each

ifmap is stationary for N weights; for OS, each ofmap is

stationary until accumulated with Fh × Fw ×C ifmaps and

weights.

3) Buffer Reassign to Systolic Array: After flattening, for

WS and IS, we first need to copy weights or ifmaps from

the SRAM into the PE array registers. We generate the nec-

essary memcpy operations with a --mem-copy pass and merge

them with launch operations using --merge-memcpy-launch

. Then, we implement systolic communication. For WS, we

need to pass the ifmaps and ofmaps to the right and down

on every cycle. Similarly, for IS, N weights and ofmaps

are passed, while for OS, Fh × Fw ∗C ifmaps and weights

are passed. The --split-launch and --reassign-buffer

passes implement this systolic communication. Finally,

we apply --parallel-to-equeue and --lower-extraction

passes to complete lower operations to EQueue dialect.

The key advantage of the lowering pipeline approach is

the reduced effort for implementing different dataflows. In a

traditional simulator, changing the mapping strategy requires

extensive rewriting of the simulation engine. In the compiler-

driven approach, designers can apply different combinations
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target a specific category of computation and hardware: they

map high-level DNN dataflow mappings to synchronous PE

arrays of regular structures. The EQueue dialect aims to ad-

dress general hardware simulation, including programmable

architectures that do not resemble systolic arrays, such as

the AI Engine (Section VII). EQueue may also be a good fit

for extending Union with support for explicit representations

of hardware components.

IX. CONCLUSION

Hardware simulation frameworks need a separation of

simulation from representation. The simulation flow for

EQueue programs lowers the bar for designers with abstract

representations, exposes intermediate optimization stages,

and makes it easy to apply changes with reusable compiler

passes.
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