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a b s t r a c t 

The dissipative nature of heat transfer relaxes thermal flows to an equilibrium state that is devoid of 

temperature gradients. The distance to reach an equilibrium temperature – the thermal entrance length 

– is a consequence of diffusion and mixing by convection. The presence of particles can modify the ther- 

mal entrance length due to interphase heat transfer and turbulence modulation by momentum coupling. 

In this work, Eulerian–Lagrangian simulations are utilized to probe the effect of solids heterogeneity (e.g., 

clustering) on the thermal entrance length. For the moderately dense systems considered here, cluster- 

ing leads to a factor of 2–3 increase in the thermal entrance length, as compared to an uncorrelated 

(perfectly mixed) distribution of particles. The observed increase is found to be primarily due to the 

covariance between volume fraction and temperature fluctuations, referred to as the fluid drift temper- 

ature. Using scaling arguments and Gene Expression Programming, closure is obtained for this term in 

a one-dimensional averaged two-fluid equation and is shown to be accurate under a wide range of flow 

conditions. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Internal flow exhibiting purely dissipative heat transfer ex- 

hanges heat with walls or its surroundings and its temperature 

rofile relaxes to an equilibrium. The thermal entrance length, l th , 

s defined as the length after which temperature gradients with 

espect to non-homogeneous directions vanish. Over the last sev- 

ral decades, the thermal entrance length has been studied exten- 

ively in the context of laminar and turbulent single-phase flows 

see, e.g., 1 , 2,3 , 4] . For laminar flow bounded by constant temper-

ture walls, the entrance length may be estimated by [5] 

 th /D = 0 . 05 Re D Pr , (1) 

here Re D is the Reynolds number characterized by the vessel 

pipe/duct) width or diameter, D, and Pr is the Prandtl number. 

hen considering heat transfer in turbulent flows, the Nusselt 

umber is used to assess when the flow has reached a fully- 

eveloped state. In particular, the entrance length is defined as the 

ength after which the Nusselt number is within several percent 

typically 1 to 5%) of the fully developed value and can be thought 

f as the thermal equivalent to a hydrodynamic boundary layer. 

hile values across this range are used throughout the literature, 

parrow et al. [1] pointed out that 5% has more utility for compar- 
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son with experimental results, where achieving accuracy within 1 

r 2% is challenging. Several models have been proposed for the 

usselt number in recent years, based upon the thermally evolv- 

ng, turbulent pipe flow. Many draw upon the Dittus–Boelter cor- 

elation [6] , given as Nu = 0 . 023 Re 0 . 8 D Pr 
n where n = 0 . 4 for a heated

uid and 0.3 if it is cooled. Several other works also formulate 

ependencies upon the nondimensional length scale L/D [e.g., 4] , 

here L is the pipe length. 

While thermally evolving and wall-bounded, single-phase flows 

re of great importance (e.g., cooling systems for nuclear reactors, 

ube heat exchangers, etc.), many applications of interest also con- 

ain a disperse phase that exchanges heat with the fluid. Of par- 

icular interest in this work are turbulent and thermally evolving 

as–solid flows. This class of flows is pervasive in nature and in- 

ustry, spanning applications from volcanic eruptions [7–9] to the 

torage of thermal energy [10–13] and the upgrading of feedstock 

o usable fuels in circulating fluidized bed (CFB) reactors. In the 

ase of CFB reactors, cool feedstock particles are fluidized with a 

ot gas, with the goal of mixing the phases in such a way that the

ot, fluidizing gas exchanges heat with the particles, thereby ini- 

iating their devolatilization into usable fuels. In both experimen- 

al and computational studies, it has been observed that particles 

pontaneously organize into coherent structures (clusters), thereby 

educing contact between the phases, impeding mixing and delay- 

ng heat transfer. 

Early experimental work in the 1990s by Louge et al. [14] , Ebert 

nd Glicksman [15] showed that heat transfer between the parti- 

https://doi.org/10.1016/j.ijheatmasstransfer.2021.121985
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Table 1 

Summary of relevant parameters for the isothermal simulations. 

Dimensional quantities 

d p Particle diameter 90 [ μm] 

ρp Particle density 1000 [kg/m 
3 ] 

ρ f Fluid density 1 [kg/m 
3 ] 

ν f Fluid viscosity 1.8 × 10 −5 [kg/m s] 

u bulk Bulk fluid velocity (0.42, 2.11, 2.95) [m/s] 

g Gravity 0.8 [m/s 2 ] 

τp Stokes response time 0.025 [s] 

Non-dimensional Quantities 

N p Number of particles (610,370, 15,564,442, 30,518,514) 

ϕ Mass loading (1.0, 26.2, 52.6) 

Ga Galileo number 2.3 

〈 ε p 〉 Mean particle volume fraction (0.001, 0.0255, 0.05) 

Re bulk Reynolds number (2.1, 10.5, 14.7) 

Computational quantities 

Domain size ( W × L × L ) 0 . 158 × 0 . 038 × 0 . 038 [m] 

Grid size ( n x × n y × n z ) 512 × 128 × 128 
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les in a fluidized bed and surrounding walls is increased by up 

o an order of magnitude when compared to single-phase turbu- 

ent flow. This increase in heat transfer was even more marked 

n denser regions of particles. In the context of a CFB reactor, 

16] found that dilute suspensions of particles have the oppo- 

ite effect and can impede heat transfer to the wall. In addition 

o these experimental works, several contemporary computational 

orks have demonstrated that coherent structuring of particles 

ay inhibit mixing between phases and detrimentally impact heat 

ransfer [10,17–20] . This phenomenon has important implications 

or reactor design and efficiency, since reduced heat transfer per- 

ormance impacts the thermochemical conversion rate. Despite the 

hermal entrance length’s crucial role in properly sizing industrial 

nit operations, the effect of solids heterogeneity on this quantity 

emains largely unknown. 

In the last decade, advancements in high performance comput- 

ng has allowed for increased access to high-fidelity and large-scale 

omputational studies of complex multiphase flows. For example, 

ei et al. [21] use progressive filtering of highly resolved simu- 

ations to formulate an improved model for the interphase heat 

ransfer coefficient. Rauchenzauner and Schneiderbauer [22] derive 

 spatially averaged Euler–Euler model for heat transfer for wall- 

ounded, dense gas–solid flows by proposing a drift temperature 

hat represents the fluid temperature fluctuations seen by the par- 

icles, the primary quantity of interest in the present work, and 

ropose closures. Jofre et al. [23] studied heat transfer in irradiated 

urbulent dilute gas–solid flow using a two-step approach simi- 

ar to the one undertaken in this work. They determined that the 

esidence time and structure of particles play dominant roles in 

escribing heat transfer. Another recent work [24] demonstrated 

hat the pseudo-turbulent heat flux that arises in filtering the 

eat equation, is an important factor describing thermal proper- 

ies. Yousefi et al. [25] employed particle-resolved direct numerical 

imulation to probe the heat transfer in particle-laden channels at 

oderate volume fractions, demonstrating that the turbulent heat 

ux dominates large scale thermal behavior. 

While research on multiphase heat transfer is active and grow- 

ng, the effect of particle heterogeneity on the thermal entrance 

ength remains an open question. In this work, the thermal en- 

rance length is examined via Eulerian–Lagrangian simulations by 

mploying a two-step approach. First a moderately dense isother- 

al, gas-particle flow is simulated to generate realistic clustering. 

ext, the cold-flow simulations are fed into a statistically one- 

imensional domain with a prescribed temperature difference be- 

ween the phases at the inlet boundary. From these results, we 

uantify the effect of mean solids volume fraction, Pécletnumber 

nd ratio of heat capacities on the thermal entrance length and 

ropose scaling relations for both clustered and uniform gas–solid 

ows. We then derive the two-fluid heat equations, quantify which 

erms are responsible for deviations from an uncorrelated solids 

hase and propose a model for the dominant, unclosed term. This 

odel is formulated using both scaling arguments and Gene Ex- 

ression Programming and is compatible with existing two-fluid 

heory. 

. System configuration 

In this work, our goal is to examine the effect of realistic 

ultiphase hydrodynamics on heat transfer and thermal entrance 

ength. To do this, we use a two-step simulation setup represen- 

ative of the fully-developed interior of a riser in a CFB reactor. A 

ketch of this configuration is outlined in Fig. 1 . Here, clustering 

ehavior is established in an isothermal simulation, which then is 

ed into a thermally-evolving domain. 
2 
.1. Isothermal simulations 

Prior to simulating thermally-evolving two-phase flows, the hy- 

rodynamics are established in a separate set of simulations. We 

onsider three-dimensional, homogeneous, fully-developed gas–

olid riser flow in the absence of heat transfer. In these simula- 

ions, N p particles each with diameter d p and density ρp are ini- 

ially randomly distributed in a quiescent gas with density ρ f and 

inematic viscosity ν f . A body force (gravity, g) drives the hydrody- 

amics and the mass flow rate is forced such that the mean fluid 

elocity is held at a fixed value, u bulk , mimicking the flow con- 

itions inside a riser. Here, u bulk exceeds the anticipated particle 

ettling velocity, and opposes the direction of gravity such that the 

articles are entrained in the fluid. 

Due to strong coupling between the phases, the particles form 

ense clusters that generate correlation between the particle vol- 

me fraction, ε p , and fluid velocity, u f . When in a correlated (clus- 

ered) configuration, assemblies of particles experience enhanced 

ettling, on the order of 2 to 3 times greater than the terminal ve- 

ocity of an isolated particle, V 0 . This increased settling establishes 
 mean slip velocity between the phases that is not known a priori 

see 26 , 27, for more details] . 

In this configuration, relatively few non-dimensional 

roups arise. These include the Galileo number, Ga = 
 

(ρp /ρ f − 1) d 3 p g /ν f ; the bulk Reynolds number, Re bulk = 

 bulk d p /ν f ; and the mean mass loading ϕ = ρp 〈 ε p 〉 / (ρ f 〈 ε f 〉 ) .
ere, ε f = 1 − ε p is the fluid-phase volume fraction, and angled 

rackets denote an average in all three spatial directions and time. 

he parameters associated with the isothermal simulations are 

ummarized in Table 1 , where sets of values denote quantities 

hat are varied in the simulations. Further details on the set up 

nd flow physics of these simulations can be found in Beetham 

t al. [27] . 

.2. Thermal simulations 

Once a statistically stationary state is reached in time, a snap- 

hot of the isothermal simulation is then fed into the thermal do- 

ain. This domain is initially comprised of fluid with heat capac- 

ty, C p, f , and thermal diffusivity, κ f . At the inlet, the fluid temper- 

ture is given a uniform value, T f, 0 . In the spanwise directions, pe- 

iodic boundary conditions are employed and the domain lengths 

atch the isothermal simulation. In the streamwise direction, y − z

lane data is taken incrementally from the isothermal snapshot 

nd fed in as an inlet condition at x = 0 . Particles are assigned a

niform temperature, T p, 0 < T f, 0 , and heat capacity, C p,p . After in- 

ection, two-way coupling drives the phases toward thermal equi- 
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Fig. 1. A fully developed configuration of particles (cold) and gas (hot) is injected into the thermal domain. Here, the initially cold particles are shown in the left pane. On 

the right, instantaneous snapshots of the fluid phase temperature is shown from an early time (top) to a fully developed period (bottom). 

Table 2 

Summary of parameters for the thermally evolving simulations. 

Particle-phase quantities 

C p,p Particle heat capacity (840, 921 2300) [J/kg K] 

T p, 0 Initial particle temperature 300 [K] 

Fluid-phase Quantities 

C p, f Fluid heat capacity 1.013 [kJ/kg K] 

T f, 0 Initial fluid temperature 400 [K] 

κ f Fluid thermal conductivity 0.0334 [J/m s K] 

Non-dimensional quantities 

Pr Prandtl number 0.7 

Pe Péclet number (1, 5, 7) 

χ Ratio of heat capacities (829, 909, 2270) 
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ibrium. The boundary conditions for the thermal simulations are 

pecified as 

 f (x = 0 , y, z; t) = T f, 0 

T (i ) p 

∣∣∣
x p =0 ,y p ,z p 

= T p, 0 

nd 

 f (x = 0 , y, z; t) = u 
CIT 
f (x = u bulk t, y, z, t f ) 

u p (t) 

∣∣∣
x p =0 ,y p ,z p 

= u p (t f ) 
CIT 

∣∣∣
x p = u bulk t,y p ,z p 

here t f is time after which the isothermal flow is statistically sta- 

ionary. 

The thermal simulations introduce three additional relevant di- 

ensionless groups: the Prandtl number, Pr = C p, f ν f ρ f /κ f ; the Pé- 

let number, Pe = d p u bulk ρ f C p, f /κ f ; and the ratio of heat capaci- 

ies, χ = C p,p /C f,p . The parameters used in these simulations are 

ummarized in Table 2 , where sets of values are provided for the 

uantities that are varied in the simulations. Using the riser of a 

FB reactor as our motivation, we prescribe the inflow velocity, 

 bulk , such that the resultant Péclet number corresponds to typ- 

cal riser conditions [28] . Three values of χ are considered, cor- 

esponding to the heat capacities of sand [29] , Zeolite 4A [30] (a 

atalyst used in the processing of conventional oil) and bagasse 
3 
31] (a woody pulp biproduct of the commercial processing of sug- 

rcane commonly used in biomass pyrolysis). 

. Computational methodology 

The numerical simulations are solved in a volume-filtered 

ulerian–Lagrangian framework for an incompressible viscous fluid 

ith spherical, rigid particles undergoing heat exchange [19,32] . 

he volume-filtered continuity equation is given by 

∂ 

∂t 

(
ε f ρ f 

)
+ ∇ ·

(
ε f ρ f u f 

)
= 0 , (2) 

here u f = [ u f , v f , w f ] 
T is the fluid velocity. In this work, the

uid-phase density ρ f is held constant. This approximation simpli- 

es the modeling exercise in later sections and is justified based on 

he moderate temperature gradient imposed between the phases 

between 300K and 400K). Additionally, the Richardson number, 

efined as Ri = gβ�T d p / U 
2 
bulk 

(where β = 1 . 9 × 10 −3 is the ther-

al expansion coefficient) and commonly used to indicate relative 

mportance of buoyancy to forced shear, = O(10 −5 ) , thus justifying 

he elimination of buoyancy contributions. 

The fluid-phase momentum equation is given by 

∂ 

∂t 

(
ε f ρ f u f 

)
+ ∇ ·

(
ερ f u f � u f 

)
= ∇ · τ f + ε f ρ f g + F inter + F mfr . 

(3) 

ere, g is gravity, F inter is the interphase momentum exchange 

which will be defined later) and F mfr is an additional source term 

or the cold simulations to enforce a mass flow rate in the gravity- 

ligned direction such that the flow reaches a statistically steady 

tate [see 26, for details] . The filtered stress tensor, τ f is 

f = −p f I + ρ f ν f [ ∇ u f + ∇ u 
T − 2 

3 

(∇ · u f 

)
I ] , (4) 

here I is the identity tensor and p f is pressure. Finally, conserva- 

ion of energy is given as 

f C p, f 
∂ (

ε f T f 
)

+ ρ f C p, f ∇ ·
(
ε f u f T f 

)
= κ f ∇ 

2 T f + Q inter , (5) 

∂t 
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Fig. 2. The isothermal simulations begin with an initially random distribution of particles (left) and evolve into a statistically stationary state characterized by clustering 

(middle 3 panels). These clusters generate and sustain turbulence in the fluid phase. Clusters entrain the fluid as they fall resulting in upflow in regions void of particles 

(right panel). 
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here T f is the fluid temperature and Q inter is the interphase heat 

xchange (defined later). In this work, the thermal conductivity, κ f 

s specified by maintaining a constant Prandtl number, Pr = 0 . 7 . 

Particles are tracked individually in a Lagrangian manner ac- 

ording to Newton’s second law of motion, given by 

d x (i ) p 

d t 
= u 

(i ) 
p (6) 

nd 

 p 

d u 

(i ) 
p 

d t 
= f 

(i ) 
inter 

+ C 
(i ) + m p g , (7) 

here x (i ) p and u (i ) p are the position and velocity of particle i, re- 

pectively, m p is the particle mass and V p is its volume. Square 

rackets denote a fluid quantity interpolated to the center position 

f particle i . The interphase transfer term is defined as 

f 
(i ) 
inter 

= V p ∇ · τ f [ x 
(i ) 
p ] + m p 

ε f 
τp 

(
u f [ x 

(i ) 
p ] − u 

(i ) 
p 

)
F (ε f , Re p ) (8) 

here τp = ρp d 
2 
p / (18 ρ f ν f ) is the Stokes response time, Re p is the 

article Reynolds number, given by 

e p = 

ε f | u f [ x 
(i ) 
p ] − u 

(i ) 
p | d p 

ν f 

, (9) 

nd F (ε f , Re p ) is a non-dimensional correction factor to account 

or volume fraction and Reynolds number effects [33] . The force 

ue to inter-particle collisions, C , is modeled using a modified 

oft-sphere approach originally proposed by Cundall and Strack 

34] . Particles are treated as inelastic and frictional with coeffi- 

ients of restitution of 0.9 and friction coefficient of 0.1. For addi- 

ional information, see Capecelatro and Desjardins [32] . Due to the 

arge density ratio between the phases, the buoyancy force never 

xceeds 0.13% of the body force and has thus been neglected. The 

olid-phase energy equation is given by 

 p C p,p 
d T (i ) p = q (i ) 

inter 
, (10) 
d t 

4 
here T (i ) p is the temperature of the i th particle, and q (i ) 
inter 

is the

nterphase particle heat exchange, given as 

 

(i ) 
inter 

= V p κ f ∇ 
2 T f [ x 

(i ) 
p ] + 

6 V p κ f Nu 

d 2 p 

(
T f [ x 

(i ) 
p ] − T (i ) p 

)
. (11) 

ere, Nu is the ε p - Re p -dependent Nusselt number correlation re- 

ently developed by Sun et al. [35] . 

The fluid-phase equations contain several interphase exchange 

erms that require Lagrangian information be projected to the Eu- 

erian grid. This is accomplished by employing the two-step fil- 

ering approach described in Capecelatro and Desjardins [32] , in 

hich particle data is first extrapolated to the nearest grid points, 

ollowed by a ‘smoothing’ operation that is performed implicitly, 

uch that the final support of the filtering operation is tied to a 

hosen filter size, δ f . Here, we consider a Gaussian filter kernel, G, 

ith δ f = 7 d p . With this, interphase exchange terms are given by 

 f = 1 −
N p ∑ 

i =1 

G 
(| x − x (i ) p | 

)
V p , (12) 

 inter = −
N p ∑ 

i =1 

G 
(| x − x (i ) p | 

)
f 
(i ) 
inter 

, (13) 

nd 

 inter = −
N p ∑ 

i =1 

G 
(| x − x (i ) p | 

)
q (i ) 
inter 

. (14) 

The equations are solved in NGA [36] , a fully conservative, low- 

ach number finite volume solver. A pressure Poisson equation is 

olved to enforce continuity via fast Fourier transforms in all three 

eriodic directions (in the isothermal simulations) and a multigrid 

olver is used for the thermal simulations, which are only peri- 

dic in the spanwise directions. The fluid equations are solved on 

 staggered grid with second-order spatial accuracy and advanced 

n time with second-order accuracy using the semi-implicit Crank–

icolson. Lagrangian particles are integrated using a second-order 
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Fig. 3. Hot (red) gas and cold (blue) particles are fed into a hot, quiescent ther- 

mal domain. From top to bottom: (a) When the particle phase is uncorrelated (uni- 

formly distributed), the thermal entrance length is shorter as compared with a cor- 

related (clustered) configuration of equal solid-phase volume fraction. (b) Clusters 

generate heterogeneity in the velocity (not shown) and temperature fields and (c) 

dilute regions of particles are heated rapidly, while denser clusters of cold particles 

persist further into the domain. Images correspond to a instantaneous snapshots 

for 〈 ε p 〉 = 0 . 001 , Pe = 5 and χ = 829 . A high-resolution video of this image can 

be found in the supplementary materials. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this arti- 

cle.) 
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unge–Kutta method. Fluid quantities appearing in Eqs. (6) –(10) 

re evaluated at the position of each particle via trilinear interpo- 

ation. Further details can be found in [32] . 

. Results 

In this section, we summarize the results of the Euler–Lagrange 

imulations carried out using the setup and parameters dis- 

ussed in Section 2 and the computational framework laid out in 

ection 3 . We begin by reporting high level observations of both 

he cold-flow and thermal simulations, and then show profiles for 

he mean temperatures and quantify the thermal entrance length 

or each case. Finally, we propose scaling relations for the thermal 

ntrance length corresponding to uncorrelated (uniform) particles 

nd another that takes clustering into account. 

.1. Flow visualization 

Three cold-flow (isothermal) simulations are performed using 

he parameters summarized in Table. 1 . Instantaneous snapshots 

re shown in Fig. 2 . Beginning from an initially random distribu- 

ion of particles, particles fall under gravity while the mean mass 

ow rate of the gas phase is held constant, allowing for a mean slip

elocity between the phases to be established and a statistically 

tationary state to be reached after approximately 50 τp . The degree 

f clustering is seen to vary as the volume fraction is increased. 

ense suspensions of particles entrain the gas phase downward, 

esulting in so-called jet bypassing (high-speed upward flow in re- 

ions devoid of particles). At this point, the fluid-phase turbulent 

inetic energy is produced by wakes behind clusters and shear lay- 

rs at the edge of clusters, referred to as fully-developed cluster- 

nduced turbulence (CIT) [26,37] . 

In the thermal simulations, cool particles and hot gas from 

ully-developed CIT are injected into the thermal domain and heat 

ransfer is enabled between the phases. As shown in Fig. 3 , the 

ool centers of dense clusters persist far into the domain and cool 

he surrounding fluid, while regions of dilute particles are heated 

ore rapidly and have a minimal effect in cooling the fluid. This 

ehavior is observed to be more dramatic for lower volume frac- 

ion and low Pécletnumber. Not surprisingly, as the volume frac- 

ion is increased, the increase in mass loading of cold particles can 

ore rapidly cool the surrounding gas, though hot spots still ap- 

ear in regions devoid of particles. This behavior is shown in Fig. 4 .

.2. The thermal entrance length 

To quantify the thermal entrance length, we extend the defini- 

ion from single-phase pipe flow to the configuration under con- 

ideration. Since both phases relax to an equilibrium temperature, 

 nondimensional thermal entrance length, l th , can be defined as 

he location after which the difference between the mean temper- 

tures is within 5% of the inlet temperature difference, or 

 th := min 
(
ˆ x ∈ |〈 θ f 〉 − 〈 θp 〉| ≤ 0 . 05 

)
, (15) 

here θ f/p is the nondimensional temperature (for the fluid or 

article phase) given by 

f/p = 

T f/p − T p, 0 

T f, 0 − T p, 0 
(16) 

nd ˆ x = d/d p is the nondimensional streamwise position. 

The thermal entrance lengths for the clustered, Euler–Lagrange 

esults are compared with the development lengths for a uniform 

istribution of particles of equivalent mean volume fraction, l 0 
th 

see Figs. 4 and 5 ). By making this comparison, the effect of het-

rogeneity on interphase heat exchange can be isolated. Further, 

ince the effect of clustering appears as a subgrid scale term in 
5 
oarse-grained models [19,22] , the ratio of these quantities high- 

ights the errors associated with neglecting these contributions. 

For the cases considered, it is observed that the thermal equi- 

ibrium temperature is lowered with increasing volume fraction, 

wing to the increased mass loading of cool particles as previously 

iscussed. Additionally, the thermal entrance length decreases with 

ncreasing volume fraction, but in all cases, the presence of clusters 

cts to increase the thermal entrance length as compared with an 

ncorrelated distribution of particles. This can be seen in greater 

etail in Fig. 3 and is primarily a consequence of the reduced con- 

act with a hot fluid phase, making clustered particles less effec- 

ive at cooling the surrounding fluid than lone particles. Finally, in 

ig. 4 , the shaded regions represent ±3 standard deviations from 

he mean temperature. This variation in temperature is greater in 

he fluid phase as compared with the particle phase, and the over- 

ll variation in temperature reduces with increasing volume frac- 

ion. 

In Fig. 5 , the entrance length obtained from the simulations are 

ormalized by l 0 
th 

, as previously mentioned, and compared against 

olume fraction, Pe and χ . Here, we observe that for all the con- 

gurations considered, the entrance length for clustered particles 

s between 2 and 3 times longer than a uniform distribution, but 

hat this relationship is complexly related to volume fraction and 

écletnumber, in particular. Notably, the development length in- 

reases non-monotonically with particle volume fraction for mod- 

rate and high Pécletnumbers, which is likely explained by simi- 

ar behavior observed in the normalized standard deviation of the 
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Fig. 4. Temperatures are compared for the three volume fractions under study ( 〈 ε p 〉 = 0 . 001 , 0 . 0255 and 0.05, from left to right) and ( Pe , χ) = (5 , 829) . The top row shows 

the mean temperature profiles for a uniform distribution of particles ( , ) and the Euler–Lagrange simulations ( , ), where the shaded regions represent the 

±σ, where σ is the standard deviation. The bottom row shows the fluid temperature in the region between the inlet and ˆ x = l th . Red corresponds to high temperature and 

blue to low. The contours denote ε p = 2 〈 ε p 〉 . 

Fig. 5. The entrance length normalized by the entrance length for a uniform dis- 

tribution of particles of equivalent volume fraction (top). Here, Pécletnumbers 1, 

5 and 7 are denoted by squares, circles and triangles, respectively. The inset bot- 

tom two plots examine the effect of χ, where white, light gray and black denote 

χ = (829 , 909 , 2270) . 
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olume fraction, 
√ 〈 ε ′ 2 p 〉 / 〈 ε p 〉 , a measure of the degree of cluster- 

ng [see 27] . Finally, we observe that the ratio of heat capacities, 

, has a relatively minimal effect on the thermal entrance length 

or clustered flows as compared with the entrance length for un- 

lustered flows, l 0 
th 
. This is shown in the inset panels in Fig. 5 and

ndicates that the thermal entrance length for clustered flows does 

ot change significantly as compared l 0 
th 
. This implies that models 

or capturing heterogeneous behavior should depend only on 〈 ε p 〉 
nd the Pécletnumber. 

Finally, we compute l 0 
th 

over a range of volume fraction, Péclet, 

eynolds and Prandtl numbers, and identify the following scaling 

elation for the thermal entrance length for a uniform distributions 

f particles, 

 
0 
th = 0 . 108 Re bulk Pr 〈 ε p 〉 −1 . (17) 

n this expression, the existence of the particles augments the 

ingle-phase expression (1) by a factor of 0 . 216 〈 ε p 〉 −1 . This quan-

ifies the observation that the entrance length increases with de- 
6 
reasing solids volume fraction and increasing Reynolds number. 

ere, this increase is nearly exponential with respect to volume 

raction and linear with respect to Re bulk . The l-2 norm of the error 

f the scaling relation for Re bulk ∈ [0 . 2 , 22] and 〈 ε p 〉 ∈ [0 . 001 , 0 . 5]

s 0.02. Since the present work considers a fixed density ratio, the 

article density, ρp , does not appear in (17) . Thus, this expression 

olds for gas-solid flow with ρp /ρ f = O(10 3 ) . A similar scaling re- 

ation can be formulated for clustered flows, given as 

 th = 0 . 64 

√ 〈 ε ′ 2 p 〉 
〈 ε p 〉 

(
0 . 1 

Re bulk 
〈 ε p 〉 + 0 . 02 Re 3 bulk 

)
+ 0 . 108 Re bulk Pr 〈 ε p 〉 −1

(18) 

here the variance in volume fraction is informed by a modified 

ersion of the model developed by Issangya et al. [38] given as 

 

〈 ε ′ 2 p 〉 = 1 . 48 〈 ε p 〉 ( 0 . 55 − 〈 ε p 〉 ) . (19) 

n this expression, the first coefficient differs from the original 

odel of Issangya et al. [38] , 1.584, to fit our data more accurately. 

he model (18) returns the scaling for an unclustered configura- 

ion, l 0 
th 

, when particles are uncorrelated (i.e., 〈 ε ′ 2 p 〉 = 0 ). This scal-

ng relation has a normalized l-2 error norm of 0.04 for the data 

onsidered in this study. 

In the following section, we quantify the terms responsible for 

he complex behavior we observed in the thermal entrance length 

nd propose closure to predict it over a range of conditions. 

. Modeling 

In the previous section, we demonstrated that the thermal en- 

rance length for clustered flows varies significantly from their uni- 

orm flow counterparts. Additionally, we observed that these dif- 

erences depend complexly on the mean particle volume fraction 

s well as the Pécletnumber. To quantify the effect that corre- 

ated phases has on this phenomenon, we first derive the one- 

imensional, two-fluid heat equations. Next, we evaluate the con- 

ributions of each of the terms appearing in the thermal balance 

nd propose models for the dominant unclosed term. 
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.1. One-dimensional heat equations 

For the configurations under consideration, the flow is statis- 

ically stationary in time, statistically homogeneous in the span- 

ise directions and thermally evolving in the streamwise direction. 

his implies that all quantities of interest are one-dimensional in 

 . To formulate the associated 1D heat equations, we first nondi- 

ensionalize the heat equation, then conduct volume fraction- 

eighted (phase) averaging. Nondimensionalization is carried out 

y selecting the particle diameter, d p , as a characteristic length 

cale and the inlet bulk velocity, u bulk , as a characteristic ve- 

ocity. Details on both of these derivations can be found in 

ppendix A and Appendix B . 

Beginning with the fluid-phase heat Eq. (5) , the nondimensional 

uid temperature equation is given by 

e 
∂ 

∂ ̂  t 

(
ε f θ f 

)
+ Pe 

∂ 

∂ ̂  x 

(
ε f ̂  u f θ f 

)
= ε f 

∂ 2 θ f 

∂ ̂  x 
2 

− 6 Nu ε p 
(
θ f − θp 

)
, (20) 

here ˆ x = x/d p , ̂  u f = u f /u bulk and ˆ t = t/ (d p /u bulk ) . The particle-

hase heat Eq. (10) can be similarly nondimensionalized. First, the 

article phase heat equation is rewritten in the Eulerian sense by 

onducting a change of frame from the Lagrangian particle heat 

quation and projecting it to the Eulerian grid (see Appendix A ). 

hen, in the same manner as the fluid heat equation, nondimen- 

ionalization yields 

Pe 
ρp 

ρ f 

[ 
∂ ( ε p θp ) 

∂ ̂  t 
+ 

∂ 
(
ε p ̂  u p θp 

)
∂ ̂  x 

] = ε p 
∂ 2 θ f 

∂ ̂  x 
2 

+ 6 Nu ε p 
(
θ f − θp 

)
, 

(21) 

here, χ is the ratio of heat capacities. 

Next, Reynolds averages (denoted with angled brackets) in time 

nd the spanwise directions are applied in order to treat these 

xpressions as statistically one-dimensional. In doing so, the time 

erivative is null and due to periodicity in the y − and x − direc- 

ions, gradients and divergence operators reduce to full derivatives 

ith respect to x . This yields 

e 
d 〈 ε f ̂  u f θ f 〉 

d ̂  x 
= 

d 2 〈 ε f θ f 〉 
d ̂  x 2 

− 〈 6 Nu ε p 
(
θ f − θp 

)〉 (22) 

nd 

Pe 
ρp 

ρ f 

d 〈 ε p ̂  u p θp 〉 
d ̂  x 

= 

d 2 〈 ε p θp 〉 
d ̂  x 2 

+ 〈 6 Nu ε p 
(
θ f − θp 

)〉 . (23) 

s will be discussed later, the diffusion terms are found to have a 

inimal contribution to the thermal balance in both phases, but 

hey are included here since the Pécletnumbers are O(1) . In cases 

f very large Pécletnumber, however, the diffusion term can be 

liminated a priori due to the factor 1 / Pe that multiplies it. 

Due to the presence of the volume fraction on all terms, a phase 

verage defined as 〈 (·) 〉 f = 〈 ε f (·) 〉 / 〈 ε f 〉 and 〈 (·) 〉 p = 〈 ε p (·) 〉 / 〈 ε p 〉
as described in Fox [39] ) is convenient to invoke. This process sub- 

tantially reduces the number of terms present as compared with 

trict Reynolds averaging. 

In these expressions, angled brackets without a subscript, 〈 (·) 〉 , 
enote a Reynolds average in time and the cross stream directions 

i.e., y and z). Here, fluctuations from Reynolds averages are de- 

oted as (·) ′ and fluctuations from the particle and fluid phase av- 

rages are denoted as (·) ′′ and (·) ′′′ , respectively. This yields a cou- 
led system of two-fluid equations that may be utilized to model 

acroscopic heat transfer (noting that the solution of the momen- 

um equations is trivial for the configuration under consideration), 

iven as 
7 
〈 ̂ u f 〉 f d 〈 θ f 〉 f 
d ̂ x 

− 1 

Pe 

d 2 〈 θ f 〉 f 
d ̂ x 2 

= − d 

d ̂ x 
〈 ̂ u ′′′ f θ

′′′ 
f 〉 f ︸ ︷︷ ︸ 

Term1 

6 〈 ε p 〉 
Pe 〈 ε f 〉 

[ 
〈 Nu 〉 p 

(〈 θ f 〉 f − 〈 θp 〉 p 
)

︸ ︷︷ ︸ 
Term2 

+ 〈 Nu 〉 p 〈 θ ′′′ 
f 〉 p ︸ ︷︷ ︸ 

Term3 

+ 〈 Nu ′′ θ ′′ 
f 〉 p ︸ ︷︷ ︸ 

Term4 

−〈 Nu ′′ θ ′′ 
p 〉 p ︸ ︷︷ ︸ 

Term5 

] 
(24) 

nd 

 ̂ u p 〉 p d 〈 θp 〉 p 
d ̂ x 

− ρ f 

ρp χPe 

d 2 〈 θp 〉 p 
d ̂ x 2 

= − d 

d ̂ x 
〈 ̂ u ′′ p θ ′′ 

p 〉 p ︸ ︷︷ ︸ 
Term6 

+ 

6 ρ f 

ρp χPe 

[ 
〈 Nu 〉 p 

(〈 θ f 〉 f − 〈 θp 〉 p 
)

︸ ︷︷ ︸ 
Term2 

+ 〈 Nu 〉 p 〈 θ ′′′ 
f 〉 p ︸ ︷︷ ︸ 

Term3 

+ 〈 Nu ′′ θ ′′ 
f 〉 p ︸ ︷︷ ︸ 

Term4 

−〈 Nu ′′ θ ′′ 
p 〉 p ︸ ︷︷ ︸ 

Term5 

] 
. (25) 

The terms in these expressions can be categorized as purely 

uid, purely particle and mixed. The terms on the left-hand side of 

he particle and fluid equations represent convection and diffusion 

nd are purely fluid and purely particle, respectively. Terms 1 and 

 are scalar fluxes, which are unclosed and traditionally modelled 

y classical gradient diffusion models (e.g., the Boussinesq approxi- 

ation). While these methods are successful in single-phase flows, 

hey have been shown to fall short of being predictive in the con- 

ext of highly anisotropic, multi-phase flows [40] . Finally, the inter- 

hase heat exchange terms (Terms 1–5), are the same across the 

uid and particle phase descriptions, with the exception of a con- 

tant factor of ρ f / (ρp χ) that appears in the particle phase equa- 

ion and a factor of 〈 ε p 〉 / 〈 ε f 〉 in the fluid phase. For brevity, these
wo factors are referred to as C 1 and C 2 henceforth. Of the inter- 

hase heat exchange terms, only Term 2 is a function of solution 

ariables ( 〈 θ f 〉 f , 〈 θp 〉 p ) and are therefore closed. Term 3 includes

 covariance between volume fraction and fluid temperature fluc- 

uations, 〈 θ ′′′ 
f 
〉 p , which has been shown to be the main contribu- 

or to hindering heat transfer in temporally evolving, homogeneous 

ystems [19] . Terms 4 and 5 are cross correlations between phase 

emperature and Nusselt number. 

In the absence of clustering (e.g., no correlation between tem- 

erature and volume fraction), the only terms that remain are con- 

ection, diffusion and Term 2. Following from the definition of the 

hase average, 〈 θ f 〉 f = 〈 θ f 〉 + 〈 ε ′ 
f 
θ ′ 
f 
〉 / 〈 ε f 〉 , thus, in an uncorrelated,

omogeneous system, 〈 θ f 〉 f is equivalent to 〈 θ f 〉 and 〈 θp 〉 p = 〈 θp 〉 )
ince cross correlations are null. 

.2. Thermal budget 

To guide our modeling effort s, we now evaluate which of the 

erms appearing in (24) and (25) have leading order effects. As 

uch, the balance of these terms is shown in Fig. 6 for the illustra-

ive case of Pe = 5 and 〈 ε p 〉 = 0 . 0255 . This demonstrates that for

he configuration under consideration, thermal behavior is dom- 

nated by convection, Term 2 and Term 3. Of these terms, only 

he fluid phase temperature fluctuations as seen by the particles, 

 θ ′′′ 
f 
〉 p (defined as the ‘drift temperature’ in Rauchenzauner and 

chneiderbauer [22] ), requires modeling and is equivalent across 

oth phases. 

.3. Closure of the drift temperature 

In this section, we propose a closure model for 〈 θ ′′′ 
f 
〉 p and 

quivalently, 〈 ε ′ p θ ′ 
f 
〉 (see Appendix C ). As previously mentioned, 

nd by definition of the phase average, the phase averaged temper- 

tures are comprised of the Reynolds averaged temperature plus 

he cross correlation between volume fraction and temperature 

i.e., 〈 θ f 〉 f = 〈 θ f 〉 + 〈 ε ′ 
f 
θ ′ 
f 
〉 / 〈 ε f 〉 ). Because of this, specifying bound-

ry conditions for the heat equations in terms of phase-averaged 

uantities cannot be done a priori without an additional closure for 

hese contributions. Rather than providing additional closures (one 
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Fig. 6. Balance of terms contributing to the phase averaged fluid temperature as given in Eq. (24) for Pe = 5 , χ = 829 . In each of the three volume fractions (0.001, 0.0255 

and 0.05 from left to right), three dominate the thermal behavior: Convection (blue), Term 2 (orange) and Term 3 (red). (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 
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ach for 〈 ε ′ p θ ′ 
p 〉 and 〈 ε ′ f θ ′ 

f 
〉 ), we note that for the configuration un-

er study, the cross correlations are constant with respect to the 

treamwise direction and only shift the temperature solution by 

his amount. In other words, the thermal entrance length is equiv- 

lent when considering either the phase averaged or Reynolds av- 

raged temperatures, but the Reynolds averaged formulation does 

ot require special treatment for the boundary conditions, as they 

re specified as the same for clustered and unclustered flows. (See 

ppendix C for more details). 

Due to the equivalency of 〈 ε ′ p θ ′ 
f 
〉 and 〈 θ ′′′ 

f 
〉 p , the model pro-

osed herein is suitable for use in simulations for which the so- 

ution variables are phase-averaged or Reynolds averaged (demon- 

trated in Fig. 8 where the proposed model detailed in Section 5 is 

sed in forward solutions of both sets of state variables). Thus im- 

lying it is appropriate for use in a general two-fluid solver in 

hich the hydrodynamics and thermodynamics evolve simultane- 

usly. Of course, in this situation, additional closures are required 

or the fluid and particle momentum equations in order to capture 

ross correlations. 

We begin from the simplified, Reynolds averaged equations, 

 ̂  u f 〉 d 〈 θ f 〉 
d ̂  x 

= −6 〈 ε p 〉 ̃  Nu 

Pe 〈 ε f 〉 [ 〈 θ f 〉 − 〈 θp 〉 + 

〈 ε ′ p θ ′ 
f 
〉 

〈 ε p 〉 ] , (26) 

here ˜ Nu denotes the Nusslet number computed using the corre- 

ation proposed by Sun and Zhu [41] and mean quantities as ar- 

uments. As detailed in Appendix C , all of the unclosed Reynolds 

veraged terms are null, except for the cross correlation between 

article volume fraction and the fluid-phase temperature fluctua- 

ions arising from Term 3, as was observed for temporally evolving 

as-particle flows from Guo and Capecelatro [19] . 

This result points to the fact that cross-correlations between 

olume fraction and temperature shift the phase averaged tem- 

erature from the Reynolds averaged temperature (e.g., 〈 θ f ( ̂  x ) 〉 f = 

 θ f ( ̂  x ) 〉 + 〈 ε ′ 
f 
θ ′ 
f 
〉 ), where in these configurations the cross correla-

ions are constant with respect to ˆ x . 

In formulating the closure for 〈 ε ′ p θ ′ 
f 
〉 , we observe that all con-

gurations considered in this work satisfy the following scaling re- 

ation 

1 (〈 θ f 〉 − 〈 θp 〉 
)(

d 〈 θ f 〉 
d ̂  x 

+ C 1 
(〈 θ f 〉 − 〈 θp 〉 

))
= b 

(〈 θ f 〉 − 〈 θp 〉 + 1 
)
(27) 

here b is a constant coefficient, which may depend upon 〈 ε p 〉 , χ
nd Pe. Owing to this relation, we impose that the proposed model 

s of the form 

〈 ε ′ p θ ′ 
f 
〉 

〈 ε p 〉 = − b 

C 1 

(〈 θ f 〉 − 〈 θp 〉 
)(〈 θ f 〉 − 〈 θp 〉 + 1) 

)
(28) 
8 
nd the system of equations is given as 

d 〈 θ f 〉 
d ̂  x 

= −C 1 (〈 θ f 〉 − 〈 θp 〉 ) + b(〈 θ f 〉 − 〈 θp 〉 )[(〈 θ f 〉 − 〈 θp 〉 ) + 1] 

(29) 

d 〈 θp 〉 
d ̂  x 

= C 2 (〈 θ f 〉 − 〈 θp 〉 ) − C 2 
C 1 

b(〈 θ f 〉 − 〈 θp 〉 )[(〈 θ f 〉 − 〈 θp 〉 ) + 1] . 

(30) 

The open-source, Gene Expression Programming (GEP) MATLAB 

ode of Searson [42] , is leveraged to learn the dependence of b on 

perating parameters. The resultant model was selected from the 

odels learned using a population size of 30 0, with 50 0 gener- 

tions and a maximum number of genes per individual of 6. To 

elect the model given, the population size, number of genera- 

ions and genes were perturbed until model error and complex- 

ty were both satisfactorily low. Despite this analysis, the accu- 

acy of the learned models was fairly insensitive to these param- 

ters. The GEP algorithm was provided with the value of b and 

ssociated 〈 ε p 〉 and Pe for each training case (all three volume 

ractions, all three Pécletnumbers and χ = 829 ) and was permit- 

ed to evolve expressions from the following mathematical opera- 

ions: multiplication/division, addition/subtraction, exponential/log, 

nd square/cube. The resultant learned model for b is given as 

 = ( 1 . 16 ln (〈 ε p 〉 ) − 0 . 335 Pe 

+ 5 . 85 〈 ε p 〉 Pe + 19 . 7 ) 
√ 

〈 ε ′ 2 〉 (1 − e −〈 ε p 〉 / Pe ), (31) 

here the inclusion of the variance of volume fraction, 
√ 〈 ε ′ 2 〉 , 

n the expression for b ensures proper asymptotic behavior in the 

imit of no clustering (i.e., Term 3 vanishes in the case of a uniform 

istribution of particles), which is modeled according to (19) . 

Fig. 7 highlights the forward solution of the proposed model 

nd the forward solution for a uniform distribution of particles. 

oth are compared against the mean Euler–Lagrange data. The top 

nd bottom rows show three representative training and test cases, 

espectively. Since the ratio of heat capacities was observed to have 

 minimal effect on entrance length as discussed in Section 4 , per- 

urbations in χ were reserved for the testing set. 

Additionally, the predicted entrance lengths for the uniformly 

istributed cases, l 0 
th 

, and the prediction using the proposed model 

or b, l model 
th 

, are summarized in Table 3 and compared against the 

uler–Lagrange results, l th . The relative errors, ε = | l (·) 
th 

− l th | /l th ,
or the proposed model and the uncorrelated particle phase as- 

umption are also tabulated. We find that using an assumption 

f uniformly distributed particles results in an under prediction 

f the thermal entrance length between 40 and 70%. This high- 

ights the importance of incorporating local particle heterogene- 

ty in reduced-order (coarse grained) models. The proposed model 

emonstrates improved performance, predicting the thermal en- 
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Fig. 7. Three example instances each of model performance ( , ) on training data (top row) and testing data (bottom row), as compared to the mean quantities from 

Eulerian–Lagrangian data ( , ). 

Fig. 8. The learned model (shown as ( , ) and described in Eq. (31) ) demonstrates improved prediction of thermal entrance length as compared to the Euler–Lagrange 

results ( , ) in both the Reynolds-averaged (left) and the phase-averaged formulations (right). The forward solution using the assumption of uniformly distributed 

particles is shown as ( , ), and is the same in both plots since phase averaging and Reynolds averaging are equivalent when the phases are uncorrelated. 

t

w

h

t  

r

m

w

f  

k  

f

I

p  

b

rance length within 3.6%, on average for the training dataset and 

ithin 8.6% for the testing dataset. 

To make physical connections with the resultant model, it is 

elpful to introduce a new variable representing the tempera- 

ure difference between the phases, 〈 θ�〉 = 〈 θ f 〉 − 〈 θp 〉 , and cor-
esponding transport equation. This definition and some algebraic 

anipulation, yields the following system: 

d 〈 θ f 〉 
d ̂  x 

= ( b −C 1 ) 〈 θ�〉 
(
1 − 〈 θ�〉 

(b −C 1 ) /b 

)
(32) 

d 〈 θp 〉 
d ̂  x 

= 

C 2 (C 1 − b) 

C 1 
〈 θ�〉 

(
1 − 〈 θ�〉 

(b −C 1 ) /b 

)
(33) 
c

9 
d 〈 θ�〉 
d ̂  x 

= 

d 〈 θ f 〉 
d ̂  x 

− d 〈 θp 〉 
d ̂  x 

(34) 

= 

(
−(C 1 + C 2 ) + 

b(C 1 −C 2 ) 

C 1 

)
〈 θ�〉 

(
1 − 〈 θ�〉 

(b −C 1 ) /b 

)
, (35) 

here we note that the equation for the mean temperature dif- 

erence is of the same form as the logistic equation, i.e., d A/ d x =
A (1 − A/L ) . In this sense, L is frequently referred to as the limiting

actor, or carrying capacity, of the system and k is the growth rate. 

n the context of heat transfer for particle-laden flows, bifurcation 

oints exist when either 〈 θ�〉 = 0 or 〈 θ�〉 = L . For this system and

oundary conditions, the only physically relevant bifurcation oc- 

urs when the temperature difference is null. This point is a sta- 
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Table 3 

Summary of thermal entrance lengths normalized by d p for clustered gas–

solid flows and associated model errors. The learned model was trained 

on data for χ = 840 . Remaining cases were reserved for testing. On aver- 

age, the entrance length predicted using an uncorrelated particle-phase as- 

sumption is under predictive by 58%, while the prediction from the learned 

model predicts entrance length within 5.1%, where the mean training and 

testing errors are 3.6% and 8.6%, respectively. 

χ Pe 〈 ε p 〉 l th l 0 
th 

l model 
th 

ε0 εmodel 

840 1 0.001 258.9 108.0 214.3 0.6 0.026 

0.0255 36.0 12.0 32.5 0.7 0.095 

0.005 15.4 8.6 15.4 0.4 0.00 

5 0.001 1,059.5 558.9 1,114.4 0.5 0.045 

0.0255 128.6 46.3 152.5 0.6 0.053 

0.005 66.9 25.7 66.9 0.6 0.000 

7 0.001 1,681.8 780.1 1,555.0 0.5 0.084 

0.0255 173.2 63.4 210.9 0.6 0.020 

0.05 90.9 32.6 94.3 0.6 0.000 

Testing Dataset 

921 1 0.0255 39.4 1.2 32.5 0.7 0.174 

5 0.001 1,177.8 584.6 1,164.1 0.5 0.095 

2300 1 0.0255 36.0 1.2 32.5 0.7 0.014 

5 0.001 1,582.4 848.6 1,695.5 0.5 0.060 

Fig. 9. The modeled quantity, b (31) , shown with respect to 〈 ε p 〉 and Pe. 
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le attractor, ensuring that all realizations with physical boundary 

onditions and parameters will relax to thermal equilibrium. 

Finally, the growth rate (which in this case is a negative value, 

ndicating decay to equilibrium) is given as −(C 1 + C 2 ) + b(C 1 −
 2 ) /C 1 . In the event of no clustering, the rate reduces to the un-

orrelated growth rate −(C 1 + C 2 ) , thus demonstrating that the 

resence of clusters impedes the rate at which the phases ap- 

roach equilibrium. Written in this form, it can also be observed 

hat the fluid- and particle-phase growth rates differ by a factor 

f (−C 1 /C 2 ) , when clustering is present. Further, due to the de- 

endence of b on volume fraction and Pécletnumber, the model 

uantifies the complex interplay of volume fraction and Péclet- 

umber on thermal entrance length. This effect is visualized in 

ig. 9 , where we observe that for low Pécletnumbers, variations 

n volume fraction have a greater effect on the value of b. Sim- 

larly, at high volume fraction, changes in Pécletnumber (partic- 

larly between 0 and 1) also result in large changes in b. Con- 

ersely, at high Pécletnumber and as volume fraction approaches 

ull, b only changes slightly. Further, since b implicates heat trans- 

er impedance, one can expect longer thermal entrance lengths for 

ower volume fractions at higher Pécletnumbers and lower particle 

olume fractions. 
10 
. Conclusions 

In this work, high resolution Euler–Lagrange simulations were 

everaged to understand the effect of heterogeneity on the ther- 

al entrance length. These computations enabled the quantifica- 

ion of the complex dependency of the entrance length on rele- 

ant simulation parameters, Pécletnumber, volume fraction and ra- 

io of phase heat capacities. In addition, we compared the ther- 

al entrance length for clustered and uniform distributions of par- 

icles and found that clustering causes a 2 to 3 fold increase in 

 th . To capture this effect, we propose a scaling relation for l th in

q. (17) (for uniform distribution of particles) and Eq. (18) (for 

lustered) that bares resemblance to scaling laws for the thermal 

ntrance length of single-phase flows, but with an additional fac- 

or to account for the presence of particles. 

To identify the physics responsible for the change in thermal 

ehavior of clustered flows, we derive the 1D two-fluid heat equa- 

ions and evaluate which terms dominate. This analysis demon- 

trated that the delay in heat transfer is described entirely by the 

ovariance between volume fraction and fluid temperature fluctu- 

tions, also known as the ‘drift temperature.’ Since this quantity 

s sensitive to variations in Pécletnumber and mean particle vol- 

me fraction, but is minimally sensitive to the ratio of heat ca- 

acities, we then leverage scaling arguments and Gene Expression 

rogramming to propose a closure. The resultant model captures 

he complex dependency of the drift temperature on Pe and 〈 ε p 〉 
nd reduces the error in predicting thermal entrance length by 

0% as compared to predictions that neglect heterogeneity. We also 

ote that the proposed model is appropriate for use in both the 

eynolds averaged and phase averaged formulations of the heat 

quations, making it a suitable for use in Euler–Euler codes in 

hich the thermodynamics and hydrodynamics evolve simultane- 

usly. 
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ppendix A. Non-dimensionalization of the heat equation 

The volume-filtered fluid temperature equation is given by 

∂ 

∂t 

(
ε f ρ f C p, f T f 

)
+ ∇ ·

(
ε f ρ f C p, f u f T f 

)
= ε f ∇ ·

(
κ f ∇T f 

)
+ Q inter , 

(A.1) 

here, 

 inter = −
N p ∑ 

i =1 

G 
(| x − x (i ) p | 

)
q (i ) 
heat 

, (A.2) 

nd 

 

(i ) 
heat 

= V p [ 
6 κ f Nu 

d 2 p 

(
T f [ x 

(i ) 
p ] − T (i ) p 

)
] . (A.3) 
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his results in the following expression, 

∂ 

∂t 

(
ε f ρ f C p, f T f 

)
+ ∇ ·

(
ε f ρ f C p, f u f T f 

)
= 

ε f ∇ ·
(
κ f ∇T f 

)
+ 

6 ε p κ f Nu 

d 2 p 

(
T f − T p 

)
. (A.4) 

e first non-dimensionalize temperature using θ = (T −
 p, 0 ) / (T f, 0 − T p, 0 ) . This yields, 

∂ 

∂t 

(
ε f ρ f C p, f θ f 

)
+ ∇ ·

(
ε f ρ f C p, f u f θ f 

)
= 

ε f ∇ ·
(
κ f ∇θ f 

)
+ 

6 ε p κ f Nu 

d 2 p 

(
θ f − θp 

)
. (A.5) 

ow, we divide through by C p, f ρ f and make the change of variable 

ˆ  = x /d p , which gives 

∂ 

∂t 

(
ε f θ f 

)
+ 

(
1 

d p 

)
∂ 

∂ ̂  x 

(
ε f u f θ f 

)
= 

ε f 
ρ f C p, f 

(
1 

d p 

)
∂ 

∂ ̂  x 

(
κ f 

(
1 

d p 

)
∂ 

∂ ̂  x 
θ f 

)

+ 

6 ε p κ f Nu 

ρ f C p, f d 
2 
p 

(
θ f − θp 

)
. (A.6) 

ultiplying by (d p /u bulk ) gives rise to 

d p 

u bulk 

∂ 

∂t 

(
ε f θ f 

)
+ 

d p 

u bulk 

(
1 

d p 

)
∂ 

∂ ̂  x 

(
ε f u f θ f 

)
= 

d p 

u bulk 
ε f 

(
1 

d p 

)
∂ 

∂ ̂  x 

(
α f 

(
1 

d p 

)
∂ 

∂ ̂  x 
θ f 

)

+ 

6 ε p α f Nu 

d p u bulk 

(
θ f − θp 

)
, (A.7) 

here we notice that a Pécletnumber arises in both terms on the 

ight hand side as, 

d p 

u bulk 

∂ 

∂t 

(
ε f θ f 

)
+ 

∂ 

∂ ̂  x 

(
ε f u f θ f 

u bulk 

)

= ε f 
∂ 

∂ ̂  x 

(
1 

Pe 

∂ 

∂ ̂  x 
θ f 

)
+ 

6 Nu 

Pe 
ε p 

(
θ f − θp 

)
. (A.8) 

inally, we define a timescale using d p /u bulk and a non-dimensional 

ime as ˆ t = t/ (d p /u bulk ) . Making this change of variable yields 

∂ 

∂ ̂  t 

(
ε f θ f 

)
+ 

∂ 

∂ ̂  x 

(
ε f u f θ f 

u bulk 

)

= ε f 
∂ 

∂ ̂  x 

(
1 

P e 

∂ 

∂ ̂  x 
θ f 

)
+ 

6 Nu 

Pe 
ε p 

(
θ f − θp 

)
. (A.9) 

inally, a non-dimensional velocity is defined as ˆ u f = u f /u bulk and 

he final non-dimensional equation is given by 

∂ 

∂ ̂  t 

(
ε f θ f 

)
+ 

∂ 

∂ ̂  x 

(
ε f ̂  u f θ f 

)
= ε f 

∂ 

∂ ̂  x 

(
1 

P e 

∂ 

∂ ̂  x 
θ f 

)
+ 

6 Nu 

Pe 
ε p 

(
θ f − θp 

)
, (A.10) 

nd can be reorganized as 

e 
∂ 

∂ ̂  t 

(
ε f θ f 

)
+ Pe 

∂ 

∂ ̂  x 

(
ε f ̂  u f θ f 

)
= ε f 

∂ 2 θ f 

∂ ̂  x 
2 

+ 6 Nu ε p 
(
θ f − θp 

)
. 

(A.11) 

he particle phase heat equation ( Eq. (10) ) can be similarly nondi- 

ensionalized. First, the particle phase heat equation is rewritten 

n the Eulerian sense by conducting a change of frame from the 
11 
agrangian particle heat equation and projecting it to the Eulerian 

rid. This Eulerian representation is given as, 

p C p,p 

(
∂ ( ε p T p ) 

∂t 
+ ∇ · ( ε p u p T p ) 

)
= ε p κ f ∇ 

2 T f + 

6 ε p κ f Nu 

d 2 p 

(
T f − T p 

)
. 

(A.12) 

n the same manner as the fluid heat equation, the particle heat 

quation is nondimensionalized yielding 

Pe 
ρp 

ρ f 

[ 
∂ ( ε p θp ) 

∂ ̂  t 
+ 

∂ 
(
ε p ̂  u p θp 

)
∂ ̂  x 

] = ε p 
∂ 2 θ f 

∂ ̂  x 
2 

+ 6 Nu ε p 
(
θ f − θp 

)
(A.13) 

here, χ is the ratio of heat capacities. 

ppendix B. Development of the 1D heat equation 

The fluid-phase energy equation is given as 

∂ 

∂t 

(
ε f ρ f C p, f T f 

)
+ ∇ ·

(
ε f ρ f C p, f u f T f 

)
= ε f ∇ ·

(
κ f ∇T f 

)
+ Q inter . 

(B.1) 

e conduct Reynolds averaging with respect to the cross-stream 

irections and time, and assume negligible effects from thermal 

iffusion. This results in a much simpler expression, given by 

 p, f ρ f 

d 

d x 
〈 ε f u f T f 〉 = 〈Q inter 〉 . (B.2) 

Note that the interphase heat exchange is given as 

 inter = −
N p ∑ 

i =1 

G 
(| x − x (i ) p | 

)
q (i ) 
heat 

, (B.3) 

here, 

 

(i ) 
heat 

= V p [ 
6 κ f Nu 

d 2 p 

(
T f [ x 

(i ) 
p ] − T (i ) p 

)
] . (B.4) 

ubstituting these definitions into the heat equations and noting 

hat a phase average arises due to the volume fraction in the 

eynolds average on the left hand side yields 

 p, f ρ f 〈 ε f 〉 d d x 
〈 u f T f 〉 f = −

〈
6 ε p κ f Nu 

d 2 p 

(
T f − T p 

)〉
(B.5) 

 p, f ρ f 〈 ε f 〉 d d x 
〈 u f T f 〉 f = −6 κ f 

d 2 p 
〈 ε p Nu 

(
T f − T p 

)〉 (B.6) 

Both sides can be simplified further. Working first with the left 

and side, we expand u f and T f using the Phase averaged decom- 

ositions, as: 

 p, f ρ f 〈 ε f 〉 d d x 
〈 (〈 u f 〉 f + u 

′′′ 
f )(〈 T f 〉 f + T ′′′ f ) 〉 f = −6 κ f 

d 2 p 
〈 ε p Nu 

(
T f − T p 

)〉 
(B.7) 

 p, f ρ f 〈 ε f 〉 d d x 

(〈 〈 u f 〉 f 〈 T f 〉 f 〉 f + 〈 u 
′′′ 
f T 

′′′ 
f 〉 f 

)
= −6 κ f 

d 2 p 
〈 ε p Nu 

(
T f − T p 

)〉 
(B.8) 

 p, f ρ f 〈 ε f 〉 d d x 

(〈 u f 〉 f 〈 T f 〉 f + 〈 u 
′′′ 
f T 

′′′ 
f 〉 f 

)
= −6 κ f 

d 2 p 
〈 ε p Nu 

(
T f − T p 

)〉 
(B.9) 
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Fig. C1. Upper left: Of the terms appearing in the phase-averaged, fluid-phase energy equation, three dominate the thermal behavior: Convection (blue), Term 2 (orange) 

and Term 3 (red). Terms 4 (black, dotted) and 5 (black, dashed) are nonzero, but balance each other exactly. Colored breakout panels of the three dominate terms detail the 

contributions to each of these in terms of Reynolds averaged quantities. Of the nonzero terms, only 〈 ε ′ p θ ′ 
f 
〉 requires modeling. (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.) 
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 p, f ρ f 〈 ε f 〉 
(

〈 u f 〉 f d 〈 T f 〉 f d x 
+ 

d 

d x 
〈 u 

′′′ 
f T 

′′′ 
f 〉 f 

)
= −6 κ f 

d 2 p 
〈 ε p Nu 

(
T f − T p 

)〉
(B.10) 

Turning now to the right hand side, we notice that a phase- 

verage with respect to the particle phase is present. 

 p, f ρ f 〈 ε f 〉 
(

〈 u f 〉 f d 〈 T f 〉 f d x 
+ 

d 

d x 
〈 u 

′′ T ′′ f 〉 f 
)

= −6 κ f 

d 2 p 

〈
ε p Nu (T f − T p ) 

〉
= −6 κ f 〈 ε p 〉 

d 2 p 

〈
Nu (T f − T p ) 

〉
p 

= −6 κ f 〈 ε p 〉 
d 2 p 

〈
(〈 Nu 〉 p + Nu ′′ )(〈 T f 〉 p + T ′′ f − 〈 T p 〉 p − T ′′ p ) 

〉
p 

= −6 κ f 〈 ε p 〉 
d 2 p 

[ 〈 Nu 〉 p 
(〈 T f 〉 p − 〈 T p 〉 p 

)
+ 

(〈 Nu ′′ T ′′ f 〉 − 〈 Nu ′′ T ′′ p 

)
] 

(B.11) 

ppendix C. Reynolds-averaged contributions to 

hase-averaged terms 

While the phase-averaged equations have mathematical util- 

ty as this significantly reduces the number of terms as com- 

ared with Reynolds averaging, proposing models in for the phase- 

veraged equations in the context of the present study requires ad- 
12 
itional closure for boundary conditions, since the correlation be- 

ween temperature and volume fraction fluctuations at the inlet to 

he thermal domain cannot be known a priori . To maintain consis- 

ency in boundary conditions in comparing models for correlated 

nd uncorrelated flows, we shift to the Reynolds averaged descrip- 

ions of the surviving terms in the phase averaged equations. For 

he fluid-phase, this exercise results in the expression, 

〈 ̂  u f 〉 d 〈 θ f 〉 
d ̂  x 

+ 

〈 ε ′ 
f ̂

 u ′ 
f 
〉 

〈 ε f 〉 
d 〈 θ f 〉 
d ̂  x 

+ 

〈 ̂  u f 〉 
〈 ε f 〉 

d 〈 ε ′ 
f 
θ ′ 
f 
〉 

d ̂  x 
+ 

〈 ε ′ 
f ̂

 u ′ 
f 
〉 

〈 ε f 〉 2 
d 〈 ε ′ 

f 
θ ′ 
f 
〉 

d ̂  x ︸ ︷︷ ︸ 
Convection 

= 

(C.1) 

− 6 〈 ε p 〉 ̃  Nu 

Pe 〈 ε f 〉 [ 〈 θ f 〉 − 〈 θp 〉 + 

〈 ε ′ 
f 
θ ′ 
f 
〉 

〈 ε f 〉 − 〈 ε ′ p θ ′ 
p 〉 

〈 ε p 〉 ︸ ︷︷ ︸ 
Term2 

+ 

〈 ε ′ p θ ′ 
f 
〉 

〈 ε p 〉 −
〈 ε ′ 

f 
θ ′ 
f 
〉 

〈 ε f 〉 ︸ ︷︷ ︸ 
Term3 

] 

here ˜ Nu denotes the Nusslet number computed using the corre- 

ation proposed by Sun and Zhu [41] and mean quantities as argu- 

ents. As shown in the detailed panels of Fig. C.10 , all of the un-

losed Reynolds averaged terms are null, except for the cross cor- 

elation between particle volume fraction and the fluid-phase tem- 

erature fluctuations arising from Term 3, as would be expected 

rom Guo and Capecelatro [19] . Thus, the simplified Reynolds aver- 

ged equation is given as 

 ̂  u f 〉 d 〈 θ f 〉 
d ̂  x 

= −6 〈 ε p 〉 ̃  Nu 

Pe 〈 ε f 〉 [ 〈 θ f 〉 − 〈 θp 〉 + 

〈 ε ′ p θ ′ 
f 
〉 

〈 ε p 〉 ] . (C.2) 



S. Beetham, A. Lattanzi and J. Capecelatro International Journal of Heat and Mass Transfer 182 (2022) 121985 

v

p

〈  

l

h

v

a

g

d

t

e

S

f

2

R

 

 

 

 

 

 

 

 

[  

 

 

 

 

 

 

[

[  

[

[  

[  

[

[

[

[  

[

[  

[
 

[

[

[

[  

[  

[  

[  

[

[  

[  

[

[  

 

This result points to the fact that cross-correlations between 

olume fraction and temperature shift the phase averaged tem- 

erature from the Reynolds averaged temperature (e.g., 〈 θ f ( ̂  x ) 〉 f = 

 θ f ( ̂  x ) 〉 + 〈 ε ′ 
f 
θ ′ 
f 
〉 ), where in these configurations the cross corre-

ations are constant with respect to ˆ x . Thus, the model proposed 

erein is suitable for use in simulations for which the solution 

ariables are phase-averaged or Reynolds averaged (see Fig. 8 ). This 

lso implies that the proposed model is appropriate for use in a 

eneral two-fluid solver in which the hydrodynamics and thermo- 

ynamics evolve simultaneously. Of course, in this situation, addi- 

ional closures are required for the fluid and particle momentum 

quations in order to capture cross correlations. 

upplementary material 

Supplementary material associated with this article can be 

ound, in the online version, at doi: 10.1016/j.ijheatmasstransfer. 

021.121985 . 
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