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Abstract

The revolution in sequencing has created a wealth of plant genomes that can be mined
to understand the evolution of biological complexity. Complexity is often driven by gene
duplication, which allows paralogs to specialize in an activity of the ancestral gene or acquire
novel functions. Angiosperms encode a variety of gene silencing pathways that share related
machinery for small RNA biosynthesis and function. Recent phylogenetic analysis of these gene
families plots the expansion, specialization, and occasional contraction of this core machinery.
This analysis reveals the ancient origin of RNA-directed DNA Methylation in early land plants, or
possibly their algal ancestors, as well as ongoing duplications that evolve novel small RNA

pathways.

Introduction

In plants, small RNAs silence genes through various mechanisms, but each type of
small RNA uses similar core machinery for biosynthesis and function (Figure 1). Small RNA
production starts with an RNA transcript produced by Pol Il or a specialized RNA polymerase
[1]. This transcript becomes double-stranded through folding or by the action of an RNA-
dependent RNA polymerase (RDR), and double-stranded RNA is processed into small RNAs by
Dicer-Like (DCL) endonucleases [2—8]. Small RNAs are loaded into Argonaute (AGO) proteins
and direct these effectors to complementary transcripts, resulting in various forms of gene
silencing [9—15]. The fission yeast Schizosaccharomyces pombe contains single copies of RDR,
Dicer, and AGO, while Arabidopsis thaliana contains several paralogs of each gene, along with
two specialized RNA polymerases [1,16]. Recent years have generated an abundance of plant
genome sequences, allowing us to trace duplications of small RNA core machinery across the

evolution of land plants and into their closest algal ancestors.

Plant-specific RNA polymerases
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In angiosperms, most small RNAs are 24-nt siRNAs from the RNA-directed DNA
Methylation (RdDM) pathway, which is distinct from other small RNA pathways in its
requirement for two plant-specific DNA-dependent RNA polymerases, Pol IV and Pol V [1,16].
The specialized activities of Pol IV and V arise through the duplication and specialization of at
least five of the twelve subunits that make up these complexes. In all cases, specialized Pol IV
and V subunits evolved through duplication and divergence of Pol Il subunits [17,18], although
these duplications occurred at different times across plant evolution (Figure 2). All land plant
lineages contain at least two additional copies of the largest subunit [19-22], although You and
colleagues argue that true differentiation of Pol IV and V only occurred following the divergence
between ferns and seed plants [22]. However, other research groups identified distinct Pol IV
and Pol V largest subunits in bryophytes, suggesting that the differentiation of Pol I, Pol IV, and
Pol V occurred prior to plant terrestrialization [19—-21]. Pol IV and V share second and seventh
subunits that are paralogous to Pol Il subunits, and these are also found in all extant land plant
lineages [18—20,22]. Duplication and specialization of the Pol V-specific fifth subunit occurred
following the divergence of ferns from seed plants, while the Pol IV/V-specific fourth subunit is
only observed in angiosperms [19,20,22] (Figure 2).

While there is no evidence for specialized polymerase subunits in green algae
(Chloroplastida), a partial sequence of an NRPD1-like gene was identified from multiple genera
of Charophycean green algae (CGA) [17]. CGAs comprise a series of lineages, from the
Mesostigmatophyceae, which are the most diverged from land plants (Embryophyta), to the
Zygnemophyceae, which are sister to land plants [23—-25]. As described below, CGAs might
encode other components related to RdDM, raising the possibility that this pathway evolved
prior to terrestrialization. However, a recent study of CGA genomes and transcriptomes found
no evidence for Pol IV or Pol V subunits [26], leaving ambiguity about when these characteristic

polymerases, and the RADM pathway, first arose.

Core small RNA machinery

Of the six RDR genes in Arabidopsis, three are associated with small RNA production:
RDR1 is associated with resistance to viral infection, RDR2 functions in RdDM, and RDR6 is
primarily associated with the production of phased siRNAs following microRNA cleavage of
mature transcripts [27,28]. A distinct RDR6 is ubiquitous in extant land plant genomes and most
CGA lineages, suggesting that specialization among RDR proteins began in the algal ancestors
of land plants [19,22,26,29]. CGAs, bryophytes, and other non-seed plants also encode a
single-copy RDR1/RDR?2 ancestor, which resolved into distinct RDR1 and RDR2 genes in the
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common ancestor of seed plants [19,26,29]. Mutation of the RDR1/RDR2 gene in the moss
Physcomitrium patens (a bryophyte) results in loss of 23-24-nt siRNAs, indicated that the pre-
duplication gene likely functioned with Pol IV to produce siRNAs [21].

Arabidopsis encodes four DCL proteins, all of which are involved in small RNA
production. DCL1 homologs, which cleave structured single-stranded RNA to produce
microRNAs, exist in all major land plant lineages and in some CGA groups [19,26], while
Chlorophytic algae encode algae-specific DCLs that likely provide the same function [26,30].
Zygnemophyceae, the group of CGAs most closely related to bryophytes and other land plants
[24,25,31], encode an ancestral DCL2/DCL3/DCL4 sequence, which is duplicated to form DCL3
and DCL2/4 clades in bryophytes [19,26]. In the bryophyte Physcomitrium patens, loss of DCL3
causes reduced 24-nt siRNA accumulation and developmental phenotypes similar to Pol IV and
RDR2 mutants, supporting its role in RADM [21]. Whether the DCL2/DCL3/DCL4 ancestral CGA
gene also functions in RdDM is unknown.

AGOs are a large gene family, with ten homologs in Arabidopsis that form three major
clades: AGO1/5/10, AGO2/3/7, and AGO4/6/8/9 [32]. Although the number of genes in each
clade varies among different species, these three clades are ancient, evolving from an algae-
specific AGO in the green algae [26,33]. Since AGO4, AGO6, AGOS8, and AGO9 are associated
with RdDM [9,11,12,15,34-37], the presence of this clade in CGA species is further evidence

that RADM might have functioned in the aquatic ancestor of land plants.

Methyltransferases

Just as duplications of core small RNA machinery have led to specialized machinery for
RdDM, plants encode multiple DNA methyltransferases with divergent functions. MET1, a
DNMT1 homolog, maintains methylation in the CG context, while the chromomethyltransferases
CMT2 and CMT3 bind to Histone 3 Lysine 9 dimethylation and catalyze CHH and CHG
methylation, respectively [38,39]. Plants also encode Domains Rearranged Methyltransferase
(DRM), a DNMT3 homolog that establishes DNA methylation in all three cytosine contexts in a
24-nt siRNA dependent manner [39,40] (Figure 3). DRM homologs have been identified across
land plants and in at least one CGA lineage [41]. Eliminating DRM function in Physcomitrium
patens has little impact on global CHH methylation levels, but causes hypomethylation of
transcriptionally-active, euchromatic transposons, suggesting that DRM is responsible for RdADM

even in the earliest land plants [41,42].

Ongoing duplications
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The step-wise duplication of polymerase subunits and core small RNA machinery
continues in specific angiosperm families. Genomes of Poaceae members (monocots) contain
duplicates of the largest two subunits of Pol V, which have been conserved for over 50 million
years [43]. There are many indications that these paralogs have distinct functions: a signature of
selection along the interacting surface between the first and second subunits and differential
protein-protein interactions suggest assembly into different holoenzyme complexes, while
shortening of the C-terminal domain and different mutant phenotypes indicate different
molecular and biological functions [43—45]. As more genomes are sequenced, we might
discover additional elaboration of polymerase complexes.

DCL3 duplicated in the ancestor of monocots, generating DCL3, a paralog that is
associated with canonical RADM and silencing of transposons, and DCL5, a paralog that
produces phased 24-nt siRNAs from long non-coding transcripts [46—49]. However, since both
classes of 24-nt small RNAs are produced in eudicot species [50], DCL5 likely arose through
sub-functionalization in monocots. Phased 24-nt siRNAs induce high CHH methylation in cis
during anther development in maize (a monocot), indicating that they are part of a non-
canonical RADM pathway [51].

One of the most labile gene families associated with small RNAs is the Argonaute family.
Across the three main clades of AGOs, angiosperm genomes encode an average of 13 family
members [33]. What drives the expansion of AGOs is unknown, however, one reason might be
that additional AGOs allow unique functions or tissue-specificity [35,52,53]. In addition to
expansion of these three ancestral groups, grasses contain an additional subclade within the
AGO1/5/10 group, AGO18, that might be associated with phased siRNAs [32,33,54,55].
Additional phylogenetic and functional analysis is necessary to determine whether the many
Argonaute paralogs represent recent duplications or deeply-conserved, and potentially

neofunctionalized, genes.

Tuning methylation through allelic diversity

In addition to duplications that elaborate and expand small RNA machinery, sometimes
components of RADM are modified, or even eliminated, in individual plant species, which can
create variation in the developmental pattern or genomic context of methylation across land
plants [42,56-60]. Since RdADM suppresses transposon mobility, changes in RADM components
may lead to transposon proliferation and genome expansion, potentially accounting for the
gigantic genomes in lineages such as lycophytes and gymnosperms [22,61,62]. Consistent with

this idea, 24-nt siRNAs, a key indicator of RADM, constitute only a small proportion of SRNA
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libraries outside of angiosperms [63], suggesting that RADM is less active in these species.
However, this lack of representation might be due to analysis of relatively few tissues, since 24-
nt siRNAs are easily detected in gymnosperm reproductive tissues [64—68]. The presence of 24-
nt siRNAs in gymnosperms indicates that genomes can grow very large despite active RdDM.
Concordantly, the Spirodela (a monocot) genome remains small despite evidence that RdADM
has been lost [69,70]. Together, these observations indicate that RADM is not a primary factor in
genome size variation.

Although changes in RdDM are unlikely to be responsible for genome expansion, allelic
variation at Pol V and AGOS9 is associated with the level of CHH methylation at euchromatic
transposons throughout the genome [71,72]. Variation at other small RNA pathway components
might also influence global methylation levels [71]. These subtle changes in CHH methylation
suggest that methylation pathways are not simply on or off, but instead are tunable to ecological
conditions. Indeed, Arabidopsis grown at a lower temperature displays decreased CHH
methylation [73], possibly due to reduced siRNA production at low temperature [74]. Selection

might therefore tune the efficiency of methylation machinery to match an ecological niche [75].

Loss of methylation pathways

In some species, DNA methylation is reduced to the point of elimination. Maize and
some Arabidopsis accessions lack active CMT2 and therefore have no CHH methylation at
heterochromatin transposons [73,75-78]. However, euchromatic transposons in these genomes
retain CHH methylation due to RdDM [73,76,78]. The apparent success of these lineages raises
the question of why CMT2 has been retained as a distinct clade in angiosperms if
heterochromatin and RdDM are sufficient for genome defense against transposons [38].
Unexpectedly, some CMT2-null accessions of Arabidopsis display robust CHH methylation at
heterochromatic transposons, suggesting that additional redundancy and plasticity among
methylation pathways remains to be discovered [75].

Spirodela polyrhiza, a small aquatic monocot that propagates through rapid asexual
reproduction, provides an extreme example of loss of small RNA and methylation pathways
[79]. Spirodela lacks CMT2 and is deficient in expression of some RADM components, resulting
in essentially no CHH methylation and reduced levels of CHG and CG methylation [69,70,80].
Reduced CHH methylation has been observed in other clonally-propagated species, as well as
at least one other aquatic plant, suggesting that either of these lifestyle factors might make CHH

methylation dispensable [57,80].
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Conclusion

The recent explosion in plant genome sequences allows us to trace the expansion and
contraction of small RNA machinery across the plant family, uncovering diverse complements of
proteins. Contrary to the assumption of ever-increasing complexity, there are also losses of
conserved machinery, suggesting that genomes have evolved a wide range of gene silencing
approaches. However, too often we lack direct evidence to conclude that homologous proteins
function similarly across hundreds of millions of years of evolution. Functional studies in an

expanding list of species are necessary to understand the diverse ways to manage a genome.
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Figure Captions

Figure 1. Major components of prevalent plant small RNA pathways.

The core proteins or complexes responsible for small RNA biosynthesis and function are shown
for the most common sources of plant small RNAs: RNA polymerases (Pol), RNA-dependent
RNA Polymerase (RDR), Dicer-like endonuclease (DCL), and Argonaute effectors (AGO). With
the exception of viral polymerases, which vary depending on the type of virus, all components in
the same row are members of the same gene family. Ancestral genes duplicated and
specialized for particular small RNA pathways, as listed at the top. MicroRNAs (miRNA) form
dsRNA through single-molecule folding and do not require an enzyme for dsRNA synthesis. The
Argonaute(s) associated with 24-nt phasiRNAs are unknown, but presumed to be members of

the AGO4 clade. Only the most common Argonaute effectors are listed for each pathway.

Figure 2. Evolutionary history of small RNA machinery in plants.

Subunits of Pol II, IV, V, and VI are named NRPB, NRPD, NRPE, and NRPF, respectively, with
the number indicating the subunit (1 for largest, 2 for second-largest, etc). Subunits other than
the ones depicted are shared between Poal Il, Pol IV, and Pol VI. Grey bars indicate the
presence of presumed orthologous sequences in each plant lineages, with forks indicating the

timing of gene duplication. The unfilled, dotted fork indicates ambiguity regarding the timing of
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the DCL2/DCL4 divergence. Gene names are colored by their presumed function. Purple =

RdDM, blue = microRNA, green = viral resistance, orange = other or unknown.

Figure 3: DNA methylation pathways in angiosperms.

(A) Methylation at CG sites is maintained by MET1. Semi-conservative DNA replication
combines an older, methylated strand with a newly-synthesized unmethylated strand. MET 1
recognizes the resulting hemi-methylated site and induces full methylation. (B) In euchromatin,
asymmetric CHH sites do not result in hemi-methylated sites following replication and must be
maintained by siRNA targeting of DRM methyltransferase (RdDM). (C, D) In heterochromatin,
non-CG sites are maintained by the alternating actions of a histone methyltransferase
(KYP/SUVH4, SUVHS5, and/or SUVHG6E) and chromomethyltransferases (CMT2 and CMT3). The
histone methyltransferase recognizes CHG or CHH methylation and induces dimethylation of
lysine 9 on histone H3 (H3K9me2). This histone modification is recognized by CMT2 and CMT3,
which cause CHH and CHG methylation, respectively.
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