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Abstract 8 

The revolution in sequencing has created a wealth of plant genomes that can be mined 9 

to understand the evolution of biological complexity. Complexity is often driven by gene 10 

duplication, which allows paralogs to specialize in an activity of the ancestral gene or acquire 11 

novel functions. Angiosperms encode a variety of gene silencing pathways that share related 12 

machinery for small RNA biosynthesis and function. Recent phylogenetic analysis of these gene 13 

families plots the expansion, specialization, and occasional contraction of this core machinery. 14 

This analysis reveals the ancient origin of RNA-directed DNA Methylation in early land plants, or 15 

possibly their algal ancestors, as well as ongoing duplications that evolve novel small RNA 16 

pathways. 17 

 18 

Introduction 19 

In plants, small RNAs silence genes through various mechanisms, but each type of 20 

small RNA uses similar core machinery for biosynthesis and function (Figure 1). Small RNA 21 

production starts with an RNA transcript produced by Pol II or a specialized RNA polymerase 22 

[1]. This transcript becomes double-stranded through folding or by the action of an RNA-23 

dependent RNA polymerase (RDR), and double-stranded RNA is processed into small RNAs by 24 

Dicer-Like (DCL) endonucleases [2–8]. Small RNAs are loaded into Argonaute (AGO) proteins 25 

and direct these effectors to complementary transcripts, resulting in various forms of gene 26 

silencing [9–15]. The fission yeast Schizosaccharomyces pombe contains single copies of RDR, 27 

Dicer, and AGO, while Arabidopsis thaliana contains several paralogs of each gene, along with 28 

two specialized RNA polymerases [1,16]. Recent years have generated an abundance of plant 29 

genome sequences, allowing us to trace duplications of small RNA core machinery across the 30 

evolution of land plants and into their closest algal ancestors. 31 

 32 

Plant-specific RNA polymerases 33 



In angiosperms, most small RNAs are 24-nt siRNAs from the RNA-directed DNA 34 

Methylation (RdDM) pathway, which is distinct from other small RNA pathways in its 35 

requirement for two plant-specific DNA-dependent RNA polymerases, Pol IV and Pol V [1,16]. 36 

The specialized activities of Pol IV and V arise through the duplication and specialization of at 37 

least five of the twelve subunits that make up these complexes. In all cases, specialized Pol IV 38 

and V subunits evolved through duplication and divergence of Pol II subunits [17,18], although 39 

these duplications occurred at different times across plant evolution (Figure 2). All land plant 40 

lineages contain at least two additional copies of the largest subunit [19–22], although You and 41 

colleagues argue that true differentiation of Pol IV and V only occurred following the divergence 42 

between ferns and seed plants [22]. However, other research groups identified distinct Pol IV 43 

and Pol V largest subunits in bryophytes, suggesting that the differentiation of Pol II, Pol IV, and 44 

Pol V occurred prior to plant terrestrialization [19–21]. Pol IV and V share second and seventh 45 

subunits that are paralogous to Pol II subunits, and these are also found in all extant land plant 46 

lineages [18–20,22]. Duplication and specialization of the Pol V-specific fifth subunit occurred 47 

following the divergence of ferns from seed plants, while the Pol IV/V-specific fourth subunit is 48 

only observed in angiosperms [19,20,22] (Figure 2).  49 

While there is no evidence for specialized polymerase subunits in green algae 50 

(Chloroplastida), a partial sequence of an NRPD1-like gene was identified from multiple genera 51 

of Charophycean green algae (CGA) [17]. CGAs comprise a series of lineages, from the 52 

Mesostigmatophyceae, which are the most diverged from land plants (Embryophyta), to the 53 

Zygnemophyceae, which are sister to land plants [23–25]. As described below, CGAs might 54 

encode other components related to RdDM, raising the possibility that this pathway evolved 55 

prior to terrestrialization. However, a recent study of CGA genomes and transcriptomes found 56 

no evidence for Pol IV or Pol V subunits [26], leaving ambiguity about when these characteristic 57 

polymerases, and the RdDM pathway, first arose. 58 

 59 

Core small RNA machinery 60 

Of the six RDR genes in Arabidopsis, three are associated with small RNA production: 61 

RDR1 is associated with resistance to viral infection, RDR2 functions in RdDM, and RDR6 is 62 

primarily associated with the production of phased siRNAs following microRNA cleavage of 63 

mature transcripts [27,28]. A distinct RDR6 is ubiquitous in extant land plant genomes and most 64 

CGA lineages, suggesting that specialization among RDR proteins began in the algal ancestors 65 

of land plants [19,22,26,29]. CGAs, bryophytes, and other non-seed plants also encode a 66 

single-copy RDR1/RDR2 ancestor, which resolved into distinct RDR1 and RDR2 genes in the 67 



common ancestor of seed plants [19,26,29]. Mutation of the RDR1/RDR2 gene in the moss 68 

Physcomitrium patens (a bryophyte) results in loss of 23-24-nt siRNAs, indicated that the pre-69 

duplication gene likely functioned with Pol IV to produce siRNAs [21].  70 

Arabidopsis encodes four DCL proteins, all of which are involved in small RNA 71 

production. DCL1 homologs, which cleave structured single-stranded RNA to produce 72 

microRNAs, exist in all major land plant lineages and in some CGA groups [19,26], while 73 

Chlorophytic algae encode algae-specific DCLs that likely provide the same function [26,30]. 74 

Zygnemophyceae, the group of CGAs most closely related to bryophytes and other land plants 75 

[24,25,31], encode an ancestral DCL2/DCL3/DCL4 sequence, which is duplicated to form DCL3 76 

and DCL2/4 clades in bryophytes [19,26]. In the bryophyte Physcomitrium patens, loss of DCL3 77 

causes reduced 24-nt siRNA accumulation and developmental phenotypes similar to Pol IV and 78 

RDR2 mutants, supporting its role in RdDM [21]. Whether the DCL2/DCL3/DCL4 ancestral CGA 79 

gene also functions in RdDM is unknown.   80 

AGOs are a large gene family, with ten homologs in Arabidopsis that form three major 81 

clades: AGO1/5/10, AGO2/3/7, and AGO4/6/8/9 [32]. Although the number of genes in each 82 

clade varies among different species, these three clades are ancient, evolving from an algae-83 

specific AGO in the green algae [26,33]. Since AGO4, AGO6, AGO8, and AGO9 are associated 84 

with RdDM [9,11,12,15,34–37], the presence of this clade in CGA species is further evidence 85 

that RdDM might have functioned in the aquatic ancestor of land plants. 86 

 87 

Methyltransferases 88 

Just as duplications of core small RNA machinery have led to specialized machinery for 89 

RdDM, plants encode multiple DNA methyltransferases with divergent functions. MET1, a 90 

DNMT1 homolog, maintains methylation in the CG context, while the chromomethyltransferases 91 

CMT2 and CMT3 bind to Histone 3 Lysine 9 dimethylation and catalyze CHH and CHG 92 

methylation, respectively [38,39]. Plants also encode Domains Rearranged Methyltransferase 93 

(DRM), a DNMT3 homolog that establishes DNA methylation in all three cytosine contexts in a 94 

24-nt siRNA dependent manner [39,40] (Figure 3). DRM homologs have been identified across 95 

land plants and in at least one CGA lineage [41]. Eliminating DRM function in Physcomitrium 96 

patens has little impact on global CHH methylation levels, but causes hypomethylation of 97 

transcriptionally-active, euchromatic transposons, suggesting that DRM is responsible for RdDM 98 

even in the earliest land plants [41,42].  99 

 100 

Ongoing duplications 101 



The step-wise duplication of polymerase subunits and core small RNA machinery 102 

continues in specific angiosperm families. Genomes of Poaceae members (monocots) contain 103 

duplicates of the largest two subunits of Pol V, which have been conserved for over 50 million 104 

years [43]. There are many indications that these paralogs have distinct functions: a signature of 105 

selection along the interacting surface between the first and second subunits and differential 106 

protein-protein interactions suggest assembly into different holoenzyme complexes, while 107 

shortening of the C-terminal domain and different mutant phenotypes indicate different 108 

molecular and biological functions [43–45]. As more genomes are sequenced, we might 109 

discover additional elaboration of polymerase complexes.  110 

DCL3 duplicated in the ancestor of monocots, generating DCL3, a paralog that is 111 

associated with canonical RdDM and silencing of transposons, and DCL5, a paralog that 112 

produces phased 24-nt siRNAs from long non-coding transcripts [46–49]. However, since both 113 

classes of 24-nt small RNAs are produced in eudicot species [50], DCL5 likely arose through 114 

sub-functionalization in monocots. Phased 24-nt siRNAs induce high CHH methylation in cis 115 

during anther development in maize (a monocot), indicating that they are part of a non-116 

canonical RdDM pathway [51].  117 

One of the most labile gene families associated with small RNAs is the Argonaute family. 118 

Across the three main clades of AGOs, angiosperm genomes encode an average of 13 family 119 

members [33]. What drives the expansion of AGOs is unknown, however, one reason might be 120 

that additional AGOs allow unique functions or tissue-specificity [35,52,53]. In addition to 121 

expansion of these three ancestral groups, grasses contain an additional subclade within the 122 

AGO1/5/10 group, AGO18, that might be associated with phased siRNAs [32,33,54,55]. 123 

Additional phylogenetic and functional analysis is necessary to determine whether the many 124 

Argonaute paralogs represent recent duplications or deeply-conserved, and potentially 125 

neofunctionalized, genes. 126 

 127 

Tuning methylation through allelic diversity 128 

In addition to duplications that elaborate and expand small RNA machinery, sometimes 129 

components of RdDM are modified, or even eliminated, in individual plant species, which can 130 

create variation in the developmental pattern or genomic context of methylation across land 131 

plants [42,56–60]. Since RdDM suppresses transposon mobility, changes in RdDM components 132 

may lead to transposon proliferation and genome expansion, potentially accounting for the 133 

gigantic genomes in lineages such as lycophytes and gymnosperms [22,61,62]. Consistent with 134 

this idea, 24-nt siRNAs, a key indicator of RdDM, constitute only a small proportion of sRNA 135 



libraries outside of angiosperms [63], suggesting that RdDM is less active in these species. 136 

However, this lack of representation might be due to analysis of relatively few tissues, since 24-137 

nt siRNAs are easily detected in gymnosperm reproductive tissues [64–68]. The presence of 24-138 

nt siRNAs in gymnosperms indicates that genomes can grow very large despite active RdDM. 139 

Concordantly, the Spirodela (a monocot) genome remains small despite evidence that RdDM 140 

has been lost [69,70]. Together, these observations indicate that RdDM is not a primary factor in 141 

genome size variation. 142 

Although changes in RdDM are unlikely to be responsible for genome expansion, allelic 143 

variation at Pol V and AGO9 is associated with the level of CHH methylation at euchromatic 144 

transposons throughout the genome [71,72]. Variation at other small RNA pathway components 145 

might also influence global methylation levels [71]. These subtle changes in CHH methylation 146 

suggest that methylation pathways are not simply on or off, but instead are tunable to ecological 147 

conditions. Indeed, Arabidopsis grown at a lower temperature displays decreased CHH 148 

methylation [73], possibly due to reduced siRNA production at low temperature [74]. Selection 149 

might therefore tune the efficiency of methylation machinery to match an ecological niche [75]. 150 

 151 

Loss of methylation pathways 152 

In some species, DNA methylation is reduced to the point of elimination. Maize and 153 

some Arabidopsis accessions lack active CMT2 and therefore have no CHH methylation at 154 

heterochromatin transposons [73,75–78]. However, euchromatic transposons in these genomes 155 

retain CHH methylation due to RdDM [73,76,78]. The apparent success of these lineages raises 156 

the question of why CMT2 has been retained as a distinct clade in angiosperms if 157 

heterochromatin and RdDM are sufficient for genome defense against transposons [38]. 158 

Unexpectedly, some CMT2-null accessions of Arabidopsis display robust CHH methylation at 159 

heterochromatic transposons, suggesting that additional redundancy and plasticity among 160 

methylation pathways remains to be discovered [75]. 161 

Spirodela polyrhiza, a small aquatic monocot that propagates through rapid asexual 162 

reproduction, provides an extreme example of loss of small RNA and methylation pathways 163 

[79]. Spirodela lacks CMT2 and is deficient in expression of some RdDM components, resulting 164 

in essentially no CHH methylation and reduced levels of CHG and CG methylation [69,70,80]. 165 

Reduced CHH methylation has been observed in other clonally-propagated species, as well as 166 

at least one other aquatic plant, suggesting that either of these lifestyle factors might make CHH 167 

methylation dispensable [57,80]. 168 

 169 



Conclusion 170 

The recent explosion in plant genome sequences allows us to trace the expansion and 171 

contraction of small RNA machinery across the plant family, uncovering diverse complements of 172 

proteins. Contrary to the assumption of ever-increasing complexity, there are also losses of 173 

conserved machinery, suggesting that genomes have evolved a wide range of gene silencing 174 

approaches. However, too often we lack direct evidence to conclude that homologous proteins 175 

function similarly across hundreds of millions of years of evolution. Functional studies in an 176 

expanding list of species are necessary to understand the diverse ways to manage a genome. 177 
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Figure Captions 185 

 186 

Figure 1. Major components of prevalent plant small RNA pathways. 187 

The core proteins or complexes responsible for small RNA biosynthesis and function are shown 188 

for the most common sources of plant small RNAs: RNA polymerases (Pol), RNA-dependent 189 

RNA Polymerase (RDR), Dicer-like endonuclease (DCL), and Argonaute effectors (AGO). With 190 

the exception of viral polymerases, which vary depending on the type of virus, all components in 191 

the same row are members of the same gene family. Ancestral genes duplicated and 192 

specialized for particular small RNA pathways, as listed at the top. MicroRNAs (miRNA) form 193 

dsRNA through single-molecule folding and do not require an enzyme for dsRNA synthesis. The 194 

Argonaute(s) associated with 24-nt phasiRNAs are unknown, but presumed to be members of 195 

the AGO4 clade. Only the most common Argonaute effectors are listed for each pathway. 196 

 197 

Figure 2. Evolutionary history of small RNA machinery in plants.  198 

Subunits of Pol II, IV, V, and VI are named NRPB, NRPD, NRPE, and NRPF, respectively, with 199 

the number indicating the subunit (1 for largest, 2 for second-largest, etc). Subunits other than 200 

the ones depicted are shared between Pol II, Pol IV, and Pol VI. Grey bars indicate the 201 

presence of presumed orthologous sequences in each plant lineages, with forks indicating the 202 

timing of gene duplication. The unfilled, dotted fork indicates ambiguity regarding the timing of 203 



the DCL2/DCL4 divergence. Gene names are colored by their presumed function. Purple = 204 

RdDM, blue = microRNA, green = viral resistance, orange = other or unknown. 205 

 206 

Figure 3: DNA methylation pathways in angiosperms. 207 

(A) Methylation at CG sites is maintained by MET1. Semi-conservative DNA replication 208 

combines an older, methylated strand with a newly-synthesized unmethylated strand. MET1 209 

recognizes the resulting hemi-methylated site and induces full methylation. (B) In euchromatin, 210 

asymmetric CHH sites do not result in hemi-methylated sites following replication and must be 211 

maintained by siRNA targeting of DRM methyltransferase (RdDM). (C, D) In heterochromatin, 212 

non-CG sites are maintained by the alternating actions of a histone methyltransferase 213 

(KYP/SUVH4, SUVH5, and/or SUVH6) and chromomethyltransferases (CMT2 and CMT3). The 214 

histone methyltransferase recognizes CHG or CHH methylation and induces dimethylation of 215 

lysine 9 on histone H3 (H3K9me2). This histone modification is recognized by CMT2 and CMT3, 216 

which cause CHH and CHG methylation, respectively. 217 
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