Functional Food Science 2022; 2(2): 47-63 FFS Page 47 of 63

Review Article Open Access

0y

Functional Food Science

The nexus of gut microbiota, diet, and health
Sajal Bhattarai, Srinivas Janaswamy”
Department of Dairy and Food Science, South Dakota State University, Brookings, SD 57007, USA

*Corresponding Author: Srinivas Janaswamy, PhD, Department of Dairy and Food Science, South Dakota State University,
Brookings, SD 57007, USA

Submission Date: December 24th, 2021; Acceptance Date: February 4t", 2022; Publication Date: February 9t", 2022

Please cite this article as: Bhattarai S., Janaswamy S. The nexus of gut microbiota, diet, and health. Functional Food
Science 2022; 2(2): 47-63. DOI: https://www.doi.org/10.31989/ffs.v2i2.885

ABSTRACT
The gut microbiome incorporates the
ecological niche specific to the totality Gut

of the microorganisms in the human microbiome
gut. Unique to every individual, the

blueprint of the microbiome sets up at
birth and functions as a human organ
and plays a significant role in

. . . e . . . Health
digestion, detoxification, fighting modulation

pathogens, modulating the immune

system, and improving health. The gut

microbiota and associated health H ea It h D iet

implications are influenced by factors

such as birth and age, diseases, use of

antibiotics and food components (e.g., complex carbohydrates and dietary fibers, plant proteins, unsaturated fatty acids,
and functional compounds of natural origin such as flavones, flavonoids, polyphenols, and antioxidants). Toward this
end, diet and the gut microbiome interact and govern each other’s fate. Herein, gut dysbiosis, the alteration of natural
state and composition of the gut microbiome, and the gut microflora diversity modulated by food constituents and
associated health effects have been discussed. The gut microbiota composition and related metabolites are influenced
by the diet which in turn modulates human health. The outcome is deemed to aid in developing personalized diet
recommendations (based on the unique gut microbiome) toward improving human health.
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INTRODUCTION

The gut microbiota and its implications on human health
have emerged as a critical area in health science. The
intrinsic  associations between food, microbiota-
associated gut health and overall health are a topic of
concern. This paper reviews some important aspects of

these three aspects with brevity.

Gut Microbiome: The literature explains the gut
microbiome from two different perspectives. One
concept incorporates the ideology of the collective
genome (pertaining to the suffix -ome that comes from
the word -genome) of the micro-organisms residing in
the human gut. The other one, however, incorporates the
totality of all the micro-organisms, their habitat (the gut;
pertaining to the suffix -biome) with unique physio-
chemical properties, and all their activities inside the
habitat thereby forming a unique ecological niche
specific to the totality of the micro-organisms residing
the habitat. Thus, the gut microbiome could be defined
as (1) the collective genome of the microorganisms
(bacteria, archaea, lower and higher eukaryotes and
viruses) residing in the human gut [1] or (2) the total
microorganisms, their habitat (the gut or gastrointestinal
canal) and activities [2-3]. The appropriateness of these
two perspectives is still a matter of debate but the second
one appears to be more apt as it comprehensively
signifies the ecological niche. The microbiome (1) is as
complex as a human organ, (2) transfers to newborns and
(3) shows distinct physiology and pathology [4-6].
Quoting Riccio and Rossano “it could be considered as a
kind of sensor of the variations in ... relationship with
environmental energy, which mainly occurs through the
intake of food and the elimination of waste” [7]. It acts as
the interface between the energy obtained from food

and energy needs. The microbially derived metabolites
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also induce epigenetic alterations in the genes

responsible for disease modulation [8].

Gut microbiota: The human body harbors trillions of
microorganisms and most of them reside in the gut [9-
10]. The gut also accommodates a sparse amount of
pathogenic strains (~ 0.1%) of Escherichia coli,
Bacteroides fragilis, Campylobacter jejuni, Salmonella
enterica, Vibrio cholera, etc. All the microorganisms that
are part of the stable gut microecological niche are
categorized as the “gut microbiota”, which is the subset
of the gut microbiome [11-12]. It comprises around
99.1% bacteria (e.g., Firmicutes, Bacteroidetes,
Actinobacteria and Proteobacteria), 0.8% archaea (e.g.,
methanogens and haloarchaeal strains), and 0.1% of
virus (e.g., bacteriophages), fungi (e.g., Ascomycota,
Basidiomycota and Zygomycota) and protozoa (e.g.,
Amitochondriates,

amoebozoans, flagellates,

Apicomplexans and Stramenophiles) (Table 1).

How does gut microbiota establish and form a stable
niche in the human body?: The gut is exposed to the
outer environment through air, food and water. The first
batch of the human gut microbiota (mainly bacteria)
enter during and immediately after birth and colonize
within days. The microorganisms such as Lactobacillus
spp., Prevotella spp. and Sneathia spp. derived from the
mother’s vagina during natural delivery or
Staphylococcus, Corynebacterium and Propionibacterium
spp. from the mother’s skin via C-section [22] dictate the
overall gut microbial cohort, which later forms the micro-
ecosystem within a couple of years. The gut microbiota
could also colonize the unborn’s gut in the uterus [23].
These prelusive bacteria develop based on nutrition
availability (e.g., Human Milk Oligosaccharides) and lay

the foundation for the futuristic microbial profile.
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Table 1. Key microorganisms of human gut
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Organism Major Phyla Key members References
Bacteria Firmicutes Clostridia Cluster XIVa [Clostridium spp., Eubacterium spp., [12-17]
Roseburia spp. Blautia spp.] and Clostridia Cluster IV
[Clostridium spp., Ruminococcus spp., Faecalibacterium spp.]
Bacteroidetes Bacteroides spp., Prevotella spp., Xylanibacter spp.
Actinobacteria Bifidobacterium spp., Propionibacterium spp.
Proteobacteria Escherichia coli
Archaea Methanogens Methanobrevibacter, Methanobacteriales, [18]
Methanomassiliicoccales.
Haloarchaeal strains Haloferax miserliness and Halorubrum lipolyticum
Virus Bacteriophages - [19]
Fungi Ascomycota Candida spp., Cladosporium spp., Saccharomyces spp. [20]
Basidiomycota Cryptococcus spp., Filobasidium spp., Malassezzia spp.
Zygomycota -
Protozoa Amoebozoans - [21]
Flagellates

Amitochondriates
Ciliates
Apicomplexans

Stramenophiles

Why is the gut microbiota a topic of significance? The
gut microbiota plays several vital roles in the human
body. For example, Lactobacillus helveticus and
Bifidobacterium longum alleviate anxiety and improve
psychological health [24]. Herein, gut microbiota effects
on (1) the immune system, (2) digestion and nutrition, (3)
the integrity of the gut barrier and gastrointestinal tract,
(4) detoxification and (5) antimicrobial protection have

been discussed in brief.

Immune system: The immune system is a composite of
innate and adaptive immune systems. The innate
immune system comprises monocytes, macrophages,
neutrophils, basophils, eosinophils, mast cells,
interleukin-10 (IL-10, an anti-inflammatory signaling
protein), natural killer (NK) cells, gut-associated lymphoid
tissues (GALT) along with complement and dendritic

cells. On the other hand, the adaptive immune system is

predominantly composed of dendritic cells and B-cells
(fight against bacteria and viruses), and effector and
regulatory T-cells (stimulate B-cells to make antibodies
e.g., immunoglobulin A and also eradicate invaders). The
gut microbiota works in close synergism with these two
systems. It aids GALT in recognizing bacterial tolerance
and regulating the activation of NK cells and the
functionality of T-cells and B-cells [25]. It also contributes
to the diversification of microbe recognition capacity of
IL-10 and modulates the human immune system [26]. The
gut bacteria also facilitates predicting white blood cell
counts, neutrophils, lymphocytes, monocytes,
eosinophils and platelets [27]. Disbalance in the gut
microbial composition encourages monocyte-like
macrophages (MLM) accumulation and facilitates
tumorigenesis preventing apoptosis and increasing cell

survival instincts [28].
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Digestion and Nutrition: Gut microbiota ferments
carbohydrates that survive digestion and reach the colon
and releases beneficial metabolites predominantly
composed of short-chain fatty acids (SCFAs, e.g.,
butyrate, acetate, and propionate). The SCFAs (mainly
butyrate) become an energy source for the host epithelial
cells. The SCFAs also avert the accumulation of metabolic
byproducts such as D-lactate and in turn prevent
neurological disorders like delirium, ataxia, and slurred
speech, to name a few. Examples of the colonic bacteria
involved in the fermentation are Bacteroides, Roseburia,
Bifidobacterium spp., Fecalibacterium spp.,
Enterobacteria  spp. And the bacteria from
Lachnospiraceae family [29]. Similarly, Oxalobacter,
Lactobacillus spp. And Bifidobacterium spp. Process
oxalate and prevent stone formation in the kidneys [30].

Gut microbiota positively influences lipid
metabolism (mainly in the small intestine) and promotes
the Lipoprotein Lipase (LPL) activity that aid in breaking
triglycerides into fat molecules used as energy or stored
in adipocytes [31]. It also regulates the colipase enzyme
expression and facilitates the pancreatic lipase in lipid
digestion [32]. It further deconjugates and dehydrates
the primary bile acids into secondary bile acids that
support fat emulsification and absorption [33]. For
example, Lactobacillus curvatus and Lactobacillus
plantarum digest and curb cholesterol build-up in the
body [34].

Gut microbiota releases bacterial proteinases
(small intestine) that act synergistically with intestinal
proteases toward modulating protein digestion [35].
Furthermore, it converts amino acids into signaling
molecules and antimicrobial peptides (bacteriocins) [36].
Some microbes, e.g., Bifidobacterium, Clostridium,
Lactobacillus, Escherichia and Klebsiella act as amine
producers too [37]. Likewise, gut microbiota (e.g.,
Faecalibacterium and Bifidobacterium) also metabolizes

polyphenols and activates glycosylated polyphenols by
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hydrolyzing carbohydrate moieties [38]. Synthesis of
vitamin K, components of vitamin B and conjugated

linoleic acid (CLA) are other important attributes [29].

Integrity of the Gut barrier and Gastrointestinal Tract:
Gut microbiota maintains the gut barrier integrity as well
as structural and functional aspects of the
gastrointestinal tract. It helps to minimize stress-induced
gastrointestinal damage via induction of the epithelial
heat-shock proteins (in vivo study), restoration of the
tight junction protein structure (human colonic epithelial
cell line study), up-regulation of the mucin genes,
secretion of defensins (mice study), regulation of NFxB
signaling pathway and competitive inhibition of
pathogens, to name a few. For example, through mucin
synthesis, TJ reassembly, or 25ccluding and ZO-1 up-
regulation (mice study), the butyrate produced by the gut
bacteria improves gut barrier permeability (human
colonic epithelial cell line study) [38], Lactobacillus
rhamnosus prevents cytokine-induced apoptosis of the
intestinal cells (intestinal epithelial cell model) [39] and
Akkermansia muciniphila helps to increment the
endocannabinoids that can decrease the metabolic
endotoxemia and control the gut barrier functions (mice
study) [40]. Similarly, gut microbiota maintains tight
junctions between cells through TLR2 mediated signaling
(mice study) [41]. It also induces the transcription factor
angiogenin-3 which is essential during microvasculature
development in the intestine. The absence of
microvasculature developed lowers the intestinal surface
area, the thickness of the intestinal villi, curtails the
peristalsis, increases the cell-cycle time and in turn
impairs nutrient digestion and absorption [42]. The
disbalance in the gut microbiome also leads to a situation
called leaky gut where the disrupted gut barrier allows
the translocation of the bacteria to the liver through the
gut-liver axis that plays role in liver disease development

and progression.
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Detoxification: Metals in the elemental, inorganic and/or
organic form of ingested food undergo absorption,
distribution, biotransformation and elimination. Organic
forms readily absorb due to their fat solubility and better
membrane diffusivity. However, heavy metals (e.g., lead,
arsenic, and cadmium) cause metal toxicity but gut
microbiota mitigates metal toxification through
biotransformation. For example, Lactobacillus aids in
intestinal lead sequestration [43] and Faecalibacterium
protects against acute arsenic toxicity [44]. Gut
microbiota also absorbs and utilizes metals for its own
needs. For example, Bacteroides, Butyricimonas, Dorea
and Lactobacillus could consume arsenic, Coprococcus
and Lactobacillus cadmium and lead by Desulfovibrio,

Prevotella and Roseburia [45].

Antimicrobial Protection: Healthy gut microbiota is
essential for normal homeostasis. It creates, however, a
challenging scenario for the gut epithelial linings to
accept commensal microbiota and reject harmful ones
(e.g., through nutrition competition, variation in the
oxidative stress, redox potential, and production of
bacteriocins). Unlike the large intestine, wherein the two-
layered mucus membrane prevents microbial access to
the gut epithelial cells, the small intestine, possessing
discontinuous and inadequate mucus layer, precludes
harmful microbial invasion with its antimicrobial proteins
(AMPs) and gut microbiota assistance [46-47]. The gut
microbiota induces the Paneth cells to synthesize AMPs
such as cathelicidins, C-type lectins, and (pro)defensins
through the pattern recognition receptor (PRR) mediated
mechanism. The PRR gets activated by organism-specific
microbe-associated molecular patterns (MAMPs).
Interactions between PRR and MAMPs trigger signaling
pathways that promote the production of AMPs, mucin
glycoproteins and Immunoglobin A (IgA), which in turn
enhance the mucosal barrier functionality [48]. The AMPs

production is driven by healthy gut microbiota, and
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bacteria such as Bacteroides theataiotaomicron and
Lactobacillus innocua are essential in this process. The
SCFAs produced by the microbiota also induce the AMPs
fabrication.

Gut microbiota also stimulates local
immunoglobulins production. Gram-negative bacteria
such as Bacteroides help to activate the intestinal
dendritic cells (DCs), which in turn fuels plasma cells to
produce secretory IgA (slgA). The slgA coats the gut
microbiota and resists degradation by by the mesenteric
lymph nodes, ensuring that the bacterial proteases [49].
Moreover, DCs loaded with gut microbiota are restricted
to the mucosal layers systemic immune system remains
unaffected by the immune responses around the gut

microbiota [50].

Gut Dysbiosis: Every human body has a unique stable gut
microbiome (which varies over time due to various
factors discussed later), and the relative proportion of
specific taxonomic groups vary greatly. Once the stable
gut microbiota establishes, the core composition shapes
futuristic bacteria in conjunction with factors such as
food and prevalent diseases. However, any substantial
alteration leads to gut disbalance known as gut dysbiosis
resulting in health aberrations such as obesity,
cardiovascular diseases, hypertension, diabetes, and
inflammatory bowel disease. On the other hand, the
increment of certain bacteria is good for cardiovascular
health. For example, domination from some bacteria
from Firmicutes phylum such as Lactobacillus reuteri is
linked with increased High-density Lipoproteins is good
for health [51], and Akkermansia muciniphila and
Phascolarctobacterium have been linked to fat
deposition [52]. Likewise, increased Bacteroides fragilis,
Fusobacterium

nucleatum, Porphyromonas

asaccharolytica, Parvimonas micra, Prevotella
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intermedia, Alistipes finegoldii and Thermanaerovibrio
acidaminovorans have been linked to colorectal cancer
[53]. Similarly, reduced Faecalibacterium prausnitzii,
Erysipelotrichales, Bacteroidales and Clostridiales link to
Corhn’s disease [54]. Decreased Bifidobacterium and

increased Bacteroides and Enterococci might hint the
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directional fashion through neural, endocrine, immune
and humoral pathways. For example, alteration of
healthy gut bacteria profile has been linked with central
nervous disorders such as autism and depressive
behaviors and gut-related issues such as IBD. Gut

dysbiosis associated with a couple of health implications

Inflammatory Bowel Disease (IBD) [55]. The gut is highlighted in Table 2.

microbiota also plays roles in the gut-brain axis in a bi-

Table 2. Decrement in some gut bacteria proportion during diseases

Disease Gut bacteria References
Autism Firmicutes [21, 56, 57]
Actinobacteria
Celiac Disease Bifidobacterium [21]
Clostridium difficile infection Clostridium scindens
Colorectal cancer Prevotella [21, 56, 58]
Ruminococcus spp.
Pseudobutyrivibrio ruminis
Crohn’s disease Bacteroides [21, 56, 59]
Bifidobacteria
Depression Prevotella, Dialister
HIV Clostridia [21, 56, 60-62]
Bacteroidia
Lactobacilli
Bifidobacteria
Hypertension Acetate and butyrate producers [21]
Irritable bowel syndrome Clostridium laptum, Bifidobacteria [21]
Obesity Bacteroides [21, 56, 63]
Rheumatic arthritis Bifidobacteria [21, 56, 64]
Bacteroides fragilis
Type-1 diabetes Lactobacillus [21, 56, 65]
Bifidobacterium
Blautia coccoides
Eubacterium rectale
Prevotella
Actinobacteria
Firmicutes
Type-2 diabetes Clostridium coccoides [21, 56, 66]

Firmicutes, Prevotella, Atopobium

Lactobacilli
Runinococcus hominis
Faecalibacterium prausnitzii

Ulcerative colitis [21,67-69, 56]
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Factors affecting the gut microbiome: Genetics, food,
age, diseases and the use of medicines and antibiotics are
some of the influencing factors that modulate the gut
microbiota cohort throughout human life. A few of them
are selected for further elaboration in the following

sections.

Host interior factors

Birth and Age: The first meconium loaded with a few gut
microbiota species suggests that the blueprint of the gut
microbiome on sets at birth. Indeed, the mode of delivery
lays the foundation for the futuristic microbiota
composition. The initial inoculum, however, is not
necessarily stable and diverse, but manifests into
established composite by 3 years and resembles 40-60%
of the adult microbiota profile; however, varies
significantly with age [70]. It reaches a stable state at
around 30 years but continues to stabilize up to 70 years
[71] and is predominantly influenced by environmental
exposure, diet, life events, contraction of diseases and
consumption of antibiotics. Human milk oligosaccharides
(HMOs) consumed during lactation might not necessarily
be present in the adult diet. Therefore, infants have an
abundant presence of certain Bifidobacterium species
such as Bifidobacterium breve, Bifidobacterium bifidum,
Bifidobacterium longum subsp. longum (Bifidobacterium
longum), Bifidobacterium longum subsp. infantis
(Bifidobacterium infantis), Bifidobacterium
pseudocatenulatum etc. compared to adults [72]. The
Bacteroides and Bifidobacterium in young children and
adolescents differ significantly from adults. The E. coli,
Proteobacteria and Staphylococcus proliferate with age,
whilst Bifidobacteria, Firmicutes and Faecalibacterium

prausnitzii decline [73]. Such dynamics negate an
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individual’s ability to synthesize vitamin B12, increase the
host’s tendency for DNA alterations and weaken the
immune system in addition to a host of other health

anomalies [74].

Non-dietary factors

Antibiotics: Gut microbiota contains a pool of genes that
express antibiotic resistance. However, upon antibiotics
administration, bacterial species with resistant genes
competitively flourish over non-resistant bacteria
resulting in altered microbial diversity and instability in
the overall gut microbiota profile. Such resistant genes
can also be transferred to the pathogenic strains. This
phenomenon further compromises microbial recognition
capacity of the immune system leading to several health
issues. It further modifies the metabolome (collection of
metabolites), increases antibiotic resistance, and impairs
the competitive inhibitory effect on the external
pathogens. The mechanisms by which the antibiotic
affects the gut bacteria include inhibition of cell wall
synthesis, protein synthesis, nucleic acid synthesis,
membrane disruption, etc. In this regard, different
antibiotics act distinctly. For example, meropenem,
gentamicin, and vancomycin administration reduces the
Bifidobacterium and butyrate-producing species and
promotes Enterobacteriaceae. Likewise,
Vancomycin/imipenem diminishes Lachnospiraceae and
Ruminococcaceae bacteria that are responsible for the

conversion of arabinitol to pentose sugars [75].

Dietary factors: Interactions between gut microbiota and
diet significantly influence the metabolic response to
nutrition and in turn human health. In general, fruits,

vegetables, fibers, and whole plant-based foods promote
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the richness and diversity of gut microbiota compared to
animal-based and/or processed foods [76] and aid in the
prevention of chronic non-communicable diseases
including cancer. Modulating human health through
personalized diet recommendations for individuals (with
their unique gut microbiome) is deemed to emerge as a
new area of diet therapy. Herein, interactions between
food classes and gut microbiota, and resultant health

effects are highlighted.

Carbohydrates: Gut microbiota interacts with (1) dietary
fibers, (2) digestible but undigested carbohydrates by the
gut from diet and (3) endogenousglycans from the mucus
of the host. In this set, dietary fibers are the major energy
source for the gut microbiota, known as microbiota
accessible carbohydrates (MACs), for brevity. The
fibrinolytic (fiber digesting) community includes
Roseburia, Ruminococcus, Bacteroides and
Bifidobacterium, etc. Likewise, the glycolytic (that digest
the gut-digestible carbohydrates, but somehow skip the
digestion in the gut) cohort includes Lactobacillus,
Enterococcus, Staphylococcus, E. coli, etc. These
microbes ferment complex fibers, sugars, and
endogenous carbohydrates resulting in SCFAs (acetate,
propionate, butyrate), carboxylic acids (e.g., lactate,
succinate, and formate) along with various gases namely
CO,, Hy, HyS and CHs which could further get
interconverted. SCFAs are the energy source for the
intestinal epithelial cells (colonocytes). Butyrate in
particular will be utilized by colonocytes, whereas
acetate and propionate in the gluconeogenesis process

by the liver as well as transported through the

bloodstream to the brain and heart [77]. Consequently,
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reduction in fiber consumption impacts SCFAs products
that concomitantly influence the gut microbial diversity
that further resulting in a host of health issues.

Among the several available MACs (Table 3), resistant
starch (RS) increases Lactobacilli Bifidobacteria,
Roseburia, Eubacteria and Ruminococcus species; RS2
Ruminococcus bromii and Eubacterium rectale, RS3
Faecalibacterium prausnitzii and RS4 Bifidobacterium
adolescentis and Parabacteroides distasonis [78]. Pectin
boosts the relative abundance of Bacteroides,
Anaeroplasma, Anaerostipes and Roseburia, but
decreases Alistipes and Bacteroide. Likewise, cellulose
promotes Clostridium, Eubacterium, Ruminococcus,
Bacteroides, etc., whilst Inulin upsurges E. rectale,
Roseburia intestinalis and Anaerostipes caccae and
xanthan gum fosters Roseburia, Ruminococcus,
Bacteroides and Bifidobacterium with an increase in the
overall SCFAs production along with resistance against
diarrhea-causing Clostridioides difficile [79]. Similarly,
arabinoxylans rise the butyrate-producing species such
as Bifidobacterium [80] and xylan fermenting species
such as Bacteroidetes [81]. Diets with low MACs promote
mucus degrading bacteria e.g., Akkermansia muciniphila
and Bacteroides caccae, that impair the first line of
defense in the human gut leading to gut dysbiosis [82],
decreased epithelial integrity and modification of
epithelium cytokine expression [83-84]. Diets rich in
glucose, fructose, sucrose, and lactose promote
Bifidobacteria and decrease Bacteroides [85-86].
Likewise, lactose blooms Lactobacilli but tapers
Clostridia. Artificial sweeteners (e.g., saccharin,

aspartame) decrease Lactobacilli and Clostridia [87].
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Table 3. A few carbohydrates and artificial sweetener fermented by some gut microbiota

Fermenting Carbohydrate References

organism

Bacteroides uniformis

Bifidobacteria, Bacteroides xylanisolvens, Bacteroides
thetaiotaomicron, Bacteroides ovatus

Bifidobacterium, Anaerostipes, Prevotella
Bifidobacterium, Lactobacillus, Bacteroides

Bacteroides xylanisolvens, Escherichia coli
Ruminococcus, Bacteroides

Bacteroides, Roseburia, Faecalibacterium,
Bifidobacterium

Bifidobacterium, Lactobacillus, Bacteroides
Bifidoacterium, Roseburia

Akkermansia

Bifidobacterium

Bifidobacterium, Roseburia, Eubacterium rectale
Bifidobacterium, Lactobacillus

Clostridial cluster XIVa, Bifidobacterium
Lactobacillus. Bifidobacterium

Bifidobacterium

Akkermansia, Bacteroides

Peptostreptococcus, Fusobacterium, Bifidobacterium
Bacteroides, faecalibacterium

Eubacterium rectale, Bacteroidetes, Ruminococcus
bromii, Bifidobacterium, Akkermansia, Allobaculum
Eubacterium rectale, Ruminococcus bromii,
Oscillibacter, Atopobium spp., Bifidobacteria spp.
Eubacterium oxidoreducens, Ruminococcus lactaris,
Parabacteroides distasonis, Eubacterium rectale,
Rumminococcus bromii

Bacteroidetes

Lactobacillus, Escherichia

Roseburia, Bacteroides, Prevotella

Proteins: Microbial proteinases digest proteins,

association with proteinases and peptidases, and aid in

Agarose [13]
Alginate [15, 88]
Bacterial polysaccharides [13]
Beta-glycan [88]
Carrageenan [89]
Cellulose [13]
Fructans (inulin and FOS) [13]
Fructooligosaccharide [88]
Fructose [13]
Fucoidan [88]
Galacto oligosaccharide [88]
Guar gum [88]
Gum acacia [88]
Hemicellulose [88]
Lactose [13]
Milk oligosaccharides [13]
Mucin and mucopolysaccharides [13]
Nutriose [90]
Pectin [13]
Resistant starch Il [88]
Resistant starch Ill [88]
Resistant starch IV [88]
Saccharin (artificial sweetner) [91]
Sugar-alcohols [13]
Xylan and arabinoxylan [13]
in protein metabolism. The gut microbiota also converts

amino acids to signaling molecules and antimicrobial
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peptides [92]. The presence, absence, or type of protein
in conjunction with the levels of oxygen and
carbohydrate significantly affect the gut microbial
profile. For example, animal proteins increase Alistipes,
Bilophila and Clostridia along with subtle increment in
Eubacterium rectale and Bifidobacteria, which could
promote bile-tolerant anaerobes and subsequent
reduction of SCFAs along with increment in the
production of Trimethylamine N-oxide (TMAO) thereby
increasing the risks of cardiovascular diseases and
Inflammatory Bowel Diseases [93]. On the other hand,
the consumption of plant-based proteins appears to be
favorable [94]. Whey protein discourages the growth of
Bacteroides and Clostridia but increases Bifidobacteria
and Lactobacilli [95]. The Bifidobacterium, Lactobacillus
increment with concomitant Bacteroides and Clostridium
spp. Reduction augments SCFAs production, which
reduces inflammation and improves gut barrier and

production of Tregs regulatory cells [96].

Fats: Gut microbiota positively impacts lipid metabolism
by promoting Lipoprotein Lipase (LPL) activity and
colipase expression [97]. However, fat type and amount
influence the microbial cohort. Consumption of lower
amounts of fat increases the Bifidobacterium spp. while
higher quantities proliferate anaerobic microbes and
Bacteroides [98]. Likewise, diets rich in saturated fats
enhance Faecalibacterium prausnitzii. On the other hand,
monounsaturated fats aid to reduce the overall bacterial
load. Lard promotes Bacteroides and Bilophila growth
whilst  Bifidobacteria, Adlercreitzia, Lactobacillus,
Streptococcus and Akkermansia muciniphila by fish-oil
[99]. Mice studies hint at increased systemic TLR
stimulation, inflammation of the adipose tissues and
decreased insulin sensitivity compared to fish-oil
consumption suggesting some relationship between

developed gut microbiota and health issues [96].
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However, further research is warranted to understand

the root cause.

Natural compounds: A variety of natural food systems
such as vegetables, fruits and herbs contain health-
promoting and disease-preventing compounds (e.g.,
catechins, flavonols, flavones, anthocyanins,
proanthocyanidins, phenolic acids and polyphenols) and
gut microbiota plays important role in metabolizing these
compounds. Gut microbiota transforms these natural
compounds to a more active and absorbable form via
esterase, glucosidase, demethylation, dehydroxylation
and decarboxylation [100]. For example, polyphenols
that are naturally present as glycosides are transformed
to aglycones by the gut microbiota glycohydrolases,
which are better absorbed in the intestine. Gut
microbiota is also essential to produce active isoflavone
metabolites with oestrogen-like activity that display
various anti-inflammatory properties. For example,
quercetin derived through microbial digestion possesses
improves anti-inflammatory properties than the
glycosylated form [101].

The presence or absence of these beneficial
compounds modulates the gut microbial composition.
Flavonol-rich foods promote healthy gut bacteria [102].
Polyphenols from tea, wine and cocoa prosper the
Bifidobacteria and Lactobacillus species with a
concomitant reduction in the pathogenic strains such as
Staphylococcus  aureus, Salmonella  typhimurium,
Clostridium  perfringens, Clostridium  Histolyticum,
Bacteroides, Salmonella typhimurium and
Staphylococcus aureus [103]. Tea phenolics reduce
Bacteroides spp., Clostridium spp., E. coli and Salmonella
typhimurium [104]. Wine resveratrol promotes the
growth of Bifidobacterium and Lactobacillus [105].
Anthocyanins from berries inhibit pathogens such as

Staphylococcus, Salmonella spp., Helicobacter pylori and

Bacillus cereus [106]. Tea catechins modify the intestine


https://ffhdj.com/index.php/FunctionalFoodScience

Functional Food Science 2022; 2(2): 47-63

mucin layer toward modulating adhesion and

colonization of the bacteria in the gut [107].

CONCLUSION

The gut microbiome, the ecological niche formed by the
gut microbiota, is influenced by factors such as birth, age,
antibiotics, diseases, food, etc. It interacts with the outer
environment through food, water, and air. More
importantly, food and water are the major influencing
factors through which the gut microbiome could get
modified and in turn modulate human health. For
example, consumption of an animal-protein-rich diet
appears to reduce Roseburia and Eubacterium rectale
which are associated with increased risks of IBD. On the
other hand, the presence of MACs increases
Lactobacillus, Ruminococcus, Eubacterium rectale and
Roseburia and the overall SCFA production. Probiotics
and polyphenols favor beneficial Bifidobacterium and
lactic acid bacteria and reduce the enteropathogenic
Clostridia species. The metabolites formed during this
process also play critical roles in antimicrobial protection
and immunomodulation. This brief review provides a
synopsis of the gut microbiota and its interplay with diet
and health. Diet-induced health modulation could hold a
promising future via the pathway of inter-dependent
micro-ecosystem of food, gut microbiome and human

health toward improving human health.

List of Abbreviations: IBD: inflammatory bowel diseases,
MAC: microbiota accessible carbohydrates, SCFA: short-
chain fatty acids, LPL: lipoprotein lipase, TMAO:
Trimethylamine N-oxide, RS: resistant starch, HMO:
human milk oligosaccharides, DNA: deoxyribonucleic
acid, DC: dendritic cells, AMP: antimicrobial proteins,
MAMP: microbe-associated-molecular patterns, NFxB:
nuclear factor kappa-light-chain-enhancer of activated B

cells, CLA: conjugated linoleic acid, MLM: monocyte-like
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gut-associated lymphoid tissue
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