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SUMMARY

Introgressive hybridization may play an integral role in local adaptation and specia-
tion (Taylor and Larson, 2019). In the Mexican tetra Astyanax mexicanus, cave pop-
ulations have repeatedly evolved traits including eye loss, sleep loss, and albinism.
Of the 30 caves inhabited by A. mexicanus, Chica cave is unique because it contains
multiple pools inhabited by putative hybrids between surface and cave populations
(Mitchell et al., 1977), providing an opportunity to investigate the impact of hybrid-
ization on complex trait evolution. We show that hybridization between cave and
surface populations may contribute to localized variation in traits associated with
cave evolution, including pigmentation, eye development, and sleep. We also un-
cover an example of convergent evolution in a circadian clock gene in multiple cave-
fish lineages and burrowing mammals, suggesting a shared genetic mechanism un-
derlying circadian disruption in subterranean vertebrates. Our results provide
insight into the role of hybridization in facilitating phenotypic evolution.

INTRODUCTION

Hybrid zones resulting from interbreeding between lineages that occupy different environmental extremes
offer a powerful means to detect targets of selection in the genome underlying complex traits. Recent ad-
vances in sequencing technology and statistical approaches have made it feasible to apply admixture map-
ping to identify adaptive loci underlying ecological divergence in plant and animal models of evolution
(Luttikhuizen et al., 2012; vonHoldt et al., 2016; Bresadola et al., 2019; Calfee et al., 2020; Powell et al.,
2020; Taylor and Larson, 2019). However, previous studies in plants and animals have focused on hybrids
formed between distinct species with substantial genetic divergence and reproductive isolation, making
it difficult to identify regions associated with ecologically relevant traits versus intrinsic incompatibilities
(Gompert et al., 2017). The application of admixture mapping to models of trait evolution has the potential
to define fundamental interactions between genetic and environmental variations that shape evolution.

The Mexican tetra, Astyanax mexicanus, is a powerful model system for investigating the genetic and
evolutionary basis of development and behavior (Yoshizawa et al., 2010; Duboué et al., 2011; Bibliowicz
et al., 2013; Kowalko et al., 2013; Aspirasa et al., 2015). Surface populations inhabit rivers from Texas to
Mexico and have invaded caves multiple times, resulting in at least 30 populations of cave morphs in
the Sierra de El Abra region of Northeast Mexico (Mitchell et al., 1977; Espinasa et al., 2020). At least
two independent lineages of surface fish have invaded caves within the past ~200,000 years (Ornelas-Gar-
cia et al., 2008; Herman et al., 2018). Cavefish populations have converged on numerous morphological
traits that are thought to be adaptive in the cave environment, including albinism and eye loss (Moran
et al., 2014). In addition, cavefish have repeatedly evolved multiple behavioral changes, including sleep
loss, which may increase the time allocated to foraging in nutrient-poor cave environments (Duboué
etal., 2011; Yoshizawa et al., 2015). The application of molecular genetic approaches has led to the iden-
tification of genetic factors that regulate some of these trait differences, but the mechanisms underlying
their evolution remain poorly understood (McGaugh et al., 2020).

We recently found evidence of historical and contemporary gene flow between natural surface and cave
populations of A. mexicanus (Herman et al., 2018). The presence of admixture between populations raises
the possibility that gene flow may be a critical driver of trait evolution in this system. The Chica cave is
unique in that it has been reported to contain fish that exhibit extreme levels of phenotypic variation across
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Figure 1. Collection locations and variation in morphological traits within and between cave populations

(A) Map of Chica cave, modified with permission from (Elliott, 2015). Pool one and Pool two are colored dark blue.

(B) Collection locations for cave and surface populations. For the two surface populations, the collection location for Rio Choy is represented by a light blue
circle and the collection location for Rascon is represented by a dark blue circle.

(C) Representative images of wild-caught fish. Scale bar denotes 1 cm.

(D) Representative images of eye morphology variations in Chica Pools one and two and complete eye loss in wild-caught Pachén and Los Sabinos cave
populations. There are no eyed fish present in Pachén and Los Sabinos populations.
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Figure 1. Continued

(E) Eye diameter is reduced in Chica pool two fish compared to pool 1 (p < 0.05*%, Unpaired t-test, t = 1.88, df = 17). Eye size was corrected to body length.
(F) Eye morphology in Chica fish. Chica Pool 1: observed 60% eye (n = 9), 40% no eye (n = 6). Chica Pool 2: observed 40% eye (n = 2), 60% no eye (n = 3).
(G) Pigment quantification from combined melanophore counts on standard anatomical markers following (Stahl et al., 2018) (i.e., caudal fin area, adipose fin
area, dorsal area, eye cup area, anal fin area, infra-orbital area; see Figure S1) corrected for body length. Differences in melanin pigmentation are present
among different populations (p < 0.001, KW statistic = 23.53, Kruskal-Wallis test with Dunn’s multiple comparison test: Chica 1 vs. Chica 2, p < 0.01**; Chica 1
vs. Pachon, p < 0.001****; Pachén vs. Los Sabinos, p < 0.01**). NS: Not significant. See also Figures ST and S4.

(e.g., dissolved oxygen) (Figure 1A) (Bridges, 1940; Breder, 1942; Mitchell et al., 1977, Romero, 1983). It has
been debated whether the fish within Chica cave represent a young cavefish population (owing to a recent
invasion by surface fish) (Strecker et al., 2012) or hybrids between local cave and surface populations (Mitch-
ell et al., 1977). Historical surveys suggested that A. mexicanus within Chica cave exhibit a morphological
gradient in troglobitic traits across pools, potentially shaped by environmental variation within the cave
and ongoing influx of surface and cave morphs from underground waterways that feed into the cave (Mitch-
ell et al., 1977). Notably, the connections to both the nearby river and to other caves in the region were
thought to occur deep within the cave, not at the entrance. It has also been proposed that hybridization
is sustained by the enhanced nutrient load in Chica cave in the form of a large bat roost (Mitchell et al.,
1977), allowing the surface fish to survive long enough to interbreed with the cavefish. Thus, this cave pro-
vides a unique natural system to examine the role of hybridization in promoting the evolution of complex
traits. Here we leverage robust differences in behavior and morphology between surface and cavefish pop-
ulations of A. mexicanus, combined with whole-genome sequencing, to investigate the ancestry of putative
hybrids in Chica cave and to examine the genetic basis of trait variability across a heterogeneous
environment.

RESULTS AND DISCUSSION

We first conducted morphological and population genomic analysis to determine whether Chica fish repre-
sent hybrids between surface and cave populations. For comparison, we also collected adult fish from two
nonadmixed caves in the Sierra de El Abra region, Pachén and Los Sabinos (Figures 1B and 1C; see Table
S1forsample sizes). To examine morphological variability, we phenotyped wild-caught fish for eye size and
pigmentation (Mitchell et al., 1977). Eyes were absent in wild-caught fish from Pachén and Los Sabinos
caves (Figures 1D and S1). In contrast, the presence or absence of eyes was highly variable in wild-caught
fish from both pools within Chica cave. Overall eye diameter was significantly larger in fish from Chica Pool
one compared to Pool 2 (p < 0.05, Unpaired t-test, t = 1.69, df = 17; Figure 1E). Additionally, Chica Pool one
contained more fish with eyes present (n = 9; 60%) than those with no eyes (n = 6; 40%), while Chica Pool two
contained fewer fish with eyes (n = 2; 40%) and increased numbers with no eyes (n = 3; 60%) (Figure 1F).
Therefore, eye size (but not the frequency of fish with eyes present) varies significantly between pools within
Chica cave; though, we note that power to detect significant differences is low given our sample size.

We observed low melanin pigmentation levels in all cavefish, but the number of melanophores varied
among different cave populations (Figure 1G). Although a number of pigmented individuals were present
within the wild-caught Pachén and Los Sabinos populations, we observed overall low levels in the variability
of melanin patterns within these cave populations. Interestingly, robust differences in the number of mela-
nophores were observed between different populations of cavefish, including between fish from different
pools within Chica cave (Dunn’s multiple comparison: Chica Pool 1 > Chica Pool 2, p < 0.01; Chica Pool
1> Pachén, p <0.001; Los Sabinos > Pachén, p < 0.01; Figures 1G and S1). Notably, pigmentation variation
within Chica cave was significantly greater than that observed within Pachén and Los Sabinos caves (Brown—
Forsythe test, p = 0.03; Bartlett's test, p = 0.04). Taken together, these findings indicate that fish from Chica
cave exhibit a high degree of phenotypic variability that differs between microenvironments within the cave.

To investigate whether hybridization contributes to the observed phenotypic variability within Chica cave, we
used whole-genome resequencing to conduct admixture analyses and genomic ancestry mapping. This allowed
us to test for genomic evidence of hybridization and to define population structure between fish from Chica Pools
1 and 2, three other cave populations (Pachon, Los Sabinos, and Tinaja), and two surface populations (Rio Choy
and Rascén) (Figures 2A and 2B and S2). Our analyses revealed historical gene flow between Chica cave and the
lineages represented by Rio Choy surface and Tinaja cave populations (Figure 2C). Further analyses confirm that
Chica cave population is a hybrid population resulting from interbreeding between the nearby surface fish (from
Rio Choy/Tampadn) and southern El Abra cavefish (Table S2; Figure S3), with the onset of hybridization estimated
at approximately 2,000 generations ago (Figure 2D; Table S3).
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Figure 2. Genetic relationship between cave and surface populations, hybrid ancestry within Chica cave, and
genetic divergence between Chica Pool one and Pool 2.

(A) ADMIXTURE barplot showing ancestry proportions for K = 5.

(B) Biplot of scores for the first two PCs from PCA on 678,637 SNPs. Note that individuals from Chica cave Pool one and
Pool two overlap, and individuals from Tinaja cave and Los Sabinos cave overlap.

(C) TreeMix tree with three migration events and rooted with the outgroup, A. aeneus. New lineage surface population
(Rio Choy) groups with A. aeneus, and old lineage surface (Rascén) and caves (Chica and Tinaja) all group together.
Migration events are present between Chica cave and the geographically close surface population, Rio Choy, and
between Tinaja and Chica caves. Note arrow does not necessarily denote the directionality of migration events.

(D) Local ancestry derived from surface (Rio Choy, blue) versus cave (Tinaja, red) parental populations in hybrid fish from
Chica cave. Each row represents a diploid individual with two haplotypes stacked on top of one another.

(E) Absolute genetic divergence (Dxy) between fish from Chica cave Pool one versus Pool two in 50 kb windows across the
genome. Of the windows with exceptionally high genetic divergence between pools (Dxy values >95" percentile), 50.96%
(371 out of 728) contained a higher proportion of sites derived from the parental cave lineage (i.e., Tinaja) in Pool 2,
whereas 39.56% (288 out of 728) had a higher proportion of sites derived from the parental cave lineage in Pool 1.
Locations are indicated for several top candidate genes with high divergence between Chica pools and biological
functions related to sleep and circadian cycle (purple), eye morphology and function (green), metabolism (orange), and
pigmentation (pink), or that are pleiotropically involved in two or more of these pathways (black) (see Table S4). The 95th
percentile (Dxy = 0.0034) is delimited by a horizontal line. See also Tables S1-53 and S4 and Figures S2 and S3.

Genome-wide divergence between fish from Chica cave Pool one and Pool two is low, suggesting that
gene flow is high among pools within Chica cave (Figure 2E). Average nucleotide diversity (Pi) across
the genome did not differ between pools within Chica cave (Pi = 0.0021 for Chica Pool one and
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Pool 2; Table S1). Notably, nucleotide diversity within Chica cave was 2-3X higher compared to other
caves (Table S1) and absolute genetic divergence between pools within Chica cave (Dxy = 0.0020) is
comparable to that observed among other cave populations (Table S1). We observed no differentially
fixed sites between Chica Pool1 and Pool 2, indicative that gene flow is ongoing. All Chica individuals
exhibited highly similar proportions of the genome derived from surface versus cave parental
populations (Pool one Cave Ancestry: Mean + SE = 0.755 £ 0.004; Pool two Cave Ancestry: Mean =+
SE = 0.756 £ 0.003), and the length distribution of genomic tracts derived from the surface parental
population did not differ between Chica pools (Table S3). Together, this indicates that the overall amount
of gene flow from the surface population does not differ significantly between pools within the Chica
cave, supporting the notion that hybridization contributes to the phenotypic variability we observe within
Chica cave.

Despite homogenizing gene flow between pools, analysis of sequence divergence revealed highly local-
ized regions of genomic divergence between fish from adjacent pools within Chica cave, reflecting the
morphological differences we observed between these pools (Figure 2E). In regions above the 95" percen-
tile for Dxy between the two Chica pools, fish from Pool two were more likely to harbor alleles derived from
the nearby southern El Abra cave populations (i.e., Tinaja) compared to Pool 1 (Wilcoxon rank-sum test:
W =2.6511e+13, p < 2.2e-16). We observed a positive correlation between the difference in local ancestry
between pools and genetic distance between pools (Pearson’s correlation: r = 0.0012, n = 7,345,340, p =
0.0011), indicating that the greater proportion of cave ancestry maintained in Pool two compared to Pool
one drives genetic differences between the pools. Together, this suggests that gene flow may be a critical
driver of the identified morphological differences between pools within the same cave.

We sought to define the genes with the greatest degree of divergence (Dxy values above the 95 percen-
tile) between the pools, as these provide candidates for evolved phenotypic differences between the indi-
vidual populations (Table S4). The genes with the exceptional divergence between pools were significantly
enriched for ontologies and phenotypic categories typically associated with morphological, behavioral,
and physiological differences between surface fish and cavefish (Keene et al,, 2015; McGaugh et al,,
2020), including pigmentation (e.g., bloc1s3, cd63, sox10, meox1, asip2b, pnn, senp7b), eye development
and light detection (e.g., c1qga, itgam, pdebha, srd5a2a, opn3, mybbpla, cdcp2, gja8a, dnasellll, coab,
pcare2, caspb), sensory processing by the lateral line neuromasts (e.g., rsph9, tmie), feeding behavior
and metabolism (e.g., parp9, sultéb1, ins), and sleep and circadian cycling (e.g., srd5al, mc3r, chrnb5a,
galn, gnalilb, cryla, cry1b) (Fisher's exact tests, p < 0.05; Figure 2E, Table S4). An additional independent
analysis of known phenotypes associated with annotated genes in the A. mexicanus surface fish reference
genome (compiled from Ensembl’s BioMart v104) corroborated the results of the GO enrichment analysis.
For a gene to have an annotated phenotype in Ensembl, the ortholog from mouse, human, or zebrafish ex-
hibited experimental evidence of impacting the specified phenotype. Phenotypic categories associated
with cave adaptation (i.e., eye function and morphology, pigmentation, sleep behavior and circadian
rhythm, sensory processing by neuromasts, and feeding behavior and body mass) were overrepresented
in outlier genes with the exceptional divergence between Chica pools (Dxy above the 95" percentile)
compared to all other genes (Fisher's exact tests, p < 0.05; Table S4).

Many of the candidate genes with high absolute divergence between Chica pools and ontologies and pheno-
types associated with traits known to be adaptive in caves (e.g., cryla, crylb, mc3r, srd5al, ins, dnasellll,
cdep2, mybbp1a, itgam, senp’b, pnn, sox 10, cdé3) also fall within the top 10% of Fstvalues across all genes (Table
S4). The mean Fsr for all genes within the top 5% of Dxy values between Chica Pool1 and Pool 2 (mean + SD:
0.001028 + 0.004) was 11x greater than the mean Fsr for all other genes (mean + SD: 0.00093 + 0.0002).

To formally test for signatures of selection on outlier genes with the exceptional divergence between the
two Chica pools, we used a deep convolutional neural network approach implemented in diploS/HIC (Kern
and Schrider, 2018). Of all candidate genes with Dxy values in the top 5% in comparison between Chica
Pool one and Pool 2, we found evidence of selection in 93% of the candidate genes in Chica Pool one
and in 92% of the candidate genes in Chica Pool 2 (Table S4). Remarkably, many of these genes also fall
within the top 5% of Dxy values for at least one cave and surface population comparison which do not
show evidence of recent hybridization (Table S4), suggesting that these genes are strong candidates un-
derlying the morphological differences in eye size and pigment not only within Chica cave but also across
cave-surface comparisons more broadly.
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(A) Model of Astyanax mexicanus Pachén cavefish CRY1A protein based on the crystal structure of mouse CRY1 (PDB: 6kx7). The model for the A. mexicanus Pachén
cavefish protein was generated with SWISS-MODEL and the comic structure was visualized with VMD (version 1.9.4). The location of R263Q (in the .10 within the FAD-
binding pocket) is indicated with an arrow. This image was made with VMD/NAMD/BioCoRE/JMV/other software support. VMD/NAMD/BioCoRE/JMV/ is developed
with NIH support by the Theoretical and Computational Biophysics group at the Beckman Institute, University of lllinois at Urbana-Champaign.

(B) Species tree for 23 animal species, selected to include subterranean lineages and their epigean relatives (based on the species tree available from
Ensembl release 102 and (Colli et al., 2009; Patterson and Upham, 2014; Yang et al., 2016)). Branches where the R263Q mutation has evolved are highlighted
in green. lllustrations depict S. anshuiensis (Chinese cavefish), P. andruzzii (Somalian cavefish), A. mexicanus (Mexican cavefish; Pachén cavefish top, Tinaja

cavefish bottom), O. degus (degu), and H. glaber (naked mole-rat).

(C) Section of multiple sequence alignment for CRY1 orthologs spanning sites 187-289 in the A. mexicanus CRY1A protein. The arginine to glutamine

mutation at Astyanax site 263 is indicated with a black outline.

One notable mutation is present in the candidate gene cryptochrome circadian regulator 1a (cryla), a
transcriptional repressor. Cryptochromes play a highly conserved role in circadian clock regulation across
plants and animals (Cashmore et al., 1999) (Hirayama et al., 2019). We observed that cryla exhibits a
nonsynonymous mutation, R263Q, that is present in Chica, Tinaja, and Pachdn cave populations but
not in two different populations of surface fish (Rio Choy and Rascén). In silico analyses of the functional
impact of the variant with SIFT (Kumar et al., 2009) and VEP (MclLaren et al., 2016) indicated that the
R263Q mutation is predicted to be deleterious to protein function (Table S4). Residue 263 occurs within
the FAD-binding domain of CRY (Beale et al., 2013; Czarna et al., 2013) (Figure 3A) and is otherwise highly
conserved across plants and animals (Cashmore et al., 1999) (Figures 3B and 3C). Furthermore, a deletion
in exon 6, which contains residue 263, is associated with a circadian rhythm sleep disorder (delayed sleep
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phase syndrome, DSPS) in humans (Emre Onat et al., 2020). Together, this evidence suggests that the
R263Q mutation likely has an impact on protein function. To determine whether this mutation is unique
to Astyanax cavefish, we examined an alignment of 284 CRY1 homologs across 266 animal species
(including invertebrates) downloaded from Ensembl v104 and the CRY1 ortholog for the Somalian
cavefish (Phreatichthys andruzzii) that was available on NCBI (GenBank: ADL62679.1). Remarkably, we
found that the R263Q mutation is only present in four distantly-related cyprinid species, including three
Chinese cavefish (the blind barbel Sinocyclocheilus anshuiensis, the golden-line barbel Sinocyclocheilus
grahami, and the horned golden-line barbel Sinocyclocheilus rhinocerous) and the Somalian cavefish
(P. andruzzii) (Ceinos et al., 2018), as well as two burrowing rodent species (the naked mole-rat,
Heterocephalus glaber, and the common degu, Octodon degus) (Figure 3). It was not detected in the
278 other species with CRY1 orthologs available on Ensembl. Phreatichthys and Sinocyclocheilus cavefish
have convergently evolved troglomorphic traits that are shared by Astyanax cavefish, including reduction
or loss of eyes and pigment and disrupted circadian cycles (Cavallari et al., 2011; Yang et al., 2016,
Ceinos et al.,, 2018). The naked mole-rat has also evolved many of the same characteristic traits
associated with life in the dark, including reduced eye size and function and a disrupted circadian
clock (Riccio and Goldman, 2000). Our findings provide compelling evidence that the R263Q
mutation in the core circadian clock gene cry? has convergently evolved at least five times across
cavefish and burrowing mammals (Figures 3B and 3C), indicating that a common genetic
mechanism may contribute to the disruption of circadian regulation of activity and sleep in subterranean
vertebrates.

Given that the outlier genes within regions of high divergence between Chica pools are enriched for sleep
and circadian ontologies and in silico analyses indicated that some may carry deleterious mutations (Table
S4), we examined sleep behavior in fish from Chica cave. Multiple laboratory-bred cavefish populations
exhibit convergence on sleep loss (Duboué et al., 2011; Yoshizawa et al., 2015). Although these behavioral
differences are proposed to enhance foraging opportunity in nutrient-poor cave environments (Yoshizawa
et al., 2010), sleep has not been assayed in wild-caught fish and it is not known whether sleep architecture
differs based on local cave environments. To test whether sleep differences are present between pool pop-
ulations in Chica cave, we analyzed behavioral variation in wild-caught fish from Chica Pool one and Pool 2.
We also assayed non-hybrid cavefish from Los Sabinos and Pachén for comparison. We measured sleep
duration and locomotor activity under standard laboratory settings in the same wild-caught fish that
were used in sequencing and genomic analyses (sample sizes are given in Table S1). As with pigmentation,
sleep duration was significantly more variable in fish from Chica cave compared to Pachén and Los Sabinos
caves (Bartlett's test, p = 0.04), consistent with hybridization within Chica resulting in higher phenotypic
variability. We observed that total sleep in wild-caught Pachén cavefish is significantly reduced compared
to Los Sabinos cavefish (Kruskal-Wallis test, p < 0.001**, KW statistic = 17.55; Dunn’s multiple comparison,
p < 0.01), similar to what is observed in the laboratory stocks of fish derived from these populations (Figures
4A and 4B). Thus, the sleep loss observed in lab-reared stocks is replicated in wild-caught fish here for the
first time (Yoshizawa et al., 2015; Jaggard et al., 2017). Total sleep in Chica fish from Pool one was signifi-
cantly greater than sleep in fish from Pool 2 (Dunn’s multiple comparison, p < 0.05). The increase in total
sleep in Chica Pool one fish was owing to an increase in the number of sleep bouts compared to fish
from both Chica Pool two and Pachén cave (Figures 4B and 4C) (Dunn’s multiple comparison, Chica
pool 2, p < 0.05, Pachén p < 0.05). Although sleep bout length did not differ significantly among popula-
tions (Kruskal-Wallis test, p > 0.34, KW statistic = 3.46), sleep bout length for fish from Chica Pool 2 (124.3 s)
was 70% of that of fish in Chica Pool 1 (174.2 s), while sleep bout length for fish from Pachén (106.0 s) was
about 60% that of fish in Chica Pool 1 (Figure 4D). These differences in sleep cannot be explained by hy-
peractivity of the cavefish, as the average activity during periods of wakefulness (waking activity) did not
differ between any of the populations (Kruskal-Wallis test, p > 0.3, KW statistic = 3.65; Figure 4E). There-
fore, hybrid Chica fish exhibit pool-specific differences in sleep, with fish from Pool two largely phenocopy-
ing Pachon cavefish and fish from Pool one exhibiting a greater sleep duration, similar to what has been
previously observed in laboratory stocks of surface fish (Duboué et al., 2011; Yoshizawa et al., 2015).
Although these results may be impacted by plasticity owing to the rearing environment, these results reveal
the presence of behavioral differences between adjacent pools within Chica cave, with Pool two being
more cavefish-like than Pool 1. This agrees with our genomic analyses, which found more cave ancestry
maintained in Pool two compared to Pool one for genomic regions with a high divergence between the
pools. Furthermore, the between-pool sleep differences are consistent with the ontologies and pheno-
types enriched in genes in high-divergence genomic regions between pools.
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Figure 4. Sleep variation between and within wild-caught A. mexicanus cave populations

(A) Twenty-four hour sleep profiles in Chica Pool 1, Chica Pool 2, Pachén, and Los Sabinos fish.

(B) Total sleep duration is variable among different populations of wild-caught fish (Kruskal-Wallis test, p < 0.001**, KW
statistic = 17.55). Chica Pool two fish sleep significantly less than Chica Pool one fish (Dunn’s multiple comparison, p <
0.05%). Wild-caught Pachén cavefish sleep significantly less than Chica Pool 1 (Dunn’s multiple comparison, p < 0.05%).
(C) Number of sleep bouts is variable in different cave populations (Kruskal-Wallis test, p < 0.05, KW statistic = 10.62.
Chica Pool two and Pachén fish have reduced sleep bout numbers compared to Chica Pool 1 (Dunn’s multiple
comparison, Chica Pool 2, p < 0.05*, Pachén, p < 0.05%).

(D) Sleep bout duration is not significantly altered in any population of cavefish (Kruskal-Wallis test, p > 0.34, KW
statistic = 3.46).

(E) Waking activity is not altered among cave populations (Kruskal-Wallis test, p > 0.3, KW statistic = 3.65). NS: Not
significant.

We conclude that hybridization across different environments produced substantially different phenotypes
in very close geographic proximity. Our genome-scan analyses also suggest that stronger selection against
surface ancestry in specific regions of the genome in Pool two of Chica cave could be maintaining differ-
ences in genes important to local cave pool adaptation. These results are remarkable given that the pools
are separated by just 10 m and provide evidence of highly localized evolution of behavior and morphology.
Additionally, we found that the annotations of exceptionally divergent genes between the two cave pools
associate well with the phenotypic differences observed. Notably, genes identified as highly divergent
across pool microenvironments are also associated with divergent phenotypes between non-hybrid sur-
face and cave populations. Lastly, we identified a coding variant in the core circadian clock gene cry1
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that has convergently evolved in other distantly related cave-dwelling fish species and burrowing mam-
mals. This suggests that a common genetic mechanism may contribute to disrupted circadian rhythms
across multiple subterranean vertebrate lineages that have adapted to live in constant darkness. In sum,
we show complex behavioral and morphological differences likely result from an interplay between hybrid-
ization and selection and establish this system as a model to study the genetic basis of evolution in complex
behavioral and morphological traits.

Limitations of the study

One limitation of the present study is the small sample size for Chica Pool 1, which limits the power of our
morphological and genomic analyses. Obtaining fish from the cave environment remains a central chal-
lenge to the community, and future cave expeditions should provide increased statistical power and a
broader sampling of pools within the caves. Additionally, when population sizes are small and have under-
gone bottleneck events, as appears to be the case for most cave populations of A. mexicanus (Herman
et al., 2018), genomic signatures left by genetic drift can mimic selection. However, our analyses for selec-
tion control for this to some extent by incorporating demographic parameters, including past population
size expansions and contractions in cave and surface populations. Future work investigating hybrid fitness
among pools within Chica cave may provide a clearer picture of whether hybridization promotes adaptive
evolution in this system and which factors contribute to the maintenance of this hybrid zone.
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Ensembl Variant Effect Predictor
(VEP) software suite

diploS/HIC
discoal

Virtualdub v1.10.4
Ethovision XT 9.0
ImageJ v. 1.7

The Comprehensive R

Archive Network
GO Consortium
Ensembl

Kumar et al., 2009
Mclaren et al., 2016

Kern and Schrider, 2018
Kern and Schrider, 2016
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Schneider et al., 2012
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https://www.nature.com/articles/nprot.2009.86
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https://doi.org/10.1093/bioinformatics/btw556
https://www.virtualdub.org/download.html
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Other

Astyanax cDNA sequence data

confirming the cryla mutation

Sequence data for Chica samples;

NCBI Accessions SRP082405,

SRR4044469- SRR4044500

Sequence data for Los Sabinos samples;
NCBI accessions SRP217278, SRR10959193;
SRP217278, SRR10501628, SRR10501627.

This paper

This paper

This paper

http://www.stowers.org/research/publications/libpb-1667

https://www.ncbi.nlm.nih.gov/sra

https://www.ncbi.nlm.nih.gov/sra

RESOURCE AVAILABILITY
Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by
the lead contact, Alex Keene (akeene@bio.tamu.edu).

Materials availability

This study did not generate new reagents.

Data and code availability

Data - Sequence data generated in this study have been depostited in the NCBI Sequence Read Archive
and are publically available as of the date of publication. Accession numbers are listed in the key resources
table. Original data underlying genotyping of the cryla mutation from Astyanax cDNA can be accessed
from the Stowers Original Data Repository (URL available in key resources table).

Code - All original code has been deposited to GitHub and has been made publically available as of the
date of publication (URL available in key resource table).

Other - Any additional information required to reanalyze the data reported in this paper is available from

the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Adult Astyanax mexicanus were collected with nets during the dry season in 2015. The fish were transported
and housed in the aquatic facility at Universidad Auténoma de Querétaro in 24 h constant darkness. We
took gerenal body measurements on each fish, including weight, mass, length, and height (Figure S4).
Fish were fed 1-2 times daily with dry flakes and kept at 23°C. These conditions were maintained
throughout housing and experimental conditions for consistency. All fish were inspected for overall health,
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and any exhibiting signs of health or stress issues were excluded from experimental tests. Fish collected
were used for morphological and sleep behavior analyses and for genomic sequencing analyses.

We did not test for an effect fo sex in the analyses. Sex is often not reported as a covariate in Astyanax
literature (see Protas et al., 2006, 2008; Yoshizawa et al., 2010, 2015; Moran et al., 2014; Carlson and Gross,
2018; Froland Steindal et al., 2018). Where sex has been tested as a factor in the Astyanax literature, there is
often little difference between males and females in phenotypes or behavior. For example, there was a
trend toward a tendency to school based on sex, but there was no information given on which direction
(i.e., more schooling in males or females) (Kowalko et al., 2013), but sex was not significant for feeding angle
(Kowalko et al., 2013). There were no sex-specific effects on basal sleep or in any of the treatment groups in
Jaggard et al. (2017). Nor were there sex differences in aggressive behavior in Elipot et al. (2013) or stress
behaviors in Chin et al. (2018). Females are larger than males (Protas et al., 2008), but none of the other traits
examined in Protas et al. (2008) were noted to be impacted by sex (eye size, melanophore number, relative
condition, weight loss, tooth count, peduncle depth, fin placement, anal fin rays, SO3 width, number of
thoracic ribs, and chemical sense).

METHOD DETAILS
Study system

Evidence suggests that there have been at least two colonization events of northern Mexico by surface
dwelling A. mexicanus, typically referred to as the “old” and “new” lineage. One lineage of surface fish
colonized the caves in the El Abra region and a separate lineage of surface fish subsequently colonized
the northern Guatemala region and western Micos region caves of Northeastern Mexico. While we now
know that these two lineages and their invasion of the caves were not timed in line with the “old” and
"new"” designations (Herman et al., 2018), we use this shorthand here since these labels are consistent
with past work (Dowling et al., 2002; Ornelas-Garcia et al., 2008; Bradic et al., 2012; Coghill et al., 2014).
The surface fish within the Rascén/Gallinas river system are most similar to the old lineage cavefish and
were likely isolated from colonization by the new lineage surface fish due to a 105 m vertical waterfall (Her-
man et al., 2018). Cavefish within the El Abra region that descended from old lineage of surface ancestors
are now within close geographic proximity to surface fish from the new lineage.

Within Chica cave, fish occupy multiple pools that naturally differ in ecology. Whether the Chica cave
population came from the old or new lineage stock has been the subject of much debate in the cavefish
community. Fish from Chica cave show higher genetic differentiation from the rest of the El Abra cave
populations, which has been interpreted as evidence of an independent, very recent invasion event (Bradic
et al., 2012). However, this pattern could also be explained if Chica cavefish were evolved from an old
lineage ancestor but experienced extensive hybridization with local, new-lineage surface populations
(Avise and Selander, 1972). In accordance with this hypothesis, recent phylogenetic analyses revealed
that fish from Chica cave possess new lineage mitochondrial DNA and old lineage nuclear DNA, indicative
of historical introgression (Ornelas-Garcia et al., 2008; Strecker et al., 2012).

Identifying the genetic underpinnings of behavioral evolution can be especially challenging in natural
populations (Fitzpatrick et al., 2005; Niepoth and Bendesky, 2020). A genomic signature of local adaptation
is most detectable when gene flow is high among populations in different environments (Hoban et al., 2016;
Tigano and Friesen, 2016), as gene flow homogenizes the background level of divergence between
populations while selection maintains differentiation at regions important to local adaptation. High levels
of gene flow between the Chica cave and surface population and strong selection for adaptation to the
cave environment are predicted to shape patterns of divergence across the genome and provide insight
into the genes important for maintaining cave phenotypes. Therefore, this system provides the unique
opportunity to investigate the genetic basis of adaptive traits.

Sequencing and genotyping

We used whole genome resequencing and population genomic analyses to (1) characterize population
structure and genetic relationships between and within the Chica cavefish, three other cavefish popula-
tions, and two surface populations; (2) identify candidate regions for local adaptation with high levels of
genetic differentiation between Chica pools; and (3) test for signatures of introgression between Chica
cave and other nearby cave and surface populations. Sequencing used in these analyses originated from
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wild-caught fish collected from two adjacent pools within Chica cave (Pool 1, approximately 91 m from the
entry, and Pool 2, approximately another 10 m into the cave; Figure 1A).

Fin clips were collected from adult fish from Chica cave in 2015 and stored in 80% ethanol. We sequenced a
total of 19 A. mexicanus samples from Chica cave (five from Pool 1 and 14 from Pool 2) using 125 bp paired
end reads on an lllumina HiSeq 2500 at the University of Minnesota Genomics Center. Fin clips were
collected from adult fish from Los Sabinos cave (n = 3) in 2015 and were sequenced using 150 bp paired
end reads on an Illumina NovaSeq S4. Genomic libraries for all Chica samples and two of the Los Sabinos
samples (Sabinos_T3076_S26 and Sabinos_T3093_S27) were prepared using lllumina TruSeq v3 Nano DNA
Sample Prep Kits. The genomic library for the third Los Sabinos sample (Sabinos1) was prepared using a
Chromium Genome Library Kit and Gel Bead Kit v2 and a Chromium Genome Chip Kit v2. Pachén, Tinaja,
Rio Choy, Rascén, and A. aeneus samples were all previously sequenced as 100 bp paired end reads on an
Illumina HiSeq2000 at The University of Minnesota Genomics Center (Herman et al., 2018). Raw sequencing
data for these samples was downloaded from NCBI (SRA Accession Numbers SRP046999, SRR4044502, and
SRR4044501). Sequencing resulted in a mean + SE of 187,777,319 + 3,047,876 reads per individual for the
19 Chica samples and 331,445,356 + 248,640,606 reads per individual for the three Los Sabinos samples.
After quality filtering and mapping, all 60 samples had a mean + SE genome-wide depth of coverage of
10.50 + 0.53X (details on read counts, sequencing quality, and coverage are available are in the following
Dryad Data Repository: https://doi.org/10.5061/dryad.2rbnzs7nw).

To investigate recent patterns of introgression between Chica cave and surface fish, we also obtained
A. mexicanus sequence data from fish from one other cave population in the El Abra region that is not
heavily admixed (Tinaja, n = 10), a nearby new lineage surface population (Rio Choy, n = 9), and an old
lineage surface population (Rascén, n = 8) (Herman et al., 2018). It has been hypothesized that caves within
the southern El Abra region exchange migrants through subterranean connections, and Tinaja was
previously shown to contain fish with mostly cave-like phenotypes (Mitchell et al., 1977). Thus, Tinaja
cavefish sequence can provide a reference to identify cave alleles in the putative hybrid swarm present
in Chica cave.

Rio Choy contains new lineage surface fish and is a tributary of the Tampadn River, which is believed to be
the source of surface fish in Chica cave. Rascén is a tributary of the Gallinas River, and contains old lineage
surface fish (Herman et al., 2018). Thus, including genomic data from Tinaja, Rio Choy, and Rascén in our
analyses provides a means to test for recent introgression between new lineage surface fish and old
lineage cavefish within Chica cave. Previously published data from a closely related congener, Astyanax
aeneus (n = 1) (Herman et al., 2018), was also included to serve as an outgroup in tests for introgression.

We conducted genotype calling following the GATK Best Practices (McKenna et al., 2010; Depristo et al.,
2011; Van der Auwera et al., 2013). Adapters were trimmed from raw reads using Cutadapt v1.2.1 (Martin,
2011). We trimmed samples for quality using Trimmomatic v0.30 (Bolger et al., 2014) and specified a
minimum quality score of 30 across a 6 bp sliding window and discarded reads with a length of <40
nucleotides. Reads were aligned to the surface Astyanax mexicanus genome (Astyanax_mexicanus-2.0,
downloaded from NCBI) using bwa v0.7.4 (Li and Durbin, 2009). We used Picard v2.3.0 (http://
broadinstitute.github.io/picard/) to remove duplicates and add read group information and used sam-
tools v1.7 (Li et al., 2009) to split de-duplicated bams into mapped and unmapped reads. Mapped
bams were used to generate per-individual gvcfs with the Genome Analysis Tool Kit (GATK) v3.7.0
HaplotypeCaller tool. We used the GenotypeGVCFs tool in GATK v3.8.0 to produce vcf files for each
chromosome and unplaced scaffolds that include all individuals (and include invariant sites). The Select-
Variants and VariantFiltration tools in GATK v3.8.0 were used to apply hard filters. We subset vcfs for
each chromosome and unplaced scaffold into invariant, SNPs, and mixed/indel sites and applied filters
separately following GATK best practices (Table S1). We then used the MergeVcfs tool in GATK v4.1.4 to
re-combine all subset VCFs for each chromosome and unplaced scaffold. Indels and the 3 bp region
around each indel were removed using a custom python script. We used the vcftools (Danecek et al.,
2011) —exclude-bed option to remove repetitive regions identified by WindowMasker and RepeatMasker
(McGaugh et al., 2014). We also used vcftools to only retain biallelic SNPs, to remove sites with greater
than 20% missing data within each population, and to remove variants with a minor allele frequency <1%.
This resulted in retaining a total of 225,462,242 sites throughout the 1.29 Gb genome, 3,337,738 of which
were SNPs.
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Population structure

To quantify the number of distinct genetic clusters (i.e., populations) present among the A. mexicanus cave
and surface populations, we used ADMIXTURE v1.3.0 (Alexander et al., 2009) and Principal Components
Analysis (PCA). For these analyses, we applied a more stringent missing data filter, only retaining sites
with <10% missing data. To control for linkage between SNPs that cluster locally on a given chromosome,
we thinned SNPs to 1 kb apart and did not include unplaced scaffolds. This resulted in a set of 678,637
SNPs. We ran ADMIXTURE for each value of K from two through nine and estimated the best value of K
using the Cross Validation (CV) procedure in ADMIXTURE. The best K was chosen as the value that had
the lowest CV error. We used Plink v1.90 (Purcell et al., 2007) to conduct the PCA. For this analysis, we again
thinned SNPs to 1 kb apart, but included all placed and unplaced scaffolds. This resulted in a set of 733,979
SNPs.

Genome-wide tests for introgression

Fish within Chica cave have been hypothesized to be a hybrid swarm between cavefish originating from
other caves in the El Abra region (which enter into Chica cave via a subterraneous connection) and surface
fish from the nearby Rio Choy/Tampadn river system (Mitchell et al., 1977). To formally test this hypothesis,
we conducted genome-wide tests for introgression between Chica cavefish and Tinaja cavefish and
between Chica cavefish and Rio Choy surface fish. We first used Treemix v1.13 (Pickrell and Pritchard,
2012) to confirm relationships between our focal populations and to visualize migration events between
populations. Treemix builds a bifurcating tree to represent population splits and also incorporates
migration events, which are represented as “edges” connecting population branches. We first built the
maximum likelihood tree (zero migration events) in Treemix and then ran Treemix sequentially with
one through five migration events. For this analysis, we included individuals from Chica, Rio Choy (new
lineage surface), Rascén (old lineage surface), and Tinaja (old lineage cave) A. mexicanus populations
and the A. aeneus individual (outgroup), and SNPs were thinned to 1 kb apart. We supplied this set of
700,502 biallelic SNPs to Treemix, rooted with A. aeneus, and estimated the covariance matrix between
populations using blocks of 500 SNPs. Samples Tinaja_E, Tinaja_6, and Rascon_é were excluded from
this analysis because ADMIXTURE indicated that they were likely early generation hybrids. We calculated
the variance explained by each model (zero through five migration events) using the R script
treemixVarianceExplained.R (Card, 2015).

To test our hypothesis that Chica represents a hybrid population resulting from admixture between the
nearby old lineage cave and new lineage surface populations, we used Dsuite v0.4 (Malinsky, 2019) to
conduct formal tests for introgression between (1) Chica cavefish and Tinaja cavefish, and (2) between
Chica cavefish and Rio Choy surface fish. If no gene flow is occurring between the fish in Chica cave and
the local surface population, we predict that fish from Chica (which has previously been shown to group
phylogenetically with old lineage cavefish populations (Avise and Selander, 1972; Espinasa and Borowsky,
2001; Dowling et al., 2002; Strecker et al., 2003; Hausdorf et al., 2011; Strecker et al., 2012)) should share
more derived alleles with fish from Rascén (a surface population that is more geographically distant
from Chica but also old lineage) than fish from Rio Choy (a surface population that is geographically close
to Chica cave but is new lineage). For this analysis, we supplied the set of 700,502 biallelic SNPs to Dsuite
and specified A. aeneus as the outgroup. We again excluded three samples from Tinaja and Rascén with
apparent hybrid ancestry. We used the Dsuite program Dtrios to calculate Patterson’s D statistic for all
possible trios of populations using the ABBA-BABA test (Green et al., 2010). The ABBA-BABA test quan-
tifies whether allele frequencies follow those expected between three lineages (e.g., sister species P1
and P2, and a third closely related species, P3) under expectations for incomplete lineage sorting (ILS).
Observing a greater proportion of shared derived alleles between P1 and P3 but not P2 or between P2
and P3 but not P1 than what would be expected by chance (i.e., ILS) indicates introgression. Dsuite requires
a fourth population, P4, to serve as an outgroup and determine which alleles are ancestral versus derived.
Ancestral alleles are labeled as “A” and derived alleles are labeled as “B"”. ABBA sites are those where P2
and P3 share a derived allele, and ABAB sites are those where P2 and P4 share a derived allele. The D
statistic is calculated as the difference in the number of ABBA and BABA sites relative to the total
number of sites examined. Dsuite uses jackknifing of the null hypothesis that no introgression has occurred
(D statistic = 0) to calculate a p-value for each possible trio of populations.

Dsuite also calculates the admixture fraction, or f4-ratio, which represents the covariance of allele
frequency differences between P1 and P2 and between P3 and P4. If no introgression has occurred since
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P1 and P2 split from P3 and P4, then f4 = 0. The f4 statistic is positive, this suggests a discordant tree
topology indicative of introgression.

Local ancestry inference

Hybrid genomes exhibit a mosaic of ancestry from their parental populations. A number of recent studies
have shown that hybridization interacts with recombination and selection to shape patterns of local
ancestry along chromosomes (Hohenlohe et al., 2012, Wang et al., 2016; Janzen et al., 2018; Schumer
etal., 2018; Leitwein et al., 2019). Non-random distributions of local ancestry in hybrid populations can indi-
cate selection. Our goal here was to visualize patterns of introgression across the genome in Chica cavefish
and determine whether more surface ancestry is present in Chica Pool 1 compared to Chica Pool 2. We
used Hidden Markov Model (HMM) and fine-scale SNP mapping approaches to calculate ancestry propor-
tions globally (i.e. genome-wide) and locally (at each base pair along each of the 25 chromosomes) in both
Chica pools. To determine whether Pool 1 (nearer to the cave entrance) carries a higher proportion of sur-
face ancestry compared to Pool 2 (deeper in the cave) at regions of the genome important to cave adap-
tation, we also asked whether regions of high divergence between pools exhibit higher differences in local
ancestry.

We implemented a HMM-based approach in Loter (Dias-Alves et al., 2018) to infer genome-wide local
ancestry in the Chica individuals. Tinaja and Rio Choy served as the parental cave and surface populations,
respectively, for the initial training stage of the HMM. We excluded two Tinaja samples that showed
putative evidence of admixture (Herman et al., 2018). This analysis allowed us to estimate global ancestry
proportions and mean minor and major parent tract lengths for each individual. Ancestry tract lengths were
converted from base pairs to Morgans using the median genome-wide recombination rate of median
recombination rate of 1.16 cM/Mb obtained from a previously published genetic map for A. mexicanus
(O'Quin et al.,, 2013). We then estimated the number of generations since the onset of admixture (T gmix)
in each pool using the following equation:

Tadmix = 1/(|—M * PB)
where Ly is the mean ancestry tract length from the minor parent in Morgans and pg is the proportion of the

genome derived from the major parent (the probability of recombining) (Jin et al., 2014; Gravel, 2012,
Schumer et al., 2016).

We next used a chromosome painting approach with ancestry-informative sites to validate the
delimitation of ancestry blocks detected by the HMM and to visualize patterns of introgression across
the Chica cavefish genomes. This approach provides a lower level of resolution for ancestry block
delimitation but with higher power to classify regions as derived from either parental genome. We
identified alleles that were differentially fixed in Rio Choy and Tinaja parental populations and had no
missing data using the script get_fixed_site_gts.rb (https://github.com/mmatschiner/tutorials/blob/
master/analysis_of_introgression_with_snp_data/src/get_fixed_site_gts.rb). We thinned SNPs to be a
minimum of 1 kb apart and mapped these ancestry-informative sites in the Chica samples using the script
plot_fixed_site_gts.rb (https://github.com/mmatschiner/tutorials/blob/master/analysis_of_introgression_
with_snp_data/src/plot_fixed_site_gts.rb).

Synthesizing patterns of genetic divergence and local ancestry

To quantify and visualize patterns of divergence between Pool 1 and Pool 2, we calculated summary statistics
(Dxy, Fst, Pi) in non-overlapping 50 kb windows across the genome using the python script popgenWindows.py
(https://github.com/simonhmartin/genomics_general/blob/master/popgenWindows.py). Fst can be influ-
enced by heterogeneous genetic diversity between populations, and a recent study (Herman et al., 2018)
demonstrated that low Piin caves can inflate relative divergence estimates in A. mexicanus. We therefore chose
to use Dxy, which is not affected by levels of nucleotide diversity within populations, to identify regions of high
genetic divergence between Chica pools.

We asked whether there was an association between differences in local ancestry between pools and
absolute genetic divergence (Dxy) between pools within outlier windows (which included coding and
non-coding regions). We identified outlier windows as any 50 kb window with a Dxy value above the
95th percentile (Dxy >0.0034). Within each outlier window, we calculated the difference in local ancestry
between fish from Pool 1 and Pool 2 at each site. We used a Wilcoxon rank sum test to identify whether
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ancestry differed within these regions between fish from Pool 1 versus Pool 2. We used Pearson’s correla-
tion implemented in R v4.0.2 to test for an association between difference in local ancestry and sequence
divergence (Dxy) at each site between Chica Pool 1 and Pool 2 within outlier windows.

We also calculated Dxy and Fst on a site-by-site basis using custom python scripts (Cave_fish_Dxy.py and
Cave_fish_Fst.py). This allowed us to calculate the maximum, minimum. mean, and standard deviation for
Dxy and Fst for the coding region (CDS) for each gene in the A. mexicanus genome annotation (v101,
downloaded from ftp://ftp.ensembl.org/pub/release-101/gtf/astyanax_mexicanus/) using a custom
python script (Dxy_Summary_per_gene_ensemblGTF.py and Fst_Summary_per_gene_ensemblGTF.py).
We ranked genes by relative level of differentiation between Pool 1 and Pool 2. From this ranked list, we
considered all genes with a mean Dxy above the 95th percentile (Dxy >0.0034; 2,170 out of 25,809 genes;
Table S4) as putative candidates for cave adaptation.

We used the GO Consortium Gene Ontology Enrichment Analysis tool (http://geneontology.org/) to ask
whether any categories of biological processes were overrepresented in our set of outlier genes. We
used the human (Homo sapiens) reference database for this analysis (20,851 genes). Fisher's exact tests
were performed to determine whether the number of genes associated with a given ontology were
over- or under-represented in our set of outlier genes relative to the reference database. We also used
Ensembl’s BioMart (v104, https://www.ensembl.org/biomart/martview) to identify any zebrafish, mouse,
and human phenotypes associated with each gene in the A. mexicanus surface fish reference genome
annotation. We asked whether genes with the highest divergence between Chica pools (Dxy in the top
5%) were enriched for suites of phenotypes typically associated with local adaptation in cavefish (i.e.,
eye function and morphology, pigmentation, sleep behavior and circadian rhythm, sensory processing
by neuromasts, and feeding behavior and body mass, and metabolism) (Keene et al., 2015; McGaugh
et al., 2020) using Fisher's exact tests.

We identified coding variants present among both Chica pools, Tinaja, and Rio Choy and predicted the
consequence of each variant on protein function using in silico computational analysis with the SIFT (sorting
intolerant from tolerant) algorithm (Kumar et al., 2009) and the Ensembl Variant Effect Predictor (VEP)
software suite (McLaren et al., 2016). SIFT uses sequence homology and data on the physical properties
of a given protein to predict whether an amino acid substitution will be tolerated or deleterious. VEP
performs annotation and analysis of genomic variants to predict impact on the protein sequence (i.e.,
modifier, low, moderate, or high).

Preliminary analyses indicated that one of our top candidate genes with high sequence divergence
between Chica pools (cryla) harbored a putative deleterious coding mutation (R263Q). To determine
whether this variant is derived in cavefish and assess whether it occurs at evolutionarily conserved sites,
we used the Astyanax surface fish genome annotation to obtain the CDS for cryla from our population
genomic data. We searched Ensembl for gene orthologs available in other animal species, including
human, mouse, zebrafish, staghorn coral (Acropora millepora), thale cress (Arabidopsis thaliana), and three
cyprinid cavefish species from China, the blind barbel (Sinocyclocheilus anshuiensis), the golden-line
barbel (Sinocyclocheilus grahami), and the horned golden-line barbel (Sinocyclocheilus rhinocerous).
We also downloaded the CDS for cryTa from another cyprinid cavefish species from Somalia, Phreatichthys
andruzzii, from NCBI. We conducted a multiple species alignment for all 285 cry1 orthologs using Muscle
(Edgar, 2004). While investigating the R263Q mutation in cryTa, we identified a misassembly in the Astyanax
mexicanus surface genome (Astyanax_mexicanus-2.0, downloaded from NCBI) affecting exons 9-13 of the
cryla coding region (cryTa CDS: 14,394-15,659 bp). Further investigation revealed that a portion of the
coding region (cryla CDS: 268-597 bp) was missing from the Pachdn cavefish genome assembly
(Astyanax_mexicanus-1.0.2, downloaded from NCBI). To confirm the mutation we identified in our popu-
lation genomic data, we downloaded previously published cry’a mRNA sequences with complete CDS
from Chica cave, Pachon cave, and Micos River (NCBI accession #s KF737846- KF737848) (Beale et al,,
2013). Aligning our population genomic data to the mRNA allowed us to verify that the correct exon
coordinates were used around the mutation of interest. To visualize the location of the R263Q mutation,
we created a 3D model of the Astyanax Pachén cavefish CRY1A protein in SWISS-MODEL (Waterhouse
et al., 2018) using mouse CRY1 crystal structure (PDB: 6kx7). We imported the model into VMD (version
1.9.4) for visualization. To visualize the phylogenetic relationship between lineages with the R263Q
mutation an identify putative instances of convergent evolution, we constructed a species tree that
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included 23 animal species (subterranean lineages and their close relatives) based on the species tree
available from Ensembl release 102 and (Colli et al., 2009; Patterson and Upham, 2014; Yang et al., 2016).

To test for signatures of selection in regions of the genome containing outlier genes, we used diploS/HIC
(Kern and Schrider, 2018) to detect and classify selective sweeps. diploS/HIC uses a powerful supervised
machine learning approach to identify windows in the genome that have undergone “soft” sweeps (selec-
tion on standing genetic variation) or “hard” sweeps (selection on new mutations) with high accuracy. We
first simulated selective sweeps with discoal (Kern and Schrider, 2016) using demographic parameters for
cavefish and surface fish populations obtained from a previous study (Herman et al., 2018). We then used
the simulated data to train diploS/HIC to identify selective sweeps in our empirical data. We provided
diploS/HIC with a VCF containing the 3,337,738 SNPs showing <20% missing data across all populations
and a masked version of the surface fish genome. We generated feature vectors (matrices with multiple
metrics of selection across each genomic window (Kern and Schrider, 2018)) for both Chica pools using
11 sub-windows across a 55,000 Mb region (i.e., data was generated in 5,000 kb windows across the
genome). diploS/HIC ran predictions using the feature vectors to classify each window as neutral (no
evidence of a selective sweep), linkedSoft (loci near a window that has undergone a soft sweep), linkedHard
(loci near a window that has undergone a hard sweep), soft (loci that have undergone a soft sweep), or hard
(loci that have undergone a hard sweep). We then summarized diploS/HIC calls for each gene (Table S4).
We classified genes as neutral if they had no calls indicating linked selection or sweeps. Genes were
classified as putatively under selection if they contained any calls of linked, soft, or hard sweeps.

Sleep behavior phenotyping

We phenotyped wild-caught fish from Pools 1 and 2 within Chica cave and from two other cave populations,
Pachdn and Los Sabinos, which served as controls. After the completion of behavioral assays, fin clips were
collected from all Chica individuals for use in genomic sequencing as described above. Fish were
maintained in the laboratory for eight months prior to behavioral assays. Fish were recorded in standard
conditions in 10 L tanks with custom-designed partitions that allowed for five fish (2 L/fish) to be individually
housed in each tank as previously described (Yoshizawa et al., 2015). Recording chambers were illuminated
with custom-designed IR LED source (Infrared 850 nm 5050 LED Strip Light, Environmental Lights). After a
4-5 day acclimation period, behavior was recorded for 24 h beginning ZTO-ZT2. Videos were recorded at 15
frames/sec using a USB webcam (LifeCam Studio 1080 p HD Webcam, Microsoft) fitted with a zoom lens
(Zoom 7000, Navitar). An IR high-pass filter (Edmund Optics Worldwide) was placed between the camera
and the lens to block visible light. Videos were recorded using Virtualdub, a video-capturing software
(v1.10.4) and were subsequently processed using Ethovision XT 9.0 (Noldus, IT). Water temperature and
chemistry were monitored throughout recordings, and maintained at standard conditions in all cases.
Ethovision tracking was set up as previously described (Yoshizawa et al., 2015). Data was processed using
Perl scripts (v5.22.0, developed on-site) and Excel macro (Microsoft) (Yoshizawa et al., 2015). These data
were used to calculate sleep information by finding bouts of immobility of 60 s and greater, which are highly
correlated with increased arousal threshold, one of the hallmarks of sleep (Yoshizawa et al., 2015).

Morphological characterization

Melanophores were quantified from bright-field images captured from each side of the body. Areas were
chosen based on previous literature (Stahl et al., 2018) (i.e., caudal fin area, adipose fin area, dorsal area,
eye cup area, anal fin area, infra-orbital area; see Figure S1). Briefly, images were loaded into Fiji ImageJ
(v. 1.7, National Insitutes of Health, Bethesda, MD). Images were color inverted in the selected area and
using a preset noise tolerance allowed for melanophores to be automatically quantified by using pixel light
intensity. If any melanophores were not counted, they were then manually added. Each image was analyzed
by two different researchers to assure no significant discrepancies in quantifying, and the population of
origin was blind to the researchers. All final quantifications were corrected to body length to account for
different sized fish.

Eye presence and size were determined from images acquired on a handheld digital microscope
(Dinoscope Pro AM4111T). Images were analyzed in Fiji ImageJ. Each image was inspected for the
presence of an eye by two investigators, and the population of origin was blind to the researchers.
Eye size was calculated in ImageJ by creating an ROI for the eye diameter and dividing this number by
the length of the body to correct for overall size differences.
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QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical tests for morphology and behavior were performed in GraphPad Prism v9.0. For data
comparing two independent groups, a two-tailed unpaired t-test was performed, where significance was
determined using a p-value statistic. All multivariate data was tested for normality with a Shapiro-Wilk
test. Data that did not pass normality tests were analyzed using nonparametric Kruskal-Wallis test, where
significance was determined by a p-value statistic. Where statistical significance was indicated, post-hoc
comparisions were carried out using Dunn’s multiple comparison test. Due to the small sample size of
collected fish, all behavioral and morphological data failed normality testing, resulting in the use of
nonparametric tests for all multivariate data. To test for variance among morphological features, Brown-
Forsythe equality of variance and Bartlett's tests of variance were performed. Statistical significance of
standard deviations were determined with a p-value statistic.

Statistical tests for all genomic analyses were performed in R v4.0.2. Prior to each analysis, Shapiro-Wilk
tests were used to assess normality in the data. Data deviating from normality were analyzed using nonpar-
amtric tests. Comparisons between cave and surface ancestry in fish in Chica Pool 1 (n = 5) and Chica Pool 2
(n = 14) were conducted using a Wilcoxon rank sum test. The relationship between local ancestry and
genetic distance between pools was analysed with Pearson’s correlation. Gene ontology and phenotype
enrichment analyses within the Chica cave outlier gene set used Fisher’s exact tests.
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