UPPER BOUNDS FOR POSITIVE SEMIDEFINITE PROPAGATION
TIME

LESLIE HOGBEN, MARK HUNNELL, KEVIN LIU, HOUSTON SCHUERGER, BEN SMALL,
AND YAQI ZHANG

April 28, 2022

ABSTRACT. The tight upper bound pt(G) < [w—‘ is established for the positive

semidefinite propagation time of a graph in terms of its positive semidefinite zero forcing
number. To prove this bound, two methods of transforming one positive semidefinite zero
forcing set into another and algorithms implementing these methods are presented. Conse-
quences of the bound, including a tight Nordhaus-Gaddum sum upper bound on positive
semidefinite propagation time, are established.
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1. INTRODUCTION

Zero forcing was introduced in [1] to provide an upper bound for the maximum nullity of
symmetric matrices described by a graph, and independently in [3] in the study of control
of quantum systems. Zero forcing starts with a set of blue vertices and uses a color change
rule to color the remaining vertices blue (this is called forcing). The propagation time of
a graph was introduced formally in 2012 by Hogben et al. [7] and Chilakamarri et al. [4].
The propagation time of a zero forcing set is the number of time steps needed to fully
color a graph blue when performing independent forces simultaneously, and the propagation
time of a graph is the minimum of the propagation times over minimum zero forcing sets.
Positive semidefinite (PSD) forcing was defined in [2] to provide an upper bound for the
maximum nullity of positive semidefinite matrices described by a graph (precise definitions
of PSD forcing and other terms used throughout are given at the end of this introduction).
PSD forcing was studied more extensively in [5] and Warnberg introduced the study of PSD
propagation time in [11]. It is well known that the propagation time of a path is one less
than its order, and other families of graphs attain propagation time close to the order of the
graph. However, the behavior for PSD propagation time is very different. Warnberg showed
in [11] that the number of graphs that have propagation time at least |V (G)| — 2 is finite,
but did not provide an upper bound on PSD propagation time that is tight for graphs of
arbitrarily large order.

In this paper, we give two proofs of a tight upper bound on the PSD propagation time of
a graph,

0 p.6) < VO 2(6)]

This bound generalizes the next (well-known) result.
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Remark 1.1. If T is a tree of order n, then pt, (T) < [%5*] with equality when T is a path,

since a blue vertex PSD forces every white neighbor in a tree.

The bound (1) implies that pt, (G) < § for a graph of order n and that there are only
a finite number of graphs having pt,(G) > |V(G)| — k for any fixed natural number k
(see Section 4). The techniques used to prove (1) involve transforming one PSD forcing set

into another, thereby reducing the propagation time if it was greater than {w-‘

In Section 2 a single vertex in the PSD forcing set is exchanged, whereas in Section 3
multiple vertices are exchanged. Both these techniques are called migration. Algorithms
using migration methods to transform any minimum PSD forcing set into one that achieves
the bound in (1) are presented in Sections 2 and 3. In Section 4 we also derive additional
consequences of the bound (1), including tight Nordhaus-Gaddum sum bounds on PSD
propagation time.

In the remainder of this introduction we provide precise definitions and introduce notation.
A (simple) graph is denoted by G = (V(G), E(G)) where V(G) is the finite nonempty set
of vertices of G and E(G) is the edge set of G; an edge is a two-element set of vertices
and the edge {u,v} can also be denoted by wv (or vu). The order of G is the number of
vertices |V(G)]. In a graph, two vertices u and v are adjacent if uv is an edge and each of
uw and v is incident to uv. The degree degs(v) of a vertex v is the number of vertices that
are adjacent to v in GG; when the context is clear, the subscript is omitted. Vertex u is a
neighbor of v if vu € E(G) and the neighborhood of v is N(v) = {u € V(G) : vu € E(G)}.
For U C V(G), the subgraph of G induced by U, denoted by G[U], is the graph obtained
from G by removing all vertices not in U and their incident edges; G[U] is also called an
induced subgraph of G. For S C V(G), G — S = G[V(G) \ 5], i.e., the subgraph obtained
from G by deleting vertices in S and incident edges. A path in G is a sequence of distinct
vertices vg, v1, ..., v such that v;_jv; € E(G) for i = 1,... k. A graph is connected if for
two distinct vertices v and w there is a path from v to u (and thus also from u to v). A
component of a graph is a maximal connected induced subgraph. A path (or path graph) P,
is a graph with V(P,) = {v1,...,v,} and E(P,) = {vivix1 :i=1,...,n— 1}. A complete
graph K, is a graph with V(K,,) = {v1,...,v,} and E(K,) = {vv; : 1 <i < j <n}.

Each variant of zero forcing is a process. At every stage of the process, each vertex is either
blue or white. A white vertex may change color to blue at some step, but a blue vertex will
remain blue during all subsequent steps. Each variant of zero forcing is determined by a
color change rule that defines when a vertex may change the color of a white vertex to blue,
i.e., perform a force. The standard color change rule is: A blue vertex u can change the color
of a white vertex w to blue if w is the unique white neighbor of u. A force u — w using the
standard color change rule is called a standard force. Let B be the set of blue vertices (at
a particular stage of the process), and let W7y,... W} be the sets of vertices of the & > 1
components of G — B. The PSD color change rule is: If u € B, w € W;, and w is the only
white neighbor of u in G[W; U B], then change the color of w to blue. A force u — w using
the PSD color change rule is called a PSD force. Note that it is possible that there is only
one component of G — B, and in that case a PSD force is the same as a standard force. A
set that can color every vertex in the graph blue by repeated applications of the PSD forcing
rule is a PSD forcing set and the minimum cardinality of a PSD forcing set of GG is the PSD
zero forcing number Z.(G). Given a PSD forcing set B, a set of forces F that colors the
entire graph blue, and a vertex b € B, define Vj, to be the set of vertices w such that there
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is a sequence of forces b = v; — v9 — -++ — v, = w in F (the empty sequence of forces to
reach w is permitted, i.e., b € V;). The forcing tree of b is the induced subgraph G[V}].

Starting with a set B C V(G of blue vertices, we define two sequences of sets, the set B®
of vertices that are forced (change color from white to blue) at time step i and the set B
of vertices that are blue after time step i. Thus Bl% = B(® = B is the set of vertices that
are blue initially and after each subsequent time step i+ 1 we have Bi+! = By B+ To
construct BO+Y) (and thus BUFY) if B®) and Bl have been determined, then

B = fw : w can be PSD forced by some vertex (given the vertices in B are blue)}.
The PSD propagation time of B C V(G), denoted by pt,(G; B), is the least ¢ such that
BY = V(@), or infinity if B is not a PSD forcing set of G. The PSD propagation time of G,

pt (G), is
pt,(G) = min{pt, (G; B) : [B| = Z,(G)}.
) =

We also define the k-PSD propagation time of G to be pt_ (G, k
pt, (G) = pt (G, Z(G)).

min, g, pt, (G; B), so

2. SINGLE-VERTEX MIGRATION

For a graph G, we denote the set of connected components of G' by comp(G). A wvalid
initial PSD force for S is a PSD force that is valid when S is the set of blue vertices.

Observation 2.1. Let G be a graph, S C V(G), v,w € V(G)\ S, vw € E(G) and v # w.

The following are equivalent:

e v — w is a valid initial PSD force for S U {v};

The removal of vw from G — S disconnects v and w;
vw 1s a bridge in G — S; and

w — v is a valid initial PSD force for S U {w}.

The next result is Lemma 2.1.1 in [8]. We provide a shorter proof for completeness.

Lemma 2.2. Let G be a graph, let B be a PSD forcing set of G, and let v — w be a valid
initial PSD force for B. Then B' = (B \ {v}) U{w} is a PSD forcing set for G.

Proof. By Observation 2.1 (applied to S = B\ {v}), w — v is a valid initial PSD force for
B' = (B\ {v}) U{w}. Thus, B (which PSD forces G) is in the final coloring of B’, so B’ is
a PSD forcing set for G. O

We call the process of switching v and w in Lemma 2.2 single-vertex migration. This is
illustrated in Figure 2.1.

When starting with a PSD forcing set B, a force must happen at time step ¢ within each
component of G — B~ This leads to the next observation.

Observation 2.3. For any graph G and PSD forcing set B,

PG B) = max pt (GIVC)UBEB) < max |V(C)]

The next lemma exhibits a critical property of single-vertex migration that permits itera-
tive progress towards achieving the bound (1).
Lemma 2.4. Let G be a graph of order n that has a PSD forcing set B of size k such that
maxXcecomp(G-n5) |V (C)| > [%5E]. Then there exists a PSD forcing set B’ such that |B'| = k
and MaXcecomp(G-p'y |V (C)| < maxXeecomp(a—n) |V (C)].
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b1 w u
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FIGURE 2.1. For the graph G shown above with PSD forcing set B =
{b1, b, b3}, single-vertex migrations allow us to obtain several new PSD forcing
sets. Since by — w at the first time step, one possibility is B’ = {w, by, b3}. A
subsequent migration with w — u produces the PSD forcing set B” = {u, by, b3}.

Proof. Let Cy be the largest component of G — B. Note that [V (Cp)| > 5% + 1 and thus
IV(G)\ (V(Cy) UB)| < 25% — 1. Observe that B must be able to force directly into Cy (or
else it could not force GG); let v — w be a first force into Cy. By single-vertex migration,
the set B’ = (B \ {v}) U {w} PSD forces G. Then |B'| = |B| = k, and comp(Cy — {w}) C
comp(G — B') as the removal of B disconnects Cy from the rest of G and N(v) N Cy = {w}.
Furthermore, maxcecomp(a—n |V (C)| < [V(Co)| = maxcecomp(a—n) |V (C)| because both
MmaXcecomp(Co—{w}) |V(C>| < |V(CO>| and

n—=k

VO (VIC) UB) = V@ (VG uB) +1< "5 11 =28 < vyl D

Theorem 2.5. Let G be a graph of order n, and let 2. (G) < k < n. Then pt (G, k) <
[%34]-
Proof. Let B be a PSD forcing set of G of size k. By applying Lemma 2.4 repeatedly (if

needed), there exists a PSD forcing set B* of size k such that maxcecomp(a—n+) |V (C)| <
[25%]. Then pt, (G; B*) < maXcecompa—5+) |V (C)| < [%5£]. O

Observe that the bound in Theorem 2.5 is a refinement of (1).

Corollary 2.6. For every graph G of order n,

) < [158] <[] <5

The proofs of Lemma 2.4 and Theorem 2.5 provide the basis for the next algorithm, which
modifies a PSD forcing set B to obtain B* such that |B*| = | B| and maxcecomp(c—n+) |V (C)] <

PV(GQ&—‘ The PSD forcing set returned by this algorithm achieves the bound in Theo-
rem 2.5.
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Algorithm 2.1
Input: graph G, PSD forcing set B for G
Output: PSD forcing set B* for G with |B*| = |B| and

MmaXcecomp(G—B*) |V(C)’ < [w—‘

B*=21DB

Cy == component of G\ B* with the most vertices
while [V(Co)| > {w] do

v, w = a pair of vertices in B* and Cj such that v — w at the first time step
B* = (B*\ {v}) U {w}
Cy = component of G \ B* with the most vertices

end while

return B*

3. MULTIPLE-VERTEX MIGRATION

In this section we present an additional technique for modifying PSD forcing sets and use
it to give an alternate proof of Theorem 2.5. An example of the technique in Lemma 3.1 is
shown in Figure 3.1.

b1 U1
bg (%
bs

FIGURE 3.1. For the graph G shown above with PSD forcing set B =
{b1, b2, b3}, the method in Lemma 3.1 allows us to obtain the PSD forcing
set B’ = {v1, vy, b3} with pt (G;B') = pt,(G;B) — 1.

Lemma 3.1. Let G be a graph with PSD forcing set B such that G — B is connected. Let
B’ be the endpoints of the PSD forcing trees after the first time step. Then B’ is another
PSD forcing set of G with |B| = |B'|. Furthermore, if pt,(G;B) > 2, then pt (G;B’) =
pt (G;B) — 1.

Proof. Note that connectedness of G — B implies that no vertex performs more than one
force at the first time step. Let B = {b1,bs,...,b;} and B = {vy,va,...,vj,bj41,...,bx}
where b; — v; at the first time step for ¢ < j, and no other forces occur at the first time
step. Notice that |B’| = |B|, and we claim that B’ is a PSD forcing set.

We first show that for i < j, the only vertex in B\ B’ that is adjacent to v; is b;. If v; is
adjacent to b € B such that b # b;, then we have two cases:

e If b is not adjacent to any other vertex in G — B, then b did not perform a force in
G during the first time step when using B in the chosen forcing process.

e If b is adjacent to some other vertex in G — B, then b had more than one neighbor
in G — B when B was selected as the PSD forcing set. Again, b does not perform a
force in GG during the first time step.
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In both cases, we see that b € B’ since b did not perform a force during the first time step.
Hence, the only vertex in B\ B’ that is adjacent to v; is b;.

Since G — B is connected and b; performed a force when B was chosen as a PSD forcing
set, the only neighbors of b; € B\ B’ are other elements of B and the vertex v;. This means
that comp(G — B’) can be partitioned into comp(G — (B U B’)) and comp(G[B \ B']). As a
result, b; is the unique neighbor of v; in the component of G — B’ containing b;. Therefore,
when B’ is chosen as an initial set of blue vertices, v; — b; at the first time step. Since all
of B will be blue by the end of the first time step and B is a PSD forcing set, we conclude
that B’ is also a PSD forcing set of G.

Now suppose that pt, (G; B) > 2. Let H = G—(B\B’). From the preceding paragraph, we
observe that B’ begins forcing vertices in H at the first time step since B\ B’ is disconnected
from H — B’. The forcing steps in H are then the same as when B was the initial PSD
forcing set, but shifted by one time step. Since pt (G;B) > 2, we know pt (H;B’) > 1,
and this allows us to conclude that

pt, (G; B') = max{1,pt, (H; B)} = pt, (H; B') = pt (G; B) — 1. O

Remark 3.2. In Lemma 3.1, if we define B"” = {vy,vq,...,vj,bjr41,..., b} with j° < j,
then the same argument shows that B” is a PSD forcing set, though we cannot guarantee
the second result pt, (G; B”) = pt(G; B) — 1. Choosing j' = 1 and combining this with the
next lemma generalizes single-vertex migration.

Since PSD forcing occurs independently in the components of G — B, we can apply
Lemma 3.1 within the closed neighborhood of one component of G — B. We call this process
of replacing B with B’ within the closed neighborhood of one component (as described in
Lemma 3.3) multiple-vertex migration. The assumption in Lemma 3.1 that G — B is con-
nected cannot be removed without such a restriction. Figure 3.2 illustrates both multiple-
vertex migration (using one component) and a failure when moving vertices in more than
one component.

bl U1

bg V2

U3 b3

FIGURE 3.2. Notice that B = {by, by, b3} is a PSD forcing set, but {vy, v, v3}
is not. However, we can construct the PSD forcing sets {by, by, v3} and {vy,vs, b3}.

Lemma 3.3. Let G be a graph with PSD forcing set B. Let C' be a connected component
of G — B, and let H = G[V(C)U B|. If B’ is the set of endpoints in H of the PSD forcing
trees after the first time step, then B’ is another PSD forcing set of G with |B'| = |B|.

Proof. By definition of H, we know H — B is connected. Using Lemma 3.1, B’ is a PSD
forcing set for H with |B| = |B’|. Notice that the vertices in H — B are not adjacent to any
vertices in G — V(H). From this, we see that B’ will force any white vertices in B at the
first step when forcing within G. Therefore B’ will force G since B is a PSD forcing set of
G. Thus B’ is a PSD forcing set of G. O
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A PSD forcing set B with |B| = k is called k-efficient if pt (G; B) = pt, (G, k). When
k = 7,(G), B is said to be efficient. An application of the previous result allows us to
conclude that for k-efficient PSD forcing sets, the two components that take the longest to
force should take approximately the same time.

Theorem 3.4. Let G be a graph and let B be a PSD forcing set with |B| = k. Let
C1,Cy, ..., Cy, be the connected components of G— B, indexed so that pt (G[V (C;)UB]; B) <
pt (GV(Ciz1)UBJ;B) fori=1,2,...,m— 1. If B is k-efficient, then

pt, (GIV(Con) U BJ: B) = pt, (GIV(Cont) U BJ: B) < 1,
where we use the convention C; = 0 and Cy = G — B when G — B is connected.

Proof. Define G; = G[V(C;) U B]. Notice that
pt,(G; B) max pt, (G;; B) = pt,(Gn; B).

i=1,2,....,m

We prove the contrapositive, so suppose that pt (G,,; B) —pt, (Gn-1; B) > 1. Using Lemma
3.3, if we let B’ be the endpoints in G,, of the PSD forcing trees after the first time step,
then B’ is a PSD forcing set of G. Additionally, since pt, (Gm; B) — pt,(Gm-1;B) > 1,
nonnegativity of propagation time implies pt, (G,, B) > 2. The vertices of G,,, — B are not
adjacent to any vertices in G — G,,,, so Lemma 3.1 implies

pt, (Gm; B') = pt, (Gy; B) — 1.

Since B’ forces B at the first time step and B is a PSD forcing set for GG, we also see that
the vertices in G — V(G,,,) will be blue by time

pt (Gm-1;B) + 1.
Since we assumed pt_ (Gy,; B) — pt, (Gm-1; B) > 1, we see that
pt (G;B') = max{pt (Gm;B) — 1,pt, (Gr1; B) + 1}
= pt (G,;B) —1
= pt.(G;B) -1
Thus, B cannot be k-efficient. O

Theorem 3.4 can be used to give another independent proof of Theorem 2.5.

Alternate proof of Theorem 2.5. Let B be a k-efficient PSD forcing set of G. Using the
notation as in Theorem 3.4, the assumption that B is k-efficient implies

Pty (Gm; B) = pty (G B) < 1.

Propagation in G,, and G,,—; occur independently, so pt, (G,,;B) — pt,(Gm-1;B) < 1
implies that at each time step, at least one force occurs in (G, and at least one force occurs
in G,,_1, except possibly during the last step. Since at least two forces occur at each time
step with the possible exception of the last time step, we conclude that

bt (G, k) = pt, (G: B) < [ww | 0

The proof of Theorem 3.4 provides the basis for an algorithm for finding a PSD forcing
set such that pt, (G[V(C,,) U BJ; B) — pt (G[V(Cy,—1) UBJ; B) <1 holds, which we present
next. The PSD forcing set returned by this algorithm achieves the bound in Theorem 2.5,
though it is not necessarily k-efficient.
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Algorithm 3.2

Input: graph G, PSD forcing set B for G

Output: PSD forcing set B’ for G with |B’| = |B| such that the two components of G \ B’

that take the longest to propagate will finish propagating within one time step of each other
1: BB =B

G, := subgraph of GG induced by B’

m = |comp(G — B')| + 1

G, ..., G, = subgraphs induced by the components of G — B’ combined with the

vertices in B’, indexed so that pt (G;; B') < pt (Gipr; B') fori=2,3...,m—1

B/ = (B/ U {’Ul, Vo, ... ,?Jj}) \ {bl, bg, ey bj}

m = | comp(G — B’)|

10:  Gy,...,G,, = subgraphs induced by the components of G — B’ combined with the
vertices in B’, indexed so that pt (Gi; B') < pt, (Giy1; B') fori =1,2,...,m—1

11: end while

12: return B’

5. while pt, (G,) — pt (Gm-1) > 2 do

6:  by,bg,...,b; = vertices in B’ that perform a force in G,, at the first time step
7: Uy, 0,...v; = vertices of G, such that b; — v; at the first time step

8:

9:

4. CONSEQUENCES OF THE BOUND

In this section we derive several consequences of Theorem 2.5, including a tight upper
bound on the PSD throttling number and tight Nordhaus-Gaddum sum bounds for PSD
propagation time. We begin by showing that the number of graphs having PSD propagation
time within a fixed amount of the order is finite.

Corollary 4.1. Let k € N. For any graph G with |V (G)| > 2k + 1,
b (G) < V(G| — k.
The number of graphs with pt, (G) > |V (G)| — k is therefore finite.

Proof. By Corollary 2.6, pt, (G) < {%-‘ . For any graph with |V(G)| > 2k + 1,

() < Y= < wia -

Since there are only finitely many graphs with |V(G)| < 2k, this implies that the number of
graphs with pt, (G) > |V(G)| — k is finite. O
Warnberg [11] characterized the graphs achieving pt, (G) > |V(G)| — k for k = 1,2,

thereby establishing the results in Corollary 4.1 for k£ = 1, 2.
Theorem 4.2. [11] Let G be a graph.

(1) pt, (G) = |V(GQ)| — 1 if and only if G = P,.

(2) pt,(G) = |V(GQ)| —2 if and only if G is one of P3, Py, Cs, or P, U Py, where G U H

denotes the disjoint union of G and H.

As the value of k increases, the number of graphs G such that pt (G) = |V(G)| — k grows
rapidly. The graphs having pt (G) = |V(G)| — 3 and pt (G) = |V(G)| — 4 are shown in
Figures 4.1 and 4.2, respectively.
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FIGURE 4.1. Graphs with pt, (G) = |V (G)| — 3.
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FIGURE 4.2. Graphs with pt, (G) = |V(G)| — 4.

Throttling minimizes the sum of the resources used to accomplish a task (number of blue
vertices) and the time needed to complete that task (propagation time). Theorem 2.5 yields
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a bound on the PSD throttling number of a graph G of order n, which is defined to be
thy (G) = ming_ )<k<n(k + Pt (G, k).

Corollary 4.3. For any graph G on n vertices,
Z
thy (G) < [H—AG)-‘ 7

2
and this bound is tight for K, for all n.

Proof. By the definition of throttling and Theorem 2.5, th (G) < k+pt, (G, k) < k+[25%] =
(255 for k = Z4(G),...,n. Thus thy(G) < {%*(G)-‘ For tightness, Z, (K,) =n — 1 and

pt, (K,) =1, so thy (K,) =n = [ww -

Given a graph G, its complement G is the graph with vertex set V(G) and edge set
E(G) ={w : u,v € V(G) distinct and uv & E(G)}.

The Nordhaus-Gaddum sum problem for a graph parameter ( is to determine a lower or
upper bound on ((G) + ¢(G) that is tight for graphs of arbitrarily large order. We can use
Theorem 2.5 to give a tight Nordhaus-Gaddum sum upper bound for the PSD propagation
time of a graph and its complement. We recall the next (tight) Nordhaus-Gaddum sum
bounds for the PSD zero forcing number.

Theorem 4.4. [5] Let G be a graph of order n > 2. Thenn—2 < 7, (G)+7Z,.(G) < 2n—1,
and both bounds are tight for arbitrarily large n.

Theorem 4.5. Let G be a graph of order n > 2. Then
— .n
1 <pty(G) +pt(G) < 5 +2.
The lower bound is tight for every n > 2 and the upper bound is tight for every even n > 8.

Proof. Since n is at least 2, either the graph or its complement has an edge. Therefore either
pt (G) > 1 or pt (G) > 1. Observe that the lower bound is achieved by the complete graph
K, for n > 2.

To establish the upper bound:

n— Z+(G)w N [n - Z+(@)w

pt (G) +pt.(G) < { 5 5

n—7.(G) 4 n—7.(G)

< 1
S 5 7 +
< n+1_Z+(G)+Z+(G)
2

< p41-nZ?

n R—
- 2

n
< —+2.
< 2+

To establish tightness for even n > 8, consider the graph Hay. s on 2k + 8 vertices (with
k > 0) shown in Figure 4.3.
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FIGURE 4.3. The graph Hy s, which has order 2k + 8 and pt, (Hokys) +
pt+(H2k+8) = (1{7 -+ 4) + 2.

It is straightforward to verify the following properties of Hg: Z,(Hs) = pt, (Hs) = 3. For
any minimum PSD forcing set B of Hg, ag ¢ B or by ¢ B, and one of ag or by is the last
vertex forced. Since Hg = Hy,

pty (Hs) + pt (Hs) =6 = g +2,
so Hg gives a tight bound for n = 8.

Now assume k& > 1. By results in [5], Z (Hakys) = 3 and any minimum PSD forcing set for
Hopi s must contain at least two vertices in V' (Hs) \ {ao, bo}. If B is a PSD forcing set with
two vertices in V(Hs) \ {aop,bo} and a third vertex a; from {ay,as, ..., ax}, then migration
from a; to a;—y produces a PSD forcing set B’ = (B \ {a;}) U {a;_1} with pt, (Hopys; B') =
pto (Hokts; B) — 1, as by will be the last vertex in Hg forced regardless of what B and B’
are. A similar argument applies when B contains some vertex in {by, by, ..., by}, and in these
situations, we conclude that B cannot be efficient. From this, we see that if we wish to select
an efficient PSD forcing set B for Hoyiy g, we must select three vertices from Hg. Regardless
of which three vertices we select, either ag or by will be the last vertex of Hg forced, implying
that

pt, (Hogts) = pty (Hopys; B) = pt (Hs) + k =k + 3.

Since the order of Hopys is 2k + 8 and pt, (Hopts) = k + 3, to complete the proof it
suffices to show that pt, (Hays) = 3. The software [6] was used to verify that pt, (Hio) =
pt+(H_12) = 3, so we focus on the remaining cases. Fix k£ > 3, and let H = Hoy.s.

We first show Z (H) = 2k + 3 and pt, (H) < 3. Notice that Theorem 4.4 and Z, (H) = 3
imply that Z,(H) > 2k + 3. Since H contains Hg as a subgraph, we let B = By U X
where By is an efficient PSD forcing set for Hy = Hg and X = {ay,...,ax, by,..., b}
Notice that |B| = 2k + 3. The graph H also contains Hj, as a subgraph, and whenever
all vertices of X are blue, we may assume forcing takes place entirely within Hi,, since
a; — w can be replaced by a; — w for ¢ > 3. A similar argument can be made for b; for
i > 3. Combined, we conclude that B is a PSD forcing set for H, Z,(H) = 2k + 3, and
pt, (H) < pt, (H; B) = pt, (Hi2; BNV (Hi2)) = 3.

To prove pt, (H) > 3, we show that an efficient PSD forcing set B must contain all vertices
of X. Let B C V(H) be a PSD forcing set of H such that |B| = 2k + 3 and X ¢ B. Let
W =V(H)\ B,soWnX # 0.

We begin by showing H[W] is connected. Suppose first that |WWNX| > 2, and without loss
of generality, assume there is some a; € W N X. Then H — B = H[W] is connected because
every vertex except a;—; and a;41 is adjacent to a;, |[IWNX| > 2, and |W| = 5. Alternatively,
suppose |W N X| = 1, and assume without loss of generality that W N X = {a;}. If



12 L. HOGBEN, M. HUNNELL, K. LIU, H. SCHUERGER, B. SMALL, AND Y. ZHANG

ag ¢ W, then q; is adjacent to all other vertices in W, again implying H|[W] is connected. If
ag € W, then there must be three white vertices in Hg \ {ag}, which are all adjacent to a;.
Furthermore, deggzao = 5 and |[W NV (Hg)| = 4 imply that some neighbor of ag is white.
In all cases, H[W] is connected.

Since H — B is connected, the first force must be a standard force. If vertex u performs
the first force, then deg7u < Z,(H) = 2k + 3, so degyu > 4, ie., u € {m, 2 y,y/}. If
W N X| > 2, then u is adjacent to multiple white vertices, implying u cannot perform a
force, and B would not be a PSD forcing set. If [IW N X| = 1, notice that a; € W N X is
adjacent to all of x,2’,y and 3'. Then the only vertex forced at the first time step is a;,
implying pt, (H; B) > 2. So Lemma 3.1 implies that B is not efficient.

Thus, any efficient PSD forcing set B for H must contain all of X. For any such B, we
can again assume forcing takes place entirely within Hi,, and we conclude that pt +(ﬁ) =

pt, (H; B) = pt, (Hi2; BNV (Hyy)) > 3. O

In order for the upper bound in Theorem 4.5 to be tight, n must be even. In addition to
the family Hoi,g presented in the proof, the upper bound is tight for P;. A computer search
shows there is no graph G of order 6 realizing pt. (G) +pt, (G) =5 = 2 4+2. For odd n, it is
not possible to have both n — Z, (G) and n — Z, (G) be odd when Z, (G) + Z(G) =n — 2.
Arguing as in the proof of Theorem 4.5, we see that pt, (G) + pt,(G) < "TJF?’ for n odd.
This bound can be realized by removing by from Hs,.g. The proof of Theorem 4.5 can be
adapted to show this. Consider a minimum PSD forcing set B for Hopig — by. If ag is
forced no earlier than by, then pt, (Hopis — by; B) > k + 3. If by is forced after ag, then
pty (Hogys — bi; B) > k+2. The k+ 2 bound is realized by some minimum PSD forcing set.
The argument for the complement translates directly. Thus the upper bound in Theorem
4.5 could be restated as pt, (G) 4+ pt,(G) < | 2] + 2, which is tight for all n > 8.

Finally we consider the maximum PSD propagation time for graphs with arbitrary order
and fixed PSD forcing number. For a fixed positive integer k and n > k, define

¢(n, k) = max{pt, (G) : |V(G)| =n and Z,.(G) = k}.

By Theorem 2.5, ((n, k) < (”T”ﬂ We construct a family of examples realizing this bound.

Define the lollipop graph L,,, as the graph obtained by starting with the complete graph
K,, with m > 3 and a (disjoint) path P, and then adding an edge between some vertex v

of K,, and an endpoint of P,; the order of L,,, is m + r. See Figure 4.4.

FIGURE 4.4. The lollipop graph Lg 5.

Proposition 4.6. Form >3 andr > 1,

pt, (L) = PV(Lm,rﬂ ; Zi (L)
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Proof. Let v be the vertex of degree m and let w be the vertex of degree one in L, ,. It is
clear that Z, (L,,,) = m — 1 since L,,, contains K,, as a subgraph and any set of m — 1 of
the vertices in K,, is a PSD forcing set.

Consider a PSD forcing set B consisting of m — 2 of the vertices in K,, \ {v} and the
vertex of P, at distance ’—g-‘ from w, It will take (%W time steps to force the vertices of P,
and r — (ﬂ +1= V;r—q time steps to force the last vertex of K,,. Thus,

bt (Lonsi B) = Wﬂ _ me - (m — ﬂ _ PV(Lm,»\ ;z+<Lm,r>1 |

The set B is efficient for L,,, because any PSD forcing set must contain at least m — 2
of the vertices in K,, and any other choice for the last vertex results in a propagation time
that is at least as large. 0
Corollary 4.7. For anyn > k > 1, there exists a graph G such that |V (G)| = n, Z,+(G) = k,
and pt, (G) = [25%]. Thus, the bound pt, (G) < [W—‘ is tight for each 7, (G).

2 2

Corollary 4.8. For a fixed positive integer k,

lim C(n, k) = 1

n—oo n 2

Proof. Starting with Theorem 2.5 and letting n — oo implies

lim ¢(n, k) < l

For the lower bound with fixed k, Proposition 4.6 implies that pt, (Ly+1n—k—1) = (”T_’ﬂ for
any n > k + 3. Then

g(nvk) > [n_k—l > n—k

2
n — n — 2n’
and letting n — oo implies the result. ([l
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