
95IEEE Communications Magazine • November 2021 0163-6804/21/$25.00 © 2021 IEEE

Abstract
Reinforcement learning (RL) algorithms are

purely data-driven and do not leverage any
domain knowledge about the nature of the avail-
able actions, the system’s state transition dynam-
ics, and its cost/reward function. This severely
penalizes their ability to meet critical require-
ments of emerging wireless applications, due to
the inefficiency with which these algorithms learn
from their interactions with the environment. In
this article, we describe how data-driven RL algo-
rithms can be improved by systematically integrat-
ing basic system models into the learning process.
Our proposed approach uses real-time data in
conjunction with knowledge about the underly-
ing communication system to achieve orders of
magnitude improvement in key performance met-
rics, such as convergence speed and compute/
memory complexity, relative to well-established
RL benchmarks.

Introduction
Wirelessly networked Internet of Things (IoT)
devices increasingly need to operate in unknown
dynamic environments comprising latency-sensi-
tive data sources and wireless channels of a priori
unknown statistics. This challenge is encountered
in emerging applications such as personalized
healthcare, remote robot navigation, telemetry,
and mobile virtual and augmented reality (VR/
AR). Paramount to their effective operation will be
the ability to communicate the captured data in
real time, despite the IoT devices’ limited capabil-
ities and their unknown operating environments.
This will require advances in online learning and
decision making to effectively leverage the IoT
devices’ limited resources while meeting the
application’s critical service constraints.

Optimal decision making in unknown environ-
ments, where decision policies need to be learned
online, is a natural application domain of rein-
forcement learning (RL). Here, an agent interacts
with an unknown environment and updates its
value function and policy based on its experience,
where the value function describes how good it is
to be in each state and the policy describes what
action to take in each state. As the agent acquires
experience, its value function and policy converge
to their optimal forms. RL has been used to solve

a variety of important problems in wireless IoT
systems, such as compression and transmission
rate control [1, 2], duty cycle optimization [3],
multi-access control [4], autonomous ad hoc net-
work formation [5], fresh data collection [6], and
edge computing [7]. However, traditional RL algo-
rithms — including model-free and model-based,
on-policy and off-policy, and value-based and pol-
icy gradient methods [8] — are purely data-driv-
en and operate without exploiting any domain
knowledge about the nature of the system’s states
and actions, its state transition dynamics, or the
performance metrics that need to be optimized.
This allows them to solve a wide variety of prob-
lems, but yields algorithms that either:
1. Converge too slowly to be useful in wire-

less IoT systems, where fast adaptation to the
experienced channel, information source,
and network dynamics is essential (e.g., mod-
el-free solutions, such as Q-learning, SARSA,
and policy gradient and actor-critic methods)

2. Are too computationally and memory inten-
sive to implement on resource constrained
IoT devices (e.g., model-based solutions,
such as adaptive real-time dynamic program-
ming [ARTDP], Dyna, and Dyna-Q)

To bridge this gap, we present a systematic
approach to improve data-driven RL algorithms by
integrating domain knowledge — in the form of
basic system models — into the learning process.
This approach comprises three components:
•	 Post-decision states (also known as after-

states [8]) allow us to factor the sys-
tem’s cost/reward function and state
transition probability function into known
and unknown components. This accelerates
learning but increases computational com-
plexity.

•	 Virtual experience, a novel technique that
we developed, allows us to extrapolate the
observed experience in one system state to
other system states. This further accelerates
learning, but also further increases computa-
tional complexity.

•	 Value function approximation allows us
to reap the benefits of virtual experience
while mitigating its computational complex-
ity. Moreover, under certain conditions, the
resulting approximation error is provably
bounded.

Nicholas Mastronarde, Nikhilesh Sharma, and Jacob Chakareski

Nicholas Mastronarde and Nikhilesh Sharma are with the University of Buffalo;
Jacob Chakareski is with the New Jersey Institute of Technology.

Digital Object Identifier:
10.1109/MCOM.111.2000949

Improving Data-Driven
Reinforcement Learning in Wireless IoT

Systems Using Domain Knowledge

ARTIFICIAL INTELLIGENCE AND DATA SCIENCE FOR COMMUNICATIONS

The authors describe how
data-driven RL algorithms can
be improved by systematically

integrating basic system models
into the learning process. Their

proposed approach uses real-
time data in conjunction with

knowledge about the underlying
communication system to achieve
orders of magnitude improvement

in key performance metrics,
such as convergence speed and

compute/memory complexity,
relative to well-established RL

benchmarks.

The work of N. Mastronarde
and N. Sharma was supported
by NSF Award ECCS-1711335.
The work of J. Chakareski was
supported by NSF Awards CCF-
1528030, ECCS-1711592,
CNS-1836909, CNS-1821875,

and CNS-1836909.

MASTRONARDE_LAYOUT.indd 95MASTRONARDE_LAYOUT.indd 95 12/17/21 4:58 AM12/17/21 4:58 AMAuthorized licensed use limited to: University at Buffalo Libraries. Downloaded on June 28,2022 at 21:40:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • November 202196

Each of these components require us to leverage
domain knowledge to:
1. Verify that a system satisfies the conditions

under which they are applicable
2. Identify how to correctly implement them for

a specific system
In this article, we emphasize problems with

finite state and action spaces that can be solved
with tabular RL methods, where the value func-
tions and policies can be represented with tables.
However, the proposed approach is general and
can also be applied to problems with continu-
ous or infinite state and action spaces. Deep RL,
which uses deep neural networks to approximate
the value function and/or policy, has emerged
as a promising approach to solve such problems,
particularly when they have high-dimensional
state and action spaces. However, deep RL algo-
rithms are purely data-driven just like conventional
RL algorithms. As such, we also discuss the pro-
spective application of our framework in deep
RL. Additionally, we assume that the RL algorithm
operates online at runtime. This is in contrast to
so-called robust RL [9] in which the RL model is
“trained” in a different environment than it is “test-
ed.” Importantly, recent advances in both deep
RL and robust RL are orthogonal to the advances
we focus on herein. Lastly, note that our approach
can be applied in any wireless system under the
appropriate conditions, but we focus on wireless
IoT systems due to the constraints imposed in this
environment, as highlighted earlier.

Our systematic framework, its principal com-
ponents, and their characteristics are summarized
in Fig. 1. In the remainder of this article, we pro-
vide tutorial-level coverage of these concepts.
We begin with an example system model that we
will use to illustrate the proposed approach, and
provide further background on the limitations of
existing solutions. We proceed with an overview
of the three principal components of our frame-
work, and discuss their prospective extension to
multi-agent RL and deep RL. Finally, we review
related work and conclude the article.

Example System Model and Background
We introduce in Fig. 2 a simple example sys-
tem model — focusing on energy-efficient point-
to-point scheduling of delay-sensitive data over
a fading channel — to illustrate our proposed
approach. We selected this simple model because
it shares key characteristics with more complex
IoT systems. We assume that the system oper-

ates in discrete time. In each time step, the trans-
mission scheduler observes the buffer state and
channel state, and then decides the number of
packets to transmit. At the end of each step, new
packets arrive into the transmission buffer from
the information source. The buffer state evolves
over time, driven by the packet transmissions and
arrivals, and the channel state evolves according
to a finite-state Markov chain. The data arrival
probability distribution and channel state transi-
tion probabilities are assumed to be unknown.

We introduce a transmission cost defined as
the power required to transmit different numbers
of packets in different channel states, while meet-
ing a target bit error rate. Similarly, we introduce a
buffer cost to penalize buffer delays and overflows,
which depend on the buffer state, packet transmis-
sions, and packet arrivals. The transmission sched-
uler decides how many packets to transmit in each
state to minimize the average transmission power
subject to an average buffer cost constraint.

Constrained Markov Decision Process Formulation
The example problem described above can be
formulated as a constrained Markov decision pro-
cess (MDP) [10], where the system’s state com-
prises its buffer and channel states, and the action
denotes the number of packets to transmit in the
time step. The state evolves as a controlled Mar-
kov chain with transition probabilities that depend
on the current state, selected action, data arriv-
al probability distribution, and channel transition
probabilities. The objective is to take the action in
each step that minimizes the average transmission
cost subject to an average buffer cost constraint.

The problem can be reformulated as an uncon-
strained optimization using the Lagrange multipli-
er (LM) method [10]. This is done by introducing
a Lagrangian cost function defined as the sum of
the transmission cost and the buffer cost, where
the buffer cost is multiplied by an LM. For a given
LM, the optimal solution satisfies a Bellman equa-
tion featuring the optimal value function, which
indicates how good it is to be in each state when
following the optimal policy. The related optimal
action-value function indicates how good it is to
take an arbitrary action in each state and then
follow the optimal policy thereafter. The optimal
value function can be determined from the opti-
mal action-value function by minimizing it over
the actions. The optimal policy captures the opti-
mal action to take in each state.

Limitations of Existing Approaches
If the transmission costs, buffer costs, and state
transition probabilities are known, the optimal
value function that satisfies the Bellman equation
can be computed numerically using dynamic pro-
gramming (e.g., value iteration [8]). Moreover,
the optimal LM that satisfies the buffer cost con-
straint can be computed using the subgradient
method [11]. In practice, however, the cost func-
tion and state transition probabilities are (par-
tially) unknown, as the data arrival probability
distribution and channel transition probabilities
are unknown. Hence, the optimal value function
and policy cannot be computed using dynam-
ic programming; instead, they must be learned
online, based on experience. This can be accom-
plished in one of two ways [12]:

FIGURE 1. Improving data-driven RL using domain knowledge.

Value function approximation
Exploit value function’s structure via

function approximation
+ Maintain fast learning and low complexity
+ Precise approximation error vs.
computing/memory tradeoff

Virtual experience learning
Exploit statistical independence of state

variables and unknown dynamics
+ Further learning acceleration
– Further computing complexity increase

Traditional RL
Data-driven with no system knowledge

+ General: can solve many problems
– Inefficient computing, memory, and
convergence rate tradeoffs

Post-decision state learning
Integrate basic system models

+ Learning acceleration
– Computing complexity increase

MASTRONARDE_LAYOUT.indd 96MASTRONARDE_LAYOUT.indd 96 12/17/21 4:58 AM12/17/21 4:58 AMAuthorized licensed use limited to: University at Buffalo Libraries. Downloaded on June 28,2022 at 21:40:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • November 2021 97

•	 Model-free: Learn a value function or policy
without learning a model.

•	 Model-based: Learn a model for the costs
and transition probabilities, and then derive a
value function or policy.

In parallel, the optimal LM can be learned
using the stochastic subgradient method [11].
Importantly, both model-free and model-based
approaches are purely data-driven and assume no
a priori information about the costs and transition
probabilities.

As an instance of the model-free approach,
Q-learning updates an estimate of the action-val-
ue function in each step based on its observed
experience tuple, comprising the current state,
selected action, observed cost, and next state,
using a time-varying step-size parameter. These
iterations converge to the optimal action-val-
ue function with probability 1 if the step-size
is defined appropriately. As an instance of the
model-based approach, ARTDP estimates both
the cost and transition probability functions,
and then applies dynamic programming back-
ups to update the value function using these
estimates.

Unfortunately, as noted in the introduction,
neither approach is well suited for real-time learn-
ing in IoT systems: model-free approaches have
low computational complexity, but converge too
slowly; and while model-based approaches often
converge more quickly, they are too complex.

Improving Data-Driven RL
Using Domain Knowledge

In this section, we explore the sequential and syn-
ergistic application of post-decision states, virtu-
al experience, and value function approximation
to overcome the aforementioned limitations of
data-driven RL algorithms.

Post-Decision States and Virtual Experience
First, we generalize the concept of a post-de-
cision state (PDS), which captures the system
state after the known effects of an action, but
before the unknown dynamics take place. Con-
ceptually, a PDS can be viewed as an intermedi-
ate state in the transition from the current state
to the next state, which we can model based
on our knowledge of how the actions affect
the state transition in a system. On the left side
of Fig. 3, we illustrate the PDS concept in the
context of the example system in Fig. 2. Here,
we define the post-decision buffer state as the
difference between the current buffer state and
the number of transmitted packets, such that
it represents an intermediate buffer state after
packets are transmitted, but before new packets
arrive. The next buffer state can then be calcu-
lated by adding the new packet arrivals to the
post-decision buffer state, while accounting for
any buffer overflows. Meanwhile, the post-de-
cision channel state is the same as the chan-
nel state because we do not know the channel
model. At first inspection, PDSs appear to be a
simple mathematical trick; however, they have
rather profound implications.

As noted in the introduction, the PDS con-
cept exists in prior literature (e.g,. [8, 11]).
However, this literature assumes that the PDS

is a known deterministic function of the cur-
rent state and action and that the cost function
is completely known. This definition limits the
concept’s applicability: for example, it cannot
be used to model packet losses from a known
distribution (because the post-decision buffer
state depends on the number of successfully
transmitted packets, which is non-deterministic)
or to model finite buffers (because the expect-
ed overflow cost depends on the arrival dis-
tribution, which is unknown). In contrast, our
generalized PDS can be a known non-determin-
istic function of the current state and action,
and allows the cost function to contain known
and unknown components.

A generalized PDS can be introduced if the
system’s cost/reward and state transition proba-
bility functions can be factorized into known and
unknown components. This fills the gap between
MDPs and purely data-driven RL: If everything is
known, the problem reduces to an MDP that can
be solved using dynamic programming; if every-
thing is unknown, it must be solved with a purely
data-driven RL algorithm.

Just as we formulated a value function over
the conventional states, we can formulate a PDS
value function over the PDSs. Note that these two
value functions are closely related: the value func-
tion depends on the expectation of the PDS value
function with respect to (w.r.t.) the known tran-
sition probabilities; and the PDS value function
depends on the expectation of the value func-
tion w.r.t. the unknown transition probabilities. In
our example system model, the known transition
from the current state to the PDS is deterministic
(Fig. 3), so the value function simply depends on
the PDS value function evaluated at the observed
PDS. On the other hand, the unknown transition
from the PDS to the next state depends on the
unknown packet arrival and channel transition
probabilities (Fig. 3).

Despite the close relationship between the
two value functions, working with the PDS value
function has several advantages. First, only the
unknown information in the transition from the
PDS to the next state needs to be learned. Sec-
ond, by updating the value of one PDS, we learn
about all state-action pairs that can precede it
(Fig. 3). Third, in RL, there is a trade-off between
exploiting actions that currently have the best
estimated value and exploring other actions that
might be better. However, in the special case
that the unknown transition probabilities are inde-
pendent of the action, exploration is not need-
ed. For instance, in the example system in Fig.
2, the unknown transition probabilities depend
on the packet arrival distribution and the channel

FIGURE 2. Example system model.

��������
�������������

���������

������

�������

	������������

������

������
������

	������

������

�������������

������������

MASTRONARDE_LAYOUT.indd 97MASTRONARDE_LAYOUT.indd 97 12/17/21 4:58 AM12/17/21 4:58 AMAuthorized licensed use limited to: University at Buffalo Libraries. Downloaded on June 28,2022 at 21:40:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • November 202198

transition probabilities, which are independent of
the transmission action (Fig. 3). This dramatically
improves the system’s performance during the
learning process because we can always exploit
the best known action and avoid penalties for
exploring sub-optimal actions.

Second, we further establish that the PDS
value function can be updated over multiple PDSs
simultaneously if the unknown dynamics are statis-
tically independent of one or more PDS variables.
We refer to this as virtual experience (VE) learn-
ing because it enables updating the PDS value
function over unvisited states. On the right side
of Fig 3, we illustrate the VE concept in the con-
text of the example system in Fig. 2. Here, we can
apply VE updates across every post-decision buf-
fer state in each step because the packet arrival
distribution and the channel transition probabili-
ties are independent of the post-decision buffer
state. Note that VE updates are performed using
the channel state, number of packet arrivals, and
next channel state that were actually observed in
the step.

Many existing RL algorithms update multiple
states in each step (e.g., the model-free tempo-
ral-difference-lambda algorithm and the mod-
el-based Dyna-Q algorithm [8]). However, these
algorithms can only update previously visited
states because they do not leverage any system
knowledge. Consequently, they operate from a
“cold start” in each state, yielding sub-optimal per-
formance. For instance, in the example system in
Fig. 2, these algorithms struggle to learn how to
avoid buffer overflows. In contrast, VE learning
can quickly learn how to avoid buffer overflows
without ever experiencing them.

Comparison among Learning Algorithms

Figure 4 illustrates the qualitative differenc-
es between Q-learning and our advances for
the example system model in Fig. 2. Here, the
post-decision buffer state is calculated as the cur-
rent buffer state minus the number of transmit-
ted packets (throughput). We omit the channel
state for simplicity. A Q-learning update on a buf-
fer-throughput pair only modifies the action-value
function for that buffer-throughput pair. A PDS
learning update on a post-decision buffer state
provides information about all buffer-throughput
pairs that can potentially lead to it. Finally, VE
learning updates provide information about every
post-decision buffer state.

Figure 5 examines the quantitative perfor-
mance of Q-learning and our advances over a
simulated wireless link. This model extends the
example system model in Fig. 2 to include a bina-
ry dynamic power management (DPM) state and
a binary DPM action, such that the transmitter
can be turned on and off to save energy [13].
The system is simulated over 75,000 steps with
10 ms duration. The transmitter consumes 320
mW of power in the “on” state (in addition to any
transmission power), 0 mW in the “off” state, and
320 mW when transitioning between them. We
assume that the buffer can hold a maximum of
25 packets of size 625 bytes and that data arrives
into the buffer according to a Poisson process
at a rate of 200 packets/s. The channel state
(gain) evolves as a finite-state Markov chain with
8 states, ranging from –18.82 dB to –2.08 dB.
Note that the finite-state Markov chain and the
data arrival distribution are not known by the RL
algorithms. The transmitter can transmit 0 to 10
packets in each step, with a transmission power
that is convex and increasing in the number of
transmitted packets, and is higher in worse chan-
nel states. We set the average buffer delay con-
straint to 4 packets.

After 75,000 steps, Q-learning experiences
excessive overflows and is not able to stabilize
the buffer. It performs poorly because it requires
action exploration and only learns about one
state-action pair in each step. Consequently, it
struggles to learn that it must keep the transmit-
ter in the “on” state to transmit enough packets
to meet the delay constraint. PDS learning per-
forms significantly better than Q-learning. Since

FIGURE 3. Post-decision state and virtual experience concepts applied to the example system model in Fig. 2.

State Post‐decision State Transmission
Action

Packet
Arrivals

Next State

Known effects of the action

Statistically independent of
the post‐decision buffer

state and action

Virtual
Post‐decision State

Packet
Arrivals

Virtual Next State

… … …

Channel
Transition

Channel
Transition

St
at
e‐
ac
tio

n
pa

irs
 th

at
 le

ad
 to

th
e
sa
m
e
po

st
‐d
ec
isi
on

 st
at
e

Buffer state Channel state Packet Probability mass function Packet arrival and channel realizations

… …

Virtual experience across all post‐decision buffer states
(with observed channel state, packet arrivals, and channel transition)

Unknown dynamics

FIGURE 4. State-action pairs updated in each step (white boxes) for the example system in Fig. 2: left: Q-learning;
middle: post-decision state learning; right: VE learning.

����������������������

���������������������

�
��
�
�
�
�
�
�

���������������������������

���������������������������

�
��
�
�
�
�
�
�

��������	�����������������

���������������������������

�
��
�
�
�
�
�
�

������������ ������������ ������������

MASTRONARDE_LAYOUT.indd 98MASTRONARDE_LAYOUT.indd 98 12/17/21 4:58 AM12/17/21 4:58 AMAuthorized licensed use limited to: University at Buffalo Libraries. Downloaded on June 28,2022 at 21:40:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • November 2021 99

the unknown packet arrival distribution and chan-
nel transition probabilities are independent of
the actions, PDS learning does not require action
exploration. Moreover, as illustrated in Figs. 3 and
4, learning about one PDS provides information
about all buffer-throughput pairs that can precede
it. Consequently, PDS learning meets the 4-packet
delay constraint within 30,000 steps, and after
75,000 steps its average power consumption is
approximately 27 percent lower than Q-learn-
ing’s. Finally, we are able to perform VE updates
across every post-decision buffer state in each
step because the packet arrival distribution and
the channel transition probabilities are indepen-
dent of the post-decision buffer state. This allows
VE learning to meet the 4-packet delay constraint
within 300 steps and to achieve near-optimal
power within 3000 steps.

The benefits of PDS learning and VE come
at the expense of increased action selection
and learning update complexity. In Q-learning,
the action selection and update steps require
optimizing the action-value function over the
actions, so they have complexity proportional
to the number of actions. In PDS learning, both
steps also require calculating an expectation
over the PDS value function w.r.t. the known
transition probabilities, so they have worst case
complexity proportional to the product of the
number of states and actions. VE has the same
action selection complexity as PDS learning, but
its update complexity increases linearly with the
number of VE updates.

Structure-Aware Value Function Approximation
We aim to reap the benefits of VE updates while
reducing their complexity by exploiting prospec-
tive structural properties of the optimal value
function. Such properties include, for example,
integer convexity/concavity and super/submod-
ularity [14], and can be exploited via value func-
tion approximation.

In [14], we used structure-aware value function
approximation to optimize a delay-sensitive ener-
gy harvesting wireless sensor. The energy harvest-
ing model extends the example model from Fig. 2
to include a battery state and energy arrivals with
unknown statistics. Here, the post-decision buffer
state is defined as in the original model, while the
post-decision battery state is defined as the cur-
rent battery state minus the energy required for
transmission. We are able to perform VE updates
across every post-decision buffer-battery state pair
because the data and energy packet arrival distri-
butions are independent of these PDSs.

For illustration, assuming that the buffer can hold
32 data packets and the battery can hold 32 energy
packets, learning the optimal PDS value function
using VE would require 1089 = (32 + 1)  (32 + 1)
buffer-battery state pair updates in each step, which
is computationally prohibitive. However, based on
the properties of the system’s cost and transition
probability functions, we have established that the
system’s optimal PDS value function is:
•	 Non-decreasing and integer convex (i.e., has

increasing differences) in the buffer state
•	 Is non-increasing and integer convex in the

battery state
Leveraging this structure, we can learn an approx-
imate PDS value function with only 18 buffer-bat-

tery state pair updates per time step (with the rest
obtained via interpolation), with a maximum error
of 20 from the optimal PDS value function, and
at an order of magnitude lower computational/
memory complexity.

Our structure-aware value function approxima-
tion enables us to precisely control the trade-off
between the induced computing/memory com-
plexity and the associated learning approximation
error by varying the approximation granularity.
Due to the structural properties of the system’s
optimal PDS value function, the learning algorithm
achieves a bounded approximation error w.r.t. the
optimal PDS value function. This is in contrast to
existing value function approximation-based RL
algorithms, which are only guaranteed to con-
verge under strong conditions when using linear
approximations, and provide no guarantee on the
approximation error.

Extension to Multi-Agent RL
Our advances can be extended to decentralized
multi-agent settings, such as those encountered
in multi-access scheduling and multihop routing
problems. One approach could be through a
controller node that will coordinate the agents in
their joint learning effort. However, the complex-
ity of this approach could be penalizing as the
number of agents increases due to the curse of
dimensionality. An alternative could be to decom-
pose the joint multi-agent learning problem into
a collection of coupled single-agent problems
that can be solved in a decentralized manner,
where each agent will learn the aggregate
impact of all other users on its operation. Finally,
solving a joint decentralized multi-agent problem
requires message passing among the agents to
disseminate knowledge [15]. Sub-optimality w.r.t.
centralized solutions, convergence properties,
and stability of such methods will depend on the
frequency of knowledge exchange among the
agents and its level of accuracy and span (local
vs. global, instantaneous vs. delayed, approxi-
mate vs. exact, etc.).

FIGURE 5. Cumulative average performance vs. time for a wireless link with dynamic power management: left axis:
buffer delay (in queued packets); right axis: consumed power (in mW).

0 2 4 6
Time Slot (t) 104

0

5

10

15

20

25

0

50

100

150

200

250

300

350

PDS + Virtual Experience
PDS Learning
Q-learning

MASTRONARDE_LAYOUT.indd 99MASTRONARDE_LAYOUT.indd 99 12/17/21 4:58 AM12/17/21 4:58 AMAuthorized licensed use limited to: University at Buffalo Libraries. Downloaded on June 28,2022 at 21:40:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • November 2021100

Extension to Deep RL
Our advances can also be extended to deep RL.
Introducing PDSs into deep RL will allow us to use
deep neural networks with fewer parameters to
approximate the value function and/or policy. This
will, in turn, reduce the computing resources and
convergence time required to train the network(s).
Interestingly, when introducing VE into deep RL,
VE tuples can be added to the so-called replay buf-
fer and used to perform the usual batch learning
updates. Consequently, VE adds negligible compu-
tational costs to the learning update step, in con-
trast to its application in conventional RL. We expect
that VE will reduce the overall time required to train
deep RL models and that it will be especially useful
in settings where obtaining experience is expensive.

Related Work
RL is increasingly being used to optimize wireless
IoT systems [1–7]. This state-of-the-art work takes
important steps toward realizing adaptive, intelligent,
and autonomous IoT systems; however, it relies on
purely data-driven RL algorithms. In [2, 5], this may
be the best that can be done due to the unstruc-
tured nature of the considered problems. But, in [1,
3, 4, 6, 7], we see opportunities to enhance the pro-
posed RL algorithms using our advances. In Table 1,
we summarize the aforementioned papers in terms
of the considered problem, optimization objective,
system states, actions, RL algorithms, and opportuni-
ties to leverage PDSs or VE.

Several of the problems include buffers to store
sensed data [1], computational tasks [7], or har-
vested energy [1, 3, 4]. Such buffers allow for the
introduction of post-decision buffer states and VE
updates across all buffer states, similar to the data
buffer in our example system model (Fig. 2) and
the battery state in our energy harvesting model.

One of the considered problems includes
actions that induce deterministic state transitions
[6]. Specifically, [6] considers the problem of fresh
data collection in unmanned autonomous vehicle
(UAV)-assisted IoT. In their formulation, the next
state variables such as UAV location and Age of
Information (AoI) are deterministic functions of
the action variables (i.e., the UAV’s movement
and the scheduling action). Such deterministic sys-
tems allow for the introduction of PDSs that are
equal to the next states.

While two of these papers use Q-learning
[1, 7], the others leverage deep RL algorithms,
namely, deep Q networks (DQNs) [2, 4, 6], dou-
ble DQNs [5], and proximal policy optimization
(PPO) [3]. We see opportunity to enhance these
deep RL algorithms to exploit knowledge about
the underlying IoT systems. PDSs and VE offer a
promising approach toward achieving this goal.

Conclusion
RL has the potential to enable a novel class of
self-organizing wireless systems that can quick-
ly learn their optimal decision policies, as they
take actions and acquire knowledge about their
operating environment. We illustrate how inte-
grating post-decision states, virtual experience,
knowledge about the value function’s structure,
and value function approximation enables new
RL algorithms that achieve fast convergence, opti-
mality guarantees, and low compute and mem-
ory complexity. We explore the application of
these techniques in the single-agent RL scenario,
where there is a single decision maker, and high-
light their prospective application in the context
of multi-agent and deep RL scenarios. We identify
opportunities for our advances to improve deep
RL algorithms for wireless IoT.

TABLE 1. Related work on optimizing wireless IoT systems with RL.

Ref. Problem Objective State(s) Action(s) Algorithm PDS/VE possible?

[1]
Joint compression and
transmission control for
energy harvesting IoT

Minimize sum of
compression and
transmission energy

1) Channel state; 2)
volume of sensed data; 3)
data buffer state;4) volume
of harvested energy; 5)
battery state

1) Compression
level; 2) number of
transmitted packets

Q-learning
Yes, for both
buffer and battery
states

[2] Uplink transmission rate
control for mobile IoT

Maximize channel
utilization History of channel states Transmission rate DQN No, the problem is

unstructured

[3]
Duty cycle optimization
for energy harvesting
IoT

Maximize duty cycle
while minimizing battery
outages and duty cycle
variance

1) Battery state; 2) volume
of harvested energy; 3)
weather forecast;
4) previous duty cycle

Duty cycle PPO Yes, for the battery
state

[4] Multi-access control for
energy harvesting IoT Maximize sum throughput 1) UE channel states; 2) UE

battery states
UE channel
assignments DQN Yes, for the battery

state

[5]
Multihop ad hoc
network formation for
IoT connectivity

Optimize sum of network
throughput and each
node’s transmission power

No. nodes located in
transmission range Transmission range Double

DQN
No, the problem is
unstructured

[6] Fresh data collection in
UAV-assisted IoT

Minimize sum of the AoI
across IoT sensors

1) UAV location; 2) AoI for
each IoT sensor; 3) slack
in UAV lifetime; 4) slack in
UAV energy

1) UAV movement;
2) scheduled IoT
sensor

DQN
Yes, PDSs can
be defined for all
states

[7] Computation offloading
for IoT edge computing

Minimize sum of power
and delay

1) Channel condition;
2) Task buffer state; 3)
Remaining end-device
CPU resources

1) Offloading
decision;
2) transmission
power level

Q-learning Yes, for the task
buffer state

MASTRONARDE_LAYOUT.indd 100MASTRONARDE_LAYOUT.indd 100 12/17/21 4:58 AM12/17/21 4:58 AMAuthorized licensed use limited to: University at Buffalo Libraries. Downloaded on June 28,2022 at 21:40:00 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • November 2021 101

References
[1] V. Hakami et al., “An Optimal Policy for Joint Compression

and Transmission Control in Delay-Constrained Energy Har-
vesting IoT Devices,” Computer Commun., vol. 160, 2020,
pp. 554–66.

[2] W. Xu et al., “Autonomous Rate Control for Mobile Internet
of Things: A Deep Reinforcement Learning Approach,” IEEE
Vehic. Tech. Conf., 2020, pp. 1–6.

[3] A. Murad et al., “Autonomous Management of Energy-Har-
vesting IoT Nodes Using Deep Reinforcement Learning,”
Int’l. Conf. Self-Adaptive and Self-Organizing Systems, 2019,
pp. 43–51.

[4] M. Chu et al., “Reinforcement Learning-Based Multiaccess
Control and Battery Prediction with Energy Harvesting in IoT
Systems,” IEEE IoT J., vol. 6, no. 2, 2018, pp. 2009–20.

[5] M. Kwon, J. Lee, and H. Park, “Intelligent IoT Connectivity:
Deep Reinforcement Learning Approach,” IEEE Sensors J.,
vol. 20, no. 5, 2019, pp. 2782–91.

[6] M. Yi et al., “Deep Reinforcement Learning for Fresh Data
Collection in UAV-Assisted IoT Networks,” IEEE INFOCOM
Wksp., 2020, pp. 716–21.

[7] X. Liu, Z. Qin, and Y. Gao, “Resource Allocation for Edge
Computing in IoT Networks via Reinforcement Learning,”
IEEE ICC, 2019, pp. 1–6.

[8] R. Sutton and A. Barto, Reinforcement Learning: An Introduc-
tion, 2nd ed. MIT Press, 2018.

[9] A. Roy, H. Xu, and S. Pokutta, “Reinforcement Learning Under
Model Mismatch,” arXiv preprint arXiv:1706.04711, 2017.

[10] E. Altman, Constrained Markov Decision Processes, vol. 7,
CRC Press, 1999.

[11] N. Salodkar et al., “An On-Line Learning Algorithm for Ener-
gy Efficient Delay Constrained Scheduling Over a Fading

Channel,” IEEE JSAC, vol. 26, no. 4, 2008.
[12] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforce-

ment Learning: A Survey,” J. Artificial Intelligence Research,
vol. 4, 1996, pp. 237–85.

[13] N. Mastronarde and M. van der Schaar, “Fast Reinforce-
ment Learning for Energy-Efficient Wireless Communica-
tion,” IEEE Trans. Signal Process., vol. 59, no. 12, 2011, pp.
6262–66.

[14] N. Sharma, N. Mastronarde, and J. Chakareski, “Accelerat-
ed Structure-Aware Reinforcement Learning for Delay-Sensi-
tive Energy Harvesting Wireless Sensors,” IEEE Trans. Signal
Process., vol. 68, no. 1, Feb. 2020, pp. 1409–24.

[15] N. Coutinho et al., “Dynamic Dual-Reinforcement-Learning
Routing Strategies for Quality of Experience-Aware Wire-
less Mesh Networking,” Computer Networks, vol. 88, Sept.
2015, pp. 269–85.

Biographies
NIcholas MastronardE [SM] received his Ph.D. degree in elec-
trical engineering from the University of California at Los Ange-
les. He is an associate professor in the Department of Electrical
Engineering, University at Buffalo.

NIkhIlEsh Sharma received M.S. and Ph.D. degrees in electrical
engineering in 2017 and 2020, respectively, from the University
at Buffalo.

Jacob ChakarEskI [SM] completed his Ph.D. degree in electri-
cal and computer engineering at Rice University and Stanford
University. He is an associate professor in the Ying Wu College
of Computing, New Jersey Institute of Technology, where he
holds the Panasonic Chair of Sustainability.

MASTRONARDE_LAYOUT.indd 101MASTRONARDE_LAYOUT.indd 101 12/17/21 4:58 AM12/17/21 4:58 AMAuthorized licensed use limited to: University at Buffalo Libraries. Downloaded on June 28,2022 at 21:40:00 UTC from IEEE Xplore. Restrictions apply.

