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Abstract
Reinforcement learning (RL) algorithms are 

purely data-driven and do not leverage any 
domain knowledge about the nature of the avail-
able actions, the system’s state transition dynam-
ics, and its cost/reward function. This severely 
penalizes their ability to meet critical require-
ments of emerging wireless applications, due to 
the inefficiency with which these algorithms learn 
from their interactions with the environment. In 
this article, we describe how data-driven RL algo-
rithms can be improved by systematically integrat-
ing basic system models into the learning process. 
Our proposed approach uses real-time data in 
conjunction with knowledge about the underly-
ing communication system to achieve orders of 
magnitude improvement in key performance met-
rics, such as convergence speed and compute/
memory complexity, relative to well-established 
RL benchmarks.

Introduction
Wirelessly networked Internet of Things (IoT) 
devices increasingly need to operate in unknown 
dynamic environments comprising latency-sensi-
tive data sources and wireless channels of a priori 
unknown statistics. This challenge is encountered 
in emerging applications such as personalized 
healthcare, remote robot navigation, telemetry, 
and mobile virtual and augmented reality (VR/
AR). Paramount to their effective operation will be 
the ability to communicate the captured data in 
real time, despite the IoT devices’ limited capabil-
ities and their unknown operating environments. 
This will require advances in online learning and 
decision making to effectively leverage the IoT 
devices’ limited resources while meeting the 
application’s critical service constraints.

Optimal decision making in unknown environ-
ments, where decision policies need to be learned 
online, is a natural application domain of rein-
forcement learning (RL). Here, an agent interacts 
with an unknown environment and updates its 
value function and policy based on its experience, 
where the value function describes how good it is 
to be in each state and the policy describes what 
action to take in each state. As the agent acquires 
experience, its value function and policy converge 
to their optimal forms. RL has been used to solve 

a variety of important problems in wireless IoT 
systems, such as compression and transmission 
rate control [1, 2], duty cycle optimization [3], 
multi-access control [4], autonomous ad hoc net-
work formation [5], fresh data collection [6], and 
edge computing [7]. However, traditional RL algo-
rithms — including model-free and model-based, 
on-policy and off-policy, and value-based and pol-
icy gradient methods [8] — are purely data-driv-
en and operate without exploiting any domain 
knowledge about the nature of the system’s states 
and actions, its state transition dynamics, or the 
performance metrics that need to be optimized. 
This allows them to solve a wide variety of prob-
lems, but yields algorithms that either:
1. Converge too slowly to be useful in wire-

less IoT systems, where fast adaptation to the 
experienced channel, information source, 
and network dynamics is essential (e.g., mod-
el-free solutions, such as Q-learning, SARSA, 
and policy gradient and actor-critic methods)

2. Are too computationally and memory inten-
sive to implement on resource constrained 
IoT devices (e.g., model-based solutions, 
such as adaptive real-time dynamic program-
ming [ARTDP], Dyna, and Dyna-Q) 

To bridge this gap, we present a systematic 
approach to improve data-driven RL algorithms by 
integrating domain knowledge — in the form of 
basic system models — into the learning process. 
This approach comprises three components:
•	 Post-decision states (also known as after-

states [8]) allow us to factor the sys-
tem’s cost/reward function and state 
transition probability function into known 
and unknown components. This accelerates 
learning but increases computational com-
plexity. 

•	 Virtual experience, a novel technique that 
we developed, allows us to extrapolate the 
observed experience in one system state to 
other system states. This further accelerates 
learning, but also further increases computa-
tional complexity.

•	 Value function approximation allows us 
to reap the benefits of virtual experience 
while mitigating its computational complex-
ity. Moreover, under certain conditions, the 
resulting approximation error is provably 
bounded. 
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Each of these components require us to leverage 
domain knowledge to:
1. Verify that a system satisfies the conditions 

under which they are applicable
2. Identify how to correctly implement them for 

a specific system
In this article, we emphasize problems with 

finite state and action spaces that can be solved 
with tabular RL methods, where the value func-
tions and policies can be represented with tables. 
However, the proposed approach is general and 
can also be applied to problems with continu-
ous or infinite state and action spaces. Deep RL, 
which uses deep neural networks to approximate 
the value function and/or policy, has emerged 
as a promising approach to solve such problems, 
particularly when they have high-dimensional 
state and action spaces. However, deep RL algo-
rithms are purely data-driven just like conventional 
RL algorithms. As such, we also discuss the pro-
spective application of our framework in deep 
RL. Additionally, we assume that the RL algorithm 
operates online at runtime. This is in contrast to 
so-called robust RL [9] in which the RL model is 
“trained” in a different environment than it is “test-
ed.” Importantly, recent advances in both deep 
RL and robust RL are orthogonal to the advances 
we focus on herein. Lastly, note that our approach 
can be applied in any wireless system under the 
appropriate conditions, but we focus on wireless 
IoT systems due to the constraints imposed in this 
environment, as highlighted earlier.

Our systematic framework, its principal com-
ponents, and their characteristics are summarized 
in Fig. 1. In the remainder of this article, we pro-
vide tutorial-level coverage of these concepts. 
We begin with an example system model that we 
will use to illustrate the proposed approach, and 
provide further background on the limitations of 
existing solutions. We proceed with an overview 
of the three principal components of our frame-
work, and discuss their prospective extension to 
multi-agent RL and deep RL. Finally, we review 
related work and conclude the article.

Example System Model and Background
We introduce in Fig. 2 a simple example sys-
tem model — focusing on energy-efficient point-
to-point scheduling of delay-sensitive data over 
a fading channel — to illustrate our proposed 
approach. We selected this simple model because 
it shares key characteristics with more complex 
IoT systems. We assume that the system oper-

ates in discrete time. In each time step, the trans-
mission scheduler observes the buffer state and 
channel state, and then decides the number of 
packets to transmit. At the end of each step, new 
packets arrive into the transmission buffer from 
the information source. The buffer state evolves 
over time, driven by the packet transmissions and 
arrivals, and the channel state evolves according 
to a finite-state Markov chain. The data arrival 
probability distribution and channel state transi-
tion probabilities are assumed to be unknown.

We introduce a transmission cost defined as 
the power required to transmit different numbers 
of packets in different channel states, while meet-
ing a target bit error rate. Similarly, we introduce a 
buffer cost to penalize buffer delays and overflows, 
which depend on the buffer state, packet transmis-
sions, and packet arrivals. The transmission sched-
uler decides how many packets to transmit in each 
state to minimize the average transmission power 
subject to an average buffer cost constraint.

Constrained Markov Decision Process Formulation
The example problem described above can be 
formulated as a constrained Markov decision pro-
cess (MDP) [10], where the system’s state com-
prises its buffer and channel states, and the action 
denotes the number of packets to transmit in the 
time step. The state evolves as a controlled Mar-
kov chain with transition probabilities that depend 
on the current state, selected action, data arriv-
al probability distribution, and channel transition 
probabilities. The objective is to take the action in 
each step that minimizes the average transmission 
cost subject to an average buffer cost constraint.

The problem can be reformulated as an uncon-
strained optimization using the Lagrange multipli-
er (LM) method [10]. This is done by introducing 
a Lagrangian cost function defined as the sum of 
the transmission cost and the buffer cost, where 
the buffer cost is multiplied by an LM. For a given 
LM, the optimal solution satisfies a Bellman equa-
tion featuring the optimal value function, which 
indicates how good it is to be in each state when 
following the optimal policy. The related optimal 
action-value function indicates how good it is to 
take an arbitrary action in each state and then 
follow the optimal policy thereafter. The optimal 
value function can be determined from the opti-
mal action-value function by minimizing it over 
the actions. The optimal policy captures the opti-
mal action to take in each state.

Limitations of Existing Approaches
If the transmission costs, buffer costs, and state 
transition probabilities are known, the optimal 
value function that satisfies the Bellman equation 
can be computed numerically using dynamic pro-
gramming (e.g., value iteration [8]). Moreover, 
the optimal LM that satisfies the buffer cost con-
straint can be computed using the subgradient 
method [11]. In practice, however, the cost func-
tion and state transition probabilities are (par-
tially) unknown, as the data arrival probability 
distribution and channel transition probabilities 
are unknown. Hence, the optimal value function 
and policy cannot be computed using dynam-
ic programming; instead, they must be learned 
online, based on experience. This can be accom-
plished in one of two ways [12]:

FIGURE 1. Improving data-driven RL using domain knowledge.
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•	 Model-free: Learn a value function or policy 
without learning a model.

•	 Model-based: Learn a model for the costs 
and transition probabilities, and then derive a 
value function or policy.

In parallel, the optimal LM can be learned 
using the stochastic subgradient method [11]. 
Importantly, both model-free and model-based 
approaches are purely data-driven and assume no 
a priori information about the costs and transition 
probabilities.

As an instance of the model-free approach, 
Q-learning updates an estimate of the action-val-
ue function in each step based on its observed 
experience tuple, comprising the current state, 
selected action, observed cost, and next state, 
using a time-varying step-size parameter. These 
iterations converge to the optimal action-val-
ue function with probability 1 if the step-size 
is defined appropriately. As an instance of the 
model-based approach, ARTDP estimates both 
the cost and transition probability functions, 
and then applies dynamic programming back-
ups to update the value function using these 
estimates.

Unfortunately, as noted in the introduction, 
neither approach is well suited for real-time learn-
ing in IoT systems: model-free approaches have 
low computational complexity, but converge too 
slowly; and while model-based approaches often 
converge more quickly, they are too complex. 

Improving Data-Driven RL  
Using Domain Knowledge

In this section, we explore the sequential and syn-
ergistic application of post-decision states, virtu-
al experience, and value function approximation 
to overcome the aforementioned limitations of 
data-driven RL algorithms.

Post-Decision States and Virtual Experience
First, we generalize the concept of a post-de-
cision state (PDS), which captures the system 
state after the known effects of an action, but 
before the unknown dynamics take place. Con-
ceptually, a PDS can be viewed as an intermedi-
ate state in the transition from the current state 
to the next state, which we can model based 
on our knowledge of how the actions affect 
the state transition in a system. On the left side 
of Fig. 3, we illustrate the PDS concept in the 
context of the example system in Fig. 2. Here, 
we define the post-decision buffer state as the 
difference between the current buffer state and 
the number of transmitted packets, such that 
it represents an intermediate buffer state after 
packets are transmitted, but before new packets 
arrive. The next buffer state can then be calcu-
lated by adding the new packet arrivals to the 
post-decision buffer state, while accounting for 
any buffer overflows. Meanwhile, the post-de-
cision channel state is the same as the chan-
nel state because we do not know the channel 
model. At first inspection, PDSs appear to be a 
simple mathematical trick; however, they have 
rather profound implications.

As noted in the introduction, the PDS con-
cept exists in prior literature (e.g,. [8, 11]). 
However, this literature assumes that the PDS 

is a known deterministic function of the cur-
rent state and action and that the cost function 
is completely known. This definition limits the 
concept’s applicability: for example, it cannot 
be used to model packet losses from a known 
distribution (because the post-decision buffer 
state depends on the number of successfully 
transmitted packets, which is non-deterministic) 
or to model finite buffers (because the expect-
ed overflow cost depends on the arrival dis-
tribution, which is unknown). In contrast, our 
generalized PDS can be a known non-determin-
istic function of the current state and action, 
and allows the cost function to contain known 
and unknown components.

A generalized PDS can be introduced if the 
system’s cost/reward and state transition proba-
bility functions can be factorized into known and 
unknown components. This fills the gap between 
MDPs and purely data-driven RL: If everything is 
known, the problem reduces to an MDP that can 
be solved using dynamic programming; if every-
thing is unknown, it must be solved with a purely 
data-driven RL algorithm.

Just as we formulated a value function over 
the conventional states, we can formulate a PDS 
value function over the PDSs. Note that these two 
value functions are closely related: the value func-
tion depends on the expectation of the PDS value 
function with respect to (w.r.t.) the known tran-
sition probabilities; and the PDS value function 
depends on the expectation of the value func-
tion w.r.t. the unknown transition probabilities. In 
our example system model, the known transition 
from the current state to the PDS is deterministic 
(Fig. 3), so the value function simply depends on 
the PDS value function evaluated at the observed 
PDS. On the other hand, the unknown transition 
from the PDS to the next state depends on the 
unknown packet arrival and channel transition 
probabilities (Fig. 3). 

Despite the close relationship between the 
two value functions, working with the PDS value 
function has several advantages. First, only the 
unknown information in the transition from the 
PDS to the next state needs to be learned. Sec-
ond, by updating the value of one PDS, we learn 
about all state-action pairs that can precede it 
(Fig. 3). Third, in RL, there is a trade-off between 
exploiting actions that currently have the best 
estimated value and exploring other actions that 
might be better. However, in the special case 
that the unknown transition probabilities are inde-
pendent of the action, exploration is not need-
ed. For instance, in the example system in Fig. 
2, the unknown transition probabilities depend 
on the packet arrival distribution and the channel 

FIGURE 2. Example system model.
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transition probabilities, which are independent of 
the transmission action (Fig. 3). This dramatically 
improves the system’s performance during the 
learning process because we can always exploit 
the best known action and avoid penalties for 
exploring sub-optimal actions.

Second, we further establish that the PDS 
value function can be updated over multiple PDSs 
simultaneously if the unknown dynamics are statis-
tically independent of one or more PDS variables. 
We refer to this as virtual experience (VE) learn-
ing because it enables updating the PDS value 
function over unvisited states. On the right side 
of Fig 3, we illustrate the VE concept in the con-
text of the example system in Fig. 2. Here, we can 
apply VE updates across every post-decision buf-
fer state in each step because the packet arrival 
distribution and the channel transition probabili-
ties are independent of the post-decision buffer 
state. Note that VE updates are performed using 
the channel state, number of packet arrivals, and 
next channel state that were actually observed in 
the step.

Many existing RL algorithms update multiple 
states in each step (e.g., the model-free tempo-
ral-difference-lambda algorithm and the mod-
el-based Dyna-Q algorithm [8]). However, these 
algorithms can only update previously visited 
states because they do not leverage any system 
knowledge. Consequently, they operate from a 
“cold start” in each state, yielding sub-optimal per-
formance. For instance, in the example system in 
Fig. 2, these algorithms struggle to learn how to 
avoid buffer overflows. In contrast, VE learning 
can quickly learn how to avoid buffer overflows 
without ever experiencing them.

Comparison among Learning Algorithms

Figure 4 illustrates the qualitative differenc-
es between Q-learning and our advances for 
the example system model in Fig. 2. Here, the 
post-decision buffer state is calculated as the cur-
rent buffer state minus the number of transmit-
ted packets (throughput). We omit the channel 
state for simplicity. A Q-learning update on a buf-
fer-throughput pair only modifies the action-value 
function for that buffer-throughput pair. A PDS 
learning update on a post-decision buffer state 
provides information about all buffer-throughput 
pairs that can potentially lead to it. Finally, VE 
learning updates provide information about every 
post-decision buffer state.

Figure 5 examines the quantitative perfor-
mance of Q-learning and our advances over a 
simulated wireless link. This model extends the 
example system model in Fig. 2 to include a bina-
ry dynamic power management (DPM) state and 
a binary DPM action, such that the transmitter 
can be turned on and off to save energy [13]. 
The system is simulated over 75,000 steps with 
10 ms duration. The transmitter consumes 320 
mW of power in the “on” state (in addition to any 
transmission power), 0 mW in the “off” state, and 
320 mW when transitioning between them. We 
assume that the buffer can hold a maximum of 
25 packets of size 625 bytes and that data arrives 
into the buffer according to a Poisson process 
at a rate of 200 packets/s. The channel state 
(gain) evolves as a finite-state Markov chain with 
8 states, ranging from –18.82 dB to –2.08 dB. 
Note that the finite-state Markov chain and the 
data arrival distribution are not known by the RL 
algorithms. The transmitter can transmit 0 to 10 
packets in each step, with a transmission power 
that is convex and increasing in the number of 
transmitted packets, and is higher in worse chan-
nel states. We set the average buffer delay con-
straint to 4 packets.

After 75,000 steps, Q-learning experiences 
excessive overflows and is not able to stabilize 
the buffer. It performs poorly because it requires 
action exploration and only learns about one 
state-action pair in each step. Consequently, it 
struggles to learn that it must keep the transmit-
ter in the “on” state to transmit enough packets 
to meet the delay constraint. PDS learning per-
forms significantly better than Q-learning. Since 

FIGURE 3. Post-decision state and virtual experience concepts applied to the example system model in Fig. 2.
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the unknown packet arrival distribution and chan-
nel transition probabilities are independent of 
the actions, PDS learning does not require action 
exploration. Moreover, as illustrated in Figs. 3 and 
4, learning about one PDS provides information 
about all buffer-throughput pairs that can precede 
it. Consequently, PDS learning meets the 4-packet 
delay constraint within 30,000 steps, and after 
75,000 steps its average power consumption is 
approximately 27 percent lower than Q-learn-
ing’s. Finally, we are able to perform VE updates 
across every post-decision buffer state in each 
step because the packet arrival distribution and 
the channel transition probabilities are indepen-
dent of the post-decision buffer state. This allows 
VE learning to meet the 4-packet delay constraint 
within 300 steps and to achieve near-optimal 
power within 3000 steps. 

The benefits of PDS learning and VE come 
at the expense of increased action selection 
and learning update complexity. In Q-learning, 
the action selection and update steps require 
optimizing the action-value function over the 
actions, so they have complexity proportional 
to the number of actions. In PDS learning, both 
steps also require calculating an expectation 
over the PDS value function w.r.t. the known 
transition probabilities, so they have worst case 
complexity proportional to the product of the 
number of states and actions. VE has the same 
action selection complexity as PDS learning, but 
its update complexity increases linearly with the 
number of VE updates.

Structure-Aware Value Function Approximation
We aim to reap the benefits of VE updates while 
reducing their complexity by exploiting prospec-
tive structural properties of the optimal value 
function. Such properties include, for example, 
integer convexity/concavity and super/submod-
ularity [14], and can be exploited via value func-
tion approximation.

In [14], we used structure-aware value function 
approximation to optimize a delay-sensitive ener-
gy harvesting wireless sensor. The energy harvest-
ing model extends the example model from Fig. 2 
to include a battery state and energy arrivals with 
unknown statistics. Here, the post-decision buffer 
state is defined as in the original model, while the 
post-decision battery state is defined as the cur-
rent battery state minus the energy required for 
transmission. We are able to perform VE updates 
across every post-decision buffer-battery state pair 
because the data and energy packet arrival distri-
butions are independent of these PDSs.

For illustration, assuming that the buffer can hold 
32 data packets and the battery can hold 32 energy 
packets, learning the optimal PDS value function 
using VE would require 1089 = (32 + 1)  (32 + 1) 
buffer-battery state pair updates in each step, which 
is computationally prohibitive. However, based on 
the properties of the system’s cost and transition 
probability functions, we have established that the 
system’s optimal PDS value function is:
•	 Non-decreasing and integer convex (i.e., has 

increasing differences) in the buffer state
•	 Is non-increasing and integer convex in the 

battery state
Leveraging this structure, we can learn an approx-
imate PDS value function with only 18 buffer-bat-

tery state pair updates per time step (with the rest 
obtained via interpolation), with a maximum error 
of 20 from the optimal PDS value function, and 
at an order of magnitude lower computational/
memory complexity. 

Our structure-aware value function approxima-
tion enables us to precisely control the trade-off 
between the induced computing/memory com-
plexity and the associated learning approximation 
error by varying the approximation granularity. 
Due to the structural properties of the system’s 
optimal PDS value function, the learning algorithm 
achieves a bounded approximation error w.r.t. the 
optimal PDS value function. This is in contrast to 
existing value function approximation-based RL 
algorithms, which are only guaranteed to con-
verge under strong conditions when using linear 
approximations, and provide no guarantee on the 
approximation error.

Extension to Multi-Agent RL
Our advances can be extended to decentralized 
multi-agent settings, such as those encountered 
in multi-access scheduling and multihop routing 
problems. One approach could be through a 
controller node that will coordinate the agents in 
their joint learning effort. However, the complex-
ity of this approach could be penalizing as the 
number of agents increases due to the curse of 
dimensionality. An alternative could be to decom-
pose the joint multi-agent learning problem into 
a collection of coupled single-agent problems 
that can be solved in a decentralized manner, 
where each agent will learn the aggregate 
impact of all other users on its operation. Finally, 
solving a joint decentralized multi-agent problem 
requires message passing among the agents to 
disseminate knowledge [15]. Sub-optimality w.r.t. 
centralized solutions, convergence properties, 
and stability of such methods will depend on the 
frequency of knowledge exchange among the 
agents and its level of accuracy and span (local 
vs. global, instantaneous vs. delayed, approxi-
mate vs. exact, etc.).

FIGURE 5. Cumulative average performance vs. time for a wireless link with dynamic power management: left axis: 
buffer delay (in queued packets); right axis: consumed power (in mW).
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Extension to Deep RL
Our advances can also be extended to deep RL. 
Introducing PDSs into deep RL will allow us to use 
deep neural networks with fewer parameters to 
approximate the value function and/or policy. This 
will, in turn, reduce the computing resources and 
convergence time required to train the network(s). 
Interestingly, when introducing VE into deep RL, 
VE tuples can be added to the so-called replay buf-
fer and used to perform the usual batch learning 
updates. Consequently, VE adds negligible compu-
tational costs to the learning update step, in con-
trast to its application in conventional RL. We expect 
that VE will reduce the overall time required to train 
deep RL models and that it will be especially useful 
in settings where obtaining experience is expensive.

Related Work
RL is increasingly being used to optimize wireless 
IoT systems [1–7]. This state-of-the-art work takes 
important steps toward realizing adaptive, intelligent, 
and autonomous IoT systems; however, it relies on 
purely data-driven RL algorithms. In [2, 5], this may 
be the best that can be done due to the unstruc-
tured nature of the considered problems. But, in [1, 
3, 4, 6, 7], we see opportunities to enhance the pro-
posed RL algorithms using our advances. In Table 1, 
we summarize the aforementioned papers in terms 
of the considered problem, optimization objective, 
system states, actions, RL algorithms, and opportuni-
ties to leverage PDSs or VE. 

Several of the problems include buffers to store 
sensed data [1], computational tasks [7], or har-
vested energy [1, 3, 4]. Such buffers allow for the 
introduction of post-decision buffer states and VE 
updates across all buffer states, similar to the data 
buffer in our example system model (Fig. 2) and 
the battery state in our energy harvesting model.

One of the considered problems includes 
actions that induce deterministic state transitions 
[6]. Specifically, [6] considers the problem of fresh 
data collection in unmanned autonomous vehicle 
(UAV)-assisted IoT. In their formulation, the next 
state variables such as UAV location and Age of 
Information (AoI) are deterministic functions of 
the action variables (i.e., the UAV’s movement 
and the scheduling action). Such deterministic sys-
tems allow for the introduction of PDSs that are 
equal to the next states. 

While two of these papers use Q-learning 
[1, 7], the others leverage deep RL algorithms, 
namely, deep Q networks (DQNs) [2, 4, 6], dou-
ble DQNs [5], and proximal policy optimization 
(PPO) [3]. We see opportunity to enhance these 
deep RL algorithms to exploit knowledge about 
the underlying IoT systems. PDSs and VE offer a 
promising approach toward achieving this goal.

Conclusion
RL has the potential to enable a novel class of 
self-organizing wireless systems that can quick-
ly learn their optimal decision policies, as they 
take actions and acquire knowledge about their 
operating environment. We illustrate how inte-
grating post-decision states, virtual experience, 
knowledge about the value function’s structure, 
and value function approximation enables new 
RL algorithms that achieve fast convergence, opti-
mality guarantees, and low compute and mem-
ory complexity. We explore the application of 
these techniques in the single-agent RL scenario, 
where there is a single decision maker, and high-
light their prospective application in the context 
of multi-agent and deep RL scenarios. We identify 
opportunities for our advances to improve deep 
RL algorithms for wireless IoT. 

TABLE 1. Related work on optimizing wireless IoT systems with RL.

Ref. Problem Objective State(s) Action(s) Algorithm PDS/VE possible?

[1]
Joint compression and 
transmission control for 
energy harvesting IoT

Minimize sum of 
compression and 
transmission energy

1) Channel state; 2) 
volume of sensed data; 3) 
data buffer state;4) volume 
of harvested energy; 5) 
battery state

1) Compression 
level; 2) number of 
transmitted packets

Q-learning
Yes, for both 
buffer and battery 
states 

[2] Uplink transmission rate 
control for mobile IoT

Maximize channel 
utilization History of channel states Transmission rate DQN No, the problem is 

unstructured 

[3]
Duty cycle optimization 
for energy harvesting 
IoT

Maximize duty cycle 
while minimizing battery 
outages and duty cycle 
variance

1) Battery state; 2) volume 
of harvested energy; 3) 
weather forecast;  
4) previous duty cycle

Duty cycle PPO Yes, for the battery 
state 

[4] Multi-access control for 
energy harvesting IoT Maximize sum throughput 1) UE channel states; 2) UE 

battery states
UE channel 
assignments DQN Yes, for the battery 

state 

[5]
Multihop ad hoc 
network formation for 
IoT connectivity

Optimize sum of network 
throughput and each 
node’s transmission power

No. nodes located in 
transmission range Transmission range Double 

DQN
No, the problem is 
unstructured 

[6] Fresh data collection in 
UAV-assisted IoT

Minimize sum of the AoI 
across IoT sensors

1) UAV location; 2) AoI for 
each IoT sensor; 3) slack 
in UAV lifetime; 4) slack in 
UAV energy

1) UAV movement;  
2) scheduled IoT 
sensor

DQN
Yes, PDSs can 
be defined for all 
states 

[7] Computation offloading 
for IoT edge computing

Minimize sum of power 
and delay

1) Channel condition; 
2) Task buffer state; 3) 
Remaining end-device 
CPU resources

1) Offloading 
decision;  
2) transmission 
power level

Q-learning Yes, for the task 
buffer state 
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