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Abstract
Spatial entanglement is at the heart of quantum enhanced imaging applications and
high-dimensional quantum information protocols. In particular, for imaging and sensing
applications, quantum states with a macroscopic number of photons are needed to provide a real
advantage over the classical state-of-the-art. We demonstrate the Einstein–Podolsky–Rosen (EPR)
paradox in its original position and momentum form with bright twin beams of light by showing
the presence of EPR spatial (position–momentum) entanglement. An electron-multiplying
charge-coupled-device camera is used to record images of the bright twin beams in the near and
far field regimes to achieve an apparent violation of the uncertainty principle by more than an
order of magnitude, which remains statistically significant even in the limit of a small number of
images. We further show that the presence of quantum correlations in the spatial and temporal
degrees of freedom leads to spatial squeezing of the bright twin beams in both the near and far
fields. This provides another verification of the spatial entanglement and points to the presence of
hyperentanglement in the bright twin beams.

1. Introduction

Over the last several decades, quantum entanglement has been studied extensively and is now considered to
be an indispensable resource for the emerging field of quantum technologies [1–12]. Spatial entanglement,
in particular, has attracted significant attention for applications in quantum information science as it exists
in an infinite dimensional Hilbert space [13–21]. The increased dimensionality of the spatial degree of
freedom can enable, for example, an exponential speed-up for quantum computation, enhanced quantum
channel capacities, and security enhancements of quantum communication protocols [22–27].
Furthermore, spatial quantum correlations can extend quantum enhancements from the time domain to
the spatial one to enable quantum imaging and quantum metrology with enhanced sensitivity and
resolution [28–35].

Spatial quantum correlations were central to the original Einstein–Podolsky–Rosen (EPR) paper of 1935
[36] that questioned the completeness of quantum mechanics. The EPR paper considered a gedanken
experiment involving a pair of entangled particles with a space-like separation. The presence of perfect
correlations between their positions and momenta led to an apparent violation of Heisenberg’s uncertainty
principle. Such an apparent violation is now known as the EPR paradox and it arises from imposing local
realism on a pair of distant quantum correlated particles treated as two independent systems [4, 37–40].

Experiments similar to the EPR thought experiment have now been performed with correlated photon
pairs produced with parametric down conversion [13–16] and with ultracold atomic ensembles [41–43].
For the optical regime, initial experiments were performed in the time domain through the use of slits to
select different spatial regions and temporal coincidence measurements with avalanche photodiodes [13].
More direct measurements of the spatial (position–momentum) quantum correlations were later
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performed with an electron-multiplying charge-coupled-device (EMCCD) camera [14–16]. EPR
entanglement was demonstrated by a verification of the EPR paradox through the violation of an inequality
equivalent to Heisenberg’s uncertainty principle [44, 45].

While previous experiments [13–16] have provided significant insight into the nature of spatial
quantum correlations, they have limited applicability for applications such as quantum sensing and
imaging. This is due to the long integration times and/or large number of images required to observe
quantum effects. The ability to generate and measure macroscopic quantum states that exhibit EPR spatial
entanglement would make it possible to overcome such limitations. To this extent, in vivo imaging of
dynamic biological samples with low damage thresholds [46] and imaging of atomic systems such as
Bose–Einstein condensates [47, 48] and trapped single atoms [49] provide ideal applications for
macroscopic quantum states with spatial quantum correlations, as imaging over extended periods of time is
not an option. In addition, such macroscopic quantum states would boost the sensitivity of a given
measurement due to the scaling of the signal-to-noise ratio with the number of photons. In practice, to
surpass the classical state-of-the-art and make a difference for real-life applications, quantum states need to
have a power close to the threshold limit of the system to be enhanced. Once this limit is reached, further
enhancements can only be obtained with quantum resources. From a fundamental perspective, given the
role that entanglement plays in quantum information science and quantum technology, it is important to
understand the impact of scaling from a few to a large number of photons on entanglement and quantum
properties in different degrees of freedom.

Here we demonstrate the EPR paradox in its original position–momentum form with macroscopic
entangled beams of light, or bright twin beams, through measurements with an EMCCD. The photon flux
of the bright twin beams is ∼1014 photons per second per beam and is limited by the saturation of the
EMCCD. We show the presence of EPR position–momentum entanglement in the bright twin beams
through a violation of the EPR criterion by more than an order of magnitude and demonstrate that a
statistically significant violation is possible even with less than10 images. Moreover, we show that an
interplay between quantum correlations in different degrees of freedom, spatial and temporal, leads to
sub-shot noise spatial noise statistics, i.e. spatial squeezing. The presence of spatial squeezing in both the
near and far fields provides an additional verification of spatial entanglement in the twin beams through an
inequality analogous to the Duan criterion [50].

To demonstrate the EPR paradox, the measured relative uncertainties in position and momentum
between the twin beams must show an apparent violation of Heisenberg’s uncertainty. This can be
quantified through a violation of the EPR criterion, which is given by

Δ2(r2|r1)Δ2(p2|p1) � �
2/4, (1)

where Δ2(r2|r1) (Δ2(p2|p1)) represents the variance in measuring position r2 (momentum p2) of one of the
photons conditioned on the measurement of position r1 (momentum p1) of the other photon. Direct
characterization of Δ2(r2|r1) and Δ2(p2|p1) is possible via spatial cross-correlation measurements between
captured images of the twin beams in the near and far field regimes, respectively. For brevity and simplicity
of notation, throughout the rest of the manuscript we use the notation Δ2r ≡ Δ2(r2|r1) and

Δ2p ≡ Δ2(p2|p1), such that Δr =
√

Δ2(r2|r1) and Δp =
√
Δ2(p2|p1) represent the position and

momentum conditional uncertainties, respectively.

2. Experiment

To measure the near and far field properties of the twin beams, we use the experimental setups shown in
figures 1(a) and (b), respectively. In both setups the positions of the source (Rb vapor cell) and EMCCD are
kept fixed while different optical systems are used for each configurations. For the near field we image the
cell center to the EMCCD with a 400 mm lenses in a configuration with a demagnification of 0.65. For the
far field a 500 mm lens in an f-to-f configuration generates the Fourier transform of the cell center on the
EMCCD. The f-to-f optical system maps the transverse momenta of the field at the cell center to transverse
position on the EMCCD, such that a photon with transverse momentum �k⊥ is mapped to transverse
position x = fk⊥/k in the far field, where k is the magnitude of the total k-vector [13]. For both
configurations independent optical systems are used for the probe and conjugate beams. The insets to the
right of each configuration show the expected correlations between the EMCCD pixels of the acquired
probe and conjugate images. Due to the phase matching condition and the fact that the probe and
conjugate photons are generated at the same spatial location in the source, in the near field (position
correlations) a single pixel (position) in the conjugate will be correlated with a small region (determined by
Δr) centered around the corresponding pixel in the probe. On the other hand, for the far field (momentum
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Figure 1. Experimental setup to measure (a) position and (b) momentum correlations. For the position correlation
measurements (near field) a single lens images the cell center onto the EMCCD, while for the momentum correlation
measurements (far field) a single lens in an f-to-f configuration generates the Fourier transform of the cell center at the EMCCD.
The insets to right of each configuration give a graphical representation of the position and momentum correlations between the
EMCCD pixels of the measured probe and conjugate images. The inset below the Rb vapor cell shows the double-Λ energy level
configuration in the D1 line of 85Rb used for the four-wave mixing (FWM) process.

correlations), a single pixel (momentum) in the conjugate will be correlated with a small region
(determined by Δp) centered around a pixel that is a reflection around the center (180◦ rotation) of the
probe.

We generate narrowband bright twin beams with a four-wave mixing (FWM) process in a double-Λ
configuration in the D1 line of 85Rb, see inset below the vapor cell in figure 1(a). We use a Ti:Sapphire laser
at 795 nm to generate the strong pump beam required for the FWM. An acousto-optic modulator is used to
red-shift a portion of the laser by ∼3 GHz to generate the input probe. Pump and probe are then made to
intersect at an angle of 0.4 degrees inside a 12 mm long hot 85Rb vapor cell (temperature of 106◦C). In this
configuration, two pump photons are absorbed and two new quantum correlated twin photons called probe
and conjugate are generated. When seeded, the FWM amplifies the input probe beam and generates a bright
conjugate beam to produce bright twin beams. By changing the number of photons in the input seed probe,
it is thus possible to obtain a controllable number of quantum correlated photons. This makes it possible to
overcome some of the problems that limit the squeezing and number of photons in bright squeezed vacuum
states [51, 52].

As previously demonstrated for parametric down conversion, the properties of the spatial quantum
correlation of the generated entangled photons are governed by the angular spectrum of the pump and the
phase matching condition [33]. The same is true for the FWM process, which means that the spatial
entanglement properties of the generated bright twin beams are not determined or modified by the seed
(input probe) beam. Note that this is similar to experiments in the time domain, for which the seed beam
for the FWM does not affect the quadrature entanglement properties of the source and the generated bright
beams effectively act as local oscillators when performing intensity measurements. In our experiments, the
role of the seed beam is to stimulate the generation of a macroscopic number of photons in a large number
of spatial modes supported by the FWM process. This is necessary given that to observe the spatial
correlations a large number of coherence areas (correlation regions shown in figure 1) or spatial modes
need to be detected [53] with the EMCCD. As a result, for the near (far) field configuration it is necessary
for the probe diameter to be as large (small) as possible at the cell to excite as many spatial regions
(k-vectors) as possible. This is analogous to the use of a local oscillator that overlaps with a large number of
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coherence areas when performing homodyne measurements to characterize the spatial properties [9]. As a
result, the input probe beam diameter at the cell center is set to 2.0 mm and 0.4 mm for the near and far
field configurations, respectively, while the pump beam diameter is kept fixed at 4.4 mm for both
configurations.

3. Image acquisition and data analysis

As opposed to experiments done in the single photon regime that are based on coincidence detection, for
bright optical fields, as the ones we consider here, the quantum properties need to be characterized through
cross-correlation measurements of their fluctuations. This is analogous to measurements done in the time
domain for bright quantum states of light. Thus, to characterize the spatial quantum correlation properties
of the bright twin beams we first need to obtain the spatial intensity fluctuations of the beams. To do so, for
each beam we subtract two images acquired in rapid succession with the kinetic mode feature of the
EMCCD camera, which makes it possible to store the detected charge in the CCD sensor itself to allow a
burst sequence of images to be acquired. To implement the kinetic mode, we divide the total active sensor
area, which consists of 512 × 512 pixels and an additional 512 × 512 pixels buffer region for storage, into a
total of six frames, each of size 170 × 512 pixels. When the EMCCD is set to image acquisition, only the
topmost frame is exposed to light. After acquiring the top frame, the charge is serially transferred to the
next frame below at a speed of 300 ns per row. This process is repeated a total of 6 times and makes it
possible to have a time difference of 51 μs between two adjacent frames. Once all six frames have been
acquired, the information, which consists of six frames each with images of the probe and conjugate, is read
out of the EMCCD.

During the acquisition of the images of the bright probe and conjugate beams, we pulse the input probe
and pump beams with a duration of 1 μs and 10 μs, respectively. The timing sequence for the pump and
probe pulses in two consecutive frames of the EMCCD camera is shown in figure 2(a). The probe pulse is
delayed by 6 μs with respect to the pump pulse to avoid transients effects in the FWM. To provide enough
time for a single pump-probe pulse sequence in a given frame, the camera exposure time per frame is set to
12 μs. This leads to a time interval between two consecutive images of ∼ 60 μs. Given that this time is
longer than the inverse of the bandwidth (∼ 20 MHz) of the FWM process, there are no quantum
correlations between images in two consecutive frames. As can be seen in figure 2(b), which shows probe
and conjugate images acquired in two consecutive frames, the peak region of the probe (conjugate) image
has ∼ 5 × 104 (∼ 3.5 × 104) photocounts per pixel. To obtain images of the spatial intensity fluctuation of
each beam, we subtract two probe (conjugate) images acquired in consecutive frames, with the result shown
in figure 2(c). As can be seen, the typical scale of the noise intensity fluctuations in both beams is the same.
This approach of subtracting images in two consecutive frames also helps to minimize the spatial and
temporal classical excess noise introduced by the seeding beam.

The acquisition of the probe and conjugate images with the EMCCD camera is synchronized with the
pump–probe pulse timing sequence. We acquire 200 images, each with six frames, of the twin beams in
both the near and far field configurations to observe the EPR paradox in position–momentum. We also
acquire background images without an input probe beam after every probe-conjugate image acquisition to
subtract the background noise due to electronic noise and scattered pump photons as done in reference
[54].

To calculate the spatial cross-correlations in the near and far fields, we crop a region of 120 × 120 pixels
(80 × 80 pixels) in the spatial intensity fluctuation image of the probe (conjugate) centered around the pixel
that corresponds to the intensity maxima of the probe (conjugate). We then scan the cropped region of the
conjugate spatial intensity fluctuation image over the cropped probe spatial intensity fluctuation image to
evaluate the spatial cross-correlation, given by

Corr(i, j) =

∑
m

∑
nPmnC(m−i)(n−j)√(∑

m

∑
nP2

mn

) (∑
m

∑
nC2

mn

) , (2)

where Pmn and Cmn are the cropped probe and conjugate spatial intensity fluctuation images (represented as
matrices), respectively. The summation is done over all elements of the matrices. Note that this approach is
equivalent to taking a single pixel of the image of the spatial intensity fluctuations of the conjugate and
scanning it over the pixels of the image of the spatial intensity fluctuations of the probe to obtain the
correlation or coherence area (shown in the insets to the right in figure 1), repeating with all pixels from the
cropped image of the spatial intensity fluctuations of the conjugate, and then averaging over all the
calculated coherence areas.

In performing this analysis, for the far field regime we rotate the conjugate spatial intensity fluctuation
image by 180◦ before calculating the cross-correlation. This is due to the transverse momentum
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Figure 2. (a) Timing sequence for the pump and probe pulses. The temporal separation between two probe pulses, which is
synchronized with the acquisition of two consecutive frames of the EMCCD, is ∼60 μs. (b) Images of probe and conjugate pulses
acquired in two consecutive frames. (c) Spatial intensity fluctuation images for the probe (left) and conjugate (right) beams
obtained after the subtraction of two consecutive frames of the EMCCD. Figure adapted from [18].

anti-correlations that result from the phase matching condition, which in turn make the correlated regions
between the probe and conjugate be diametrically opposite to each other in the far field, as schematically
shown in figure 1. This is not the case for the near field, as in this case probe and conjugate photons are
generated in the same spatial location.

4. Results and discussion

The calculated spatial cross-correlations in the near and far field regimes are shown in figure 3. The
presence of a peak shows the correlated region, i.e. the coherence area [55], between the probe and
conjugate spatial intensity fluctuations. These cross-correlations are proportional to the conditional
probability density functions P(r2|r1) and P(p2|p1) for the near (position) and far (momentum) fields,
respectively. Their widths (as characterized by the standard deviation) provide a measure of the conditional
uncertainties, Δr and Δp, in obtaining the position (r2) and momentum (p2) of a photon conditioned on
the position (r1) and momentum (p1) of the other photon being measured, respectively. As a check, we also
performed the cross-correlation measurements with images of coherent state pulses both in the near and far
field and, as expected, a correlation peak is not present.

To estimate the conditional uncertainties in position (Δr) and momentum (Δp), we fit the
cross-correlations shown in figure 3 with a two-dimensional Gaussian function of the form

A e−[(x−x0)2/2σ2
x+(y−y0)2/2σ2

y ], where A is a constant and σx (σy) is the standard deviation along the x (y)
direction. From the measured cross-correlations we obtain σx = 4.27 ± 0.10 pixels and σy = 3.52 ± 0.08
pixels in the near field, and σx = 4.78 ± 0.13 pixels and σy = 4.90 ± 0.13 pixels in the far field, where the
uncertainties represent the 95% confidence intervals of the fits. To translate these standard deviations in
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Figure 3. Spatial cross-correlations between the intensity fluctuations of the probe and conjugate measured in the (a) near and
(b) far field configurations.

pixels from the EMCCD plane to real position and momentum conditional uncertainties at the source (Rb
vapor cell), we take into account the transformations performed by the optical systems used to acquire the
images. For the near field measurements, we take into account the demagnification factor M = 0.65 of the
imaging system to translate to actual position, such that Δri = σis/M, where i = {x, y} and s = 16 μm is
the linear pixel size. Similarly, for the far field measurements we take into account the transformation
performed by the f-to-f optical system to translate to actual momentum, such that Δpi =

2π�
λf σis, where

i = {x, y}, λ is the wavelength of the light (795 nm), and f is the focal length of the Fourier lens (500 mm).
After performing the necessary transformations, we obtain the products defined in equation (1) along

the x and y directions

Δ2rx Δ
2px = (1.62 ± 0.12) × 10−2

�
2 < �

2/4, (3)

Δ2ry Δ
2py = (1.15 ± 0.08) × 10−2

�
2 < �

2/4. (4)

These results represent a violation of the EPR criterion by more than one order of magnitude, thus verifying
the EPR paradox with quantum states of light containing a macroscopic number of photons. To determine
the number of images needed for the violation of the EPR criterion to be statistically significant, we define
the confidence level parameter (C) along the lines of reference [56]

Ci =

∣∣∣∣1/4 −Δ2ri Δ
2pi

δ

∣∣∣∣ , (5)

where i = {x, y} and δ is the standard deviation in the estimation of the product Δ2riΔ
2pi. We consider the

violation to be statistically significant when C > 5, which represents a violation by more than 5 standard
deviations.

We calculate the spatial cross-correlations in the near and far fields for different number N of images
and obtain the product Δ2riΔ

2pi for each set of images. To obtain δ, we take the 68% confidence intervals
from the fits and use error propagation to obtain the standard deviation in the estimation of this product.
We repeat this procedure as many times as possible given the number of images N used for the analysis and
the available 200 images. That is, for N = 5 we obtain 40 different values of C, for N = 10 we obtain 20
different values, and so on. Finally, for each value of N we average over all the values of C to obtain a more
accurate estimation of this parameter.

Figure 4(a) shows the confidence level (C) as a function of the number of images (N) used for the
analysis. The blue squares and green circles representing the calculated values of C along the x and y
directions, respectively. The dashed lines give a fit of the calculated values of C to the function A0

√
N, where

A0 is a fit parameter. As expected, C increases as N increases and scales as
√

N. As can be seen, we get a
statistically significant violation of the EPR criterion even when we perform the analysis with five images.
Although, for such a small number of images the fit of the cross-correlation functions to the Gaussian
function is not as good due to the low signal-to-noise ratio. This results in a slight increase in the product
Δ2riΔ

2pi shown in figure 4(b) for N = 5. However, we can safely claim that a statistically significant
violation of the EPR criterion is obtained for N < 10. It is important to note that from the scaling of C with
N, as shown by the fits in figure 4(a), in principle a statistically significant violation with C > 25 is possible
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Figure 4. (a) Confidence level C as a function of the number of images N used for the analysis. The blue squares and green
circles represent the calculated values of C along the x and y directions, respectively, while the dashed lines correspond to a fit of
the form A0

√
N with fit parameter A0. The region above the dotted red line (shaded in red) corresponds to C > 5, which

represents a statistically significant violation of the EPR criterion. (b) Product Δ2riΔ
2pi as a function of the number of images N

used for the analysis. The region below the dotted red line (shaded in red) indicates a violation of the EPR criterion and thus the
presence of EPR entanglement. The inset shows a zoom in for the region N < 50. Measurements along the x and y directions are
shown with blue squares and green circles, respectively.

even with a single image. This is in stark contrast to the ∼ 104 –105 images [14, 16, 56] or about three
orders of magnitude longer integration times [57] required for photon pair experiments.

An alternative way to verify the quantum nature of the spatial correlations is through the inseparability
criterion, which is based on the total noise properties of two non-commuting observables [50]. For position
and momentum, this criterion states that the system is entangled if the inseparability parameter I satisfies
the relation

I = 〈Δ2R̂〉+ 〈Δ2P̂〉 < 2, (6)

where 〈Δ2R̂〉 = 〈Δ2(̂rp − r̂c)〉 and 〈Δ2P̂〉 = 〈Δ2(p̂p + p̂c)〉 are position difference and momentum sum
variances, respectively, normalized to their corresponding shot noise. Thus, the presence of spatial
squeezing between the probe and conjugate in both the near and far fields indicates that there is spatial
entanglement between them.

To show the sub-shot noise behavior, we start with 120 × 120 pixel cropped regions of the probe and
conjugate images centered around the corresponding intensity maximum and align them with an image
registration algorithm [54]. After the alignment, we crop a region of 80 × 80 pixels of each probe and
conjugate image around its center for the final noise analysis. We characterize the spatial quantum noise
ratio (NR) with the ratio

NR ≡ 〈Δ2[(Np1 − Np2) − (Nc1 − Nc2)]〉
〈Np1 + Nc1 + Np2 + Nc2〉

, (7)

where (Np1, Nc1) and (Np2, Nc2) are the matrices representing the photo-counts per pixel for the cropped
regions in the probe and conjugate images for the two consecutive frames used for the analysis, respectively.
The statistics are calculated over the spatial photo-counts registered by the pixels of the EMCCD. Thus, the
numerator represents the relative spatial variance between the probe and conjugate spatial intensity
fluctuations, while the denominator represents the shot noise limit (SNL). Therefore NR = 1 corresponds
to a coherent state and NR < 1 to a spatially squeezed state. When this analysis is performed in the near
(far) field configuration NR corresponds to 〈Δ2R̂〉 (〈Δ2P̂〉).

Given that the correlated regions are spread over more than one pixel, as shown in figure 3 and
schematically in figure 1, an accurate measure of NR is obtained only when the noise analysis is performed
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Figure 5. Measured NR as a function of binning in the (a) near and (b) far fields. The number of binned pixels given along the x
axes represent the number of pixels used along each side of a square binning region. Traces (i), (ii), and (iii) represent the SNL,
squeezing without background noise subtraction, and squeezing with background subtraction, respectively. Error bars represent
the standard deviation of the mean for the NR over the 200 acquired images.

after grouping or binning a square pixel region into ‘super-pixels’ larger than the coherence area
[18, 53, 54]. Figures 5(a) and (b) show NR as a function of binning in the near and far fields, respectively.
For both figures, trace (i) shows the SNL, while traces (ii) and (iii) represent the NRs for the twin beams
without and with background correction, respectively. The SNL is measured by splitting the probe laser into
two beams of equal power and performing the same noise analysis as with the bright twin beams. During
these measurements the pump is turned off so that there is no FWM process or scattered pump background
noise. As expected, NR = 1 for the measured SNL in both the near and far field configurations. The
minimum NRs in the near and far field configurations are 0.84 ± 0.02 and 0.83 ± 0.02, respectively,
without background noise subtraction and 0.82 ± 0.02 and 0.81 ± 0.02, respectively, with background
subtraction. This translates to an inseparability parameter, I, of 1.67 ± 0.03 without background noise
subtraction and 1.63 ± 0.03 with background noise subtraction, which shows that the generated bright
twin beams contain spatial entanglement.

Even though the criterion to demonstrate EPR entanglement is more stringent than the one for
inseparability, we see a significantly larger violation of the EPR criterion than a reduction of the
inseparability parameter. The reason for this is that the measurements performed to verify the EPR paradox
are purely spatial in nature and as such directly quantify the spatial quantum properties of the system. On
the other hand, as shown in appendix A, the measurements to show the inseparability criterion result from
an interplay between quantum correlations in the spatial and temporal domains. More specifically, the
measured level of spatial squeezing is limited by the degree of amplitude quadrature squeezing present in
the twin beams. While this means that the inseparability criterion does not provide a pure measure of the
degree of spatial entanglement, it does point to the presence of quantum correlations in multiple degrees of
freedom (spatial and temporal) in the twin beams. This result, combined with previous measurements with
the FWM source that show the presence of quadrature entanglement in this system [9, 10], provides a good
indication of the presence of hyperentanglement in the FWM generated bright twin beams.

5. Conclusion

In conclusion, we have demonstrated the EPR paradox in its original position–momentum form with
macroscopic quantum states of light. The use of bright twin beams has made it possible for us to show a
statistically significant violation of the EPR criterion with less than 10 images. We have further verified the
presence of spatial entanglement through the inseparability criterion by measuring spatial squeezing in both
the near and far fields. As we show, the presence of spatial squeezing results from an interplay between
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quantum correlations in the spatial and temporal degrees of freedom. Thus, the results presented point to
the presence of hyperentanglement in the generated bright twin beams. The ability to generate spatially
entangled bright twin beams makes the FWM system a unique choice to enable quantum enhanced sensing
and quantum imaging configurations that can surpass the classical state-of-the-art. Moreover, the
narrowband bright twin beams generated with the FWM process are ideal candidates for quantum
information processing based on atomic ensembles [58]. The results presented thus provide a path for many
novel quantum technologies to move out of the laboratory and into real-life applications.
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Appendix A. Relation between spatial and temporal squeezing

We present detailed calculations that show the relationship between squeezing in the temporal and spatial
domains. As outlined in the main text, we characterize the spatial squeezing through the noise reduction
factor (NR) defined as the ratio of the spatial variance of the difference between the fluctuations of the
probe and conjugate to the corresponding shot noise. We can then write NR in terms of number
operators as

NR ≡ 〈Δ2[(N̂p1 − N̂p2) − (N̂c1 − N̂c2)]〉
〈Δ2[(N̂p1 − N̂p2) − (N̂c1 − N̂c2)]〉CS

, (A.1)

where N̂pi and N̂ci are the number operators for the probe and conjugate images, respectively, acquired in
frame i = {1, 2}. In this equation the subscript CS indicates that the variance is to be evaluated for coherent
states equivalent to the probe and conjugate beams. Note that for a coherent state the variance is equal to its
mean, such that equation (A.1) takes the form given in equation (7) of the main text. To relate this
expression to the degree of temporal squeezing, we first consider the operator for the number of photons
measured by the EMCCD for a given image, that is

N̂ =

∫
A

d�x

∫
td

dt n̂(�x, t), (A.2)

where the spatial integral is over the analysis region A of the images captured by the EMCCD, the temporal
integral is over the detection time td, and n̂(�x, t) is the spatially dependent photon flux of the beam incident
on the EMCCD. In order to study the spatial properties of the light, we need to take into account the fact
that the EMCCD is composed of pixels, which allows us to write

N̂ =
∑

i,j

∫
Dij

d�x

∫
td

dt n̂(�x, t) =
∑

i,j

∫
Dij

d�x

∫
td

dt [〈n̂(�x, t)〉+ δn̂(�x, t)], (A.3)

where Dij is the area of pixel (i, j) and the summation is over all the EMCCD pixels in the analysis region A.
For the last equality we have expressed the spatially dependent flux n̂(�x, t) as a sum of the contributions
from its mean value 〈n̂(�x, t)〉 and its fluctuations δn̂(�x, t), with 〈δn̂(�x, t)〉 = 0.

Next, we consider the subtraction of two subsequent frames taken a time Δt apart

δN̂ = N̂1 − N̂2 =
∑

i,j

∫
Dij

d�x

∫
td

dt [〈n̂1(�x, t)〉 − 〈n̂2(�x, t +Δt)〉+ δn̂1(�x, t) − δn̂2(�x, t +Δt)]. (A.4)

Here, we consider the case in which Δt is short enough such that the spatially dependent mean value does
not change from one frame to the other, but significantly longer than the inverse of the bandwidth of the
process such that the quantum properties are uncorrelated both in space and time. In this case we have that

〈n̂1(�x, t)〉 = 〈n̂2(�x, t +Δt)〉,

〈δn̂1(�x, t)δn̂2(�x ′, t +Δt)〉 = 0, (A.5)

9
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where we are assuming the ideal case of no technical noise. Thus, equation (A.4) simplifies to

δN̂ =
∑

i,j

∫
Dij

d�x

∫
td

dt [δn̂1(�x, t) − δn̂2(�x, t +Δt)]

=
∑

i,j

∫
td

dt [δn̂ij
1(t) − δn̂ij

2(t +Δt)], (A.6)

where we have introduced the operator δn̂ij(t) =
∫

Dij
d�x δn̂(�x, t), which represents the fluctuations in the

number flux for pixel (i, j). Note that 〈δN̂〉 = 0 and that the statistics of δn̂ij(t) over all pixels in analysis
region A give a measure of the spatial properties of the beam.

We first look at the numerator in equation (A.1), which can be rewritten as

〈Δ2[(N̂p1 − N̂p2) − (N̂c1 − N̂c2)]〉 = 〈Δ2(δN̂p − δN̂c)〉 = 〈(δN̂p)2〉+ 〈(δN̂c)2〉 − 2〈δN̂pδN̂c〉. (A.7)

From equation (A.4) and taking into account equation (A.5), we can show that the first term on the
right-hand side, 〈(δN̂p)2〉, takes the form

〈(δN̂p)2〉 =
∑

i,j

∑
k,l

∫
td

dt

∫
td

dt′ [〈δn̂ij
p1(t)δn̂kl

p1(t′)〉+ 〈δn̂ij
p2(t +Δt)δn̂kl

p2(t′ +Δt)〉]. (A.8)

In the limit in which the effective pixel area after binning the EMCCD pixels into ‘super-pixels’ is larger
than the coherence area, the resulting super-pixels are not correlated, which means that

〈δn̂ij
p(t)δn̂kl

p (t′)〉 = δi,kδj,l〈δn̂ij
p(t)δn̂ij

p(t′)〉 = δi,kδj,l

2π

∫ ∞

−∞
dΩ e−iΩτSij

p(Ω), (A.9)

where we have used the fact that for a stationary process the two time correlation function is equal to the
Fourier transform of the power spectrum, Sij

p(Ω), with τ = t′ − t. Thus, through the use of equation (A.9)
and the fact that for a stationary process the correlation function only depends on the time difference,
equation (A.8) takes the form

〈(δN̂p)2〉 = 1

π

∑
i,j

∫ ∞

−∞
dΩ Sij

p(Ω)

∫
td

dt

∫
td

dt′ e−iΩ(t′−t). (A.10)

Finally, in our experiments the effective integration time is determined by the temporal profile of the input
probe pulse. As a result, for an intensity temporal profile f(t) of the input probe, we can write
equation (A.10) as

〈(δN̂p)2〉 = 1

π

∑
i,j

∫ ∞

−∞
dΩ Sij

p(Ω)

∫ ∞

−∞
dt f (t)eiΩt

∫ ∞

−∞
dt′ f (t′) e−iΩt′

=
1

π

∑
i,j

∫ ∞

−∞
dΩ|F(Ω)|2Sij

p(Ω), (A.11)

where F(Ω) is the Fourier transform of f(t). As can be seen from this result, the spatial variance for the
probe is given by the quadrature sum of the noise (power spectrum) over all pixels integrated over a
frequency range determined by the magnitude squared of the Fourier transform of the intensity temporal
profile of the input seed probe pulse. This is to be expected, as the super-pixels are uncorrelated in the limit
of a binning area larger than the coherence area. Following a similar procedure for the other two terms of
equation (A.7), we find that the numerator of equation (A.1) takes the form

〈Δ2[(Np1 − Np2) − (Nc1 − Nc2)]〉 = 1

π

∑
i,j

∫ ∞

−∞
dΩ|F(Ω)|2[Sij

p(Ω) + Sij
c (Ω) − 2Sij

p,c(Ω)], (A.12)

where Sij
c (Ω) is the power spectrum for the conjugate and Sij

p,c(Ω) is the cross probe-conjugate power
spectrum.

For the denominator, we can use as a starting point equation (A.12) and specialize to the case in which
the probe and conjugate beams are replaced with coherent states of equal power and spatial profile. In this
case the cross power spectrum vanishes as the two coherent states are uncorrelated and the denominator
thus takes the form

〈Δ2[(Np1 − Np2) − (Nc1 − Nc2)]〉CS =
1

π

∑
i,j

(Sij
SN,p + Sij

SN,c)

∫ ∞

−∞
dΩ|F(Ω)|2, (A.13)

10
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Figure A1. Normalized noise power spectra for the (a) near field and (b) far field configurations. The different traces represent
the normalized noise spectra for the (i) probe, (ii) conjugate, and (iv) intensity difference. Trace (iii) gives the measured shot
noise, which as expected is at 0 dB, and trace (v) represents the electronic noise of our detection system.

where we have used the fact that the shot noise is white noise (i.e. independent of frequency) and Sij
SN,p

(Sij
SN,c) is the shot noise level for the probe (conjugate) for pixel (i, j). Finally, for simplicity we assume the

mean value of the photocounts to be uniform over the detection area A, such that the shot noise power
spectrum is the same for all pixels. Under this assumption we find that the denominator takes the form

〈Δ2[(Np1 − Np2) − (Nc1 − Nc2)]〉CS =
MxMy

π
(SSN,p + SSN,c)

∫ ∞

−∞
dΩ|F(Ω)|2, (A.14)

where Mx (My) is the number of pixels in the analysis region along the x (y) direction.
From equations (A.12) and (A.14) we have that the NR takes the form

NR =
1

MxMy

∑
i,j

∫ ∞

−∞
dΩ

(
|F(Ω)|2∫∞

−∞dΩ′|F(Ω′)|2

)[
Sij

p(Ω) + Sij
c (Ω) − 2Sij

p,c(Ω)

SSN,p + SSN,c

]

=
1

MxMy

∑
i,j

∫ ∞

−∞
dΩG(Ω)Sij

diff(Ω), (A.15)

where Sij
diff(Ω) ≡ [Sij

p(Ω) + Sij
c (Ω) − 2Sij

p,c(Ω)]/[SSN,p + SSN,c] is the normalized intensity difference noise
power spectrum and G(Ω) ≡ |F(Ω)|2/

∫∞
−∞dΩ|F(Ω)|2 effectively acts as a normalized frequency filter that

selects the portion of the squeezing spectrum to integrate over. As can be seen from this expression, spatial
squeezing results from the presence of temporal squeezing in the twin beams. In fact, in the limit that the
area covered by the binned pixels (super-pixel) is larger than the coherence area, the noise reduction factor
NR will be equal to the average over all pixels of the normalized intensity difference noise spectra integrated
over the frequency region determined by G(Ω).

For our experiment the normalized intensity difference noise power spectra for the near and far field
configurations are shown in figures A1(a) and (b), respectively. For both configurations, we have measured
the probe (trace i) and conjugate (trace ii) noise spectra, shot noise (trace iii), probe and conjugate intensity
difference noise spectrum (trace iv), and electronic noise (trace v). All noise traces have been normalized to
their corresponding shot noise. As can be seen from these figures, we have a maximum intensity difference
squeezing of 5.07 dB and 5.75 dB in the near and far field configurations, respectively. While in principle we
should expect the spatial squeezing to saturate at levels close to the maximum intensity difference squeezing
as a function of binning, our measured degree of spatial squeezing saturates at 1 dB. This is most likely due

11
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to a combination of the reduced quantum efficiency of the EMCCD (∼70%) with respect to the
photodiodes used to measure the intensity difference squeezing (∼95%) and the fact that the two frame
subtraction procedure that we implement is not able to cancel out all the low frequency classical technical
noise present in the twin beams.
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