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Abstract
Quantum states of light can enable sensing configurations with sensitivities beyond the shot-noise
limit. In order to better take advantage of available quantum resources and obtain the maximum
possible sensitivity, it is necessary to determine fundamental sensitivity limits for different possible
configurations for a given sensing system. Here, due to their wide applicability, we focus on optical
resonance sensors, which detect a change in a parameter of interest through a resonance shift. We
compare their fundamental sensitivity limits set by the quantum Cramér–Rao bound (QCRB)
based on the estimation of changes in transmission or phase of a probing bright two-mode
squeezed state (bTMSS) of light. We show that the fundamental sensitivity results from an
interplay between the QCRB and the transfer function of the system. As a result, for a resonance
sensor with a Lorentzian lineshape a phase-based scheme outperforms a transmission-based one
for most of the parameter space; however, this is not the case for lineshapes with steeper slopes,
such as higher order Butterworth lineshapes. Furthermore, such an interplay results in conditions
under which the phase-based scheme provides a higher sensitivity but a smaller degree of quantum
enhancement than the transmission-based scheme. We also study the effect of losses external to the
sensor on the degree of quantum enhancement and show that for certain conditions, probing with
a classical state can provide a higher sensitivity than probing with a bTMSS. Finally, we discuss
detection schemes, namely optimized intensity-difference and optimized homodyne detection,
that can achieve the fundamental sensitivity limits even in the presence of external losses.

1. Introduction

The field of quantum sensing seeks to take advantage of unique quantum properties to enhance the
precision of sensing techniques and devices beyond the fundamental classical bound given by the shot noise
limit (SNL) [1]. Such a quantum enhancement can be achieved through the use of quantum states with
reduced noise properties, such as squeezed states, as they make it possible to reduce the uncertainty in the
estimation of a parameter of interest [2–5]. This approach can enable quantum based sensitivity
enhancements when the detection techniques and sensing devices are operating at the SNL and are able to
preserve the quantum properties of the quantum states. Such approaches have already been implemented in
LIGO through the coupling of a vacuum squeezed state into one of the input ports of the interferometer to
enhance its sensitivity [6]. Applications of optical quantum enhanced devices range from quantum
enhanced interferometry [7] to quantum sensing [8–11] to quantum imaging [12, 13] to biological sensing
[14, 15].

Sensors based on optical readout techniques detect changes in the probing electromagnetic field to
estimate a change in the parameter of interest [16]. Here, we focus on optical resonance sensors, such as

© 2021 IOP Publishing Ltd

https://doi.org/10.1088/2058-9565/ac3550
https://orcid.org/0000-0001-6471-6946
https://orcid.org/0000-0001-5377-1122
mailto:marino@ou.edu


Quantum Sci. Technol. 7 (2022) 015011 M Dowran et al

optical cavities [17], whispering-gallery mode sensors [18, 19], photonic crystal sensors [20], and plasmonic
sensors [21, 22], due to their wide applicability as optical readout label-free sensors. These sensors exhibit a
resonance in their response and can be used to estimate changes in a physical quantity of interest, such as
temperature, pressure, force, index of refraction, etc, through measurements of changes in either the
transmission or phase of the probing light. Given that the sensitivity of optical resonance sensors has
already reached the SNL when probed with classical states of light [23], the use of quantum states is
necessary to enable a quantum-based enhancement to obtain a sensitivity beyond this limit. For example,
the use of a bright two-mode squeezed state (bTMSS) has been shown to enable quantum enhancements in
the estimation of phase [24, 25] and transmission [26]. In this theoretical study, we compare the sensitivity
limits given by the quantum Cramér–Rao bound (QCRB) [27–30] for optical resonance sensors based on
the estimation of changes in transmission or phase of the probing light when probed with either a coherent
state or a bTMSS. Given that the QCRB provides the fundamental theoretical bound for sensitivity when
probing with a given state of light, it allows us to perform an absolute comparison between an approach
based on the estimation of transmission, transmission-based scheme, or the estimation of phase,
phase-based scheme. Similar work has been performed with non-Hermitian sensors using classical light
[31].

The paper is outlined as follows: in section 2, we define the sensitivity of optical resonance sensors based
on the estimation of changes in the phase or transmission of the probing light. In section 3 we introduce the
basics of parameter estimation theory. Then, in section 4, we present the QCRB for transmission and phase
estimation with bTMSS and coherent states of light in the presence of losses external to the resonance
sensor. In section 5, through the definition of a general transfer function for the sensor, we compare the
fundamental sensitivity limits of resonance sensors for the transmission- and phase-based schemes obtained
for estimations at the QCRB. Finally, we discuss the effect of optical losses external to the sensor on the
degree of quantum enhancement in section 6 and point to measurement strategies that can saturate the
QCRB for the transmission- and phase-based schemes in section 7.

2. Optical resonance sensing schemes

We specialize to resonance sensors that are passive optical devices with a linear response characterized by a
transfer function with a resonance consisting of either a dip or a peak in its transmission spectrum, T(λ),
where λ is the wavelength. When such a sensor is probed with light, in addition to a change in amplitude,
the electromagnetic field undergoes a corresponding change in phase. This leads to a phase spectrum, φ(λ),
whose relation to the transmission spectrum is governed by the Kramers–Kronig relations [32, 33]. A
change of the external physical quantity of interest, n, leads to a change in both the amplitude and phase of
the probing light due to a shift of both the transmission and phase spectra [34–37], as shown in figure 1(a).
Thus, the external physical quantity of interest can be measured through two different schemes, one based
on transmission estimation, transmission-based scheme, and the other based on phase estimation,
phase-based scheme, of the probing light.

To study the behavior and characteristic response of a sensor, we define the sensitivity as the inverse of
the uncertainty in the estimation of the physical quantity of interest,

(
Δ2n

)
, based on the estimation of a

given parameter X [9, 38]:

1

S(n|X)
= Δ2n(X) =

(
Δ2X

|∂X/∂λ|2

)
1

|∂λ/∂n|2 . (1)

For an optical resonance sensor, X represents either the transmission, T, or phase, φ, of the probing light.
Based on this definition, a better estimation of the physical quantity of interest, i.e. a smaller uncertainty in
the estimation, leads to a better sensitivity characterized by larger values of S. The first term in parenthesis
on the right-hand side of equation (1) represents the inverse of the sensitivity in estimating the shift in the

resonant wavelength, that is
[
S(λ|X)

]−1
= Δ2λ(X) = Δ2X/|∂X/∂λ|2, and depends on the uncertainty in

the estimation of parameter X, Δ2X, and its rate of change with wavelength. The second term on the
right-hand side of equation (1), |∂λ/∂n|−2, depends on the rate of change of the resonance wavelength with
respect to the external physical quantity of interest. Given that this second term is a property of the sensor
that is common for both sensing schemes, we neglect it in our comparison of the schemes and consider
S(λ|X) as a measure of the sensitivity of the optical resonance sensor.

The general sensing configuration that we consider is shown in figure 1(b). We compare the use of either
a bTMSS for the quantum state or a single mode coherent state, as it gives the optimal classical
configuration. For the case of the bTMSS, one mode, denoted by subscript p, is used to probe the resonance
sensor while the other mode, denoted by subscript r, is used as a reference. On the other hand, for the case
of a coherent state, we consider only the mode that is used to probe the sensor, as the inclusion of a second
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Figure 1. (a) Transmission (blue traces) and phase (red traces) transfer functions for an optical resonance sensor, arrows
indicate the corresponding axis for a given trace. A change in the physical parameter of interest, n, by an amount Δn leads to a
shift of the resonance, which results in a corresponding change in transmission, ΔT, and phase, Δφ, of the probing light. These
changes in transmission and phase can therefore be used to estimate changes in the physical quantity of interest. Note that the
optimal probing wavelength will be different for the transmission- and phase-based schemes. (b) The sensing configuration we
consider is composed of a source, either of quantum (bTMSS) or classical (coherent) states of light, a resonance sensor responsive
to changes in the physical quantity of interest, n, and a detection system to extract information on the change in transmission or
phase of the probing light. Optical losses external to the sensor and imperfect detection are taken into account with beam
splitters with transmission ηp1 before and ηp2 after the resonance sensor in the probe beam path and ηr in the reference beam
path, with ηp1 = ηp2 = ηr = 1 for lossless optics and ideal detection. A fixed number of photons, N, is assumed to be incident on
the resonance sensor and gives the resources used for the estimation of the quantity of interest.

mode would only add noise to the estimation and would thus reduce the sensitivity of the sensor [29, 30].
Furthermore, we take into account experimental imperfections by considering losses in the probe mode
both before and after the sensor as well as losses in the reference mode. Finally, the probe beam and
reference beam (for the case of the bTMSS) are measured to perform the estimation. It is important to note
that in performing comparisons between the transmission-based and phase-based schemes and the use of
quantum and classical states, we keep the number of photons probing the sensor, N, fixed, as it represents
the resource for the estimation.

We focus our attention on the use of two-mode squeezed states of light, as these quantum states have
already been shown to reduce the uncertainty in the estimation of phase [24, 25, 39–42] and transmission
[26, 43] below the SNL. Such quantum enhancements result from the presence of quantum correlations
between the amplitude quadratures as well as between the phase quadratures of the two modes. These
correlations are due to the parametric process that is used to generate them [44–46]. When not seeded, the
parametric process grows from spontaneous emission and the average values of the field quadratures
remain zero. It is possible to obtain larger mean values by displacing one or two of the modes before or after
the parametric processor. In the limit in which the displacement is much greater than the quadrature
fluctuations, the state becomes a bTMSS. The high intensity of such a bright state improves the absolute
sensitivity of the sensor by probing with a large number of photons. Moreover, compared to other quantum
states such as NOON states [47, 48], the bTMSS are more robust to optical losses. Additionally, having two
modes allows for differential measurements that can reduce or eliminate classical technical noise present
due to experimental implementations.

While it is well known that sensing schemes based on phase and transmission estimation can have
different sensitivities [16, 22, 35–37], and comparisons between these schemes have been done for some
resonance sensors [16, 22, 37], these previous studies have not been performed at their fundamental
sensitivity limits. To perform a fair and absolute comparison between the transmission- and phase-based
schemes, we calculate their fundamental sensitivity bound Sb(λ|X), which is obtained when parameter X is
estimated at its QCRB. Thus, Sb(λ|X) is inversely proportional to the fundamental minimum uncertainty in
the estimation of the physical quantity using a given probing state of light. The QCRB is independent of the
measurement strategy and will be discussed in the next section and used in section 4 to find the QCRBs for
transmission and phase estimation. These fundamental sensitivity bounds can then be calculated by taking
into account the corresponding transfer function, as will be discussed in section 5. Such an approach makes
it possible to establish under which conditions a given scheme provides better sensitivities as well as the
degree to which each scheme can take advantage of quantum resources.

3



Quantum Sci. Technol. 7 (2022) 015011 M Dowran et al

3. Parameter estimation theory

Determining the fundamental limit for the estimation of a given parameter of interest, X, requires
determining the amount of information about the parameter that can be extracted from a given state used
to probe the system under study. After interacting with the system, the probing state undergoes changes that
depend on the unknown value of the parameter of interest. Measurements of the state can then be used to
determine those changes and infer the value of the parameter. The Cramér–Rao bound [49] states that the
minimum uncertainty in the estimation of a parameter for an unbiased estimator, one whose mean in the
limit of infinite sets of data equals the value of the parameter, is given by the inverse of the Fisher
information, F(X), 〈

Δ2X
〉
� 1

F(X)
. (2)

The Fisher information is a metric for the distinguishability of measurement results given different
parameter values and is given by

F(X) =

∫
Y

P(y|X)

(
∂ ln[P(y|X)]

∂X

)2

dy, (3)

where y ∈ Y is a measurement value from the set of all possible values Y, and P(y|X) is the probability of
obtaining measurement value y given the parameter value X.

The Fisher information can be maximized over all possible measurements through the use of quantum
mechanical techniques to find the so called quantum Fisher information [29], F(X),

F(X) = Tr(ρ̂L̂2) � F(X), (4)

where L̂ is the symmetric logarithmic derivative defined as

ρ̂L̂ + L̂ρ̂

2
=

∂ρ̂

∂X
, (5)

ρ̂ is the density matrix of the state after interaction with the system, and Tr represents the trace. The QCRB
is then defined as the inverse of the quantum Fisher information, that is

〈
Δ2X

〉
Q
� 1

F(X)
, (6)

such that the minimum uncertainty in the estimation of a parameter for a given probing state is
independent of the measurement. Thus, the quantum Fisher information is a metric for how much the
state changes, instead of how much the measurement result changes after interacting the system. When the
Fisher information equals the quantum Fisher information, the measurement is able to extract as much
information as possible from the state about the parameter of interest and the measurement is said to
saturate the QCRB. As such, the uncertainty in the estimation of a given parameter is fundamentally limited
by the QCRB, which only depends on the properties of the state used in the sensing configuration and the
system under study.

While the quantum Fisher information is defined via the symmetric logarithmic derivative, it can be
calculated in different ways. The form found in Liu et al [50] is useful when the system-state interaction can
be described in terms of a unitary transformation. The method used in this paper is based on work by
Šafránek et al [51], which is only valid for Gaussian states, such as the bTMSS and coherent state.

4. QCRB for transmission and phase estimation

To calculate the QCRB we model the resonance sensor as a beam splitter [52] with intensity transmission T
followed by a phase rotation φ or vice versa, as the order of the operations does not matter for the problem
under study (see appendix A). For the resonance sensors that we consider here, both the transmission of the
beam splitter and the phase rotation are wavelength dependant parameters as given by the transfer function
of the sensor. Moreover, we model losses external to the sensor with beam splitters of constant
transmissions ηp1 and ηp2 for the probe mode before and after the sensor, respectively, and ηr for the
reference mode, as shown in figure 1(b). We further assume that such losses do not introduce any
additional phase rotations.

We consider a bTMSS, which, following the Yuen notation [53], is obtained by applying a two-mode

squeezing operation to the displaced vacuum. That is, Ŝp,rD̂r(β)D̂p(α) |00〉, where Ŝp,r = ese−iθ âpâr−seiθ â†pâ†r is

the squeezing operator with a degree of squeezing s � 0 and process phase θ [44–46], D̂p(α) = eαâ†p−α∗âp is
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the displacement operator of magnitude |α| and phase arg(α), and |00〉 is the vacuum state. The operator âi

is the annihilation operator of the ith mode. As we have previously shown [26], the QCRB for transmission
estimation with such a state is given by

〈
Δ2T

〉bTMSS

Q
� T

ηp1ηp2

〈
n̂p

〉
0

− T2〈
n̂p

〉
0

Dr[1 − sech(2s)] (7)

in the limit in which the vacuum terms can be neglected. The term Dr contains the effect of losses in the
reference arm and is defined as

Dr =
(2ηr − 1)[1 + 2 sinh2(s)]

1 + 2ηr sinh2(s)
(8)

and
〈

n̂p

〉
0

is the number of photons in the probe mode after the two-mode squeezing operation. In
metrology, the number of photons probing the system, and not the ones generated by the source, are
usually taken as the resource in the estimation and are kept fixed when comparing different approaches.
Thus, we can write the bound as

〈
Δ2 T

〉bTMSS

Q
� T

ηp2N
− T2

N
ηp1Dr[1 − sech(2s)], (9)

where N = ηp1

〈
n̂p

〉
0

gives the number of probing photons.
Note from equations (7) and (9) that whether we write the QCRB in terms of the number of generated

photons (
〈

n̂p

〉
0
) or probing photons (N) determines which term on the right-hand side contains the losses

before the sensor. In equation (9), losses right before probing the sensor decrease the second term on the
right-hand side, while losses afterwards increase the first term. As can be seen from equation (9), an
increase of quantum correlations in the bTMSS, characterized by s, leads to a reduction of the QCRB and
thus a better sensitivity. In the extreme limit of perfect quantum correlations, s →∞, the QCRB for the
bTMSS tends to the QCRB for the Fock state, known to have the lowest possible QCRB for transmission
estimation of any quantum state [54]. It is important to note that the QCRB for transmission always has a
local minimum at a transmission of zero and for large enough values of s at a transmission of one, as can be
seen from equation (9).

Similarly, as we show in appendix A, the QCRB for phase estimation using a bTMSS in the presence of
external losses is given by

〈
Δ2φ

〉bTMSS

Q
� 1

4Tηp2N
− 1

4N
ηp1Dr[1 − sech(2s)], (10)

given the assumption that there exists an external phase reference for each mode of the bTMSS [42, 55] and
that the vacuum contribution is negligible. This result is an extension of previous results [24], as it takes
into account optical losses in the probe and reference beams. As can be seen, external losses affect the QCRB
for transmission, equation (9), and phase, equation (10), in the same way. On the other hand, the two
bounds have a different dependence on the transmission through the resonance sensor. For example, as
opposed to the QCRB for transmission, the QCRB for phase provides maximum sensitivity only for
transmissions of unity, which corresponds to the case when all the photons carrying information are
measured.

The corresponding QCRBs for transmission and phase estimation with coherent states can be obtained
from equations (9) and (10) by setting the squeezing parameter to zero, s = 0. In this limit there is no
parametric amplification and only the displaced vacuum states of the form D̂(α) |0〉, which correspond to
coherent states, are left. Although the reference mode may also be displaced, in the absence of the
parametric process this second uncorrelated coherent state would only add noise to the estimation and as
such the reference mode does not contribute when calculating the QCRB for the coherent state [26]. This
effectively simplifies to a configuration with a single mode coherent state probing the sensor. The QCRBs
for transmission and phase estimation with a coherent state are then given by

〈
Δ2T

〉SNL

Q
� T

ηp2N
, (11)

〈
Δ2φ

〉SNL

Q
� 1

4Tηp2N
, (12)

respectively. Equations (11) and (12) are just the first terms on the right-hand side of equations (9) and
(10), respectively, which give the corresponding QCRBs when probing with bTMSS. Thus, the second terms
in equations (9) and (10) are the ones that lead to the quantum advantage with bTMSS.
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To characterize the quantum enhancement with respect to the SNL that can be obtained when using
quantum states to probe the sensor, we define the quantum enhancement factor (QEF) [56–58] as the ratio
of the QCRB when probing with coherent states to the QCRB when probing with bTMSSs with equal
resources. Thus, the QEF for both transmission and phase estimation is given by

QEF(X) =
Δ2XQCRB,SNL

Δ2XQCRB,bTMSS
=

{
1 − Tηp1ηp2Dr[1 − sech(2s)]

}−1
, (13)

where a value greater than one corresponds to lower uncertainties in the estimation of transmission or
phase when probing with a bTMSS as compared to a coherent state. Given that the QEFs for both
transmission and phase estimation are the same for a given transmission T, both cases are able to take equal
advantage of quantum resources. It is important to note that a quantum enhancement only happens if
losses in the reference beam are small enough such that ηr > 1/2. For the case in which ηr < 1/2, we have
that Dr < 0, which makes the QEF drop below one. This results from the fact that the presence of losses in
one of the beams of a bTMSS makes the other beam tend towards a displaced thermal state. Thus, as the
losses in the reference beam increase, the amount of uncorrelated thermal noise on the probing beam also
increases, which at some point dominates and decreases the sensitivity below the one of a coherent state. In
this limit there is no advantage in using bTMSSs over coherent states, as will be further discussed in
section 6.

5. Quantum-enhanced sensitivity of resonance sensors

In order to fully characterize the sensitivity S(λ|X) of the resonance sensor, we also need to take into
account its transmission or phase spectrum. In general, the spectrum is characterized by the sensor’s
amplitude transfer function t(λ), which defines the complex response of the sensor as a function of
wavelength. We consider a general transfer function whose intensity transmission transfer function
can be written as:

T(λ) = |t(λ)|2 = Toff + (Tres − Toff)T0(λ), (14)

where Toff and Tres are the far-off-resonance and on-resonance transmissions, respectively, and T0(λ)
defines the intensity resonance lineshape. The parameters Tres and Toff in equation (14) make it possible to
define a transfer function characterized by a peak or dip resonance responses when Tres > Toff or
Tres < Toff , respectively. To fully define the transfer function, we consider a resonance lineshape, T0(λ), that
has unit transmission on resonance and goes to zero away from the resonance. Due to its broad
applicability, we focus on a Lorentzian lineshape of the form

T0(λ) =

∣∣∣∣∣ 1

1 − i
(
λ−λ0
ΔL

)
∣∣∣∣∣

2

, (15)

where λ0 is the resonance wavelength, ΔL is the half-width-at-half-maximum (HWHM), and i =
√
−1.

Since we only consider sensors with a linear response, their transmission and phase responses are related
through the Kramers–Kronig relations [32, 33]. As we show in appendix B, for arbitrary values of Tres and
Toff , the transmission and phase transfer functions for a Lorentzian lineshape are given by

T(Λ) = Toff +
Tres − Toff

1 + Λ2 , (16)

φ(Λ) = arctan

[
Λ2√Toff +

√
Tres

Λ
(√

Tres −
√

Toff

)] , (17)

where Λ = (λ− λ0)/ΔL is the generalized wavelength, defined to make the transfer function independent
of the HWHM and the resonance wavelength of the Lorentzian lineshape. With this definition, the
sensitivity of the resonance sensor will be re-scaled as S(λ|X) = (ΔL)−2S(Λ|X), which represents another
common factor in our comparison between the sensing schemes based on transmission and phase. In the
case in which the sensor has intrinsic broadband losses T ′, equations (16) and (17) can be generalized by
making the substitutions Toff → T′Toff and Tres → T′Tres. As can be seen, the behavior of T(Λ) would only
be modified by an overall scaling factor, while the phase response would remain unchanged. Thus, any
intrinsic broadband transmission, such as those due to coupling efficiencies or other internal losses, can be
considered as part of the resonance sensor system.

We can now combine the QCRB for transmission or phase estimation given by equations (9) and (10),
respectively, with the corresponding derivative of the transfer function to show that the fundamental
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sensitivity limits for a resonance sensor with a Lorentzian transmission lineshape take the form

Sb(Λ|T) = N

{
(1 + Λ2)3(Λ2Toff + Tres)

4Λ2ηp2(Toff − Tres)2

− (1 + Λ2)2(Λ2Toff + Tres)2

4Λ2(Toff − Tres)2
ηp1Dr[1 − sech(2s)]

}−1

, (18)

Sb(Λ|φ) = N

{ (
1 + Λ2

)3 (
Λ2Toff + Tres

)
4ηp2

(√
Toff −

√
Tres

)2(
Λ2√Toff −

√
Tres

)2

−
(
1 + Λ2

)2(
Λ2Toff + Tres

)2

4
(√

Toff −
√

Tres

)2(
Λ2√Toff −

√
Tres

)2 ηp1Dr[1 − sech(2s)]

}−1

, (19)

for the transmission- or phase-based scheme, respectively, when the sensor is probed with a bTMSS. In the
case in which the sensor has intrinsic broadband losses T′, it is easy to show, by taking into account the
substitutions to Toff and Tres described above, that the only change to the above equations is given by
ηp2 → T′ηp2. As a result, the effect of any intrinsic broadband losses is the same as the one due to losses
after the sensor. Due to the scaling of these sensitivities with the number of probing photons, N, we can
define the sensitivity per probing photon Sb(Λ|X)/N to make the analysis and comparison independent of
the number of probing photons.

In order to compare the two sensing schemes and the effects of having a resonance response with a peak
or a dip, we plot the sensitivity per probing photon, Sb(Λ|X)/N, as a function of wavelength for different
values of Tres and Toff in figure 2. The bottom portion of each figure shows the corresponding transmission
and phase transfer functions. For this comparison, we specialize to the case of no losses external to the
sensor, that is ηp1 = ηp2 = ηr = 1. We will address the effect of losses in section 6. Furthermore, we
consider a bTMSS with a squeezing parameter of s = 2, which corresponds to ∼− 14.5 dB of
intensity-difference squeezing. Such levels of squeezing have been experimentally generated for single-mode
squeezed states [59], and are within reach for the case of bTMSSs. While the maximum measured levels of
intensity-difference squeezing for bTMSSs are in the range of −9 dB to −10 dB [60–62]; if one takes into
account the detection efficiency of 90% for the work in [61], the squeezing parameter is consistent with
s = 2.

As can be seen from the blue traces in figures 2(a)–(d), for the transmission-based scheme for a transfer
function with a peak response, the maximum sensitivity is not achieved at the origin. This results from
having the derivative of the transmission transfer function be zero on resonance. Instead, the wavelength at
which the maximum sensitivity occurs results from an interplay between the QCRB and the transmission
slope of the transfer function. For example, for the case of a perfect peak shown in figure 2(a), the local
minima of the QCRB for transmission occur at T = 0 and T = 1, where the slopes of the transmission
transfer function are zero, while the steepest slopes of the transmission transfer function occur at
Λ = ±1/

√
3.

As expected, as the maximum resonance transmission through the sensor decreases, Tres → 0, the
sensitivity also decreases. For the case in which the transmission transfer function has a dip resonance with
a Lorentzian lineshape, figures 2(e)–(h), the overall behavior is similar to the case of a peak transmission
except for a perfect dip, Tres = 0. As can be seen in figure 2(e), for the perfect dip the maximum sensitivity
is achieved on exact resonance, Λ = 0, given that for this case equation (9) shows that there is no
uncertainty in the estimation of transmission. This is no longer the case, however, when Tres deviates from
zero. When this happens the QCRB deviates from zero faster than the increase in slope of the transmission
transfer function around resonance, which leads to a splitting of the maximum of the sensitivity per
probing photon to two peaks that occurs at wavelength that are shifted symmetrically with respect to the
resonance wavelength, as can be seen from the blue traces in figures 2(f)–(h).

In the limit of infinite squeezing, s →∞, the QCRB for transmission when probing with a bTMSS
becomes symmetric about T = 0.5, as we can see from equation (9). This means that the uncertainty in the
estimation of transmission for T = 0.5 − x and T = 0.5 + x, where 0 � x � 0.5, have the same QCRB
bound. This leads to a symmetry in the sensitivity for the transmission-based scheme such that
complementary transmission values, Tres → 1 − Tres and Toff → 1 − Toff , have the same sensitivity. If we
had considered the case of infinite squeezing for figure 2, then each column would have had the same
sensitivity per probing photon as a function of wavelength for the transmission-based scheme (blue traces).
This behavior can already be seen for s = 2 in the last 3 columns of figure 2, where the sensitivity for these
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Figure 2. Sensitivity per probing photon (Sb(Λ|X)/N) for resonance sensors with a transmission-based (blue) and phase-based
(red) schemes, arrows indicate the corresponding axis for a given trace. We assume a Lorentzian lineshape for the resonance, as
shown in the lower portion of each figure, and consider different values of Tres and Toff to study the behavior of a transfer
function with either a peak, (a) through (d), or a dip, (e) through (h), resonance. The maxima in these traces occur at the
wavelengths at which the sensitivity is maximized. The exact wavelength at which this happens results from an interplay between
the QCRB and the slope of the corresponding transfer function.

complementary pairs is nearly the same. However, since infinite squeezing is not possible, this symmetry in
complementary transmission values is lifted and results in better sensitivity values for the case with lower
transmission at the wavelength of maximum sensitivity. That is, the last two columns for the peak
resonance, figures 2(c) and (d), have higher maximum sensitivity than the corresponding ones for the dip
resonance, figures 2(g) and (h), as they have lower transmission at the wavelengths at which the blue curve
is maximized. On the other hand, for the first column, the dip resonance, figure 2(e), has a better sensitivity
than the peak resonance, figure 2(a). As a result, when no power is lost to the resonance sensor such that
two outputs are accessible, one with a peak and the other with a dip in the transmission spectrum as is the
case with an optical cavity for instance, the output with a lower transmission at the optimal operational
wavelength will provide a better absolute sensitivity for the transmission-based scheme. However, as we can
see from equation (13), while such a lower transmission results in better absolute sensitivity it also leads to a
lower level of quantum enhancement. Thus, in the limit of small Tres, there will not be a significant
quantum enhancement with the use of a bTMSS over a coherent state.

Next, we consider the sensitivity per probing photon as a function of wavelength for the phase-based
scheme, see red traces in figure 2. As opposed to the transmission-based scheme, for the phase-base scheme
the steepest slopes for the phase transfer function for a Lorentzian lineshape occur at the resonance
wavelength, Λ = 0. For the case of a peak resonance, figures 2(a)–(d), the transmission is maximum on
resonance and thus the QCRB for phase estimation has its lowest value, which leads to the maximum
sensitivity occurring at the resonance wavelength. As Tres decreases, the sensitivity of the phase-based
scheme with a peak resonance is also reduced as the QCRB for phase estimation increases, but the optimum
wavelength remains at the resonance wavelength. For the case of a dip resonance, the maximum sensitivity
is still at the resonance wavelength, as long as Tres 
= 0, due to the sharp slope of the phase transfer function
dominating over a larger QCRB for phase estimation, as can be seen from the red traces in figures 2(f)–(h).
It is important to note that for these cases the phase transfer function exhibits two inflection points that
lead to generalized wavelengths with zero sensitivity and two side lobes around the resonance frequency that
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Figure 3. Maximum sensitivity per probing photon for transmission (blue) and phase (red) based schemes for resonance sensors
with a Lorentzian lineshape, for peak resonances with Toff = 0 (left), and dip resonances with Toff = 1 (right). The |Toff − Tres|
equals 1.00 for solid, 0.75 for dashed, 0.5 for dot–dashed, and 0.25 for dotted lines, which correspond to the same transfer
functions considered in figure 2.

occur at wavelengths further away from resonance than the inflection points. Furthermore, as the Tres

decreases, the phase difference between the maximum and minimum values of the phase transfer function
increases while their wavelength separation decreases. This leads to an increased slope around the resonance
that leads to an increase in height and narrowing of the peak in the sensitivity at the resonance wavelength.
Additionally, this behavior leads to a better sensitivity on resonance than at the wavelengths of the side lobes
where the transmission is higher.

For Tres = 0 the phase difference between the inflection points maximizes while the wavelength
separation minimizes and the two points become one as the phase winds back on itself. While this leads to
an increased slope on resonance, the transmission is zero at this point, which makes the QCRB go to
infinity. As a result, the sensitivity per probing photon goes to zero and the best sensitivity occurs at the
wavelengths of the side lobes, as shown in figure 2(e). For the phase-based scheme in the limit of infinite
squeezing, s →∞, given that the uncertainty in the estimation of phase increases monotonically as T
decreases there is no symmetry for complementary transmissions as in the case of the transmission-based
scheme. Therefore, for sensors where two outputs, one with a peak resonance and the other with a dip
resonance, are accessible, the output with the peak resonance will always exhibit the best sensitivity for the
phase-based scheme.

Although the quantum enhancements in the estimation of transmission and phase are the same, as can
be seen from equation (13), the quantum enhancement in sensitivity for the resonance sensor is different
for each scheme. This is a result of the difference in the wavelength dependence of the transmission and
phase transfer functions. This leads to an optimum wavelength at which the maximum sensitivity occurs to
be different for the transmission-based and phase-based schemes, as can be seen in figure 2. In order to
perform a fair comparison between the two sensing schemes, we compare the maximum values of
Sb(Λ|X)/N irrespective of the wavelength at which they occur. That is, we assume that the resonant
response of the sensor or probing light can be tuned such that the sensor is always being probed at its
optimal wavelength, which changes with the sensing scheme and the squeezing parameter s of the bTMSS
used to probe the sensor. Figure 3 shows the maximum values of the sensitivity per probing photon for
each sensing scheme as a function of squeezing parameter. As shown in figure 3(a), for resonance sensors
with a peak resonance and a Lorentzian lineshape, the sensitivity for both sensing schemes increases with
increasing level of squeezing parameter. However, for the same |Toff − Tres|, the phase-based scheme (red
traces) always provide better sensitivities than the transmission scheme (blue traces), even for coherent
states, s = 0.

The behavior is similar for the case of a dip resonance except when Tres = 0, solid lines in figure 3(b).
For this case the transmission-based scheme has a better sensitivity than the phase-based one, consistent
with the behavior shown in figure 2. However, the transmission-based scheme does not show any
enhancements over a coherent state when using a bTMSS even with higher squeezing parameters, as can be
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Figure 4. FOM as a function of Tres and Toff for (a) a Lorentzian resonance lineshape and (b) a Butterworth resonance lineshape
with m = 3 assuming lossless conditions and s = 2. For the Lorentzian lineshape, the FOM is greater than one for most values of
Tres and Toff ; while for the Butterworth lineshape, sharper transmission slopes allows the transmission-based schemes to
outperform the phase-based schemes for a larger parameter space. The red lines indicate FOM = 1, which correspond to the
transition from one scheme dominating over the other. Transfer functions for perfect peak resonances for (c) Lorentzian and (d)
Butterworth (m = 3) lineshapes. Blue (red) traces correspond to the transmission (phase) spectrum and the arrows indicate the
corresponding axis for a given trace.

seen from the flat solid blue trace in figure 3(b), given that the maximum sensitivity occurs on resonance
and that the QEF for the estimation of transmission goes to one for a transmission of zero.

To quantify the comparison between the sensitivities of the phase- and transmission-based schemes, we
define the figure of merit (FOM) as the ratio between the sensitivities at the optimal wavelength of the two
schemes, that is

FOM =
max
Λ

Sb(Λ|φ)

max
Λ

Sb(Λ|T)
. (20)

A FOM greater than one indicates that the phase-based scheme outperforms the transmission-based one.
Figure 4(a) shows the FOM for different values of Tres and Toff for a Lorentzian lineshape and a squeezing
parameter of s = 2. For almost all values of Tres and Toff , the phase-based scheme is more sensitive than the
transmission-based one. For resonance sensors with a Lorentzian lineshape, the FOM becomes less than or
equal to one only in the limit of Tres = 0, as shown by the red line in figure 4(a).

The sensitivity of the resonance sensor, and consequently the FOM, depends on the lineshape of the
transfer function. A Gaussian lineshape, for example, will have an FOM similar to the one for a Lorentzian
lineshape due to a similar behavior of the transmission and phase transfer functions. To illustrate the effect
of the lineshape on the sensitivity of a resonance sensor for both schemes and the FOM we consider a
Butterworth lineshape, which is a generalization of a Lorentzian lineshape that exhibits larger slopes in the
transmission transfer function as the order increases. The transmission transfer function for the
Butterworth lineshape takes the form

T(Λ;m) =
Tres − Toff

1 + Λ2m + Toff, (21)

where m is the order of the Butterworth lineshape, while the phase transfer function, given by the red trace
in figure 4(d), is calculated numerically as shown in appendix B. Note that the first order, m = 1,
Butterworth lineshape simplifies to a Lorentzian one. As the order increases, the transmission lineshape
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tends towards a square one with the transmission flattening around the resonance, Λ = 0, and steeper
slopes around |Λ| = 1 than those of a Lorentzian lineshape, as shown in figure 4(d) for m = 3.

Figure 4(b) shows the FOM for all possible values of Tres and Toff for a third order Butterworth
lineshape, m = 3, with s = 2. Note that the transition between a peak and dip in the transmission transfer
function occurs along the diagonal Tres = Toff , with a peak resonance corresponding to the upper left region
and a dip resonance corresponding to the lower right region. For the third order Butterworth lineshape, the
FOM falls below one for a significant range of Tres and Toff values around the transitions between the peak
and dip resonance, outlined by the red lines in figure 4(b). This region corresponds to the parameter space
for which the transmission-based scheme outperforms the phase-based one. This is a much larger region
than the one for a Lorentzian lineshape and illustrates the interplay between the QCRB for transmission or
phase and the corresponding slope of the transfer function. Thus, for an arbitrary resonance sensor, such as
one with an asymmetric transmission response, it cannot be assumed that the phase-based scheme will
always result in a better sensitivity than the transmission-base scheme.

6. Effect of losses on sensitivity

To study more realistic operational conditions, we now consider the effect of optical losses external to the
resonance sensor on the sensitivity. We take into account sources of optical loss, such as imperfect optical
elements and photo-detectors, by modeling them with a beam splitter with intensity transmissions ηp1 and
ηp2 before and after the resonance sensor, respectively, in the path of the probing beam and with intensity
transmission ηr in the path of the reference beam, as outlined in figure 1(b). As can be seen from
equations (9) and (10), these losses lead to an increase in the QCRB for the estimation of transmission and
phase. Thus, as expected, losses external to the resonance sensor always lead to a reduction in its sensitivity
for both sensing schemes.

In studying the effect of losses, we need to consider that different states of light are affected differently by
optical losses and that the impact of losses on the sensitivity depends on where they happen. For example,
the photon statistics of a coherent state remain unchanged after optical losses with the only impact being a
reduction in the amplitude of the coherent state. Thus, when probing the resonance sensor with a coherent
state, losses before the sensor will have no impact on the sensitivity, as the number of photons probing the
sensor represents the resource for the estimation and is kept constant. Moreover, since there is no reference
beam when probing with a coherent state, the sensitivities will be independent of ηr. However, losses after
the sensor will have an impact on the sensitivity as photons containing information from the interaction
with the sensor will be lost. On the other hand, when probing with bTMSS all three sources of loss will lead
to a reduction in sensitivity.

In comparing the sensing schemes based on transmission or phase, we focus on the study of the effect of
losses on the quantum enhancement that can be achieved with either scheme rather than their effect on the
absolute sensitivities, as there is no advantage in using a quantum state if it does not lead to a quantum
enhancement. To do so, we define the effective quantum enhancement factor (EQEF) as the ratio of the
sensitivities at their optimal wavelengths for the sensing scheme of interest when probing with bTMSS to
the one when probing with a coherent state, which provides the SNL, while keeping the number of photons
probing the sensors constant, that is

EQEF(X) =
max
Λ

Sb(Λ|X)bTMSS

max
Λ

Sb(Λ|X)SNL
. (22)

It is important to note that the wavelength at which the maximum sensitivity is achieved will be different
for the bTMSS and the coherent state. Compared to the QEF defined in equation (13), the EQEF includes
not only the QCRB of the estimation parameter X, but also the response of the sensor.

The behavior of the EQEF in the presence of optical losses is shown in figure 5 for different parameters
of a peak or dip Lorentzian lineshape for a bTMSS with s = 2. In general, losses in the probe beam, whether
before or after the sensor, lead to a change in the photon statistics of the probe beam. Losses after the sensor
also lead to a loss of information encoded in the light as a result of the interaction with the sensor. However,
probe losses before and after the sensor, ηp1 and ηp2, have the same mathematical effect on the EQEF, as can
be shown from equations (18) and (19). As expected, as losses external to the sensor increase the degree of
quantum enhancement is reduced and the EQEF tends monotonically towards unity for both the
transmission- and phase-based sensing schemes, as shown in figures 5(a) and (c). For the particular case of
resonance sensors with low transmissions, such as a dip resonance when Tres → 0, the transmission QCRB
for the coherent state and the bTMSS tend to the same value independent of external losses. As a result,
there is no significant advantage to using quantum states over coherent states and the EQEF for the

11



Quantum Sci. Technol. 7 (2022) 015011 M Dowran et al

Figure 5. The EQEF for transmission (blue) and phase (red) based schemes for a Lorentzian lineshape resonance sensor, for
peak resonances, (a) and (b), with Toff = 0, and dip resonances, (c) and (d), with Toff = 1. The |Toff − Tres| equals 1.00 for solid,
0.75 for dashed, and 0.25 for a dotted line, which correspond to the transfer functions shown in figure 2 except for the 0.50
difference that was omitted for figure clarity. The left hand plots (a) and (c) show the reduction of the EQEF as a function of total
probe losses external to the resonance sensor, with ηp = ηp1ηp2. The right hand plots (b) and (d) show the reduction in EQEF
due to losses in the reference beam. The shaded region corresponds to EQEF <1, at which point there is no advantage of using a
bTMSS over a coherent state.

transmission-based scheme, blue solid line in figure 5(c), is fairly insensitive to losses in the probe arm. The
same behavior is not seen in this case for the phase-based scheme, red solid line in figure 5(c), for which
there is a quantum advantage that degrades as losses in the probe arm increase.

While for our sensing configuration the reference beam does not carry any information about the
parameter of interest, losses in the reference beam lead to a reduction of the quantum correlations in the
bTMSS. As a result, such losses lead to an increase in the uncertainty in the estimation of transmission or
phase and thus a reduction in sensitivity. When the losses in the reference beam exceed 50%, ηr < 1/2, the
uncertainty in the estimation of transmission and phase with a bTMSS exceeds the corresponding ones with
a coherent state, as shown in equation (13). As explained in section 4, this results from the fact that each
mode of the bTMSS by itself has more noise than a coherent state. Thus, the EQEF drops below one, as
shown in figures 5(c) and (d), which means that probing with a coherent state would lead to a higher
sensitivity than probing with a bTMSS. The only exception to this behavior is for the transmission-based
scheme in the case of a full-dip Lorentzian resonance (Tres = 0 and Toff = 1), as the EQEF without losses is
already at the level of a coherent state and the bound becomes insensitive to losses in the reference beam,
see solid blue trace in figure 5(d).

It is important to note that while the phase-based scheme always has higher sensitivity than the
transmission based scheme, except when Tres = 0, for a Lorentzian lineshape (see figure 2), it does not
always lead to the largest quantum enhancement. For example, we can see in figures 5(c) and (d) that for
Toff = 1.00 and Tres = 0.75, dashed lines, the transmission EQEF is larger than the phase EQEF.

7. Measurement strategies that saturate the QCRB

While the theoretical fundamental bounds for the sensitivities of resonance sensors can be determined with
the QCRB, it is still necessary to identify measurement techniques that can saturate those bounds to fully
take advantage of the bTMSS. It has been shown that the QCRB for transmission and phase estimation can
be reached with current detection techniques based on intensity or homodyne measurements [24, 26].

For phase estimation, a phase sensitive detection method, such as an interferometer or homodyne
detection (HD), is needed. In these techniques, changes in the phase of the beam under study are measured
with respect to the phase of an external beam called the local oscillator (LO). For the case of a bTMSS, given
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that quantum noise reduction is observed in the phase-sum quadrature, a common approach to perform
phase measurements is to use HD for each of the modes. It has been shown that the bTMSS QCRB for
phase estimation can be saturated with such an approach if one allows for gain in the electronic signal from
one of the HDs before obtaining the difference [24, 63]. The electronic gain is set to minimize the noise in
the measured signal. Moreover, if the phases of the LOs for the probe and the reference arms are set such
that the amplitude quadratures of the beams are measured, such optimized HD can also be used to saturate
the QCRB for transmission estimation. As we show in appendix C, the optimized HD can saturate the
QCRB for phase and transmission estimation even in the presence of losses external to the resonance sensor,
including imperfect HD detection due to low quantum efficiencies of detectors and other similar
imperfections. Alternatively, for transmission estimation, the bTMSS QCRB can be saturated with
transmission measurements by implementing an optimized intensity-difference measurement [26]. In this
approach two photodiodes are used to measure the intensity of the probe and reference beams. As with the
optimized HD, electronic gain is then used on the electronic signal from one of the photodiodes to
minimize the measured noise in the difference signal.

8. Conclusion

We present a study of the fundamental sensitivity limits for estimating a quantity of interest (such as force,
temperature, pressure, index of refraction, etc) with optical resonance sensors based on the estimation of
the change in transmission or phase of the light used to probe them. We obtain the fundamental limits by
calculating the QCRB for each of the sensing approaches and show that an interplay between the QCRB and
the transfer function of the resonance sensor determines the fundamental sensitivity that can be achieved
with either sensing scheme. We show that for the case of a resonance sensor with a Lorentzian lineshape, the
phase-based scheme outperforms the transmission-based scheme for almost all operational parameters.
However, due to the interplay between the QCRB and the transfer function, this is no longer the case when
we consider lineshapes with steeper slopes in the transmission transfer function, such as a third order
Butterworth lineshape. Furthermore, our results show that in the ideal case of a lossless configuration for a
resonance sensor with a peak Lorentzian lineshape, the phase-based sensing scheme can provide over an
order of magnitude higher sensitivity than the transmission-based scheme when probed with a bTMSS with
s = 2.

We also study the effect of losses on the quantum enhancement that can be achieved with each of the
schemes and find, as expected, that optical losses degrade the level of quantum enhancement. There are two
interesting things worth noting. First, the losses on the reference arm can have a significant impact on the
quantum enhancement and in fact lead to sensitivities lower than those of a coherent state for losses larger
than 50%. Second, while the phase-based scheme has a higher sensitivity than the transmission-based
scheme for a Lorentzian lineshape for most operational parameters, it does not always lead to the largest
degree of quantum enhancement. Finally, we present measurement techniques that have been previously
shown to be able to saturate the bTMSS QCRB for transmission and phase estimation even in the presence
of losses external to the sensor, such as those due to imperfect detection, and thus offer experimentally
accessible measurements to reach the ultimate sensitivity limits for resonance sensors.
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Appendix A. Lossy QCRB for phase estimation with a bTMSS

To calculate the QCRB for phase estimation with a bTMSS in the presence of loss, we followed the
technique used by Šafránek et al in [51] for Gaussian states. These states, such as the bTMSS, are fully
characterized by the displacement vector, 
d, and covariance matrix, σ, which are defined as
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d =
〈
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〉

(A.1)
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〈
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〉
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〈
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〉
, (A.2)

where 
̂A =
(
âp, âr, â†p, â†r

)T
. In the bright limit in which the displacement term dominates, the QCRB is

given by 〈
Δ2φ

〉
�

(
2
̇d †σ−1
̇d

)−1

, (A.3)

where 
̇d is the element-wise derivative of the displacement vector with respect to the phase.
To take into account losses in the calculation of the QCRB for phase estimation with a bTMSS, the

following operator transformations are needed

Ŝ†p,râpŜp,r = âp cosh(s) − â†reiθ sinh(s), (A.4)

Ŝ†p,rârŜp,r = âr cosh(s) − â†peiθ sinh(s), (A.5)

B̂†
i (T)âiB̂i(T) =

√
Tâi +

√
1 − Tâν , (A.6)

D̂†
p(α)âpD̂p(α) = âp + α, (A.7)

D̂†
r (β)ârD̂r(β) = âr + β, (A.8)

Φ̂†
p(φ)âpΦ̂(φ)p = eiφâp, (A.9)

where Ŝp,r = ese−iθ âpâr−seiθ â†pâ†r is the two-mode squeezing operator with squeezing parameter s and process

phase θ, B̂i(T) = e
cos−1(

√
T)

(
â†i âν−âi â

†
ν

)
is a beam splitter operator for mode i = {p, r} with intensity

transmission T, âν is the field operator for the vacuum mode ν that couples through the unused port of the

beam splitter, D̂p(α) = eαâ†p−α∗âp and D̂r(β) = eβâ†r−β∗ âr are the displacement operators for modes p and r

with complex amplitudes α and β, respectively, and Φ̂p(φ) = eiφâ†p âp is the phase rotation operator by a
phase φ for the probe mode. For the bTMSS state, we follow the Yuen notation [53] of squeezing after
displacement, such that the state is given by Ŝp,rD̂p(α)D̂r(β) |0, 0〉, as this is the typical order of operations
when generating these states experimentally. With this notation, |α|2 and |β|2 correspond to the number of
photons used to seed the parametric process that generates the TMSS.

With these definitions and transformations, the state after interaction with the sensor and external losses
takes the form B̂p(Tpost)Φ̂p(φ)B̂p(Tpre)B̂r(Tr)Ŝp,rD̂p(α)D̂r(β) |0, 0〉. The covariance matrix for this state can
be shown to be of the form

σ =

⎛
⎜⎜⎝
σpp 0 0 σpr

0 σrr σpr 0
0 σ∗

pr σpp

σ∗
pr 0 0 σrr

⎞
⎟⎟⎠ , (A.10)

where σpr = −
√

TpostTpreTrei(θ+φ) sinh(2s), σpp = TpostTpre cosh(2s) + 1 − TpostTpre, and
σrr = Tr cosh(2s) + 1 − Tr, with Tpre and Tpost the transmissions before and after the phase rotation,
respectively, and Tr the transmission of the reference mode. Note that the transmissions on the probe mode
before (Tpre) and after (Tpost) the phase element have the exact same effect on the state. Thus, when
modeling the resonant sensor as a beam splitter and phase rotation the order of the operations does not
modify the result. This also allows us to simplify the notation and set the total probe transmission to
Tp = TpostTpre. As the transmission in each mode decreases, the covariance matrix of the bTMSS also tends
towards that of a coherent state, which has a covariance matrix of the form diag(1, 1, 1, 1). Additionally, the
displacement vector takes the form


d =

⎛
⎜⎜⎜⎝

√
Tp

[
α cosh(s) − β∗eiθ sinh(s)

]
eiφ√

Tr

[
β cosh(s) − α∗eiθ sinh(s)

]√
Tp

[
α∗ cosh(s) − βe−iθ sinh(s)

]
e−iφ√

Tr

[
β∗ cosh(s) − αe−iθ sinh(s)

]

⎞
⎟⎟⎟⎠ . (A.11)

As expected, a decrease in transmission reduces the displacement in phase space and for the limiting case of
zero transmission the displacement goes to zero. Additionally, only the probe beam experiences a phase
rotation φ.
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If we substitute equations (A.10) and (A.11) into equation (A.3), we can show that the QCRB for phase
estimation takes the form

〈
Δ2 φ

〉
� 1

4Tp

〈
n̂p

〉
0

− 1

4
〈

n̂p

〉
0

(2Tr − 1)
[
1 + 2 sinh2(s)

]
1 + 2Tr sinh2(s)

[1 − sech(2s)], (A.12)

where
〈

n̂p

〉
0
= |α|2 cosh2(s) + |β|2 sinh2(s) − |α‖β| cos(θ − χ− ξ) sinh(2s) is the number of probe

photons generated. In arriving to this result, we have defined the phases of the coherent states used to seed
the squeezing process as χ = arg(α) and ξ = arg(β) for the probe and reference, respectively, and have
assumed that these phases are known and that there is a phase reference, typically the LO in HD, with which
they are compared. Finally, if we set Tp = ηp1Tηp2, Tr = ηr and N = ηp1

〈
n̂p

〉
0

we arrive at

〈
Δ2 φ

〉TMSS

Q
� 1

4Tηp2N
− 1

4N
ηp1

(2ηr − 1)
[
1 + 2 sinh2(s)

]
1 + 2ηr sinh2(s)

[1 − sech(2s)] , (A.13)

which corresponds to equation (10).

Appendix B. Phase transfer function for Lorentzian and Butterworth lineshapes

In order to compare the transmission- and phase-based sensing schemes, it is necessary to determine the
transmission and phase transfer functions for arbitrary Toff and Tres. We start with the case of a Lorentzian
lineshape, for which it is possible to obtain an analytical expression. To do so, we must first find the
complex amplitude transfer function for the resonance sensor. The Lorentzian lineshape has a well known
complex amplitude transfer function of the form

t0(Λ) =
1

1 − iΛ
, (B.1)

which satisfies the Kramers–Kronig relations. We can generalize this equation to obtain the transfer
function for a resonance sensor with a Lorentzian lineshape and arbitrary Tres and Toff by adding two
Lorentzian lineshapes with different amplitudes and linewidths, that is

t(Λ) = at0(Λ) + bt0(Λ/σ), (B.2)

and take the limit σ →∞. This form corresponds to a Lorentzian of arbitrary height, positive or negative,
sitting on top of a second extremely wide Lorentzian that gives the off-resonance transmission. Due to the
linearity of the Hilbert transform involved in the Kramers–Kronig relations, this general form is a valid
physical one. To find the required values of a and b of the amplitude transfer function defined in
equation (B.2), we solve for

|t(Λ)|2 = Toff +
Tres − Toff

1 + Λ2 , (B.3)

which gives

a =
√

Tres −
√

Toff, (B.4)

b =
√

Toff. (B.5)

The phase transfer function is then given by the arctan of the ratio between the imaginary and real parts of
the complex amplitude transfer function (B.2), that is

φ(Λ) = arctan

[
Λ(

√
Tres −

√
Toff)√

Tres + Λ2√Toff

]
, (B.6)

which corresponds to equation (17).
It is not possible to generalize the above approach to obtain an analytical solution for the Butterworth

filter of order m = 3 that we consider in the paper. Therefore, we numerically solve for the minimum phase
[64] using the Bode gain-phase relation [65], where the phase is given by the Hilbert transform of the
natural log of the magnitude of the amplitude transfer function. We numerically evaluate the required
Hilbert transform with two different approaches to validate the results. The first one is based on the fast
Fourier transforms (FFT) [66]. This method has a problem with spectral leakage, which causes errors near
the extremes of the range used for the FFT. To minimize this problem, we perform the FFT over a
generalized wavelength range Λ = ±1000 and only use the range Λ = ±3 for which the error is negligible.
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The optimal generalized wavelength for the estimation of the resonance shift is always inside this range. The
second approach, based on reference [67], consists in evaluating the phase through the integral

φ(Λ)(3)
min =

1

π

∫ ∞

0
ln

∣∣∣∣L + Λ

L − Λ

∣∣∣∣ · 3L5 (Toff − Tres)[
1 + L6

] [
ToffL6 + Tres

] dL, (B.7)

where L is a dimensionless integration variable, the natural log term is the kernel, and the term outside of
the natural log is the derivative, with respect to wavelength, of the natural log of the transmission spectrum
of the third order Butterworth filter. While this second approach leads to fluctuations in the calculated
phase, with sufficient smoothing, it gave the same results as the FFT-based one and served as a validation.

Appendix C. Saturation of QCRB with optimized homodyne detection

In this appendix, we show that an optimized HD can saturate the QCRB for the estimation of both
transmission and phase even in the presence of losses external to the resonance sensor. We start by defining
the generalized quadrature operator

Q̂(γ) = âe−iγ + â†eiγ , (C.1)

such that for a coherent state〈
Q̂(γ)

〉
coherent

= 2|α| cos(χ− γ) and
〈
Δ2Q̂(γ)

〉
coherent

= 1, (C.2)

where γ determines the quadrature (amplitude or phase), |α| is the displacement of the coherent state, and
χ is the phase of the displacement.

As we show, the optimized HD that saturates the bTMSS QCRB for phase and transmission estimation
takes the form Qp(γp) − goptQ̂r(γr), where the subindices p and r indicate probe or reference mode,
respectively, and gopt is the electronic gain on the reference quadrature detection optimized to minimize the
variance of the measurement. To calculate the variance of this measurement, we use the quadrature
transformations analogous to the ones for the field operators given by equations (A.4)–(A.9). We can then
show that variance of the optimized HD takes the form

〈
Δ2

[
Q̂p(γp) − goptQ̂r(γr)

]〉
= Tp cosh(2s) + 1 − Tp −

TpTr sinh2(2s) cos2(γp + γr − φ− θ)

Tr cosh(2s) + 1 − Tr
, (C.3)

where gopt = −
√

TpTr sinh(2s) cos(γp+γr−φ−θ)

Tr cosh(2s)+1−Tr
. Note that the sign of gopt changes when considering conjugate

quadratures, γp → γp + π/2 and γr → γr + π/2, consistent with having, for example, reduced noise in the
amplitude difference and phase sum of a bTMSS. In practice, gopt is set to minimize the measured noise. Its
value can be determined as part of initializing the measurement when considering small changes in
transmission or phase; or, for larger changes in the parameter, each quadrature measurement can be
recorded separately and the optimal gain can be determined later during data analysis. The noise in the
optimized HD is minimized when γp + γr − φ− θ = nπ where n ∈ Z. In what follows, we set the phase of
the parametric process that generates the bTMSS to θ = χ+ ξ without loss of generality, as its effect can be
compensated through the phases of the seeding modes, χ and ξ. Given the nature of the correlations in
bTMSSs, we only consider the cases in which the same quadrature is detected for the probe and reference
beams, that is γp = γr ≡ γ. In this case, the variance of the optimized HD is minimized when
γ = (nπ − φ− θ)/2, with n even, γe, corresponding to the amplitude quadrature and n odd, γo, to the
phase quadrature.

We can now determine the variance in the estimation of transmission or phase through error
propagation, such that

〈
Δ2 X

〉
=

〈
Δ2

[
Q̂p(γ) − goptQ̂r(γ)

]〉
∣∣∣∣ ∂〈Q̂p(γ)〉

∂X

∣∣∣∣
2 , (C.4)

where X represents transmission or phase. Note that we only take the derivative of the probe quadrature
into account as it is the only term that explicitly depends on X given that only the probe beam interacts with
the resonance sensor. Taking into account the mean value of the probe quadrature

〈
Q̂p(γ)

〉
= 2

√
Tp

[
|α| cosh(s) cos(χ− γ + φ) − |β| sinh(s) cos(ξ + γ − θ − φ)

]
, (C.5)
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setting Tp = ηp1Tηp2 and Tr = ηr, and recalling that the mean number of photons interacting with the
sensor is

N = ηp1

[
|α|2 cosh2(s) + |β|2 sinh2(s) − |α‖β| cos(θ − χ− ξ) sinh(2s)

]
, (C.6)

we can show that when ξ = χ+ φ

〈
Δ2 T

〉
=

〈
Δ2

[
Q̂p(γe) − goptQ̂r(γe)

]〉
∣∣∣∣ ∂〈Q̂p(γe)〉

∂T

∣∣∣∣
2 (C.7)

=
T

ηp2N
− T2

N
ηp1Dr[1 − sech(2s)] (C.8)

and

〈
Δ2φ

〉
=

〈
Δ2

[
Q̂p(γo) − goptQ̂r(γo)

]〉
∣∣∣∣ ∂〈Q̂p(γo)〉

∂φ

∣∣∣∣
2 (C.9)

=
1

4Tηp2N
− 1

4N
ηp1Dr[1 − sech(2s)]. (C.10)

As we can see, the optimized HD always saturates the QCRB, even in the presence of external losses, when
all phases are properly set, which is common among approaches to saturate the QCRB for phase estimation.
In practice, one can introduce an extra phase element on the probe beam before the HD to minimize the
uncertainty in the estimation of phase or transmission.
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