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Abstract

Deep generative modeling has led to new and state of the art approaches for enforcing
structural priors in a variety of inverse problems. In contrast to priors given by sparsity,
deep models can provide direct low-dimensional parameterizations of the manifold of
images or signals belonging to a particular natural class, allowing for recovery algo-
rithms to be posed in a low-dimensional space. This dimensionality may even be lower
than the sparsity level of the same signals when viewed in a fixed basis. What is not
known about these methods is whether there are computationally efficient algorithms
whose sample complexity is optimal in the dimensionality of the representation given
by the generative model. In this paper, we present such an algorithm and analysis.
Under the assumption that the generative model is a neural network that is sufficiently
expansive at each layer and has Gaussian weights, we provide a gradient descent
scheme and prove that for noisy compressive measurements of a signal in the range
of the model, the algorithm converges to that signal, up to the noise level. The scaling
of the sample complexity with respect to the input dimensionality of the generative
prior is linear, and thus can not be improved except for constants and factors of other
variables. To the best of the authors’ knowledge, this is the first recovery guarantee for
compressive sensing under generative priors by a computationally efficient algorithm.
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1 Introduction

Generative models have greatly improved the state of the art in computer vision and
image processing, including inpainting, superresolution, compression, compressive
sensing, image manipulation, MRI imaging, and denoising [10,14,18,20-23,23,24,
24,27-31]. These models are learned in an unsupervised way from a dataset of images
relevant for a particular domain, and they permit generation of new samples of the same
distribution underlying the the training data. They can be trained using a variety of
techniques, including Generative Adversarial Networks [10] and Variational Autoen-
coders [17]. The performance of generative models has improved substantially over
the past several years. For example, multiple methods can now generate synthetic
photorealistic images of human faces [15,16].

In many imaging inverse problems, an image is to be recovered from few and/or
noisy measurements. In the case of undersampled linear measurements, this problem
is known as compressive sensing. Structural assumptions are necessary in order to
recover the desired image because of undersampling. Generative models can provide
such a structural assumption, known as a prior, for inverse problems. Some generative
models are of the form of a learned function G : R¥ — R, where n is the dimension-
ality of the measured image, and k < n. The domain of G is a low-dimensional space,
known as a latent code space. The range of G is a manifold in R” that approximates a
domain-specific set of images, known as a natural signal manifold. An inverse problem
can be regularized by seeking an image in the range of G that is most consistent with
provided measurements.

A common structural prior for imaging inverse problems over the past few decades
has been a sparsity prior [8,9]. With it, images are modeled to be approximately sparse
in an appropriate bases, such as a Fourier of Wavelet basis. An inverse problem can
be regularized by searching for a sparse solution to a provided set of measurements.
This results in a combinatorially hard optimization problem. In the case of linear
compressive measurements, a convex relaxation based on L; minimization can be
solved instead, which admits signal recovery under generic measurements at optimal
sample complexity with respect to the sparsity level of a signal.

In the context of compressive sensing under generative priors, recovery can be posed
as a nonconvex empirical risk optimization, which can be solved by first order gradient
methods. When solved this way, generative models have been shown to empirically
outperform sparsity models in the sense that they can give comparable reconstruction
error with 5 to 10 times fewer compressive measurements in some contexts [4]. This
empirical result indicates both that representations from generative models are low
dimensional and can be efficiently exploited. Nonetheless, this observation does not
have a firm theoretical footing. In principle, such gradient algorithms for nonconvex
programs could get stuck in local minima. Thus, it is important to provide algorithms
that provably recover the underlying signal.

In this paper, we introduce a gradient descent algorithm for empirical risk mini-
mization under a generative network, given noisy compressive measurements of its
output. We prove that if the network is random, the size of each layer grows appropri-
ately, there are a sufficient number of compressive measurements, and the magnitude
of the noise is sufficiently small, then the gradient descent algorithm converges to a
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neighborhood of the global optimizer and the size of the neighborhood only depends
on the magnitude of the noise. In particular, the gradient descent algorithm converges
to the global minimizer for noiseless measurements. To the best of our knowledge,
this is the first recovery guarantee for compressive sensing under a generative neural
network model. Using numerical experiments, we empirically verify recovery up to
the noise level, and in particular exact recovery in the noiseless case.

1.1 Relation to Previous Theoretical Work

A first theoretical analysis of compressive sensing under a generative prior appeared
in [4]. In that work, the authors studied the task of recovering a signal near the range
of a generative network by the same nonconvex empirical risk objective as in the
present paper. They establish that if the number of measurements scales linearly in
the latent dimensionality, then if one can solve to with an additive constant of global
optimality the nonconvex empirical risk objective, then one recovers the signal to
within the noise level, optimization error, and representational error of the network.
Because the objective is nonconvex, and nonconvex problems are NP-hard in general,
it is not clear that any particular computationally efficient optimization algorithm can
actually find the global optimum. That is, it is possible that any particular numerically
efficient optimization algorithm gets stuck in local minima. In the present paper, we
provide a specific computationally efficient numerical algorithm and establish a recov-
ery guarantee for compressive sensing under generative models that satisfy suitable
architectural assumptions.

A recent paper by a subset of the authors [12] provides a global analysis of the non-
convex empirical risk objective below for expansive-Gaussian networks. That paper
shows that, under appropriate conditions, there are descent directions, of the noncon-
vex objective, outside neighborhoods of the global optimizer and a negative multiple
thereof in the latent code space. That work, however, does not provide an analysis of
the behavior of the empirical risk objective within these two neighborhoods, a specific
algorithm, a proof of convergence of an algorithm, or a principled reason why the
negative multiple of the global optimizer would not be returned by a naively applied
gradient scheme. Additionally, that work does not study noise tolerance. Each of these
aspects require considerable technical advances, for example establishing a nontrivial
convexity-like property near the global minimizer.

The paper [2] presents a simple layer-wise inversion process for neural networks.
In the current setting, this result is not applicable because the final compressive layer
can not be directly inverted without structural assumptions. Instead, in the present
paper, we analyze the inversion of the compressive measurements and the generative
network together.
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2 Problem Statement

We consider a generator G : R¥ — R” with k < n, given by a d-layer network of the
form

G(x) =relu(Wy...relu(Ws relu(Wix))...),

where relu(a) = max(a, 0) applies entrywise, W; € R" *"-1 are the weights of the
network, and nop = k and ny = n are, respectively, the dimensionality of the input
and output of G. This model for G is a d-layer neural network with no bias terms. Let
. = G(x,) € R” be an image in the range of the generator G, and let A € R™*" be
a measurement matrix, where typically m < n.

Our goal is to estimate the image v, from noisy compressive measurements y =
AG(x4) + e, where A and G are known and e € R™ is an unknown noise vector. To
estimate this image, we first estimate its latent code, x, and then compute G(x). In
order to estimate x,., we consider minimization of the empirical risk

1
min = [|AG (x) — y|°. 2.1
xeRk 2

Throughout this paper, || - || denotes 2-norm of a vector or a matrix. For notational
convenience, we let W, , denote the matrix obtained by zeroing out the rows of W
that do not have a positive dot product with x, i.e.,

W4 x =diag(Wx > O)W,

where diag(Wx > 0) denotes the diagonal matrix whose (i, i)th entry is 1 if (Wx); >
0 and O otherwise. Furthermore, we define Wi 4 , = (W1)4 , = diag(Wix > 0)W;
and

Wi tx =diag(WiWi_i 4 x... Wo 1 Wi x> 0)W.

The matrix W; 1  contains the rows of W; that are active after taking a ReLU if the
input to the network is x. Therefore, under the model for G, the empirical risk (2.1)
becomes

2
. 2.2

1 1
A (1_[ W,H_,x) x—A <H W,;.hx*) Xye — €
i=d i=d

1
fx) = 5
where ]_[}zd Witx =WitxWai+.x... Wit and likewise for ngd Wi 4 x,-

3 Main Results: Two Algorithms and a Convergence Analysis

In this section, we propose two closely related algorithms for minimizing the empirical
loss (2.1). The first algorithm is a subgradient descent method for which we prove
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convergence. The second algorithm is a practical implementation that can be directly
implemented with an explicit form of the gradient step that may or may not be within
the subdifferential of the objective at some points.

3.1 A Provably Convergent Subgradient Descent Method

In order to state the first algorithm, Algorithm 1, we first introduce the notion of
a subgradient. Since the cost function f(x) is continuous, piecewise quadratic, and
not differentiable everywhere, we use the notion of a generalized gradient, called the
Clarke subdifferential or generalized subdifferential [6]. If a function f is Lipschitz
from a Hilbert space X to R, the Clarke generalized directional derivative of f at
the point x € X in the direction u, denoted by f(x; u), is defined by f°(x;u) =
limsup,_,, ;0 M and the generalized subdifferential of f at x, denoted
by 0 f (x), is defined by

Af(x)={veR | (v,u) < fO(x;u), Vu € X).

Any vector in 9 f (x) is called a subgradient of f at x. Note that if f is differentiable
at x, then 9 f (x) = {V f(x)}.

Algorithm 1 Provably convergent subgradient descent method
Input: Weights of the network W;; noisy observation y; and step size v > 0;
1: Choose an arbitrary initial point xoy € RK \ {0};

2:fori =0,1,...do

3. if f(—x;) < f(x;) then

4: X < —xj;

5:  else

6: X < xi;

7. end if

8: Compute vi; € d f(X;), in particular, if G is differentiable at x;, then set vy = f);’. , where

1 r 1
~ T ~
Ui,- = 1_[ Wi,+,)},’ A" (A l_[ Wl’,+,ii Xi — y)’
i=d

i=d

9:  Xiy1 =X — Vg
10: end for

We can now state Algorithm 1. It is a subgradient method and has an important
twist. In lines 3—7, the algorithm checks whether negating the current iterate of the
latent code causes a lower objective, and if so accepts that negation. The motivation
for this step is as follows. The expectation of the empirical loss f is shown in Fig. 1. It
contains a global minimum at x,, a local maximum at 0, and a critical point at —x, o4,
where pg € (0, 1), as established in [12]. The objective value in a neighborhood of the
spurious critical point is higher than that of the negation of that neighborhood. Thus,
while a simple gradient descent algorithm could in principle be attracted to —x.pg4,
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Fig.1 The expectation of the empirical loss of f withd =2,k = 2, and x4 = (1, 0)7". It contains a global
minimum at x, a local maximum at (0, O)T, and a critical point at —pgxy = —Xx /7

the check in lines 3 will be activated if any iterate is is sufficiently close to —x«py4,
resulting in the next iterate jumping to the basin of attraction of the global minimizer
X

3.2 Convergence Analysis for Algorithm 1

In this section, we prove that under suitable conditions Algorithm 1 converges to the
global minimizer x, up to an error determined by the noise e. Consequently, the signal
estimate G (x,) is also recovered up to an error determined by the noise. In the noiseless
case (i.e., e = 0), Algorithm 1 converges to x*, and G (x*) is recovered exactly, under
suitable conditions. We will prove this in the case of deterministic assumptions on
the generative model, and we will obtain as a corollary that the convergence proof
holds for a suitable random model for G. Both the deterministic and probabilistic
assumptions are the same as in [12], which did not contain a convergence analysis.
The structure of this section is as follows: first we state the deterministic conditions
on G, then we state a convergence guarantee under those conditions, then we state a
probabilistic model for G, and finally we state a corollary for convergence under that
probabilistic model.

3.2.1 Deterministic Conditions

We now state two sufficient deterministic conditions for convergence of Algorithm 1,
both of which were introduced in [12]. First, we assume that the weights of the network,
W;, satisfy the Weight Distribution Condition (WDC) defined below. This condition
states that the weights are roughly uniformly distributed over a sphere of an appropriate
radius.

Definition 3.1 (Weight Distribution Condition (WDC)) A matrix W € R"*¥ satisfies
the Weight Distribution Condition with constant € if for all nonzero x, y € R* it holds
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that

" T . T —0 sin @
Z 1w,-~x>01wi-y>0 CWwWiw; — Qx,y <€, with Qx,y = 71 + ?M,%ef

i=1

Here, wl.T € R¥ is the ith row of W; Mo € R¥*k is the matrix such that £ — 3,
$ +— %,and Z — O for all z € span({x, y)*; £ = x/|lx|l, and $ = y/|ly|l; 6 =
Z(x,y);and lg is the indicator function on S.

Second, we assume that the measurement matrix A satisfies an isometry condition
with respect to G, defined below.

Definition 3.2 (Range Restricted Isometry Condition (RRIC)) A matrix A € R™*"
satisfies the Range Restricted Isometry Condition with respect to G with constant € if
for all x1, x2, x3, x4 € R¥, it holds that

I{A(G(x1) = G(x2)), A(G(x3) = G(x4))) — (G(x1) — G(x2), G(x3) — G(x4))|
= elGx1) = GG (x3) = G(xa) -

3.2.2 Convergence Guarantee Under Deterministic Conditions

As our main theoretical result, we prove that the iterates generated by Algorithm 1
converge to x, up to a term dependent on the noise level, provided that the deterministic
WDC and RRIC conditions are met. The proof is given in Sect. 5.

Theorem 3.1 Suppose the WDC and RRIC hold with € < Ki/d*° and the noise e

obeys |le|| < %. Consider the iterates {x;} generated by Algorithm 1 with step

d
sizev = K3 é%. Then there exists a number of iterations, denoted by N and upper

bounded by N < Kaf ()2 such that

d*ellxs ]|
lxn — xell < Ksd®||x.ll/€ + Ked®292 . (3.1)

In addition, for alli > N, we have

Ixig1 = xell < C 7V xy — x| + K729l e]| and (3:2)
12 N
1G(xit1) = Gx) = WC lxn — x:ll + 1.2K7]lell, (3.3)
where C =1 — 2%% € (0, 1). Here, K1, ..., K7 are universal positive constants.

Theorem 3.1 shows that after a certain number of iterations N, an iterate of Algo-
rithm 1 is in a neighborhood of the true latent code x,, and the size of this neighborhood
depends on the parameter € and the noise e (see (3.1)). Furthermore, by (3.2), the theo-
rem guarantees that once the iterates are in this ball, they converge linearly to a smaller
neighborhood of x,, and the size of the neighborhood only depends on the noise term e.
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If the noise term is zero, the algorithm converges linearly to x,. Similarly, it follows
from (3.3) that the recovered image G (x;) converges to G (x,) up to the noise level.
Note that the factors 2¢ in the theorem are an artifact of the choice of scaling for
the entries of W;. Under the WDC, each W; has spectral norm at most approx-
imately 1/2, as the operation relu(Wx) returns approximately half of the entries of
Wx. Because of this, G (x) = (]_[il:d W; 4. )x scales like 2¢/2| /x|, and thus the noise
e must scale like 27¢/% and the step size v must scale like 2¢. All of these scalings
would be unity with respect to d under an alternate choice of the scaling of W;.

3.2.3 Probabilistic Assumptions on Network Architecture and Measurements

We next provide a convergence guarantee for a model of a trained neural network G.
As in [12], we consider an expansive-Gaussian network as a model for a trained net-
work G, and we consider €2 (k) Gaussian measurements, as provided in the following
assumptions:

(a) The network weights have i.i.d. N'(0, 1/n;) entries in the ith layer.
(b) The network is expansive in each layer, in that

ni > ce *log(1/€)ni_1logn;_1, (3.4)

where c is a universal constant and € is sufficiently small.
(c) The measurement vectors have i.i.d. A'(0, 1/m) entries.
(d) There are a sufficient number of measurements in that

d
m > ce”'log(1/e)dklog [ i (3.5)

i=1

where c is a universal constant and € is sufficiently small.

As established in [12, Proposition 6], the probability that the WDC and RRIC hold
with constant € under the assumption above is at least

d
- . e .
1- ch,-e Y2 _ gy emve logl/Ok _ Gomyem (3.6)
i=2

where y, and ¢ are universal constants.

The motivation for assumptions (a)—(d) is as follows. The Gaussian assumption of
network weights is motivated by the observation that in some trained networks, such
as AlexNet, the weights are approximately Gaussian [2]. Moreover, recent papers
[1,7,19,26] assume that the weights are initialized during training by Gaussian distri-
butions and establish that with sufficient overparameterization, the weights are only
perturbed slightly during the training process. The expansiveness assumption is a
natural condition given that the generator maps low-dimensional, highly-compressed
representations to high-dimensional signals with substantial redundancy. The Gaus-
sian assumption in the weights of the measurement matrix A has been well-accepted
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and widely used, see e.g., [3,5]. Finally, the assumption on the number of measure-
ments is optimal in k as €2(k) measurements are needed to ensure uniqueness of
recovering a point on a k-dimensional manifold under generic linear measurements.
More discussion and justifications of these assumptions can be found in [12, Sect. D].

3.2.4 Convergence Guarantee Under Probabilistic Assumptions

Under assumptions (a)—(d), we can now state a convergence guarantee as a corollary.
Combining Proposition 6 from the paper [12], with Theorem 3.1 yields the following.
It states that if G is Gaussian and sufficiently expansive at each layer, and if the
measurements are Gaussian, then under sample complexity €2(k), the empirical risk
optimization (2.1) can be provably optimized up to the noise level by the polynomial-
time first order Algorithm 1 with high probability.

Corollary 3.1 Consider an expansive-Gaussian generative neural network G that sat-

isfies (a) and (b), and let the measurements satisfy (c) and (d). Suppose € < K1/d*°

and |le| < ;22”;;;2. Then, at least with probability (3.6), the iterates {x;} generated by

Algorithm 1 with step size v = K3 Z—Z satisfies the following: There exists a number of

Ky f (x0)2¢

such that
d*e||x|

steps N upper bounded by N <

lxn — xill < Ksd®||xl|lv/€ + Ked®29/%|le]].
In addition, for alli > N, we have

[+1—N d/2
i1 — x:ll < CH Ny — xoll + K72Y2 e

L2 ivi-w
G (xit1) = Gl < WC lxn — x«ll + L.2K7]le]l,

where C =1 — zld% € (0,1). Here, y,c, ¢, K1, ..., K7 are universal positive con-
stants.

As with Theorem 3.1, the factors of 24 are artifacts of the choice of scaling of W;. Had
the entries of W; been scaled like (0, 2/n;), these factors would not be present.

3.3 Practical Algorithm

The empirical risk objective is nondifferentiable on a set of measure zero. At points
of nondifferentiability, Algorithn 1 requires selection of a subgradient d f (x;). Such
a subgradient could be determined by computing V f(x; + dw) for a random w and
sufficiently small §. This is because f(x) is a piecewise quadratic function, and by [6,
Theorem 9.6], we can express the sub-differential as

df(x) =conv(vy, v2, ..., V), 3.7
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where conv denotes the convex hull of the vectors vy, ..., vs; t is the number of
quadratic functions adjoint to x; and v; is the gradient of the i-th quadratic function
at x. Because this computation of a subgradient is not explicit, we propose another
algorithm, Algorithm 2, where the step direction is simply chosen as vz, = Vg . In
practice, it is extremely unlikely to have an iterate on which the function is not dif-
ferentiable. In other words, Algorithm 1 reduces in practice to Algorithm 2. However,
strictly speaking, the convergence analysis does not apply for Algorithm 2 because of
the possibility that vz, is not a subgradient at X;.

Algorithm 2 Practical gradient descent method

Input: Weights of the network W;; noisy observation y; and step size v > 0;
1: Choose an arbitrary initial point x € RF \ {0};

2:fori =0,1,...do

if f(—x;) < f(x;) then

4 Xi < —Xj;
5:  else

6: Xi < xi;
7.

8

9

(5]

end if ;
Compute vy, = (l'lfzd Wi,+,i,~> AT(A (H,‘l:d Wi,+,i1) Xp =¥
Xip] =X — vig;;

10: end for

4 Experiments

In this section, we tested the performance of Algorithm 2 on synthetic data with
various sizes of noise, and verified Theorem 3.1 by numerical results. Note that we
do not observe that any entry in W; W;_y 4 ... W2 4 Wj 4 xx, forany i, is zero in
our experiments. Therefore, Algorithm 2 is equivalent to Algorithm 1 in this case.
The entries of A are drawn from N (0, 1/m) and the entries in W; are drawn from
N (0, 1/n;). We consider a two-layer network with multiple numbers of input neurons
k shown in Fig. 2. The numbers of neurons in the middle layer and output layer are
fixed to be 250 and 600, respectively. The number of rows in the measurement matrix
A is m = 150. The latent code x, and the noise e are drawn from the standard normal
distribution. The noisy measurement y is set to be y = AG(x,) + e/l e||, and four
values of t are used such that the signal to noise ratio (SNR) values are 40, 80, 120

and inf, where SNR is defined to be 101log;, (W) The step size is chosen to be

llell
24 /d?, which is 1 since d = 2. Algorithm 2 stops when either the norm of © is smaller
than the machine epsilon or the number of iterations reaches 50000.

The Lasso model min, %IIAZ — yII% + |Iz]l1 for compressive sensing in [11] is
used to test the empirical probability of successful recovery for noiseless problems.
The number of nonzero values in z, is k and the nonzero values are drawn from
the standard normal distribution. The locations of the nonzero values are selected
randomly. The vector y is set to be Az,. The value of w is 2000 + 1/||A’y||c0, Where
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—5/— Lasso
808
o
g
306
w
G
5 0.4
<]
o
0.2
0 | | | =z iz iz iz iz <ty
20 30 40 50 60 70 80 90 100
k

Fig. 2 Empirical probability of successful recovery for noiseless problems (from 30 random runs) versus
k, where k is the number of input neurons of the generative model G for Algorithm 2 and & is the sparsity
level for Lasso. In these experiments, the network has 2 layers, the middle layer has 250 neurons, and the
output layer has 600 neurons, after which m = 150 random measurements are taken

lvlloo = max{|v;|}. A run is called successful if the relative error ||z — z«||/llz«]l 18
smaller than 10~". We use the implementation in [11]" for solving the Lasso model.

Figure 2 reports the empirical probability of successful recovery for noiseless prob-
lems. A run of Algorithm 2 is called successful if the relative error ||x — x| /||x«]l is
smaller than 10~3, We observe that Algorithm 2 is able to find the true code x, when
m is sufficiently large relative to the latent dimensionality k. This experiment shows
that signal recovery by empirical risk optimization for compressive sensing under
expansive-Gaussian generative priors succeeds in a much larger parameter range than
that given by the theorem. In particular, the empirical dependence on d appears to
be much milder in practice than what was assumed in the theorem. For comparison,
we also plot the recovery error versus sparsity level k using Lasso. We observe that
empirical risk optimization for compressive sensing with generative models is able
to recover the true signals with smaller signal dimensionality than by solving Lasso
under a sparsity prior.

Figure 3 shows graphs of the relative square errors versus the number of input
neurons at different noise levels. The figure is consistent with the theoretical result
in the sense that, fixing &, the relative error of the solution found by Algorithm 2 is
proportional to the norm of the noise, formally stated in (3.2). Note that for noisy
measurements, the relative square error decreases approximately linearly as the num-
ber k decreases. This result is better than what is predicted by the theorem because
the theorem is proved in the case of arbitrary noise. In this case, the noise is random,
and one expects superior performance for smaller values of k because only a fraction
k/n of the noise energy projects onto the k-dimensional signal manifold in R”, i.e.,
llx; — x|% is approximately proportional to k. We refer to [13] for more details in the
case of random noise.

Figure 4 shows the relationship between the relative error ||x; — x4||/||x«|| and
the number of iterations for four values of SNR. The number of input neurons is

! This implementation is available at https://www.caam.rice.edu/~optimization/L1/fpc/.
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Fig. 3 The relative square error ||x — xx ||2 /1% ||2 versus the number of input neurons k. The average of
successful runs is reported

I
100 *  SNR:40 | 1
O SNR:80 | |
vV SNR:120
X SNRinf
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Fig.4 The relative error ||x — xx||/||x«| versus the number of iterations. A typical result is reported

k = 10. Note that in the tests for the different values of SNR, all the other settings
are identical, i.e., the initial iterate, latent code x,, weights matrices A and W; are
the same. We observe that after approximately 20 iterations, Algorithm 2 converges
linearly to a neighborhood of the true solution x,, and the size of the neighborhood only
depends on the magnitude of the noise. These results are consistent with Theorem 3.1.
Additionally, this figure demonstrates that the relative error in the recovered latent
code scales linearly with the magnitude of the noise, which is also consistent with the
theorem.

5 Proof of Theorem 3.1

In this section, we prove our main result. Recall that the goal of Algorithm 1 is to
minimize the cost function

1
f(0) = ZIAG ) —yI% (5.1)
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where y = AG(x4) + e and e is noise.

The proof relies on a concentration of measure argument which ensures that the cost
function f(x) and the step direction v, concentrate around f E(x)and h,, respectively,
where f E(x) and h, are defined later in Sect. 5.1. In particular, if the WDC and the
RRIC hold with € = 0 and the noise e is 0, then f(x) = f£(x) and v, = h,. The
idea of our convergence analysis is to prove properties of fZ(x) and the direction /,
that are sufficient for a convergence analysis, if our method where to be run on f % (x)
with step directions given by &, and then show that the actual cost function f(x) and
step direction are ‘close enough’ to establish convergence.

It is well known that if the gradient of a function is Lipschitz continuous, then a
steepest descent method with a sufficient small step size converges to a stationary point
from any starting point [25]. However, this result can not be used here since the gradient
of the function (2.2) is not continuous. We overcome this technical difficulty by the
following three steps, rigorously stated in Lemmas 5.1, 5.2, and 5.3, respectively.

1. The function &, is Lipschitz continuous except in a ball around 0.
2. The (sub)-gradient of f(x) is close to hy.
3. The iterates generated by Algorithm 1 stay sufficiently far away from O.

Those three steps are sufficient to show that the gradient of f(x) is close to being
Lipschitz continuous, and therefore the iterates from Algorithm 1 converge to a neigh-
borhood of a stationary point. The size of the neighborhood depends on how close
the (sub)-gradient of f(x) is to &y, and is controlled by the noise energy |le|| and
the variable € in the WDC and the RRIC. Of course, we also have to ensure that the
algorithm not only converges to any of the three stationary points, but that it actually
converges to a point close to x,, for this we rely on the ‘twist’ of the algorithm in
steps 1-3.

The remainder of the proof is organized as follows. We start by defining notation
used throughout the proof (see Sect. 5.1). In Sect. 5.2 we introduced several technical
results formalizing the steps 1-3 above, and in Sect. 5.3 we use those properties to
formally prove Theorem 3.1.

5.1 Notation

Here, we define some useful quantities, in particular fZ(x) and h,, and introduce
standard notation used throughout. We start with defining a function that is helpful for
controlling how the operator x — W, x distorts angles, and is defined as

g) = cos™! (% [(m —6O)cosh + sin 9]) .

With this notation, define
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where
d—1 2] d—1 . = d—1 _
~ 1 T _Gi,x,y 1 Slnei’x’y T —Qj,x,y R
hx,y=2—d<lle Y+27§T jHIT lyllx.

Here, éO,x,y = /(x,y) and éi,x,y = g(Q_,-,Lx,y). Moreover, given a vector z € R?,
Z = z/|lz||. For simplicity of notation, we use 4, and &, to denote h, . and h; .,
respectively, i.e., we omit x,.. Next, define

1 ~ 1
E;o\ _ T T T
fRO) = s X =X e, Sy X
Moreover, let

d—1 . x d—1 X

sin 6; T —0;
Pd = E | | ,
: T L T
i=0 Jj=i+1

where éo =, and éi = g(é,',l).

Next, define B(x,a) := {y € R¥ | |ly —x|| < a}, letu = v + cO;(¢) denote
lu — v|| < clt|, and f(t) = O(g(t)) denotes limsup,_, .o | f()|/1g(t)] < C, where
C > 0is a constant. Moreover, || - | denotes the spectral norm.

Finally, define

1
Se i={x € R* | [y, Il < 7€ max(|lx|, [lx«D},
ST := Se N B(xy, 5000d% | x,||), and

ST 1= Se N B(—paxs, 500d" /e[l x. ).

5.2 Preliminaries

In this section, we state formal results making steps 1-3 from the beginning of this
section rigorous, and collect properties used later in the proof of Theorem 3.1.

We start by showing that the function £, is Lipschitz continuous except in a ball
around 0:

Lemma 5.1 Forall x,y # 0, it holds that

1 6d+4d> 11
lhy — hy| < (—+—max <——> flx II) lx —yl.
x My 24 T T 0 Il 1yl /)

Inaddition, ifx, y ¢ B(0, r|lx«|]) foranyr > 0, then ||hy—hy| < (2% + 6211-3212) lx—
vl
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The next lemma states that 4, and the sub-gradient v, are close:

Lemma 5.2 Suppose the WDC and RRIC hold with € < 1/(167d?)?. Then for any
x # 0 and any vy € 0 f(x),

3

Je 2
lox = hall < a1 == max(lx]l ) + 5775 llell.

where ay is a universal constant.

Next, we ensure that after sufficiently many steps, the algorithm will be relatively
far from the maximum around 0:

Lemma 5.3 Suppose that WDC holds with € < 1/(16xwd*)? and |le| < 81”:2—*(,‘}2. More-

d .
@2 \here ay is a

daz
universal constant. Then, after at most T = (%)2 steps, we have that for alli > T
and for all t € [0, 1] that t%; + (1 — )xi41 ¢ B0, g=llxs ).

over, suppose that the step size in Algorithm 1 satisfies 0 < v <

Recall that Sg is the set of points with the norm of A, upper bounded by
Bmax(|[x]||, |x«|]). The following lemma shows that this set is contained in balls
around x, and p;x,, thus outside those balls, the norm of 4, is lower bounded, which,
together with Lemma 5.2, establishes that the sub-gradients are bounded away from
zero. This in turn is important to show that outside those balls our gradient scheme
makes progress.

1

Lemma 5.4 [13, Lemma 8] Forany 8 < rar

Sg C B(xs, 5000d°B|x. ) U B(—paxs. 500d" /Bl x.).

Here, pg > 0 obeys pg — 1 asd — oo.

It has been shown in [12] that the function fZ (x) has three stationary points: one at
— PdX«, one global minimizer at x, and a local maximizer at 0. Therefore, Algorithm 1
could in principle be attracted to —pgx,. Lemma 5.5 guarantees that with the twist
from Step 3 to Step 7, the iterates of Algorithm 1 converges to a neighborhood of x,.
Lemma 5.5 Suppose the WDC and RRIC hold with € < 1/(16wd?)?. Moreover, sup-
pose the noise e satisfies || e|| < ZZ';’;‘J , Where a3 is a universal constant. Then for any
ba € [pa, 1], it holds that

J&x) < f) (5.2)

for all x € B(¢axs, asd 0| x,|)) and y € B(—paxy, asd='0||x, ), where as < 1 is
a universal constant.

Once an iterate is in a small neighborhood of x,, Lemma 5.6 guarantees that the
search directions of the iterates afterward point to x, up to the noise e. Therefore, the
iterates by Algorithm 1 converge to x, up to the noise. In other words, the parameter
€ in WDC and RRIC does not influence the size of the neighborhood that iterates
converge to.
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Lemma 5.6 Suppose the WDC and RRIC hold with 200d+\/d\/e < 1 and x €
B(xy, d/€||x«|). Then for all x # 0 and for all v, € 3 f(x),

11
< sl =Xl +

2
2 g8 W”e”-

Ux — 2_d(x — Xx)

5.3 Proof of Theorem 3.1

The proof can be divided into three parts. We first show that the iterates {x;} converge
to a neighborhoods of x, and —p; x4, whose sizes depend on € and the noise energy
le]|. Second, we show that the iterates only converge to the neighborhood of x, that
depends both on € as well as on the noise energy |le||. Lastly, we show that once an
iterate is in the aforementioned neighborhood of x,, the subsequent iterates converge
to a neighborhood of x, whose size only depends on the noise ||e||, but not on €.

1. Convergence to a neighborhood of x, or —pyx,: We prove that if ||Ay, | is suffi-
ciently large, specifically if the iterate x; is not in the set Sg with

B = da1d> /e +26]1e] 2972 /|| x|,

then Algorithm 1 makes progress in the sense that f(x;4+1) — f(x;) is smaller than
a certain negative value. Therefore, the iterates of Algorithm 1 converge to Sg.

Consider i such that X; ¢ Sg. Let n;, € 0 f(%;) and define X; = X; — avvy,, where
a € [0, 1]. By the mean value theorem, for some a € [0, 1], we have

f&i — va, - fG) = < va,)
< vvx:) (nfi — Vx> _vai>
- ||U)Ei g Il = ling, — vz D- (5.3)

Next, we provide a lower and upper bound of the terms ||vg, || and |lvg, — v, |l
respectively, which appear on the right hand side of (5.3).

First, we have
lvg, I = llhg I = llhz, — vz |l

d/2
> 27 max (| %I, [lx.1) ( —ayd* e = 2| I ”)
Xy

. 2d/2
> 27 max(|I% ], lx«) (3a1d3ﬁ + 24]le] = ”> (54)
3

27 x,|13a1d> Ve, (5.5)

where the second inequality follows from the definition of Sg and Lemma 5.2, and
the third inequality follows from the definition of 3.
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Second, by Lemmas 5.1 and 5.3, for all @ € [0, 1] and i > T (T is defined in
Lemma 5.3), we have

bod* .
lhg — hgll < Z_d”xi — %l (5.6)

where X; = X; — avvy,, and by is a universal constant. Thus, for any vg, € 9 f (xi),

lvg, — vz, | < llvg, — g ll + llhg, — gl + lhz — vg |l

3 . 2 bod? .
Sa—g max (|| ||, [|x«1) + =75 2d/2 lell + —- ~d llx: — x|
d3. /€ .
+ai d max (|| [, lx«l]) + Wllell
d3. /€ 2
Sa—g max (|| %; || + vilvg |, lx«l) + —7 2 v|jvg |l
3 4
+a12—d max ([|%; |, [lx«) + Wllell
d3 s
<a \/_ <2 + 7 )maX(lez'll, [l 1D
b0d2 / 42
+ vz, | +4——F—Ilx«ll, (5.7

where the second inequality follows from Lemma 5.2 and (5.6), and the fourth

inequality follows from Lemma A.1 and the assumption |e| < %”;,*/ﬂ

Combining (5.7) and (5.4), we get that

5 d?
lvg, — vz Il < P Vblz_d vz, Il

with the appropriate constants chosen sufficiently small, where b; is a universal
constant. Choosing vy, = ny, yields

5 d?
Ing; —vell < (6 + vboz—d>llv;,-||. (5.8)
Therefore, combining (5.3) and (5.8) yields

1
@ = vug) = f(&) = —vllvg 112, (5.9)
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where we used that vbo‘zi—j < 1/12 by the assumption that the step size obeys
v = K327 /d? and by taking K3 appropriately small. Applying (5.5) to (5.9) yields

N N 1 _
fGE —vvg) — fE) < —Evnvg,.n? < —27d%bje||x]%,

. . d
where b; is a universal constant and we used v = K3§7. Therefore, there can

d

% iterations for which ¥; ¢ Sg. In other words, there exists
.

N < _feo2?

= bid*e|x.|?
Ko |l x]l

2. Convergence to a neighborhood of x,: Note that by the assumption |le| < Jirsdn
and € < K1/d°°, our choice of 8 obeys < W for sufficiently small K1, K>,

and thus the assumptions of Lemma 5.4 are met and we have

be at most

such that Xy € Sg.

Sg C Bty 1) U B(—paxe, v/rx.lld®). (5.10)

Here, we defined the radius r = K5d9ﬁ||x* || + Ked®|le]|29/2, and K5 and K¢ are
universal constants and are used in (3.1).

By the assumption |le|]| < ;22”2)5;;! and € < K;/d*° and choosing K| and K;
sufficiently small, we have r < a4d~'0||x,|| and /r[[x,[d® < asd =19 x.||. Note
that the powers of d in the upper bounds of |e|| and €, which are —42 and —90
respectively, are used to get /7 [[xx [d® < asd~'0||x,||. It follows from (5.10) that

S C Bl asd™"|lxy])) and S5 € B(—pae, asd ™"l ).

Therefore, by Lemma 5.5, for any x € Sg and y € ST, it holds that f(x) > f(y).

Thus, if Xy € Sg, then Xy must be in S; due to the operations from Step 3 to
Step 7.

We claim that if x; is inside the ball B(xy, r), then all iterates afterward stay in
B(xy, 2r). To see this, note that by Lemma A.1 and the choice of the step size, we
have for any vz, € 8 f(%;), vllvg, | < 57 max(llx|l, [lx«[D-

3. Convergence to xy up to the noise e: Next we show that for any i > N, it holds
that x; € B(xy, asd 19| x4|), ¥ = x;, and

i+1—N d/2
i1 — xall < D5 Ny — xll + 52972 e]].

where ay is defined in Lemma 5.5, b, =1 — zid% and b4 is a universal constant.

Suppose X; € B(xy, asd %) x,||). By the assumption € < K /d°° for sufficiently
small K1, the assumptions in Lemma 5.6 are met. Therefore,

lxir1 — xell = 1% — vz, — x4l

- Voo v o
= [|X;i — x4 — 2—d(xi — Xx) — VU5 + z_d(xi — x|l
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v L
= (1= 37) 15 = xll 4+ vlog, = 37 G — 2l

v 2
= (1-57) 1% - x*||+v(82d||xl x*'”m”e”)
v 7 2
= (1= 57 ) 1% = xall + v 55 el (5.11)

where the second inequality holds by Lemma 5.6. By the assumptions x; €
B, asd O x), el < ;g“;;ﬂ, and using (5.11), we have

Xit1 € B(xy, asd 19| x4]). In addition, using Lemma 5.5 yields that X1 = x;41.
Repeat the above steps yields that x; € B(x,, asd"0|x,|) and ¥ = x; for all
i>N.

Using (5.11) and v = K'; we have

d2 ’
d/2

—5lell, (5.12)

lxit1 — x|l < ballx; — x4l + b3 7

where by = 1 — 7K3/(84%) and b3 is a universal constant. Repeatedly apply-
ing (5.12) yields

1-N N— 1 2d/2
i1 — xell < D5 N ey — xill + (B5N + b5 -+ 1) llell
. b224/2
+1-N 3
<0 lxny — x«ll +m”€”

< BN ey — xull + b2 e,

where the last inequality follows from the definition of b, and the step size

v=Kj3 i—{;, and b4 is a universal constant. This finishes the proof for (3.2). Inequal-
ity (3.3) follows from Lemma A.8.

This concludes the proof of our main result. In the remainder, we provide proofs
of the lemmas above.

5.4 Proof of Lemma 5.1

It holds that
lx — yll = 2sin(Oy,y/2) min([lx|], [y ), Vx,y (5.13)
sin(9/2) > 6/4, V6 € [0, ] (5.14)
d
%g(e) € [0, 1] Vo € [0, 7] (5.15)

where 6y , = Z(x, y).
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For brevity of notation, let {; , = I—[f:,.l TFG;TA Combining (5.13) and (5.14)

gives |0_0,x,x* _éO,y,x*| < 4max( ) [lx—y]|l. Inequality (5.15) implies |9, XX —

Ixl Tyl
Oi,y,xu| < 10j x5, —0j,yx.|, Vi > j. It follows that

1wy = By x|l < Zd e =i+ 2 |cox 20,y | [l
—,_z
T
d—1 . = d—1 . =
1 sinb; x x, R sinf; y x, R
) D et RIS B Y RS B
24 |4 b4 4 b4
i=0 i=0
)
(5.16)
We use the following result which is proven later in Lemma A.2:
d - _ 4d 1
T < _|90,x,x* - QO,y,x*| < — max lx — yIl. (5.17)
T 4 [ETK || I
Additionally, it holds that
-1 . 5 .z
sinf; x.x, . Sinb; xx, . SIn6G; .
Z S Gk = 0 P 1P
b4 b4
=0
! sin 6 , R
_2%941,)1)7
i=0
d—1 . ~ d-1 . =
d . . sind; x x, sin 6} y x,
= —IE -3+ ZTQH,X - Z — G| GI8)
i=0 i=0
T3
We have
d—1 . A .=
siné; x x, siné; x x,
T3§Z[¢ il — i1y
i=0
sinf; y.x, sin6; .,
b |l #QHJ]
T
d—1 .
1 (d—i—1,- - 1 _ _
< — | — |6i- —0i—1,y + —|sin6; —sin;
= IZ(;[TF ( = | i—1,x,x4 i—1,y,x% > JT| 1,X, X5 l,y,x*|:|
d* . 4d> 11
=< _|90,x,x* _GO,y,x*| < —max | —, — ) [lx — yl. (5.19)
m T el Myl
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Using (5.13) and (5.14) and noting [|X — J|| < Oxy,», yield

N~ A 1 1
I — Pl <6,y <2max (— —) lx — ¥l (5.20)
lxll NIyl

Finally, combining (5.16), (5.17), (5.18), (5.19) and (5.20) yields the result.

5.5 Proof of Lemma 5.2

T
Let 5, = (r[}zd W,,ﬂ) AT (A (H}zd W,,H)x —A (r[}zd W,~,+,x*)x*) and

T
Gr = (]_[l-lzd W,-,+,X> ATe. Therefore, 7, = Uy — gx.
For any x # 0 and suppose G (x) is differentiable at x, we have

oy = hxll = lvx + gx — hxll < lvx — Ayl + llgxll
AN
< by Zf max(lx, llx<) + g

3

le]l, (5.21)

2
< by W'

= bo—g— max(flx llx.|) +
where the second inequality follows from [12, (26)] and the third inequality follows
from Lemma A.3 given later.

Since f(x) is a piecewise quadratic function, by [6, Theorem 9.6], we have

df(x) =conv(vy, v2, ..., V), (5.22)

where conv denotes the convex hull of the vectors vy, ..., vs, t is the number of
quadratic functions adjoint to x and v; is the gradient of the i-th quadratic function at
x. Therefore, for any v € 9 f(x), there exist ¢y, ¢2, ..., ¢; > 0 such that ¢; + 2 +
...tc =1land v = crv) +c2v2 + . .. + ¢;v;. Note that for any v;, there exists u; so
that v; = lims_, o+ V f(x +38;u;), and f is differentiable at f (x 4 du;) for sufficiently
small §.

The proof is concluded by appealing to the continuity of 4, with respect to nonzero
x, inequality (5.21), and by noting that

lvy — hell < E cillvi — hyll = E Cillali“g+ VI(x+Sui) — hyll
i i i
= E ¢i im ||V f(x+8iui) — hyysul
N 51'—>0Jr

1
= Z ci Hm Wersu = hcesus

3

< by ~d

max ([lx[l, el + 7z llell.

Birkhauser



19 Page220f34 Journal of Fourier Analysis and Applications (2021) 27:19

where we used the inequality above and that ", ¢; = 1.

5.6 Proof of Lemma 5.3

First suppose that X; € B(0, # lx«]l). We show that after a polynomial number of
iterations N, we have that X; 5 ¢ B(0, ﬁ [lx«]). Below, we use that

1
[[x4] forall x € B(O ||x*||) and vy € 3 f(x),
(5.23)

1
(v, v2) < Oand oy | = 27—

which will be proven later. It follows that for any x; € B(0, 3271 llx«ID), X; and the next
iterate produced by the algorithm, x; | = X; — vvg;, and the origin form an obtuse
triangle. As a consequence,

2 2,2
[ I

+ 3oz 17 = 1517 + v mnx*nz,

%4111 = it I® = 1% (5.24)
where the last inequality follows from (5.23). Thus, the norm of the iterates x; will
increase until after (%)2 iterations, we have x;+y ¢ B(0, ﬁ lx«1D-

Consider ¥; ¢ B(0, 33— [x.||), and note that

wagd . 1 .
% < EIIX:‘II,

dag .
vljvg | < VT max ([|%; |, [|x«]) < v

where the first inequality follows from Lemma A.1, the second inequality from
1x: ]| = ﬁ lx«]l, and finally the last inequality from our assumption on the step size
v. Therefore, from x; 1| = X; — vvg,, we have that x; + (1 — t)x;41 ¢ B(0, ﬁ lx«1D
for all t € [0, 1], which completes the proof.

Itremains to prove (5.23). We start with proving (x, v,) < 0.Forbrevity of notation,
let A, = ]_[il=d Wi +... We have

T, = <A£ATAAxx — A?;ATAAX*X* + A){ATe, x>
< <A§ATAAXx — ATAT AN x, — AT Agx + AT A, x,., x>
+ (A,{Axx — AT Ay x, + AT ATe, x>

< el Ax P + el AcxllAxxll + (AT Acx = AT Aox+ AT AT e, x)

13, 1 2

< EZ llx)1* — 4—2—dIIXIIIIX*II + IIXIlzd/z llell
13 1/(871) 1

< x|l (52 x) + llxll — dllx*H)

1 1 |l x ||
= lIxl5z (ZIIXII - S—nllx*H) < ~Teod Xl
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= 224>
the third inequality follows from [12, Lemma 8] that <Axx, Ax*x*> > % zid 1 Il
and the fourth inequality follows from Lemma A.3.

If G(x) is differentiable at x, then v, = , and (x,vy) < — L |x, | < 0.1f
G (x) is not differentiable at x, by Eq. (5.22), we have

The second inequality follows from RRIC, [12, (10)] that IAcx|? < IZ# < Qid'
|

X
o =xTcvi+an+-+ev) <@ +a+...+¢) —”—”dllx*ll
16772

=— lx:ll <O,
for all vy € 9 f(x). We have

loxll = max (, vy) = (=x/llx [, vx)

> Ixll.
=1 = 16724 el

5.7 Proof of Lemma 5.5
Consider the function

fn(x) = fo(x) = (AG(x) — AG(xy), €),

and note that f(x) = f,(x) + lle||?. Consider x € B(pgxs, ¢|lx+]), for a ¢ that will
be specified later. Note that

1 1
HAG(x) — AG(x,), e)| < <A [T Wisox. e> + <A [T Witrxe, e>
i=d i=d
1 T
= <x, (H W,-’+’x> ATe>
i=d

1 T
+ <x*’ <1_[ Wi,+,x*> AT€>
i=d
2
= (el A el 5g77 llell
2
= (@lxell + el 77z llell,

where the second inequality holds by Lemma A.3, and the last inequality holds by our
assumption on x. Thus, by Lemmas A.5 and A.6, we have

) < fE@) + 1fox) — fE + HAG(x) — AG(xy), e)]

1 10 1
< 5 (¢§ ~ 24+ ;dgo) el + sz P
8
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€(1 + 4ed) e(l + ded) + 48d° /€ €(1 4 4ed)
t——r Ix I”+ Y] il + ———lIx o

2
+ (@llx«ll + ||x*||)mllell- (5.25)

Additionally, for x € B(¢gxs, ¢llx«|), we have

1 10 1
(525 < o7y («pﬁ — 2¢a + a_3d‘”> el + S el
8

e(1 + ded) + 484> /€

1 +4ed
+ 0D G+ 0l + e (¢ + @)l

2d
e€(l +4ed
 SUtded

. 12

10 2
2 2
< 2 (1 + 03 =200+ ade+ 68d ﬁ) + @l + D 573 el

(5.26)

2
el + (@l | + bell) 577 llel

where the last inequality follows from e < /€, pg < 1,4ed < 1, ¢ < 1 and assuming
Y =¢.
Similarly, we have that for any y € B(—@gxy, @]l x«]|)

() = IE3[]”(y)] —1f ) —ELf W] = (AG(x) — AG(x4), €} |

1
> et (83— 20ap0 = 100%) Ll + S P

3
- (E(IZ#HW g U AD FAEVE e + E“;—f‘i)nx*nz)
2
— (@llel + D 775 el
o L0 (14 02— 20000 — 1080 — 682 VE) — (ol + .l s el
= od+1 d * *W5d)2

(5.27)

Usinge < /e, p4 < 1l,4ed < 1,90 < 1, |le| < ;22”2’;*/! < I;%gj}*z” and assuming

¢ = €, the right side of (5.26) is smaller than the right side of (5.27) if

2
(1 — pa)pa — 4K /d?

(125 + %) d3
ag

It follows from Lemma A.4 that 1 — pg > 1/(a7(d + 2)?). Thus, it suffices to have

p=€= le and 4K, /d* < %m < 1— pg for an appropriate universal constant

K>, and for an appropriate universal constant ay.

p=ex

(5.28)
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5.8 Proof of Lemma 5.6

For brevity of notation, let A ; ; = ]_[ : Wi +.;. Suppose the function G(x) is differ-
entiable at x. Then the local linearity of G gives that G(x +2) — G(x) = A,z for
any sufficiently small z € Rk, Using the RRIC, [12, (10)] and Lemma A.8, we have

|<AAj,xZ» AAj,xx - AAj,x*x*> - (Aj xZ Aj xX — Aj x*x*)|

IA

1l 1 = gl = e+ 26a) [ = A

IA

1.2
€5 (1 +2ed)llx = xliz]]-

Therefore, ||y — AT (A xx — Aj x| < €7 (1 + 2ed)|lx — x|l < fga7llx —
X«||. Combining with Lemma A.9 yields that

1 11

Uy — 2_d(x — x| < 2_d§”x — Xl

It follows that
- 1 _ 1 11 2
lvx — z—d(x —x)l = llvx +qx — 2—d(x — x|l < 2—d§||x — x|l + Wllell.

For any x # 0 and for any v € 9 f(x), by (5.22), there exist c1,c2,...,¢; > 0
suchthatc; +co +...+¢ =1land v = cjv; + C2U2 + ...+ ¢;vp. It follows that
lo = 57 (x = x)l < Xz cjllv; — 57 — x| < z—dgnx Xl + 57z llel.
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Appendix A: Supporting Lemmas

Lemma A.1 is used in proofs for Sect. 5.3 and Lemma 5.3.

Lemma A.1 Suppose that the WDC and RRIC holds with € < 1/(16xd*)? and that
the noise e satisfies |le|| < as2~?||x,|. Then, for all x and all vy € 3 f(x),

agd
flocll < ETa max (||x|l, [[x«]), (A.1)

where as and ag are universal constants.

. -6
Proof Define for convenience ¢; = ]_[ld ]1 —==. We have

el < hxll + lAx = vxll
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-1

1 Slnez X (B
< |3 - d{ox* - 2(; Gt ®
d3./e 2
+ar—— max(llx ||, lx[D) + 2dﬁllé’ll

3

max([lxll, [lxsl) +

1 d d 2
< dIIXII+ 2a+ oa ) Il +a aza lell

agd
2d

| /\

max ([lx |, [[x«]),

where the second inequality follows from the definition of 4, and Lemma 5.2, the
third inequality uses |{;| < 1, and the last inequality uses the assumption [e| <
as2= 2 |x|l. O

Lemma A.2 is used in proofs for Lemma 5.1.

LemmaA.2 Supposea;, b; € [0, mw]fori =1, ...,k and|a;—b;| < |aj—b;|, Vi > j.
Then it holds that

k
< —la1 — b1l
T

'ﬁn—a, lﬁln b;

i=1 i=1

Proof Prove by induction. Itis easy to verify that the inequality holds if k = 1. Suppose
the inequality holds with k = ¢ — 1. Then

li[rr _ﬁn—bi
i=1 d

i=1

Lemma A.3 is used in proofs for Lemmas 5.2, 5.3, and 5.5.

Lemma A.3 Suppose the WDC and RRIC hold with € < 1/(16d?)?. Then we have

2
= a7z llellixl.

T
‘x qx

T
where g, = (]_[il:d WH_,X) AT e. In addition, if x is differentiable at G (x), then we
have

2
llgxll < W”e”-

) Birkhduser
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Proof We have

T gul? = leT AG)1? < JAG )P lell* < (1 + OGP llell?

1
1
<A+ [TIWir e Plel?Ix)? < (1 + o)1 +26d) el llx I,
i=d

where the second inequality follows from RRIC and the last inequality follows from
[12. (10)]. Therefore, |x”q.| < 5% lell||x]I.

Suppose G is differentiable at x. Then the local linearity of G implies that G (x +
) —GKx) = (]—[il:d W,-,+,x) z for any sufficiently small z € R¥. By the RRIC, we
have

(L) ([ { (T« (1)

1
2 2
<e[TIwitxl?lzl?
i=d

which implies

([ (1)

Therefore, we obtain

1
<+ [T IWisra Pz
i=d

1 1
A (1‘[ W,-,+,x> <Vi+e[[IWiial.
i=d i=d

Combining above inequality with []/_, [|Wi 4 .|| < (1+42ed)/24/> < 1.5/2%/2 given
in [12, (10)] yields

1
A (1"[ Wi,H)
i=d

where the second inequality follows from the assumption on €. Therefore, we obtain

< 1.5V1+¢/29% <2242,

T T

1 1
2
lgell = <]’[Wi,+,x> ATe| < (Hwi,+,x) AT llell < g5 lell.
i=d i=d

Lemma A.4 is used in proofs for Lemma 5.5.
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LemmaA.4 Foralld > 2, that
1/ (@@ +2?) = 1= pg =250/ + 1),

and ag = ming> pg > 0.

Proof 1t holds that

log(1+x) <x Vx € [—-0.5,1] (A.2)
log(1 —x) > —2x Vx € [0, 0.75] (A.3)

where 6y, = Z(x, y).
We recall the results in [12, (35), (36), and (49)]:

v 3 v T .
0; < - and 0; > - Vi >0
i+3 i+1
d—1 X d—1 x d—1 v
0; 6; — sin 6; 0;
1—pd:]_[<1——)+ [] (1-+2
i=1 T i=1 T Jj=i+1 T

Therefore, we have forall 0 <i <d — 2,

I (-4)< 1 - ) -

<
j=i+1 Jj=i+l1
<e ?;ilﬂ /ﬁ <e flil v+1d5 — ﬂ’
- - d+1
d—1 . d-1
Il (‘) [1 (1-55) =)
j=it1 T =it j+3
. 6
T s o i s (13
- d+2

where the second and the fjfth inequvalities fgllowvfrom (A.2) and (A.3) respectively.
Since 73/(12(i + 1)%) < 67/12 < 6; —sin6; < 67/6 < 2773 /(6(i + 3)*), we have
that for alld > 3

o3 42 2 375 250

+Z +

1 — < <
— 6 +3)3d+1 " d+1 4d+1) " d+1

< -
Pd=

and

d—1 . 6
i+3 1
1 — > > ,
pe = <(d+2)> +;12(1+3)3 (d+2> T Ki(d+2)?
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where we use Y o0, %2 < % and Y 7, i3 = 0(n*).Since py > 1 —250/(d + 1) and
pa > 0 for all d > 2, we have ming>2 pg > 0. O

Lemma A.5 is used in proofs for Lemma 5.5.

LemmaA.5 Fix0 < a9 < ﬁ. For any ¢4 € [p4, 1], it holds that

10 s 11>
fE) < W (¢d 204 + a_3d“9> el + 5 Vx € B(@axa, asllx.) and
8

)12
fE(x)>2m(¢d 2¢d,0d—10d3a9) lx1* + 2d*+l’v € B(—¢axs. agllx«).

where ag is defined in Lemma A.4.

Proof Tf x € B(paxs, ag|x.|), then we have 0 < 6, ,, < arcsin(ay/¢y) < ’27%
0 < 00xx, <0ixx, <552, and ¢gllxill — aollxsll < x| < allxill + aollx« . Note

that cost > 1 — 5 V92€¢ [;) ]. We have
R (H %) e
< #@d + a9)”[lx.)* — zid Gj n_nj> x| cos B, x,
< %(qsd + a9)”[lx.)* — zid Gj) @) ($a — a9) x| (1 — ’;;‘f)

IA

1 dag nzgz
W<¢§+2¢da9+ag—2<1 py >(¢d—a9)< 562 ))II AP

2d+1 b7 — 2¢d+a—3da9 [l 117,

8

| /\

where the last inequality is by Lemma A.4 and a9 < 1/(4m).
If x € B(—¢gxy, agllxs]), then we have 0 < m — éO,x,x* < arcsin(agm) < %zag,
and ¢g ||x«ll — aollx«[l < x|l < @allxsll + aollx«||. It follows that

2 d—1 . = d—1 =

[|x 1 1 Sin6; x x, T =60 xx
FE@ = S = g = g 2o === | [T —— | sl
i=0

j=it1

1 1 3d3agm?
Wllxll2 ~5d (Pd + T) llx.lllxll (by [12, (40)])

3d3agm?
2

1
T (@0 — a0 Ixll” = 7 (pd + ) (¢a + ag) [Ix.1?
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1
> v (@3 — 20000 — 104%a9) 1.1

Lemma A.6 is used in proofs for Lemma 5.5.

Lemma A.6 If the WDC and RRIC hold with € < 1/(167d?)?, then we have

1+ 4ed 1 + 4ded) + 484>
|f(x)—fE(x)|_ul| I” + 6( 620),“ ‘/Ellxllllx*ll

e(l+4ed) 2

t——g Il

Proof For brevity of notation, let A, = ]_[,1: 4 Wi +... We have

1 1 I,
f(x)—fE(x)‘=‘5xT (ATATAA = ATA)x + 52T (A Ax 2;)

T (AZATAAx*x* - A{Ax*x*) T (A){Ax*x* - hx,x*)
T
*

1
+ o (ATA AAy, — A;Ax*>x*
1 Iy
—+ E)CZ (A/\],‘*Ax* — 2_d) X
€l +4ed ,  €l+44ed 2, €l +4ed
< — hl =
=5 5a llx[l” + Y ——Ixll 2 ~d [l {1 1
2443 [e
+ ~d [l {1l
€l +4ed 5,  €l44ed 2
+ 52—d||x*|| + 52—d||x*”
6(1 + 4ed) I ”
e(l + 4ed) + 48d° /e e(1 + 4ed)
+ T f||x||||x*||+2—|| AP,
where the first inequality uses the WDC, the RRIC, and [12, Lemma §]. O

Lemma A.7 is used in proofs for Lemma A.8.

LemmaA.7 Suppose W € R"*¥ satisfies the WDC with constant €. Then for any
X,y € R it holds that

1
[Wixx = Wiyl < (\/ 5 Ter 2(2¢ +9)> llx = yll,

where 0 = Z(x, y).
Proof We have

) Birkhduser
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[Wiaxx = Wi yyll = Wi xx = Wiyl + 1I1We xy — Wiyl
= [[Wix(x = DI+ (Wi x = Wi )yl
S Wi xlllle =yl 4+ W = W )yl (A4)

By WDC assumption, we have
IWT W = Wil < | WEWa = 172] + | W Wiy - 0u
+ | Qxy — 172 < 2¢ +6. (A.5)

We also have

(W x — Wi )yll?

n
= Z(lw,—»x>0 - 1w,—~y>0)2(wi : y)2
i=1
n
<D Q=0 = Tuygy=0)2((w; - )7 + (wi - ¥)* = 2(wi - x)(w; - )
i=1
n
=Y =0 = Luyy=0) (Wi - (x — 3))°
i=1

n n
= Z 1wi-x>01wi-y50(wi . ()C - }’))2 + Z lw,—~x§01wi-y>0(wi . ()C - y))2
i=1 i=1

= (='W Wy o =Wy )& =)+ =W Wy = Wy ) —y)
<2Q2e+6)|x —yII*. (by (A5) (A.6)

Combining (A.4), (A.6), and |W; 4 « ||2 < 1/2+ € givenin [12, (9)] yields the result.
O

Lemma A.8 is used in proofs for Lemma 5.6 and Lemma A.9.

LemmaA.8 Suppose x € B(xy, d/ellx«l), and the WDC holds with ¢ <
1/(200)*/d®. Then it holds that

1 1
[TWicox =[] Wisoxe| =
i=j i=j

Proof In this proof, we denote 6; , ., and 9_,3 x.x, by 6; and 0; respectively. Since
x € B(xy, d/€|x«), we have

0; < 6o < 2d+/e. (A7)
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By [12, (14)], we also have |0; — 6;| < 4i\/€ < 4d./€. Tt follows that

2/0; +2¢ < 2\/9',- +4dJe + 2¢ < 2\/2dﬁ+4dﬁ+2e

1
8d./e < 304" (by the assumption on €) (A.8)

Note that /1 +2¢ <1+ € < 1 + +/d/e. We have

ﬁ (\/1+2€+2\/9i+26> < (1+7 dﬁ)d

i=d—1

107
<1+ 14d./d < — <1.2,
<Il+ JeE < 100 <

where the second inequality is from that (1+x)¢ < 14+2dx if0 < xd < 1. Combining
the above inequality with Lemma A.7 yields

1 1 0
1
[[Wivwx =] Wirmx| = [] (,/ 5 Het+ V20 + 2e) llx — xll
i=j i=j

i=j—1

<~ = il
22

Lemma A.9 is used in proofs for Lemma 5.6.

LemmaA.9 Suppose x € B(xy, dJ/ellx«l), and the WDC holds with € <
1/(200)*/d®. Then it holds that

(QW,.,+,X)T[(ﬁ )= ([T )

1 1
=a@—x)+ 57 ||x—x*||01(1)

24 16

Proof For brevity of notation, let A ;. = I—[f= i Wit,z. We have
Ag 1 (Ad1xx = Ad.1x,x)
d

T
=Ny | Adrxx — Z (AdjxNj—1.1,x,%x)
j=1

d
+ Z Adj x4 j—1, lx*x*) Ad,l,x*x*
j=l1
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d
T T
= Af 1 Adaa =)+ ALY A (Wi = W) Ajoi1 X
j=1

T

T,
(A9)

For T7, we have
1 4d
T = z—d(x — X)) + 2—d||x — x[|01(e). ([12, (10)]) (A.10)

For 7>, we have

d
1 4d — 2
T, = 01(1) Z <2d ( ])6) ”(Wj o = Wi x )N o112, % “
>=1 - 2

2d=3

d
1 4d — 2

= 01(1) Z <2d_ ( 2d_2])€) ICA =11 0x = Ajmi 12X |

j=1
V20 x.x, +2€)

(4d 2j)e 1
o011 —Zx = x| ——
mZ( ) A Py

2d—4% 23

m\\.

Ez—dllx—x*HOl(l), (A.11)

where the first equation is by [12, (10)]; the second equation is by (A.6); the third
equation is by Lemma A.8 and (A.8). The result follows from (A.9), (A.10) and (A.11).
]
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