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FAST COMMUNICATION

OPTIMAL SAMPLE COMPLEXITY OF SUBGRADIENT DESCENT
FOR AMPLITUDE FLOW VIA NON-LIPSCHITZ MATRIX

CONCENTRATION∗

PAUL HAND† , OSCAR LEONG‡ , AND VLADISLAV VORONINSKI§

Abstract. We consider the problem of recovering a real-valued n-dimensional signal from m
phaseless, linear measurements and analyze the amplitude-based non-smooth least squares objective.
We establish local convergence of subgradient descent with optimal sample complexity based on the
uniform concentration of a random, discontinuous matrix-valued operator arising from the objective’s
gradient dynamics. While common techniques to establish uniform concentration of random functions
exploit Lipschitz continuity, we prove that the discontinuous matrix-valued operator satisfies a uniform
matrix concentration inequality when the measurement vectors are Gaussian as soon as m= Ω(n) with
high probability. We then show that satisfaction of this inequality is sufficient for subgradient descent
with proper initialization to converge linearly to the true solution up to the global sign ambiguity.
As a consequence, this guarantees local convergence for Gaussian measurements at optimal sample
complexity. The concentration methods in the present work have previously been used to establish
recovery guarantees for a variety of inverse problems under generative neural network priors. This
paper demonstrates the applicability of these techniques to more traditional inverse problems and
serves as a pedagogical introduction to those results.

Keywords. Phase retrieval; Subgradient descent; Concentration inequality; Non-convex optimiza-
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1. Introduction
Consider the problem of recovering a signal x∗∈Rn from m phaseless measurements

of the form

y := |Ax∗|+η

where A∈Rm×n is a measurement matrix, | · | acts entrywise, and η∈Rm denotes noise.
This problem is known as phase retrieval as, in practice, the phase of the signal is lost
in the forward measurement process due to the underlying physics of the measurement
system. We consider the case when the entries of A are i.i.d. Gaussian, which we will
refer to as the generic measurement regime. In this work, we aim to recover x∗ by
solving the following non-smooth least squares problem

min
x∈Rn

f(x) :=
1

2

∥∥|Ax|−y∥∥2
. (1.1)

This objective function is known as Amplitude Flow. For generic measurements, previ-
ous works have shown that with proper initialization, gradient descent both with [12]
and without [29] truncated gradients can recover the signal with the optimal sample
complexity of m= Ω(n).
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Existing proof techniques of convergence guarantees for (sub)gradient descent of
(1.1) follow a two-step process: (1) establish that spectral initialization or some variant
thereof guarantees an initializer with relative error bounded by a small absolute constant
and then (2) show that the objective satisfies a property akin to convexity near the
minimizer to guarantee convergence. This latter property is called the local regularity
condition RC(µ,λ,ε)1. Showing that this condition holds is crucial in establishing local
convergence for Amplitude Flow [12,29] and its variants [23].

This proof technique is not unique to Amplitude Flow as it was initially introduced
to guarantee convergence for the intensity-based formulation Wirtinger Flow, which
aims to solve

min
x∈Rn

1

2

∥∥|Ax|2−y2
∥∥2
. (1.2)

In the original work [3], the aforementioned two-step procedure established exact re-
covery with sample complexity m= Ω(n logn). A follow-up variant using truncation [5]
improved the sample complexity to m= Ω(n) and also employed the RC(µ,λ,ε) to show
convergence post-initialization. Recently, [28] established the sufficiency of a deter-
ministic condition for local convergence when solving (1.2) in the lifted domain and a
relationship between the condition’s accuracy and convergence rate of gradient descent
was shown. This deterministic condition is a uniform matrix concentration inequality
that is proven to hold for generic measurements when m= Ω(n logn).

Other works include the global landscape analysis in [25] which showed that (1.2)
exhibits benign geometry given a sufficient number of measurements m= Ω(n log3n) by
carefully analyzing the gradient and Hessian in partitioned regions of space. In [11],
the authors considered the robust `1 loss with intensity-based measurements and estab-
lished local convergence of a prox-linear algorithm using composite optimization theory.
Convex approaches based on lifting [2,4,10,15] utilize dual certificates to assert correct-
ness of the minimizers of semidefinite programs. Linear programming approaches have
also been studied, whose proof techniques range from using tools in statistical learn-
ing theory [1] and geometric probability theory [14], along with elementary approaches
using standard concentration estimates of the singular values of random matrices [19].
For a more comprehensive overview of prior work for phase retrieval, we refer the reader
to [13].

In this paper, we present a proof technique for solving (1.1) with m= Ω(n) based
on uniform concentration of random matrix-valued functions that are discontinuous
in space. Consider a subgradient descent algorithm with iterates {xt}t>0 of the form
xt+1 =xt−αvxt,x∗ where α>0, vxt,x∗ ∈∂f(xt), and ∂f(x) is the Clarke subdifferential
at x (defined in Section 3). Let dist(x,x∗) := min(‖x−x∗‖,‖x+x∗‖). We first state our
main local convergence result in the Gaussian measurement regime.

Theorem 1.1. There exists positive absolute constants C, c1, c2, ρ1, and ρ2 such
that the following holds. Suppose A∈Rm×n has i.i.d. N (0,1/m) entries and the
noise is bounded ‖η‖6ρ1‖x∗‖. Assume the initial iterate x0 satisfies dist(x0,x∗)6
ρ2‖x∗‖ and the step size satisfies 0<α61. If m>Cn, then with probability at least
1−3exp(−c1m)−mexp(−c2n), we have that for all t>1,

dist(xt,x∗)6
(

1− α
2

)t
dist(x0,x∗)+4‖η‖.

1A function L satisfies RC(µ,λ,ε) at a stationary point y if for all x∈Rn such that ‖x−y‖6 ε‖y‖,
〈∇L(x),x−y〉> µ

2
‖x−y‖2 + λ

2
‖∇L(x)‖2.
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This result asserts local convergence up to the noise level with optimal sample com-
plexity. In the theorem, note that we require an initializer with relative error less than
a sufficiently small constant. There are several schemes to achieve this with m= Ω(n)
Gaussian measurements, even in the presence of noise [5,11,12,29]. While convergence of
subgradient descent without truncation for the Amplitude Flow objective is known [29],
the method of proof we present here is novel. In particular, we show that Theorem
1.1 is a consequence of the following two results: (1) a uniform matrix concentration
inequality is sufficient to guarantee local convergence with proper initialization and (2)
Gaussian matrices satisfy this inequality with high probability when m= Ω(n).

We now detail the high level intuition behind the proof ideas and techniques. Let
sgn(z) := z/|z| for z 6= 0 and sgn(0) = 0 act entrywise. For ease of exposition, suppose
there is no noise η= 0. The discontinuous, spatially-varying measurement operator
Ax := diag(sgn(Ax))A plays a critical role in analyzing subgradient descent as this oper-
ator governs the gradient dynamics of f . Specifically, the gradient almost everywhere is
given by ∇f(x) =AT

x (Axx−Ax∗x∗). As will be shown in the next section, the gradient
in expectation obeys a property equivalent to the RC(µ,λ,ε) in neighborhoods of the
global minimizers ±x∗. Hence if we establish concentration of the quantity AT

xAy to
its expectation E[AT

xAy] uniformly in x,y, then this property will also be satisfied by
the gradient. This will be shown to guarantee local convergence up to the global sign
ambiguity with high probability.

The uniform concentration result we establish is the following: when A has i.i.d.
N (0,1/m) entries, then for any parameter 0<ε<1, when m= Ω(n) we have that with
high probability

‖AT
xAy−Φx,y‖6ε ∀x,y∈Rn (1.3)

where Φx,y :=E[AT
xAy] has an analytic expression. As this result holds uniformly in x,y,

we have that for any x,x∗∈Rn, the gradient ∇f(x)≈Φx,xx−Φx,x∗x∗. The difficulty
of establishing (1.3) uniformly in x,y is due to the fact that AT

xAy is a non-Lipschitz
matrix-valued operator. Standard approaches to control these types of quantities ex-
ploit Lipschitz continuity by first (1) establishing concentration for fixed x,y, then (2)
establishing concentration over all points in a net of the sphere by using a union bound,
and finally (3) appealing to Lipschitz continuity to get concentration uniformly in x,y.
However, in this case, (3) is not possible as AT

xAy is discontinuous with respect to x,y.
Fortunately, this issue can be solved by concentrating Lipschitz continuous ap-

proximations of AT
xAy with respect to x,y. In particular, one can create continuous

matrix-valued functions that are upper and lower bounds of AT
xAy with respect to the

semidefinite ordering. Then, concentration of these continuous approximations can be
established by appealing to the standard arguments outlined above. This, in turn,
will be shown to establish concentration of the non-Lipschitz quantity of interest by a
squeezing argument. Moreover, using novel tools developed in [9], a more efficient set
of coverings of the sphere can be exploited to achieve sample complexity linear in the
ambient dimension n. Intuitively, this is achieved by constructing a net of the sphere
that does not penalize all directions equally, but instead exploits directions for which
the function of interest does not deviate much and penalizes those for which the function
exhibits larger change. This intuition is made precise in the proof of Proposition 2.1.

Discussion. While the convergence results presented here have been shown in [29],
the contribution of this work lies in the novelty of the analysis. In particular, this work
is an illustrative example of using the concentration of non-Lipschitz functions to es-
tablish favorable properties of first-order algorithms to solve inverse problems. The
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concentration methods of this paper have been used to establish recovery in compres-
sive sensing [20,22], phase retrieval [17,18], and other problems [8,16,21,24] under image
priors given by generative neural networks. For example, a similar uniform matrix con-
centration inequality to the one used in this paper was introduced by the present authors
in [17, 18] to establish recovery in compressive phase retrieval under a generative prior
with information-theoretically optimal sample complexity. This paper demonstrates the
applicability of these techniques to more traditional inverse problems and serves as a
pedagogical introduction to those results.

2. Proof technique

We now establish the sufficiency of a deterministic condition for local convergence in
the form of a uniform matrix concentration inequality and show that Gaussian matrices
satisfy this condition with high probability when m= Ω(n). A similar condition, known
as the Weight Distribution Condition, was first introduced in [20] in the context of
compressive sensing under generative neural network priors. The matrix concentration
inequality is stated as follows.

Definition 2.1. Fix 0<ε<1. We say that A∈Rm×n satisfies the Measurement
Distribution Condition (MDC) with constant ε if

‖AT
xAy−Φx,y‖6ε ∀ x,y∈Rn

where

Φx,y :=

{
π−2θx,y

π In+
2sinθx,y

π Mx̂↔ŷ if x 6= 0,y 6= 0,

0 otherwise.
(2.1)

Here θx,y :=∠(x,y), x̂ :=x/‖x‖, ŷ :=y/‖y‖, In is the n×n identity matrix, and Mx̂↔ŷ
2

is the matrix that sends x̂ 7→ ŷ, ŷ 7→ x̂, and z 7→0 for any z∈ span({x,y})⊥.

Note that for points x,y with small angle, this condition requires AT
xAy to act like an

isometry. In the extreme case when x=y, Φx,y is the identity. An elementary calculation
gives E[AT

xAy] = Φx,y for x,y 6= 0 and Aij∼N (0,1/m).

The first result is that the MDC is sufficient to guarantee the following: a subgra-
dient descent algorithm with proper initialization will converge to the true solution up
to the global sign ambiguity. To establish this, we first show that the MDC is sufficient
for the objective to satisfy the following regularity condition which states that, within
a neighborhood of the true solution, all subgradients point towards the true solution.
This result is proven in Section 3.1.

Lemma 2.1. Fix 0<ε60.001. Suppose A∈Rm×n satisfies the MDC with constant
ε. Then for all x∈Rn such that dist(x,x∗)6ε‖x∗‖ and any vx,x∗ ∈∂f(x), we have that
‖vx,x∗−(x±x∗)‖6 1

2‖x±x∗‖+2‖η‖. Here x±x∗ :=x−x∗ if ‖x−x∗‖= dist(x,x∗) and
x+x∗ otherwise.

Note that the conclusion of this lemma in the noiseless setting is in fact equivalent to

2A formula for this matrix is as follows: consider a rotation matrix R that sends x̂ 7→ e1 and

ŷ 7→ cosθx,ye1 +sinθx,ye2 where θx,y =∠(x,y). Then Mx̂↔ŷ =RT

 cosθx,y sinθx,y 0
sinθx,y −cosθx,y 0

0 0 0n−2

R where

0n−2 is the n−2×n−2 matrix of zeros. Note that if θx,y = 0 or π, Mx̂↔ŷ = x̂x̂T or −x̂x̂T, respectively.
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the RC(µ,λ,ε) condition3. We now show that satisfaction of the MDC implies local
convergence.

Theorem 2.1 (Deterministic local convergence guarantee). Fix 0<ε60.001. Sup-
pose A∈Rm×n satisfies the MDC with constant ε, ‖η‖6 ε

4‖x∗‖, and 0<α61. If
dist(x0,x∗)6ε‖x∗‖ then for all t>1,

dist(xt,x∗)6
(

1− α
2

)t
dist(x0,x∗)+4‖η‖.

Proof. Let B(x∗,r) :={x∈Rn :‖x−x∗‖6 r}. Suppose x0∈B(x∗,ε‖x∗‖) as the
proof for the case x0∈B(−x∗,ε‖x∗‖) is identical. For t>1, observe that for any
vxt−1,x∗ ∈∂f(xt−1), we have

‖xt−x∗‖=‖xt−1−αvxt−1,x∗ +α(xt−1−x∗)−α(xt−1−x∗)−x∗‖
6 (1−α)‖xt−1−x∗‖+α‖vxt−1,x∗−(xt−1−x∗)‖

6 (1−α)‖xt−1−x∗‖+
α

2
‖xt−1−x∗‖+2α‖η‖

=
(

1− α
2

)
‖xt−1−x∗‖+2α‖η‖ (2.2)

where in the third line we used Lemma 2.1. We claim that the iterates must stay within
a ball of the minimizer. Indeed, if xt−1∈B(x∗,ε‖x∗‖), we have that by Equation (2.2)
and our bound on the size of the noise ‖η‖6 ε

4‖x∗‖ that

‖xt−x∗‖6
(

1− α
2

)
‖xt−1−x∗‖+2α‖η‖6

(
1− α

2

)
ε‖x∗‖+α · ε

2
‖x∗‖=ε‖x∗‖

so xt∈B(x∗,ε‖x∗‖). Thus, we can invoke Lemma 2.1 and Equation (2.2) for each t>1.
Letting τ := 1− α

2 , starting at t= 1 and repeatedly applying (2.2), we attain

‖xt−x∗‖6 τ t‖x0−x∗‖+2α(τ t+τ t−1 + ·· ·+1)‖η‖6 τ t‖x0−x∗‖+
2α

1−τ
‖η‖.

Plugging in the definition of τ yields the desired inequality.

Finally, using recent tools developed in [9], we show that Gaussian matrices satisfy
the MDC with high probability with m= Ω(n) sample complexity.

Proposition 2.1. Fix 0<ε<1. Suppose A∈Rm×n has i.i.d. N (0,1/m) en-
tries. If m>Cεn, then A satisfies the MDC with constant ε with probability at least
1−exp(−cmε2/2)−mexp(−n/8)−exp(−m/2). Here Cε= Ω(ε−2 log(ε−1)) and c is a
universal constant.

Combining this result with Theorem 2.1 with ε= 0.001 proves Theorem 1.1.
Hence this shows that the MDC is sufficient for local convergence of subgradient

descent with proper initialization. Moreover, the conclusion holds for generic measure-
ments with high probability as soon as m= Ω(n). We emphasize that the MDC is a
global property concerning the measurement matrix. Hence Proposition 2.1 implies
one has uniform concentration of subgradients to their expectation with optimal sam-
ple complexity. Extending this local convergence result to a result about convergence
of subgradient descent with generic initialization is an interesting future direction, as
shown in recent works [6, 26].

3Indeed, note that if the conditions of Lemma 2.1 are satisfied and η= 0, then for all x∈Rn
such that dist(x,x∗)6 ε‖x∗‖ and any vx,x∗ ∈∂f(x), ‖vx,x∗−(x±x∗)‖6 1

2
‖x±x∗‖⇐⇒〈vx,x∗ ,x±x∗〉>

3
8
‖x±x∗‖2 + 1

2
‖vx,x∗‖2. Thus the MDC is sufficient to guarantee the RC(µ,λ,ε) holds with µ= 3/4,

λ= 1, and our choice of ε.
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3. Proofs
In this section, we prove Lemma 2.1 and Proposition 2.1. We first introduce some

notation used in the proofs. Let [n] :={1,. ..,n}. Let B(y,r) :={x∈Rn :‖x−y‖6 r}
and B :={x∈Rn :‖x‖61}. For x∈Rn \{0}, let x̂ :=x/‖x‖. Let 1{E} be the indicator
function on the event E. For a random variable X, let X|(E) be the random variable
X conditioned on the event E. Let In be the n×n identity matrix. Let Sn−1 denote
the unit sphere in Rn. We write γ= Ω(δ) when γ>Cδ for some positive constant C.
Similarly, we write γ=O(δ) when γ6Cδ for some positive constant C.

For a locally Lipschitz function f :X →R from a Hilbert space X to R, the Clarke
generalized directional derivative [7] of f at x∈X in the direction u is defined by

fo(x;u) := limsup
y→x,t↓0

f(y+ tu)−f(y)

t
.

Then the generalized subdifferential of f at x is defined as

∂f(x) :={v∈Rn : 〈v,u〉6fo(x;u), ∀u∈X}.

Any vx,x∗ ∈∂f(x) is called a subgradient of f at x. When f is differentiable at x,
∂f(x) ={∇f(x)}. In the proofs, we will make use of the following fact concerning
the Clarke subdifferential of the objective function f . Since f is piecewise quadratic,
Theorem 9.6 from [7] asserts that for any x∈Rn, ∂f(x) can be written equivalently as

∂f(x) = conv(v1,v2,. ..,vs) (3.1)

where conv(·) denotes the convex hull of v1,. ..,vs, s is the number of quadratic functions
adjoint to x, and v` is the gradient of the `-th quadratic function of f at x. For each v`,
there exists a w` and a sufficiently small δ`>0 such that f is differentiable at x+δ`w`
and v`= limδ`↓0∇f(x+δ`w`).

3.1. Convexity property of objective. Here we prove Lemma 2.1, the
convexity-like property around the minimizer. In essence, it states that when iterates
are near the minimizers, all subgradients point towards the true solution.

Proof. (Proof of Lemma 2.1.) We consider the case x∈B(x∗,ε‖x∗‖) as the case
x∈B(−x∗,ε‖x∗‖) is similar. Suppose f is differentiable at x. First, note the MDC im-
plies that ‖AT

xAx−In‖6ε. Moreover, for any x,z∈Rn, ‖Axz‖2 6 |〈AT
xAxz,z〉−‖z‖2|+

‖z‖2 6 (1+ε)‖z‖2. Hence ‖Ax‖62 for all x∈Rn when ε<1. Thus, we have

‖vx,x∗−(x−x∗)‖6‖AT
x (Ax−Ax∗)x∗‖+‖AT

xAx(x−x∗)−(x−x∗)‖+‖AT
x η‖

62‖(Ax−Ax∗)x∗‖+ε‖x−x∗‖+2‖η‖. (3.2)

We now show that for sufficiently small ε, ‖(Ax−Ax∗)x∗‖61/8‖x−x∗‖. Letting
{ai}mi=1 denote the rows of A, observe that

‖(Ax−Ax∗)x∗‖2 =
m∑
i=1

(sgn(〈ai,x〉)−sgn(〈ai,x∗〉))2 〈ai,x∗〉2

6
m∑
i=1

(sgn(〈ai,x〉)−sgn(〈ai,x∗〉))2 〈ai,(x−x∗)〉2

=‖Ax(x−x∗)‖2 +‖Ax∗(x−x∗)‖2−2〈x−x∗,AT
xAx∗(x−x∗)〉.
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Since ‖AT
xAx−In‖6ε, we have ‖Ax(x−x∗)‖2 6 (1+ε)‖x−x∗‖2. The same upper

bound holds for ‖Ax∗(x−x∗)‖2. We now bound 2〈x−x∗,AT
xAx∗(x−x∗)〉 from below.

By the MDC, we have

|〈x−x∗,(AT
xAx∗−Φx,x∗)(x−x∗)〉|6ε‖x−x∗‖2. (3.3)

Since x∈B(x∗,ε‖x∗‖), we have that |θx,x∗ |62ε. Hence Φx,x∗ is approximately an isom-
etry since

‖Φx,x∗−In‖6
2|θx,x∗ |
π
‖In‖+

2|sinθx,x∗ |
π

‖Mx̂↔x̂∗‖6
8ε

π

where we used ‖Mz↔w‖61 for all z,w∈Sn−1. Combining this with (3.3), we have
2〈x−x∗,AT

xAx∗(x−x∗)〉>
(
2− 16ε

π −2ε
)
‖x−x∗‖2. Thus we attain

‖(Ax−Ax∗)x∗‖2 6‖Ax(x−x∗)‖2 +‖Ax∗(x−x∗)‖2−2〈x−x∗,AT
xAx∗(x−x∗)〉

6

(
2+2ε−2+

16ε

π
+2ε

)
‖x−x∗‖2

=

(
4ε+

16ε

π

)
‖x−x∗‖2.

Finally, choosing ε so that ε60.001, we conclude

2‖(Ax−Ax∗)x∗‖62
√

4ε+16ε/π‖x−x∗‖6
1

4
‖x−x∗‖.

Combining this inequality, ε<1/4, and (3.2) shows ‖vx,x∗−(x−x∗)‖61/2‖x−x∗‖+
2‖η‖.

Finally, for non-differentiable x, recall that by (3.1) we can write vx,x∗ =
∑s
`=1 c`v`

where c`>0,
∑s
`=1 c`= 1, and v`= limδ`↓0∇f(x+δ`w`) for some w`∈Rn. Then, using∑s

`=1 c`= 1 and our result for differentiable points, we conclude that for x∈B(x∗,ε‖x∗‖),

‖vx,x∗−(x−x∗)‖6
s∑
`=1

c`‖v`−(x−x∗)‖6
s∑
`=1

c` lim
δ`↓0
‖∇f(x+δ`w`)−(x+δ`w`−x∗)‖

6
1

2
‖x−x∗‖+2‖η‖.

3.2. Gaussian matrices satisfy the MDC. To show that A satisfies the
MDC, we will use novel probabilistic tools developed in [9], which improved the sample
complexity required for Gaussian matrices to satisfy a related concentration result in-
troduced in [20] known as the Weight Distribution Condition. We first write AT

xAy in
a more convenient form. For v∈Rn, let diag(v>0) denote the diagonal matrix whose
i-th entry is 1 if vi>0 and 0 otherwise. Define diag(v<0) analogously. For x∈Rn, let
A+,x := diag(Ax>0)A and A−,x := diag(Ax<0)A. Since sgn(b) =1{b>0}−1{b<0} for
any b∈R, observe that

AT
xAy =AT

+,xA+,y+AT
−,xA−,y−AT

+,xA−,y−AT
−,xA+,y.

We will establish concentration of each term separately. For the first term, [9] recently
showed that concentration is possible when m= Ω(n):
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Lemma 3.1 (Theorem 3.2 in [9]). Fix ε>0. If A∈Rm×n has i.i.d. N (0,1/m)
entries and m>Cε−2 log(ε−1)n, then with probability at least 1−exp(−cmε2/2)−
mexp(−n/8)−exp(−m/2), we have

‖AT
+,xA+,y−Qx,y‖6ε ∀ x,y∈Rn

where Qx,y :=
π−θx,y

2π In+
sinθx,y

2π Mx̂↔ŷ if x,y 6= 0 and 0n×n otherwise. Here C and c are
absolute constants.

An elementary calculation shows E[AT
+,xA+,y] =Qx,y. Also by symmetry,

E[AT
−,xA−,y] =Qx,y. By applying a nearly identical argument as in [9], the analogous

result for AT
−,xA−,y holds.

Lemma 3.2. Fix ε>0. If A∈Rm×n has i.i.d. N (0,1/m) entries and
m>Cε−2 log(ε−1)n then with probability at least 1−exp(−cmε2/2)−mexp(−n/8)−
exp(−m/2), we have

‖AT
−,xA−,y−Qx,y‖6ε ∀ x,y∈Rn.

Here C and c are absolute constants.

We now extend the argument in [9] for AT
+,xA−,y. Note that a result for AT

−xA+,y

would be identical. Observe that

E[AT
+,xA−,y] =Hx,y :=

θx,y
2π

In−
sinθx,y

2π
Mx̂↔ŷ.

We will prove the following:

Lemma 3.3. Fix ε>0. If A∈Rm×n has i.i.d. N (0,1/m) entries and
m>Cε−2 log(ε−1)n then with probability at least 1−exp(−cmε2/2)−mexp(−n/8)−
exp(−m/2), we have

‖AT
+,xA−,y−Hx,y‖6ε ∀ x,y∈Rn.

Here C and c are absolute constants.

Note that this would complete Proposition 2.1 by observing Φx,y = 2Qx,y−2Hx,y and
combining Lemmas 3.1, 3.2, 3.3, and an analogous result for AT

−xA+,y, each satisfied
with ε/4.

The main probabilistic tool in the proof of Lemma 3.3 is a result concerning con-
centration of pseudo-Lipschitz functions. Pseudo-Lipschitzness can be considered as a
relaxation of standard Lipschitz continuity but with particular attention towards which
sets a function is Lipschitz with respect to. When the sets are balls, then the notion of
pseudo-Lipschitzness reduces to standard Lipschitzness. Prior to stating the result, we
require the following definitions.

Definition 3.1 ((δ,γ)-wide system). A set system {Bt⊆Rn : t∈Θ} is (δ,γ)-wide if
Bt=−Bt, Bt is convex, and Vol(Bt∩δB)>γVol(δB) ∀ t∈Θ.

Definition 3.2 (pseudo-Lipschitz function). Suppose there exists a (δ,γ)-wide system
{Bt⊆Rn : t∈Θ} such that |gt(x)−gt(y)|6ε for any t∈Θ and x,y∈ (Rn)d with xi−yi∈
Bt for all i∈ [d]. Then we say that {gt}t∈Θ is (ε,δ,γ)-pseudo-Lipschitz.

Note here that a function is pseudo-Lipschitz with respect to a particular system of
sets. The following theorem establishes favorable concentration for pseudo-Lipschitz
functions.
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Theorem 3.1 (Theorem 4.4 in [9]). Let θ be a random variable taking values in Θ.
Let {gt : (Rn)d→R : t∈Θ} be a function family and let h : (Rn)d→R be a function. Let
ε,γ,D>0 and δ∈ (0,1). Define the spherical shell H := (1+δ/2)B\(1−δ/2)B in Rn.
Suppose:

(1) For any fixed x∈Hd, Pθ(gθ(x)6h(x)+ε)>1−p,
(2) {gt}t∈Θ is (ε,δ,γ)-pseudo-Lipschitz,

(3) |h(x)−h(y)|6D whenever x∈ (Sn−1)d, y∈ (Rn)d, and ‖yi−xi‖6 δ for all i∈ [d].

Then

Pθ
(
gθ(x)6h(x)+2ε+D, ∀ x∈ (Sn−1)d

)
>1−γ−2d(4/δ)2dnp.

3.2.1. Proof of Lemma 3.3. For ease of exposition, assume the entries of A
are i.i.d. N (0,1). The main idea is that we will concentrate Lipschitz approximations
of AT

+,xA−,y that are upper and lower bounds with respect to the semidefinite ordering.
For ε∈ (0,1), define the following continuous relaxations of 1{t>0}:

ϕ+
−ε(t) :=


0 t6−ε
1+ t/ε −ε<t60

1 t>0

and ϕ+
ε (t) :=


0 t<0

t/ε 06 t<ε

1 t>ε

.

Analogously define the following continuous relaxations for 1{t<0}:

ϕ−−ε(t) :=


1 t6−ε
−t/ε −ε<t60

0 t>0

and ϕ−ε (t) :=


1 t<0

1− t/ε 06 t<ε

0 t>ε

.

Then we have that for all t∈R, ϕ+
ε (t)61{t>0}6ϕ

+
−ε(t) and ϕ−−ε(t)61{t<0}6ϕ−ε (t).

For V ∈Rm×n with rows vi for i∈ [m] and x,y∈Rn, define

GV,up(x,y) :=

m∑
i=1

ϕ+
−ε(〈vi,x〉)ϕ−ε (〈vi,y〉)vivT

i

and

GV,low(x,y) :=
m∑
i=1

ϕ+
ε (〈vi,x〉)ϕ−−ε(〈vi,y〉)vivT

i .

Note that for any x,y∈Rn, GA,low(x,y)�AT
+,xA−,y�GA,up(x,y) so it suffices to upper

bound GA,up(x,y) and lower bound GA,low(x,y) uniformly. For the upper bound, we
will prove the following:

Proposition 3.1. Fix 0<ε<1. Suppose A∈Rm×n has i.i.d. N (0,1) entries.
Then if m>Cε−2 log(ε−1)n, we have that with probability at least 1−exp(−cmε2/2)−
mexp(−n/8)−exp(m/2),

GA,up(x,y)�mHx,y+mεIn ∀ x,y 6= 0.

Here C and c are absolute constants.
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The central argument can be broken down into three steps and directly follows [9].
We first show that the function gV (x,y) := 1

m 〈u,GV,up(x,y)u〉 is (ε,δ,γ)-pseudo-Lipschitz
for fixed u∈Sn−1 for appropriate parameters ε,δ, and γ. Second, we use Theorem 3.1 to
establish, for fixed u, concentration of gA(x,y) uniformly in x,y to h(x,y) := 〈u,Hx,yu〉.
Finally, we use a standard ε-net argument to establish uniform concentration over u,
guaranteeing an upper bound on GA,up(x,y). Throughout the proof, we will operate on
the set of matrices

Θ :=

{
V ∈Rm×n :‖V ‖63

√
m, max

i∈[m]
‖vi‖6

√
2n

}
.

When A is Gaussian, standard results [27] show that A∈Θ with high probability.

Lemma 3.4 ([27]). Suppose A∈Rm×n has i.i.d. N (0,1) entries. Then with probability
at least 1−exp(−m/2)−mexp(−n/8), we have ‖A‖63

√
m and maxi∈[m]‖ai‖6

√
2n.

Step 1: Establishing pseudo-Lipschitzness. We first establish that {gV }V ∈Θ

is pseudo-Lipschitz with respect to a particular set system.

Lemma 3.5. Fix ε>0 and u∈Sn−1. For V ∈Θ, define gV (x,y) := 1
m 〈u,GV,up(x,y)u〉.

Then {gV }V ∈Θ is (2ε,ε2/82,1/2)-pseudo-Lipschitz with respect to the set system
{BM,ε2,u}V ∈Θ where

BM,ε2,u :=

{
z∈Rn :

m∑
i=1

|〈vi,z〉|〈vi,u〉2 6ε2m

}
.

Proof. We first note that it was shown in Lemma 5.5 of [9] that the set system
{BM,ε2,u}V ∈Θ is (ε2/82,1/2)-wide. We now show that {gV }V ∈Θ is (2ε,ε2/82,1/2)-
pseudo-Lipschitz. For x,y,x̃, ỹ∈Rn, suppose y− ỹ∈BM,ε2,u and x− x̃∈BM,ε2,u. Then
observe that

|gV (x,y)−gV (x̃, ỹ)|6 1

m

m∑
i=1

[|ϕ+
−ε(〈vi,x〉)ϕ−ε (〈vi,y〉)−ϕ+

−ε(〈vi,x̃〉)ϕ−ε (〈vi,y〉)|

+ |ϕ+
−ε(〈vi,x̃〉)ϕ−ε (〈vi,y〉)−ϕ+

−ε(〈vi,x̃〉)ϕ−ε (〈vi, ỹ〉)|]〈vi,u〉2

6
1

m

m∑
i=1

[|ϕ+
−ε(〈vi,x〉)−ϕ+

−ε(〈vi,x̃〉)|

+ |ϕ−ε (〈vi,y〉)−ϕ−ε (〈vi, ỹ〉)|]〈vi,u〉2

6
1

mε

m∑
i=1

[|〈vi,x− x̃〉|+ |〈vi,y− ỹ〉|]〈vi,u〉2

62ε.

In the first inequality, we used the triangle inequality. In the second, we used
|ϕ+
−ε(t)|, |ϕ−ε (t)|61. In the third, we used the fact that ϕ+

−ε and ϕ−ε are both
1/ε-Lipschitz. In the last inequality, we used the assumptions y− ỹ∈BM,ε2,u and
x− x̃∈BM,ε2,u.

Step 2: Point-wise concentration. We now show that, for fixed u∈Sn−1,
gV (x,y) concentrates around h(x,y) uniformly in x,y by an application of Theorem 3.1.

Lemma 3.6. Fix ε>0 and u∈Sn−1. Let A∈Rm×n have i.i.d. N (0,1) entries. Define
θ :=A|(A∈Θ). There exist absolute constants c,K, and C̃ such that

Pθ (gθ(x,y)6h(x,y)+Kε ∀ x,y 6= 0)>1−(C̃/ε)8n exp(−cmε2).
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Proof. We will first bound E[GA,up(x,y)]. Observe that for any t∈R, we have
ϕ+
−ε(t)61{t>−ε} and ϕ−ε (t)61{t6ε} . This implies that for any t1,t2∈R,

ϕ+
−ε(t1)ϕ−ε (t2)61{t1>−ε}1{t26ε}61{t1>0}1{t2<0}+1{−ε6t160}+1{06t26ε} .

Thus

E[GA,up(x,y)]�E

[
m∑
i=1

(1{〈ai,x〉>0}1{〈ai,y〉<0}+1{−ε6〈ai,x〉60}+1{06〈ai,y〉6ε})aia
T
i

]
=mHx,y+mE[1{−ε6〈a,x〉60}aa

T]+mE[1{06〈a,y〉6ε}aa
T]

where a∼N (0,In). It was shown in Lemma 12 of [20] that E[1{−ε6〈a,x〉60}aa
T]�

ε
2‖x‖In ∀ x 6= 0. An analogous bound shows E[1{06〈a,y〉6ε}aa

T]� ε
2‖y‖In for all y 6= 0.

Hence we attain

E[GA,up(x,y)]�mHx,y+m

(
ε

2‖x‖
+

ε

2‖y‖

)
In ∀ x,y 6= 0.

This implies E[gA(x,y)]6h(x,y)+2ε for fixed x,y∈Rn with ‖x‖,‖y‖>1/2.
Now, we show the probability bound. First consider fixed x,y∈Rn with ‖x‖,‖y‖>

1/2. Observe that gA(x,y) = 1
m

∑m
i=1ϕ

+
−ε(〈ai,x〉)ϕ−ε (〈ai,y〉)〈ai,u〉2 is a sum of sub-

exponential random variables. Hence by Bernstein’s inequality, we have for some ab-
solute constant c and any β>0, P(gA(x,y)−E[gA(x,y)]>β)62exp(−cmmin(β,β2)).
Taking β=ε and using E[gA(x,y)]6h(x,y)+2ε, we get P(gA(x,y)>h(x,y)+3ε)6
2exp(−cmε2). Since P(A∈Θ)>1/2, conditioning on the event A∈Θ at most doubles
the failure probability so we attain

P(gθ(x,y)6h(x,y)+3ε)>1−4exp(−cmε2). (3.4)

To establish uniform concentration in x,y, we note that by a simple modification to
Lemma 27 in [17], we have that Hx,y is L-Lipschitz with respect to x,y∈Sn−1 where L=
22/π. Hence |h(x,y)−h(x̃, ỹ)|6Lε if ‖x− x̃‖6ε and ‖y− ỹ‖6ε. Thus the result follows
by applying Theorem 3.1 to {gV }V ∈Θ and θ :=A|(A∈Θ). By Lemma 3.5, {gV }V ∈Θ

is (2ε,ε2/82,1/2)-pseudo-Lipschitz. We can then take p= exp(−cmε2) by (3.4) and
D= 2Lε.

Step 3: Uniform concentration. The last step is to get a uniform bound
over all u∈Sn−1. Augmenting our notation, let gV (x,y,u) := 1

m 〈u,GV,up(x,y)u〉 and
h(x,y,u) := 〈u,Hx,yu〉.

Lemma 3.7. Fix ε>0. Suppose A∈Rm×n has i.i.d. N (0,1) entries. There exist
absolute constants c and C such that if m>Cε−2 log(ε−1)n, then with probability 1−
exp(−cmε2/2)−mexp(−n/8)−exp(−m/2),

GA,up(x,y)�mHx,y+mε ∀x,y 6= 0.

Proof. We first show that gV (x,y,u) is 18-Lipschitz with respect to u∈Sn−1 when
V ∈Θ. Fix x,y 6= 0. Observe that for u,w∈Sn−1,

|gV (x,y,u)−gV (x,y,w)|6 1

m

m∑
i=1

|〈vi,u〉2−〈vi,w〉2|6
1

m

m∑
i=1

|〈vi,u−w〉||〈vi,u+w〉|

6
1

m
‖V (u−w)‖‖V (u+w)‖
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618‖u−w‖ (3.5)

where we used ‖V ‖63
√
m along with u,w∈Sn−1 in the last inequality.

Let Nε⊂Sn−1 be an ε-net of cardinality |Nε|6 (3/ε)n. By Lemma 3.6 and a union
bound, it holds with probability at least 1−(3/ε)n(C̃/ε)8n exp(−cmε2) over θ=A|(A∈
Θ) that for all x,y∈Sn−1 and u∈Nε, gθ(x,y,u)6h(x,y,u)+Kε. For any x,y,u∈Sn−1,
there exists a w∈Nε with ‖u−w‖6ε so using (3.5) we get

gθ(x,y,u)6gθ(x,y,w)+18‖u−w‖6h(x,y,w)+18ε.

Since ‖Hx,y‖62, we have that for u,w∈Sn−1, |h(x,y,u)−h(x,y,w)|64‖u−w‖. This
further implies gθ(x,y,u)6h(x,y,u)+22ε. We conclude with probability at least 1−
(3/ε)n(C/ε)8n exp(−cmε2) over θ, the desired inequality holds. Using P(A∈Θ)>1−
mexp(−n/8)−exp(−m/2) and taking m>Cε−2 log(ε−1)n achieves the final result with
the desired probability.

This completes the upper bound on GA,up. The lower bound on GA,low is identical:

Lemma 3.8. Fix ε>0. Suppose A∈Rm×n has i.i.d. N (0,1) entries. There exist
absolute constants c and C such that if m>Cε−2 log(ε−1)n, then with probability 1−
exp(−cmε2/2)−mexp(−n/8)−exp(−m/2),

GA,low(x,y)�mHx,y−mε ∀x,y 6= 0.

Lemma 3.3 follows by combining Lemma 3.7 and Lemma 3.8.
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