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Abstract—Long non-coding Ribonucleic Acids (lncRNAs) can 
be localized to different cellular components, such as the nucleus, 
exosome, cytoplasm, ribosome, etc. Their biological functions can 
be influenced by the region of the cell where they are located. 
Many of these lncRNAs are associated with different challenging 
diseases. Thus, it is crucial to study their subcellular localization. 
However, compared to the massive number of lncRNAs, only 
relatively few have annotations in terms of their subcellular 
localization. Conventional computational methods use q-mer 
profiles from lncRNA sequences and train machine learning 
models, such as support vector machines and logistic regression 
with the profiles. These methods focus on the exact q-mer. Given 
possible sequence mutations and other uncertainties in genomic 
sequences and their role in biological function, a consideration of 
these changes might improve our ability to model lncRNAs and 
their localization. We hypothesize that considering these changes 
may improve our ability to predict subcellular localization of 
lncRNAs. To test this hypothesis, we propose a deep learning 
model with inexact q-mers for the localization of lncRNAs in the 
cell. The proposed method can obtain a high overall accuracy of 
94.7%, an average of 91.3% on a benchmark dataset, using 8-mers 
with mismatches. In comparison, the exact 8-mer result was 
89.8%. The proposed approach outperformed existing state-of-art 
lncRNA localization predictors on two different datasets. Our 
results, therefore, support the hypothesis that deep learning 
models using inexact q-mers can improve the performance of 
computational lncRNA localization algorithms. 
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I. INTRODUCTION

Non-coding RNAs (ncRNAs) and protein-coding genes are two 
constituent parts of the human genome [1]. Usually, non-coding 
RNAs can be divided into small ncRNAs with lengths less than 
200 nucleotides and long non-coding RNAs (lncRNAs) with 
lengths greater than or equal to 200 nucleotides [2]. Since 
lncRNAs were first discovered in the early 1990s, the family of 
lncRNAs has expanded rapidly. A recent study indicated that 
there are over 270,000 lncRNA transcripts in humans [3]. 
Unlike the protein-coding genes, which are functional units of 
heredity [4], non-coding RNAs were once deemed non-
functional. They were perceived as the product of spurious 
transcription [5]. However, the application of high-throughput 
sequencing technologies [6] has shed more light on the 
transcriptional units. Accumulative evidence shows that 
ncRNAs, specifically lncRNAs, exhibit biological functions. 

LncRNAs have been associated with biological processing, 
such as chromatin modification, cell cycling, protein 
transcription, and translation [7], [8]. LncRNAs also play 
essential roles in diseases, including cancer, autism, 
Alzheimer's disease, and others [9]–[11]. A popular database of 
lncRNA-associated diseases, LncRNADisease [12] records 
10,564 experimentally supported lncRNA-disease associations. 
With info on over 450+ unique diseases, including various 
cancers, nervous system disorders, etc., this underlines the 
critical role of lncRNAs in many complex diseases.   

Similar to proteins, the function of lncRNAs has been linked 
with their subcellular localization in the cell [13]. Therefore, 
understanding the subcellular localization of lncRNAs and their 
dynamic changes can also help to explain the function of newly 
discovered lncRNAs [14]. To study the RNA subcellular 
localization, a database, RNALocate v2.0 [15], was constructed 
in 2016 and updated in 2021. 213,260 RNA subcellular 
localization entries validated by experimental evidence. 
Experimental results show RNAs can be located in the nucleus, 
cytoplasm, ribosome, exosome, nucleoplasm, chromatin, 
cytosol, endoplasmic reticulum, and plasma membrane. See 
[15]. The dataset contains 9,587 lncRNAs, some of them located 
in different components of the cell. Only 6728 unique lncRNAs 
were annotated. In 2017, another database, LncATLAS [16], for 
subcellular localization of lncRNAs was introduced by 
calculating the cytoplasmic/nuclear relative concentration 
index. 6768 lncRNAs were annotated.  Compared to the large 
number of lncRNAs, only a few lncRNAs have been annotated. 

Recent studies have analyzed the use of deep learning 
techniques in lncRNA identification [17]. Similarly, some work 
suggest that lncRNA subcellular localization can be predicted 
from known subcellular localization datasets using 
computational approaches. These studies make predictions with 
high accuracy by extracting shot nucleotide segments (called q-
mers or q-grams) from lncRNA sequences and training machine 
learning models, such as Random Forest (RF), support vector 
machines (SVM), or deep neural network models [18]–[20].  

Traditional computational methods have focused on exact q-
mers. However, given possible mutations in genomic sequences 
[21], and other uncertainties in biological systems, exact pattern 
matching may not be adequate to model problems in RNA 
localization. Thus, segments with inexact matches or 
mismatch(es) may provide equally biological information in the 
modeling. In this work, we are interested in whether inexact q-
mers can impact the computational prediction of lncRNA 
localization based on lncRNA sequences.  
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II. BACKGROUND AND RELATED WORK

A. Subcellular localization
RNAs play crucial roles in cellular processes, including 
translating genetic information, regulating gene activity, and 
cellular differentiation [22]. These functions are determined by 
RNAs' location in the cell [14], [23]. The cell of eukaryotic 
organisms can be divided into functionally distinct membrane-
bound compartments [23] (See Fig 1.), which are linked with 
different phases of biological processes [24]. To understand the 
function of RNA, we need to understand its subcellular 
localization. Experiment methods, such as FISH, which map 
RNAs to their subcellular localization, require knowledge of 
molecular chemistry and specialized instruments and 
techniques.   

Conventionally, we divide RNAs into coding and non-
coding based on their coding potential [25]. Coding RNAs 
encode protein. Non-coding RNAs act as cellular regulators 
without encoding proteins. Unlike the coding RNAs, which have 
been studied widely, lncRNAs are more challenging to explore, 
given their low expression levels [26]. Thus, using information 
from known datasets to predict the subcellular localization of 
lncRNAs has become a significant challenge. There are existing 
databases [16], [18], [19] which annotate lncRNAs with their 
subcellular localizations, such as cytoplasm, nucleus, ribosome, 
exosome, etc. Therefore, we can treat the prediction of 
subcellular localization as a classification problem. For coding 
RNAs, there are many predictors of protein localization, which 
have been developed since the 1990s [27]. Many of them take 
computational approaches, such as artificial neural networks, or 
support vector machines (SVM). However, in contrast to 
protein-coding RNAs, only a few methods have been proposed 
for predicting lncRNAs subcellular localization. 

B. Prior computational approaches
Research shows that we can represent the RNA sequence using 
a discrete model: pseudo-k-tuple nucleotide composition 
(PseKNC) [28]. In the PseKNC model, q-length substrings (q-
mers) are extracted from the RNA sequence. Each substring can 
be treated as an RNA motif that contains some biological 
information. Then, the RNA sequence is decomposed into a set 
of small-sized segments, which are typically more efficient to 
analyze, than long RNA sequences. Along this line of thought, 
Kirk et al. [29] showed that profiles based on such q-mers could 
be used to analyze lncRNAs subcellular localization.  

General computational methods predict the localization of 
lncRNAs by extracting q-mer features from the lncRNA 
sequence. Some of them select particular nucleotide segments 
as features. Based on the features, they train a prediction model, 
such as random forest, support vector machines, or deep neural 
network to make a prediction. In LncLocator [18], Cao et al. 
created an annotated subcellular localization dataset of 
lncRNAs from RNALocate [30]. The dataset contains 612 
lncRNAs localized to 5 locations in the cell, including the 
nucleus, cytoplasm, cytosol, ribosome, and exosome (see Table 
1). They extract q-mer segments (q=4,5,6) from the lncRNA 

sequences. Given the low discrimination ability of very short 
segments, they feed 4-mer features into a stacked autoencoder 
model to create a high-level feature representation of the 
sequence. They tested their data in various scenarios. The 
overall accuracy was 59.8% on the five-class dataset.  

The iLoc-lncRNA [19] predicts lncRNAs subcellular 
localization by feeding octamer features into an SVM model. 
They build a 4-class dataset from the RNALocate database [30]. 
The classes correspond to the following localizations: nucleus, 
cytoplasm, ribosome, and exosome. There are 655 lncRNAs in 
the dataset (see Table 1). First, they extract 8-mer features from 
the lncRNA sequences. Then, because high dimensional 
features will produce several problems such as over-fitting and 
redundant noise, they selected features based on the 8-mer 
feature distribution probability. They finally picked 4107 8-mer 
features and then trained the SVM model with the extracted 
features. The overall accuracy was 86.72% on the 4-class 
dataset.  

Gudenas et al. [20] built a two-class dataset from the 
ENCODE project. First, they quantified the lncRNA transcript 
differences between nuclear and cytosolic, applying log2 fold-
change threshold to allocate 8678 lncRNAs to cytosolic and 
nuclear, 4380 for cytosolic, and 4298 for nuclear. They then 
extracted q-mer features (q=2,3,4,5) from the lncRNA 
sequences. Next, they added RNA-protein binding motifs to the 
feature map, and passed these to a deep neural network. They 
obtained an accuracy of 72.4%. Fan et al., in lncLocPred [31], 
built a four-class dataset from the RNALocate database [30]. 
The database contains 396 lncRNAs. They use this dataset as an 
independent dataset and dataset in iLoc-lncRNA [19] as the 
benchmark dataset. First, they collect features using q-mers 
(q=5,6,8), triplet, and PseDNC. They then trained a logistic 
regression model using the selected features. 

C. Our approach
This paper examines the impact of inexact q-mer profiles on the 
prediction performance on multi-label lncRNA subcellular 
localization. In this paper, both exact and inexact q-mer profiles 
are extracted from the lncRNA sequences to build feature maps, 
and then a 1D convolutional neural network (1D CNN) model 
is trained. To compare the performance of this method with the 
existing state-of-the-art techniques, we use the datasets from 
LncLocator [18] with 5-components and iLoc-lncRNA [19]  

Figure 1. The structure of an animal cell. The key target lncRNA 
localizations in most datasets are nucleus, exosome, ribosome, and 
cytoplasm (indicated in red). 
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with four components. We also test the pre-trained features 
from iLoc-lncRNA. 

III. METHODS

Figure 2 shows the workflow in our methodology. We first 
extract q-mer profiles from the lncRNA subcellular localization 
dataset to build a feature map and then apply data 
preprocessing. We finally feed our preprocessed data into a 1D 
CNN model to do classification. 

A. Dataset
The datasets from lncLocator [18], iLoc-lncRNA [19] are

tested. Both obtained their lncRNA sequences from RNALocate 
[30]. Four subcellular localizations (classes) are retained in 
iLoc-lncRNA dataset (as our benchmark dataset) and five in 
lncLocator, including the nucleus, cytoplasm, cytosol, 
ribosome, and exosome (See Table 1). We test our method on 
these two datasets. Because of the time limitation, we didn't try 
the dataset in lncLocPred. The datasets have annotated each 
lncRNA sequence with a particular localization. We treat the 
task as a supervised classification problem. 

B. Feature representation
LncRNA is transcribed from DNA. LncRNA consists of a 
string of nucleotides bases. These bases are adenine (A), 
guanine (G), uracil (U), and cytosine (C). The sequence of 
lncRNA can be represented as: S = S1S2…Si…Sn, with Si  ∈ {A, 
G, C, U}. Here n is the length of the sequence, and Si is ith 
nucleotide base, 1≤ i ≤ n. 

1) q-mer profile
The q-mer is a substring of a sequence with length q. A possible 
q-mer will be a q-length substring with one of the A, C, G, U
symbols for a lncRNA sequence. There are 4q possible different
q-mers in one lncRNA sequence. We build the feature map with
the q-mer profile, which captures the probability distribution

(or frequency of occurrence) of each given possible q-mer.  For 
the q-mer profile, typically, each row corresponds to one 
lncRNA, and each column corresponds to one of the possible 
q-mers. Each cell is a feature value that represents the
frequency of the q-mer in the given sequence. We compute the
feature value by running a q-length window with stride one
across the sequence. If the segment is in the sequence, then the
frequency of the segment is set to its feature value. Otherwise,
the feature value is 0. Based on this, we define the feature map
(FM) of a lncRNA sequence as FM(S) = {Qi: fi}, 1≤ i ≤ N},
Here S is the sequence, Qi is the ith q-mer, fi is the corresponding
feature value, and N is the number of possible unique q-mers in
the sequence.  For example, we can compute the 3-mer feature
map for the sequence S=AGCUAGUA. First, we find all the 3-
mer combinations of A, G, C, and U. Then, we map the
frequency of each 3-mer. Finally, we get the feature map:
FM(S)={AAA:0, AAG:0, …, AGC:1, …, AGU:1, …,
UUU:0}.

2) Inexact q-mer profiles.
In this work, we introduce the idea of inexact q-mer profile. We 
focus on the q-mers with k-mismatch(es), also called the (q, k)-
mismatch kernel, which provides the idea of mismatching in 
biological interest [32], [33]. Given a q-mer, we compute the 
frequency of other matching q-mers, where a match is allowed 
to admit at most k-mismatches, here k < q. Each matching q-
mer is still required to have the same length of q, just like the 
given q-mer. Thus, for a given q-mer, say Q, the result of (q, k)-
mismatch is thus a set of q-mers, such that each feature (q-mer) 
in the collection has the same length as Q, and there are at least 
q-k base(s) that have an exact match with bases in the given q- 
mer, Q. For example, for the q-mer sequence Q=AGCUAGUA,
the (8, 1)-mismatches are shown in Table 2. We use the
hamming distance to measure the mismatch. Row 1 is the
original sequence. From row 2 to 9, each row denotes a
mismatch which happened at a different location of the original
sequence. The asterisk indicates one of three bases that is other
than the original base, respectively. Thus, for each row, there
are 3 possible mismatch q-mers. Hence, in this example, there
are 24 mismatch q-mers. We then set the frequency value of 8-
mer, AGCUAGUA, with 25 (24 mismatches + 1 match). This
work uses a naïve method to compute the (q, k)-mismatch
feature map. There exist efficient data structures using suffix
trees and suffix arrays[34] to compute the feature map.

3) Data preprocessing

Figure 2. Workflow of our approach. See text.

Table 1. Characterizing two lncRNA subcellular localization datasets. Both 
are derived from RNALocate [30]. 

Table 2. (8,1) mismatch q-gram, for example, Q=AGCUAGUA. See text. 
1 A G C U A G U A 

2 * G C U A G U A 

3 A * C U A G U A 

4 A G * U A G U A 

5 A G C * A G U A 

6 A G C U * G U A 

7 A G C U A * U A 

8 A G C U A G * A

9 A G C U A G U * 
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The feature maps of the lncRNA sequences in the two datasets 
are counts of the q-mers. First, we normalize the counts 
according to the length of lncRNA sequences, respectively. We 
then split the dataset into training and testing sets with a ratio 4 
to 1. We then do z-score normalization on the training and test 
sets. The formula is as follows: 𝑧𝑖 = (𝑥𝑖 − 𝜇)/𝜎.  Here zi is the
score of i-th q-mer feature, xi is the count of q-mer, μ is the mean 
q-mer count of all of the lncRNA sequences, and σ is the
standard deviation.

4) Feature selection
The dimension of the feature map is 4q. It grows exponentially 
with q. A high-dimensional feature map will typically be noisy, 
which will reduce the prediction accuracy, often leading to 
over-fitting [35]. Further, this can also pose a significant 
computational challenge, especially as q increases. We test our 
q-mer approach with q=3, 4, …, 8, including some q-mer
combinations. For 7-mer and 8-mer, we have 16384 and 65536
features, respectively. Thus, we need to reduce the size of the
feature map. We applied the 𝜒2 test feature selection method
from Scikit-learn [36] to get a feature rank and then select the
optimal subset. We started with a subset with the first feature in
the rank and added eight features into the subset each time. We
tested the performance of the model and took the subgroup with
the highest accuracy. For 8-mers, we tried the 4107 pre-trained
features reported in iLoc-lncRNA[19].

C. Deep learning architecture
The convolutional neural network is a class of deep neural 
networks that employ a mathematical operation called 
convolution in at least one of its layers [35]. With convolution, 
a new feature map from the input feature is detected. Unlike 2D 
CNN, which broadly operates on 2-dimension data such as 
images and videos, 1D CNN is designed to work on one-
dimensional signals such as time series digital signal processing 
(DSP). This is often used in time domain analysis and 
frequency domain analysis.   
The feature map of the lncRNA dataset has two attributes: 1) 
The feature is with a fixed length, and 2) only the feature 

frequency is considered. Furthermore, the location of each q-
mer feature is ignored. Thus, a 1D CNN model is suitable for 
this scenario.  In this paper, we build the 1D CNN model with 
Keras [37].  Figure 3 shows the proposed architecture for the 
1D CNN model.  

D. Evaluation
We use overall accuracy (OA), sensitivity (Sn), specificity (Sp), 
Matthew’s correlation coefficient (MCC) and F1-score to 
evaluate the performance of the 1D CNN model, which were 
computed with the equation OA = (TP + TN) / (TP + TN + FP 
+ FN), Sn = TP / (TP + FN), Sp = TN / (TN + FP), MCC = (TP
× TN – FP × FN) /sqrt ((𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)),
Here TP is the true positive, the number of positive samples we
predict correctly. TN is the true negative, the number of
negative samples we predict correctly predicted. FP is false
positive, the number of negative samples we incorrectly predict
as positive. FN is the false negative, the number of positive
samples predicted as negative, and sqrt is square root function.

IV. EXPERIMENTS & RESULTS

We test our 1D CNN model on the 5-class dataset from the 
lncLocator [18] and the 4-class dataset from the iLoc [19]. We 
tried some q-mer combinations and q-mer (q=3, 4, 5, 6, 7, 8) 
with various mismatches. Given the randomness of the CNN 
model [38], we did experiments ten times for different scenarios 
on the two datasets. Finally, we calculated the average of the 
performance. The results showed that our model performed 
better on the 4-class iLoc dataset than the 5-class lncLocator 
dataset and that q-mer with mismatch(es) could improve the 
classification performance. 

A. Results with exact q-mers
 The overall accuracy using exact q-mers on the two datasets is 
shown in Table 3. The table shows that our model performed 
better on the 4-class (iLoc-lncRNA) dataset, when compared 
with the 5-class (lncLocator) dataset. With increasing q, the 
overall accuracy on the iLoc-lncRNA dataset rose from around 
64% (for 3-mer) to 89.85% (for 8-mer), and from about 53% (for 
3-mer) to 71.46% (for 8-mer) on the lncLocator dataset. It
indicates that the longer the segments might provide more
discriminative features for determining the lncRNA subcellular
localization. Combining different q-mers using fusion did not
seem to improve the result (results not shown).

Table 3. Overall accuracy using exact q-mers. 
3 
mer 

4 mer 5 mer 6 mer 7 mer 8 mer 

iLoc-lncRNA 64.35 64.89 64.27 65.5 68.78 89.85 

lncLocator 53.33 54.72 56.1 54.96 53.58 71.46 

B. Results using q-mers with k-mismatch
We experimented on q-mers (q=3, 4, 5, 6, 7, 8) with k 
mismatches (0 ≤ k ≤ q-1) on the two datasets. Table 4 shows the 
overall accuracy (mean) of using q-mer with k mismatch(es) on 
the lncLocator [18] dataset. The table shows the overall 
accuracy of the prediction in different scenarios. For example, 

Figure 3. 1D CNN architecture used in this work. We were using 6-mer 
profile as an example. The second and the third convolution layer blocks 
have the same structure as the first one, that is, a convolution layer 
followed by a maxpooling layer with 0.25 dropout.
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we can have the utmost seven mismatches in 8-mer. When the 
number of mismatches is greater than 2, there is a slight 
improvement in the overall accuracy. The overall accuracy 
increases from 71.5% to 71.9%, and the highest is 72.2%. 
However, for smaller q-mers, e.g., q=3, 4, and 5, increasing the 
number of mismatches did not necessarily lead to increased 
accuracy and perhaps more noise in the model. This may point 
to the need for a more detailed study of the interplay between q 
and k in this (q, k)-mismatch model.  

Table 4. Results of q-mers with mismatch(es) on 5-class lncLocator dataset.
0 

miss 
1 

miss 
2 

miss 
3 

miss 
4 

miss 
5 

miss 
6 

miss 
7 

miss 
8 mer 71.5 69.9 71.9 70.9 71.8 71.7 70.7 72.2 
7 mer 53.6 52.1 54.8 55.5 55.5 54.2 55.4 
6 mer 54.7 55.0 54.6 53.4 52.0 56.6 
5 mer 56.1 55.0 53.6 52.4 54.8 
4 mer 54.7 51.8 53.1 50.9 
3 mer 53.3 53.1 51.5 

Table 5 shows the corresponding results for on the iLoc dataset.  
We see the overall accuracy is improved with k > 3 using 8-
mers. For example, the highest score is 91.3%, 1.4% higher 
than the exact 8-mer. There are also significant improvements 
in using q= 5, 6, 7 with the k-mismatches. Thus, we can 
conclude that q-mer with mismatches performs better than the 
exact q-mer on this dataset. 

Table 5. Results of q-mers with k-mismatch(es) on the 4-class iLoc dataset.
0 

miss 
1 

miss 
2 

miss 
3 

miss 
4 

miss 
5 

miss 
6 

miss 
7 

miss 
8 mer 89.9 88.1 89.2 90.3 90.8 90.1 90.1 91.3 
7 mer 68.8 70.2 71.1 70.6 71.4 71.0 70.5 
6 mer 65.5 65.9 67.3 66.3 65.3 65.2 
5 mer 64.3 65.1 65.5 66.3 64.9 
4 mer 64.9 63.8 64.4 63.3 
3 mer 64.4 64.4 65.0 

C. Comparison with existing state-of-the-art predictors
 We compare with the two popular state-of-the-art lncRNA 
subcellular localization methods. Table 6 shows the 
performance difference between our proposed method with 
inexact q-mers, and the method of lncLocator [18], using the 5-
class lncLocator dataset. The proposed q-mer method with k-

mismatches showed improvement over previous results in [18]. 
Table 7 shows a similar performance comparison on the 4-class 
iLoc dataset [19]. We compare our approach using 8-mers with 
7 mismatches against the localization method proposed in [19]. 
The average accuracy of our approach is 91.3%±0.026, which 
is 4.58% higher than iLoc-lncRNA [19]. 
From the results above, we can see a general tendency that the 
accuracy increases with increasing q. The results also show the 

power of the 1D-CNN model and architecture we used in this 
work. The deep learning model did an excellent job on 
subcellular localization. In (q, k) mismatch model, we can  
improve the prediction accuracy. When we take 8-mer with 7 
mismatches, we can get an average of 91.3% and a maximum 
accuracy of 94.7% on the iLoc dataset. It appears that the 
inexact q-mer may be capturing some crucial biological signals 
that are important for lncRNA localization in the cell.   

V. CONCLUSION & DISCUSSION

LncRNAs can exist in different regions of the cell and show 
some crucial biological functions that may relate to diseases. 
Therefore, understanding their subcellular localization 
becomes an urgent task. However, compared to the vast 
lncRNA family, people have annotated only very few of them 
with their subcellular localization. It is possible to annotate the 
lncRNAs subcellular localization using computational methods 
based on the existing lncRNA atlas.  

The conventional computational methods annotate the 
lncRNA subcellular localization by extracting q-mer profiles 
from the lncRNA sequence. Then, they train Machine Learning 
models with q-mer profiles and get some good results. Given 
the gene mutation, there may be some changes in the lncRNA 
sequence, and these changes exhibit various biological 
functions which can relate to certain diseases. We hypothesized 
that these changes may affect how we perform subcellular 
localization.  

In this paper, to test this hypothesis, we train a 1D CNN 
model with q-mer profile. To compare the performances, we try 
q-mer with various mismatches. The results show an upward
trend in overall accuracy when the number of mismatches
increased. It turns out that the mismatch on q-mer profile can
improve the prediction performance. The proposed approach
surpasses the state-of-the-art methods in predicting subcellular
localization of lncRNAs.

We acknowledge some potential limitations in this work. 
First, the datasets used are relatively small. Only hundreds of 
lncRNAs are contained in these datasets. From a small dataset, 
it is hard to extract sufficient information to predict new 
unannotated lncRNAs. Second, the dataset is unbalanced. With 
unbalanced datasets, a model may perform well at predicting 
the majority classes while doing poorly in minority classes. 
More specific attention to this data imbalance problem could 
improve the results further. Finally, with the potential 
exponential increase in the feature space as q increases, 
computational challenges abound, both with respect to time and 
space. These issues make a case for potential future direction 
using this idea of inexact q-grams, especially given the 
improved comparative performance over state-of-the-art.  

  Table 6.  Comparative results on lncLocator dataset [18]. 

Table 7.  Comparative results on iLoc dataset [19]. 

Nucleus Cytoplasm Ribosome Exosome Cytosol OA

Sn 0.729 0.855 0.722 0.32 0.378

Sp 0.905 0.752 0.979 0.993 0.936

MCC 0.637 0.612 0.716 0.386 0.35

Sn 0.3815 0.8801 0.07 0.04

Sp 0.9217 0.3636 0.9753 0.9727

MCC 0.357 0.288 0.07 0.015

72.2

66.5

Our

method

lncLocator
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