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Abstract—Long non-coding Ribonucleic Acids (IncRNAs) can
be localized to different cellular components, such as the nucleus,
exosome, cytoplasm, ribosome, etc. Their biological functions can
be influenced by the region of the cell where they are located.
Many of these IncRNAs are associated with different challenging
diseases. Thus, it is crucial to study their subcellular localization.
However, compared to the massive number of IncRNAs, only
relatively few have annotations in terms of their subcellular
localization. Conventional computational methods use g¢-mer
profiles from IncRNA sequences and train machine learning
models, such as support vector machines and logistic regression
with the profiles. These methods focus on the exact q-mer. Given
possible sequence mutations and other uncertainties in genomic
sequences and their role in biological function, a consideration of
these changes might improve our ability to model IncRNAs and
their localization. We hypothesize that considering these changes
may improve our ability to predict subcellular localization of
IncRNAs. To test this hypothesis, we propose a deep learning
model with inexact q-mers for the localization of IncRNAs in the
cell. The proposed method can obtain a high overall accuracy of
94.7%, an average of 91.3% on a benchmark dataset, using 8-mers
with mismatches. In comparison, the exact 8-mer result was
89.8%. The proposed approach outperformed existing state-of-art
IncRNA localization predictors on two different datasets. Our
results, therefore, support the hypothesis that deep learning
models using inexact g-mers can improve the performance of
computational IncRNA localization algorithms.
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L INTRODUCTION

Non-coding RNAs (ncRNAs) and protein-coding genes are two
constituent parts of the human genome [1]. Usually, non-coding
RNAs can be divided into small ncRNAs with lengths less than
200 nucleotides and long non-coding RNAs (IncRNAs) with
lengths greater than or equal to 200 nucleotides [2]. Since
IncRNAs were first discovered in the early 1990s, the family of
IncRNAs has expanded rapidly. A recent study indicated that
there are over 270,000 IncRNA transcripts in humans [3].
Unlike the protein-coding genes, which are functional units of
heredity [4], non-coding RNAs were once deemed non-
functional. They were perceived as the product of spurious
transcription [5]. However, the application of high-throughput
sequencing technologies [6] has shed more light on the
transcriptional units. Accumulative evidence shows that
ncRNAs, specifically IncRNAs, exhibit biological functions.

978-1-6654-0126-5/21/$31.00 ©2021 IEEE 2128

Donald A. Adjeroh
Computer Science and Electrical Engineering
West Virginia University, Morgantown, WV, USA
Donald.Adjeroh@mail.wvu.edu

LncRNAs have been associated with biological processing,
such as chromatin modification, cell cycling, protein
transcription, and translation [7], [8]. LncRNAs also play
essential roles in diseases, including cancer, autism,
Alzheimer's disease, and others [9]-[11]. A popular database of
IncRNA-associated disecases, LncRNADisease [12] records
10,564 experimentally supported IncRNA-disease associations.
With info on over 450+ unique diseases, including various
cancers, nervous system disorders, etc., this underlines the
critical role of IncRNAs in many complex diseases.

Similar to proteins, the function of IncRNAs has been linked
with their subcellular localization in the cell [13]. Therefore,
understanding the subcellular localization of IncRNAs and their
dynamic changes can also help to explain the function of newly
discovered IncRNAs [14]. To study the RNA subcellular
localization, a database, RNALocate v2.0 [15], was constructed
in 2016 and updated in 2021. 213,260 RNA subcellular
localization entries validated by experimental evidence.
Experimental results show RNAs can be located in the nucleus,
cytoplasm, ribosome, exosome, nucleoplasm, chromatin,
cytosol, endoplasmic reticulum, and plasma membrane. See
[15]. The dataset contains 9,587 IncRNAs, some of them located
in different components of the cell. Only 6728 unique IncRNAs
were annotated. In 2017, another database, LncATLAS [16], for
subcellular localization of IncRNAs was introduced by
calculating the cytoplasmic/nuclear relative concentration
index. 6768 IncRNAs were annotated. Compared to the large
number of IncRNAs, only a few IncRNAs have been annotated.

Recent studies have analyzed the use of deep learning
techniques in IncRNA identification [17]. Similarly, some work
suggest that IncRNA subcellular localization can be predicted
from known subcellular localization datasets using
computational approaches. These studies make predictions with
high accuracy by extracting shot nucleotide segments (called ¢-
mers or g-grams) from IncRNA sequences and training machine
learning models, such as Random Forest (RF), support vector
machines (SVM), or deep neural network models [18]-[20].

Traditional computational methods have focused on exact g-
mers. However, given possible mutations in genomic sequences
[21], and other uncertainties in biological systems, exact pattern
matching may not be adequate to model problems in RNA
localization. Thus, segments with inexact matches or
mismatch(es) may provide equally biological information in the
modeling. In this work, we are interested in whether inexact ¢-
mers can impact the computational prediction of IncRNA
localization based on IncRNA sequences.



II. BACKGROUND AND RELATED WORK

A. Subcellular localization

RNAs play crucial roles in cellular processes, including
translating genetic information, regulating gene activity, and
cellular differentiation [22]. These functions are determined by
RNAs' location in the cell [14], [23]. The cell of eukaryotic
organisms can be divided into functionally distinct membrane-
bound compartments [23] (See Fig 1.), which are linked with
different phases of biological processes [24]. To understand the
function of RNA, we need to understand its subcellular
localization. Experiment methods, such as FISH, which map
RNAs to their subcellular localization, require knowledge of
molecular chemistry and specialized instruments and
techniques.

Conventionally, we divide RNAs into coding and non-
coding based on their coding potential [25]. Coding RNAs
encode protein. Non-coding RNAs act as cellular regulators
without encoding proteins. Unlike the coding RNAs, which have
been studied widely, IncRNAs are more challenging to explore,
given their low expression levels [26]. Thus, using information
from known datasets to predict the subcellular localization of
IncRNAs has become a significant challenge. There are existing
databases [16], [18], [19] which annotate IncRNAs with their
subcellular localizations, such as cytoplasm, nucleus, ribosome,
exosome, etc. Therefore, we can treat the prediction of
subcellular localization as a classification problem. For coding
RNAs, there are many predictors of protein localization, which
have been developed since the 1990s [27]. Many of them take
computational approaches, such as artificial neural networks, or
support vector machines (SVM). However, in contrast to
protein-coding RNAs, only a few methods have been proposed
for predicting IncRNAs subcellular localization.

B. Prior computational approaches

Research shows that we can represent the RNA sequence using
a discrete model: pseudo-k-tuple nucleotide composition
(PseKNC) [28]. In the PseKNC model, g-length substrings (q-
mers) are extracted from the RNA sequence. Each substring can
be treated as an RNA motif that contains some biological
information. Then, the RNA sequence is decomposed into a set
of small-sized segments, which are typically more efficient to
analyze, than long RNA sequences. Along this line of thought,
Kirk et al. [29] showed that profiles based on such g-mers could
be used to analyze IncRNAs subcellular localization.

General computational methods predict the localization of
IncRNAs by extracting g-mer features from the IncRNA
sequence. Some of them select particular nucleotide segments
as features. Based on the features, they train a prediction model,
such as random forest, support vector machines, or deep neural
network to make a prediction. In LncLocator [18], Cao et al.
created an annotated subcellular localization dataset of
IncRNAs from RNALocate [30]. The dataset contains 612
IncRNAs localized to 5 locations in the cell, including the
nucleus, cytoplasm, cytosol, ribosome, and exosome (see Table
1). They extract g-mer segments (¢=4,5,6) from the IncRNA
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Figure 1. The structure of an animal cell. The key target IncRNA
localizations in most datasets are nucleus, exosome, ribosome, and
cytoplasm (indicated in red).

sequences. Given the low discrimination ability of very short
segments, they feed 4-mer features into a stacked autoencoder
model to create a high-level feature representation of the
sequence. They tested their data in various scenarios. The
overall accuracy was 59.8% on the five-class dataset.

The iLoc-IncRNA [19] predicts IncRNAs subcellular
localization by feeding octamer features into an SVM model.
They build a 4-class dataset from the RNALocate database [30].
The classes correspond to the following localizations: nucleus,
cytoplasm, ribosome, and exosome. There are 655 IncRNAs in
the dataset (see Table 1). First, they extract 8-mer features from
the IncRNA sequences. Then, because high dimensional
features will produce several problems such as over-fitting and
redundant noise, they selected features based on the 8-mer
feature distribution probability. They finally picked 4107 8-mer
features and then trained the SVM model with the extracted
features. The overall accuracy was 86.72% on the 4-class
dataset.

Gudenas et al. [20] built a two-class dataset from the
ENCODE project. First, they quantified the IncRNA transcript
differences between nuclear and cytosolic, applying log, fold-
change threshold to allocate 8678 IncRNAs to cytosolic and
nuclear, 4380 for cytosolic, and 4298 for nuclear. They then
extracted q-mer features (q=2,3,4,5) from the IncRNA
sequences. Next, they added RNA-protein binding motifs to the
feature map, and passed these to a deep neural network. They
obtained an accuracy of 72.4%. Fan et al., in IncLocPred [31],
built a four-class dataset from the RNALocate database [30].
The database contains 396 IncRNAs. They use this dataset as an
independent dataset and dataset in iLoc-IncRNA [19] as the
benchmark dataset. First, they collect features using g-mers
(¢=5,6,8), triplet, and PseDNC. They then trained a logistic
regression model using the selected features.

C. Our approach

This paper examines the impact of inexact g-mer profiles on the
prediction performance on multi-label IncRNA subcellular
localization. In this paper, both exact and inexact g-mer profiles
are extracted from the IncRNA sequences to build feature maps,
and then a 1D convolutional neural network (1D CNN) model
is trained. To compare the performance of this method with the
existing state-of-the-art techniques, we use the datasets from
LncLocator [18] with 5-components and iLoc-IncRNA [19]
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Figure 2. Workflow of our approach. See text.
with four components. We also test the pre-trained features
from iLoc-IncRNA.

II. METHODS

Figure 2 shows the workflow in our methodology. We first
extract g-mer profiles from the IncRNA subcellular localization
dataset to build a feature map and then apply data
preprocessing. We finally feed our preprocessed data into a 1D
CNN model to do classification.

A. Dataset

The datasets from IncLocator [18], iLoc-IncRNA [19] are
tested. Both obtained their IncRNA sequences from RNALocate
[30]. Four subcellular localizations (classes) are retained in
iLoc-IncRNA dataset (as our benchmark dataset) and five in
IncLocator, including the nucleus, cytoplasm, cytosol,
ribosome, and exosome (See Table 1). We test our method on
these two datasets. Because of the time limitation, we didn't try
the dataset in IncLocPred. The datasets have annotated each
IncRNA sequence with a particular localization. We treat the
task as a supervised classification problem.

B. Feature representation

LncRNA is transcribed from DNA. LncRNA consists of a
string of nucleotides bases. These bases are adenine (A),
guanine (QG), uracil (U), and cytosine (C). The sequence of
IncRNA can be represented as: S = S;S:...S;...S,, with S; € {A,
G, C, U}. Here n is the length of the sequence, and S; is i
nucleotide base, 1< i < n.

1) q-mer profile
The g-mer is a substring of a sequence with length g. A possible
g-mer will be a g-length substring with one of the A, C, G, U
symbols for a IncRNA sequence. There are 49 possible different
g-mers in one IncRNA sequence. We build the feature map with
the g-mer profile, which captures the probability distribution

Table 1. Characterizing two IncRNA subcellular localization datasets. Both
are derived from RNALocate [30].

. number of IncRNA
location -
LnclLocator iLoc-IncRNA
Nucleus 152 156
Cytoplasm 301 426
Cytosol 91 ---
Ribosome 43 43
Exosome 25 30
Total 612 655
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Table 2. (8,1) mismatch g-gram, for example, Q=AGCUAGUA. See text.

1 A G C 9] A G S A
2 * G C Y A G U A
3 A * C Y A G U A
4 A G * U A G U A
5 A G C * A G U A
6 A G C 9] * G U A
7 A G C U A * U A
8 A G C U A G * A
9 A G C Y A G U *

(or frequency of occurrence) of each given possible g-mer. For
the g-mer profile, typically, each row corresponds to one
IncRNA, and each column corresponds to one of the possible
g-mers. Each cell is a feature value that represents the
frequency of the g-mer in the given sequence. We compute the
feature value by running a g-length window with stride one
across the sequence. If the segment is in the sequence, then the
frequency of the segment is set to its feature value. Otherwise,
the feature value is 0. Based on this, we define the feature map
(FM) of a IncRNA sequence as FM(S) = {Q:: fi}, 1< i < N},
Here S is the sequence, Q;is the i g-mer, f; is the corresponding
feature value, and N is the number of possible unique g-mers in
the sequence. For example, we can compute the 3-mer feature
map for the sequence SSAGCUAGUA. First, we find all the 3-
mer combinations of A, G, C, and U. Then, we map the
frequency of each 3-mer. Finally, we get the feature map:
FM(S)={AAA:0, AAG:0, ..., AGC:, ..., AGU:, ..,
UuUU:0}.

2) Inexact g-mer profiles.
In this work, we introduce the idea of inexact g-mer profile. We
focus on the g-mers with k-mismatch(es), also called the (g, k)-
mismatch kernel, which provides the idea of mismatching in
biological interest [32], [33]. Given a g-mer, we compute the
frequency of other matching ¢g-mers, where a match is allowed
to admit at most k-mismatches, here k < g. Each matching ¢-
mer is still required to have the same length of ¢, just like the
given g-mer. Thus, for a given g-mer, say Q, the result of (g, k)-
mismatch is thus a set of g-mers, such that each feature (g-mer)
in the collection has the same length as O, and there are at least
q-k base(s) that have an exact match with bases in the given g-
mer, Q. For example, for the g-mer sequence Q=AGCUAGUA,
the (8, 1)-mismatches are shown in Table 2. We use the
hamming distance to measure the mismatch. Row 1 is the
original sequence. From row 2 to 9, each row denotes a
mismatch which happened at a different location of the original
sequence. The asterisk indicates one of three bases that is other
than the original base, respectively. Thus, for each row, there
are 3 possible mismatch g-mers. Hence, in this example, there
are 24 mismatch g-mers. We then set the frequency value of 8-
mer, AGCUAGUA, with 25 (24 mismatches + 1 match). This
work uses a naive method to compute the (g, k)-mismatch
feature map. There exist efficient data structures using suffix
trees and suffix arrays[34] to compute the feature map.

3) Data preprocessing



The feature maps of the IncRNA sequences in the two datasets
are counts of the g-mers. First, we normalize the counts
according to the length of IncRNA sequences, respectively. We
then split the dataset into training and testing sets with a ratio 4
to 1. We then do z-score normalization on the training and test
sets. The formula is as follows: z; = (x; — 1)/o. Here z; is the
score of i-th g-mer feature, x; is the count of g-mer, 1 is the mean
g-mer count of all of the IncRNA sequences, and o is the
standard deviation.

4) Feature selection

The dimension of the feature map is 49. It grows exponentially
with ¢. A high-dimensional feature map will typically be noisy,
which will reduce the prediction accuracy, often leading to
over-fitting [35]. Further, this can also pose a significant
computational challenge, especially as ¢ increases. We test our
g-mer approach with ¢=3, 4, ..., 8, including some g-mer
combinations. For 7-mer and 8-mer, we have 16384 and 65536
features, respectively. Thus, we need to reduce the size of the
feature map. We applied the y? test feature selection method
from Scikit-learn [36] to get a feature rank and then select the
optimal subset. We started with a subset with the first feature in
the rank and added eight features into the subset each time. We
tested the performance of the model and took the subgroup with
the highest accuracy. For 8-mers, we tried the 4107 pre-trained
features reported in iLoc-IncRNA[19].

C. Deep learning architecture

The convolutional neural network is a class of deep neural
networks that employ a mathematical operation called
convolution in at least one of its layers [35]. With convolution,
a new feature map from the input feature is detected. Unlike 2D
CNN, which broadly operates on 2-dimension data such as
images and videos, 1D CNN is designed to work on one-
dimensional signals such as time series digital signal processing
(DSP). This is often used in time domain analysis and
frequency domain analysis.

The feature map of the IncRNA dataset has two attributes: 1)
The feature is with a fixed length, and 2) only the feature
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Figure 3. 1D CNN architecture used in this work. We were using 6-mer
profile as an example. The second and the third convolution layer blocks
have the same structure as the first one, that is, a convolution layer
followed by a maxpooling layer with 0.25 dropout.
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frequency is considered. Furthermore, the location of each q-
mer feature is ignored. Thus, a 1D CNN model is suitable for
this scenario. In this paper, we build the 1D CNN model with
Keras [37]. Figure 3 shows the proposed architecture for the
1D CNN model.

D. Evaluation

We use overall accuracy (OA), sensitivity (Sn), specificity (Sp),
Matthew’s correlation coefficient (MCC) and Fl-score to
evaluate the performance of the 1D CNN model, which were
computed with the equation OA = (TP + TN) / (TP + TN + FP
+FN), Sn=TP /(TP + FN), Sp=TN /(TN + FP), MCC = (TP
x TN — FP x EN) /sqrt (TP+FP)(TP+FN)(TN+FP)(TN+FN)),
Here TP is the true positive, the number of positive samples we
predict correctly. TN is the true negative, the number of
negative samples we predict correctly predicted. FP is false
positive, the number of negative samples we incorrectly predict
as positive. FN is the false negative, the number of positive
samples predicted as negative, and sgrt is square root function.

IV. EXPERIMENTS & RESULTS

We test our 1D CNN model on the 5-class dataset from the
IncLocator [18] and the 4-class dataset from the iLoc [19]. We
tried some g-mer combinations and g-mer (¢=3, 4, 5, 6, 7, 8)
with various mismatches. Given the randomness of the CNN
model [38], we did experiments ten times for different scenarios
on the two datasets. Finally, we calculated the average of the
performance. The results showed that our model performed
better on the 4-class iLoc dataset than the 5-class IncLocator
dataset and that g-mer with mismatch(es) could improve the
classification performance.

A. Results with exact q-mers

The overall accuracy using exact g-mers on the two datasets is
shown in Table 3. The table shows that our model performed
better on the 4-class (iLoc-IncRNA) dataset, when compared
with the 5-class (IncLocator) dataset. With increasing ¢, the
overall accuracy on the iLoc-IncRNA dataset rose from around
64% (for 3-mer) to 89.85% (for 8-mer), and from about 53% (for
3-mer) to 71.46% (for 8-mer) on the IncLocator dataset. It
indicates that the longer the segments might provide more
discriminative features for determining the IncRNA subcellular
localization. Combining different g-mers using fusion did not
seem to improve the result (results not shown).

Table 3. Overall accuracy using exact q-mers.

3 4mer | 5mer | 6mer | 7mer | 8 mer
iLoc-IncRNA | 64.35 | 64.89 | 64.27 | 65.5 68.78 | 89.85
IncLocator 53.33 | 54.72 | 56.1 54.96 | 53.58 | 71.46

B. Results using q-mers with k-mismatch

We experimented on g-mers (¢=3, 4, 5, 6, 7, 8) with k
mismatches (0 <k <g-1) on the two datasets. Table 4 shows the
overall accuracy (mean) of using g-mer with £ mismatch(es) on
the IncLocator [18] dataset. The table shows the overall
accuracy of the prediction in different scenarios. For example,



we can have the utmost seven mismatches in 8-mer. When the
number of mismatches is greater than 2, there is a slight
improvement in the overall accuracy. The overall accuracy
increases from 71.5% to 71.9%, and the highest is 72.2%.
However, for smaller g-mers, e.g., ¢=3, 4, and 5, increasing the
number of mismatches did not necessarily lead to increased
accuracy and perhaps more noise in the model. This may point
to the need for a more detailed study of the interplay between ¢
and 4 in this (¢, k)-mismatch model.

Table 4. Results of g-mers with mismatch(es) on 5-class IncLocator dataset.
0 1 2 3 4 5 6 7
miss | miss | miss | miss | miss | miss | miss | miss
8 mer 71.5 69.9 71.9 70.9 71.8 71.7 70.7 72.2
7 mer 53.6 52.1 54.8 55.5 55.5 54.2 55.4
6 mer 54.7 55.0 54.6 53.4 52.0 56.6
S mer 56.1 55.0 53.6 52.4 54.8
4 mer 54.7 51.8 53.1 50.9
3 mer 53.3 53.1 51.5

Table 5 shows the corresponding results for on the iLoc dataset.
We see the overall accuracy is improved with & > 3 using 8-
mers. For example, the highest score is 91.3%, 1.4% higher
than the exact 8-mer. There are also significant improvements
in using g= 5, 6, 7 with the k-mismatches. Thus, we can
conclude that g-mer with mismatches performs better than the
exact g-mer on this dataset.

Table 5. Results of g-mers with k-mismatch(es) on the 4-class iLoc dataset.
0 1 2 3 4 5 6 7
miss | miss | miss | miss | miss | miss | miss | miss
8 mer 89.9 88.1 89.2 90.3 90.8 90.1 90.1 91.3
7 mer 68.8 70.2 71.1 70.6 71.4 71.0 70.5
6 mer 65.5 65.9 67.3 66.3 65.3 65.2
5 mer 64.3 65.1 65.5 66.3 64.9
4 mer 64.9 63.8 64.4 63.3
3 mer 64.4 64.4 65.0

C. Comparison with existing state-of-the-art predictors

We compare with the two popular state-of-the-art IncRNA
subcellular localization methods. Table 6 shows the
performance difference between our proposed method with
inexact g-mers, and the method of IncLocator [18], using the 5-
class IncLocator dataset. The proposed g-mer method with -

Table 6. Comparative results on IncLocator dataset [18].
Nucleus |Cytoplasm|Ribosome| Exosome [ Cytosol OA

Sn 0.729 0.855 0.722 0.32 0.378
Our

method | Sp | 0905 | 0752 | 0979 | 0993 | 0936 | 722
Mcc| 0637 | 0612 | 0716 | 038 | 035
Sn | 03815 | 0.8801 | 007 | 004

Inclocator| Sp | 0.9217 | 0.3636 | 0.9753 | 0.9727 66.5

MCC| 0.357 0.288 0.07 0.015

mismatches showed improvement over previous results in [18].
Table 7 shows a similar performance comparison on the 4-class
iLoc dataset [19]. We compare our approach using 8-mers with
7 mismatches against the localization method proposed in [19].
The average accuracy of our approach is 91.3%=+0.026, which
is 4.58% higher than iLoc-IncRNA [19].

From the results above, we can see a general tendency that the
accuracy increases with increasing ¢. The results also show the
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power of the 1D-CNN model and architecture we used in this
work. The deep learning model did an excellent job on
subcellular localization. In (g, k) mismatch model, we can
improve the prediction accuracy. When we take 8-mer with 7
mismatches, we can get an average of 91.3% and a maximum
accuracy of 94.7% on the iLoc dataset. It appears that the
inexact g-mer may be capturing some crucial biological signals
that are important for IncRNA localization in the cell.

Table 7. Comparative results on iLoc dataset [19].

MNucleus Cytoplazm Ribozome Exosome 0a
n 0.865 0.959 0.833 0.483
m::hr a5 0.966 0.852 0.996 0.994 913
MCC 0.84 0.828 0.936 0.584
n 0.7756 0.9906 0.4651 0.1667
iLoc sp 0.9759 0.6768 0.3883 1 86.72
MCC 0.796 0.742 0.552 0.4

V. CONCLUSION & DISCUSSION

LncRNAs can exist in different regions of the cell and show
some crucial biological functions that may relate to diseases.
Therefore, understanding their subcellular localization
becomes an urgent task. However, compared to the vast
IncRNA family, people have annotated only very few of them
with their subcellular localization. It is possible to annotate the
IncRNAs subcellular localization using computational methods
based on the existing IncRNA atlas.

The conventional computational methods annotate the
IncRNA subcellular localization by extracting g-mer profiles
from the IncRNA sequence. Then, they train Machine Learning
models with g-mer profiles and get some good results. Given
the gene mutation, there may be some changes in the IncRNA
sequence, and these changes exhibit various biological
functions which can relate to certain diseases. We hypothesized
that these changes may affect how we perform subcellular
localization.

In this paper, to test this hypothesis, we train a 1D CNN
model with g-mer profile. To compare the performances, we try
g-mer with various mismatches. The results show an upward
trend in overall accuracy when the number of mismatches
increased. It turns out that the mismatch on g-mer profile can
improve the prediction performance. The proposed approach
surpasses the state-of-the-art methods in predicting subcellular
localization of IncRNAs.

We acknowledge some potential limitations in this work.
First, the datasets used are relatively small. Only hundreds of
IncRNAs are contained in these datasets. From a small dataset,
it is hard to extract sufficient information to predict new
unannotated IncRNAs. Second, the dataset is unbalanced. With
unbalanced datasets, a model may perform well at predicting
the majority classes while doing poorly in minority classes.
More specific attention to this data imbalance problem could
improve the results further. Finally, with the potential
exponential increase in the feature space as ¢ increases,
computational challenges abound, both with respect to time and
space. These issues make a case for potential future direction
using this idea of inexact g-grams, especially given the
improved comparative performance over state-of-the-art.
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