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ARTICLE INFO ABSTRACT

Keywords: Diapause is a complex physiological phenomenon that allows insects to weather stressful environmental con-
Diapause ditions. The regulation of diapause is accordingly complex, including signaling pathways that involve both small
Transposable elements RNA and mRNA and affect the cell cycle, stress resistance, and developmental timing. Transposable elements,
i)t::; mobile genetic elements that replicate within the genome, are also thought to be stress responsive and regulated
Megachile by the small RNA pathway. Therefore, we asked what the relationship was between environmental stress,

diapause status, and transposable element expression in two species of agriculturally important bees, Megachile
rotundata and Osmia lignaria. We characterized the TE content of the genomes of both species, then evaluated the
expression of TE families during temperature stress, general environmental stress, and diapause stage. We found
that the genomic TE content of the two species was very different, and M. rotundata has a larger number of
annotated TEs compared to O. lignaria. We also found that both diapause stage and temperature stress had large
effects on TE expression. The fold change of TE famlies tended to be larger in those expressed during diapause,
however there was only a small majority that were upregulated during diapause. This suggests that stress and
diapause do not break down to a simple up-regulation or down-regulation of TEs, but rather that the TE family,
the genomic position of its insertions, and the exact heterochromatin formation of the organism at any given

environmental state or life stage may affect overall expression of TEs.

1. Introduction

Insects have colonized nearly every available terrestrial habitat from
the tropics to the polar regions, including regions with low temperatures
that could negatively impact insect survival and reproduction. Diapause
is a key physiological adaptation that enables insects to survive harsh
environmental conditions and to synchronize with biotic and abiotic
cues required for development and reproduction. During diapause,
metabolism and developmental progression decrease while stress
tolerance increases (Tauber et al., 1986; Danks, 1987). Diapause is not
merely a stopping or slowing of development in response to current
harsh conditions, but rather a complex physiological phenomenon
involving three phases: anticipation and preparation for dormancy, the
dormant phase, and a final phase that is primed for a return to devel-
opmental progression (Kostal, 2006; Kostal et al., 2017). In the pre-
diapause phase, the insect perceives environmental cues that foretell
winter and trigger behavioral and physiological mechanisms preparing
the insect to enter diapause. The second stage is the “true diapause”
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phase that is characterized by endogenously blocked morphogenesis.
The final phase of diapause development is post-diapause quiescence, in
which metabolism is still repressed but the insect will exit dormancy in
response to environmental cues. Each of the phases of diapause requires
a complex regulation of gene expression to bring about the required
changes in physiology.

Our understanding of the complexity of the molecular regulation of
diapause has expanded greatly since the development of RNA-seq
technology (Kostal et al., 2017; Emerson et al., 2010; Ragland et al.,
2010; Ragland et al., 2011; Poelchau et al., 2011; Poelchau et al., 2013a;
Poelchau et al., 2013b; Gong et al., 2013; Dong et al., 2014; Huang et al.,
2015; Qi et al., 2015; Yocum et al., 2015; Yocum et al., 2018; Hao et al.,
2016; Kang et al., 2016; Meyers et al., 2016). Recently, all three small
RNA pathways have also been implicated in different aspects of diapause
regulation (Reynolds et al., 2017) (microRNAs, siRNAs, and piRNAs).
For example, in M. rotundata proteins involved in the siRNA pathway are
differentially regulated between diapause stages (Yocum et al., 2015).
The proteins in the piRNA and siRNA pathway are both differentially
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regulated in prediapause stages of Sarcophaga bullata and Chymomyza
costata, potentially because diapause calls for changes or increases in
heterochromatin (Reynolds et al., 2017; Poupardin et al., 2015; Rey-
nolds et al., 2013; Taliaferro et al., 2013). TEs in turn make up large
fractions of eukaryotic genomes and are able to replicate by transposing
to new locations of the hosts’ genome. These two major classes of
genomic parasite, retrotransposons (which transpose with an RNA in-
termediate) and DNA transposons (which transpose with a DNA inter-
mediate), are therefore likely also linked through the piRNA and siRNA
pathways to the epigenetic changes in the genome such as diapause that
are also influenced by the environment.

TE activity has also long been associated with stress, for example TEs
interact with stress-specific transcription factors and change the
expression of genes in response to stress (Horvath et al., 2017; Villa-
nueva-Canas et al., 2019) . TEs are also induced by various environ-
mental stressors. TEs can carry regulatory elements that alter the
transcription and splicing of nearby genes, and in at least one example, a
TE carried a stress responsive regulatory element which induced
expression of neighboring genes following environmental stress
(Horvath et al., 2017; Villanueva-Canas et al., 2019; Bourque et al.,
2008; Leem et al., 2008; Faulkner et al., 2009; Feng et al., 2013). In
other cases TEs are simply de-repressed in response to stress because the
regulatory apparatus that normally silences them is re-routed for other
more pressing tasks (Rinehart et al., 2007). There is considerable evi-
dence in the literature for TE mobilization under stress, in some cases
including the mechanistic basis, but it is still a complicated area of
research with many open questions (Van Meter et al., 2014; Voronova
et al., 2014; Romero-Soriano et al., 2016; Ryan et al., 2016; Zovoilis
et al., 2016; Hummel et al., 2017).

Considering this information in aggregate — that diapause is a stress
resistant phenotype, its regulation involves small RNA pathways, small
RNAs regulate stress resistance, and TEs are both stress responsive and
silenced by the small RNA pathway - it suggests a potential interaction
between stress, diapause, and TE activity with potentially profound ef-
fects on organismal health. In addition, buried in the many massive
RNA-seq datasets that exist on diapause, there is evidence for the dif-
ferential regulation of TEs during the course of diapause, which allows
us to approach these questions (Yocum et al., 2015; Yocum et al., 2018;
Rinehart et al., 2007). We wanted to ask the following — how does TE
expression differ between diapausing and non-diapausing individuals,
how does it change over the course of diapause as an organism transi-
tions between diapause stages, and how does temperature stress affect
TE expression during diapause?

To address these questions, we characterized the expression of TE
families during diapause development in two solitary bees, the alfalfa
leafcutting bee, M. rotundata and the blue orchard bee, O. lignaria
(Yocum et al., 2015; Yocum et al., 2018). These bees are both agricul-
turally important pollinators. Both species undergo diapause, but they
do so in different life stages. M. rotundata facultatively diapauses in the
pre-pupal stage (Stephen and Osgood, 1965; Klostermeyer and Rank,
1982; Sgolastra et al., 2012) . O. lignaria has an obligate diapause as an
adult, and has an additional pre-pupal dormancy that is very similar to
diapause (Sgolastra et al., 2012; Torchio, 1989). The diapause stage is
important for agricultural management of these species (Yocum et al.,
2015; Yocum et al., 2018; Torson et al., 2015; Torson et al., 2017). We
compared the following to address our questions about the regulation of
TEs, stress, and diapause: 1) TE expression in M. rotundata during each of
the three phases of diapause: maintenance, termination, and post-
diapause quiescence 2) lab and field raised M. rotundata to determine
if the presumably more stressful field conditions resulted in differences
in TE expression 3) TE expression in M. rotundata during post-diapause
quiescence under cold stress and with reduced cold stress 4) TE
expression between diapausing adults and dormant prepupae in
O. lignaria to compare patterns of TE expression in different types of
dormancy 5) diapausing and non-diapausing adults of O. lignaria to
compare patterns of TE expression relative to diapause in more than one
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2. Methods
2.1. Genome assemblies and TE annotation

The M. rotundata genome assembly is available from NCBI and was
used for genomic mapping and TE identification (NCBI:txid143995).
The O. lignaria genome was acquired from the USDA in September of
2020 (https://i5k.nal.usda.gov/content/osmia-lignaria-genome-
assembly-usdaolig10-gcf0122742951). The TE library for both ge-
nomes was constructed using the Extensive de-novo TE Annotator
pipeline (EDTA) (Ou et al., 2019). These annotations are available at
(redacted for blind peer review). This pipeline is intended to create a
non-redundant TE library based off of a reference genome. We chose
only to differentiate between general DNA transposons, MITEs, Heli-
trons, and three groups of LTR transposons — copia, gypsy and unknown—
because previous benchmarking suggests EDTA sub-designations be-
tween types of DNA transposons are unreliable (Tiedeman, 2020). The
TEs were compared to existing annotations using the Dfam database
(Hubley et al., 2016) and hmmer (hmmer.org).

2.2. Identifying TE insertions

We ran RepeatMasker on the M. rotundata and O. lignaria genomes
using the TE libraries from EDTA as input (Tarailo-Graovac and Chen,
2009). Simple repeats were excluded, along with any hit with a Smith-
Waterman alignment score of less than 225 (Smith and Waterman,
1981). Repeatmasker may annotate single copies of TEs more than once
if they are fragmented or contain regions of significant divergence,
therefore this is an approximation of potential insertions.

RNA-seq data

2.3. Diapause phase and laboratory conditions in M. rotundata

The protocols for collecting bees were described previously, and will
be briefly summarized (Yocum et al., 2018). The M. rotundata origi-
nated from broods reared in commercial alfalfa fields in Wyoming, USA;
the bees were then purchased by a Utah alfalfa seed grower for polli-
nation in summer (41°47'37.04"N; 112°8'18.35”W). Bees were main-
tained outdoors from September 2010 until 22 October 2010. On that
date, bees were divided into two overwintering management groups: 1)
lab bees, overwintered at constant 6 °C and 2), and field bees, over-
wintered outside at ambient temperatures. Prepupal bees were sampled
in November for diapause maintenance, January for diapause termina-
tion, and either March or May for post-diapause quiescence. 48 samples
were sequenced: 12 for each period of diapause, and 24 each lab or field
raised. [llumina sequencing was carried out by the University of Georgia
Genomic Facility. Stranded Illumina libraries were constructed using the
TruSeq RNA kit (Illumina Inc., San Diego, CA, USA) and sequencing was
performed using an Illumina HiSeq 2000 sequencer.

2.4. M. rotundata temperatures during post-diapause quiescence

The protocol for the fluctuating temperature regime and RNA-seq
collection are described elsewhere, and will be briefly summarized
here(Torchio and Bosch, 1992). Bees were purchased from JWM Leaf-
cutter Inc. and were of Canadian origin. Experiments were conducted at
the USDA-ARS in Fargo, ND in 2010. Diapausing bees were stored for
seven months at constant temperature (6 °C &+ 0.5 °C with a 15 h:9h (L:
D) photoperiod). After seven months they were split into two treat-
ments, static temperature (STR) and fluctuating temperature (FTR). Bees
reared under FTR were exposed to 6 °C with a daily warm pulse of 20 °C
for an additional 5-7 months. Total RNA was collected from six post-
diapause quiescent prepupae reared under either STR or FTR using the
Invitrogen TRIzol protocol (Carlsbad, CA, USA). Individuals for both
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treatments were harvested during the cold phase (6 °C). Based on overall
mortality rates those in the STR treatment regime are subject to more
stressful conditions and are more susceptible to chill injury than those
with daily warm pulses (Torson et al., 2015; Torson et al., 2017). 6 RNA-
seq libraries for each treatment were prepared using Illumina TruSeq
mRNA standard protocol at the University of Georgia Genomics Facility
and sequencing was performed by the University of Missouri Columbia
DNA Sequencing Core on a HiSeq2000.

2.5. 0. lignaria diapausing adults and prepupae

In the spring of 2003, an active nesting population of O. lignaria was
maintained in an apple orchard (Hanson’s farm, Logan, UT). Nesting
blocks were inspected daily and capped nests were collected and
transferred to the USDA-ARS, Logan, UT. The nests were dissected and
individual larvae were placed into clay blocks (Torchio and Bosch,
1992). The blocks were kept in a plastic box with extra clay blocks filled
with water to maintain humidity. The boxes with the developing bees
were kept in an unheated barn through the autumn-winter-spring of
2003/2004. Once the larvae completed cocooning they were placed into
gel capsules and arranged onto sticky boards. The bees were x-rayed
every 3 days to monitor for pupation and adult eclosion (Kemp et al.,
2004). The dates of pupation and adult eclosion were recorded for each
bee. Samples were collected starting with fifth instar larvae, through
pupal development, adult diapause (autumn-winter), and finally adults
emerging in the spring of 2004 (Bosch et al., 2008). 11 non-diapausing
prepupal samples were collected for sequencing, 15 diapausing adult
samples, and 3 non-diapausing adults.

2.6. RNA-seq mapping and differential expression of TEs

For each data set reads were mapped to the TE library using bwa
mem version 0.7.15 (Li, 2013) and processed with samtools v.1.9 (Li,
2013; Lietal., 2009). Read counts for each TE family were obtained, and
TEs were designated as not expressed according to the following criteria:
No more than 20% of the population have no more than 2 reads mapping
to the TE. DEseq2 was used to evaluate differential expression between
treatments (Love et al., 2014). p-values for all tests were adjusted for
multiple testing (Benjamini and Hochberg, 1995). For a comparison to
another method please see Supplementary File 1.

3. Results
3.1. TEsin M. rotundata

We identified 851 distinct TE families in M. rotundata. The vast
majority of these are DNA transposons: 529 DNA transposons, 172
MITEs, and 47 Helitrons. The remainder consist of 45 copia elements, 51
gypsy elements, and 7 unknown LTRs (Fig. 1A). 96 of these TEs could be
associated with a known element in the Dfam database, predominantly
LTRs, suggesting that they have spread more recently within the popu-
lation than DNA transposons — 12% of annotated TE families in the
species and 53% of those with a match in Dfam (Supp. File 2). LTRs are
thought to be a younger group of TEs compared to DNA transposons,
though a formal analysis of TE age in these species would be a valuable
contribution, as similarity to Dfam could depend only on the particular
species previously analyzed in the database (Tiedeman, 2020; Bowen
and McDonald, 2001; Signor, 2020) . Notably, 103 LTR elements are
annotated overall, and 24 of these are related to copia superfamily ele-
ments from D. melanogaster. This suggests specifically that the copia
superfamily has spread more recently into M. rotundata from dipterans
or their relatives.

3.2. TEsin O. lignaria

We identified 738 TE families in O. lignaria. This includes 251 DNA
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Fig. 1. A. The number of TEs in each category - DNA transposons, Helitrons,
Copia, Gypsy, and unknown LTR - that were identified in Megachile rotundata
and Osmia lignaria. Many more gypsy elements were identified in O. lignaria
compared to M. rotundata. B. The percentage of identified insertions that belong
to each category of TEs.

transposons, 149 MITEs and 63 Helitrons. The remainder consists of 67
copia elements, 200 gypsy elements, and 7 unknown LTR elements
(Fig. 1A). 165 of these TEs could be tied to existing Dfam annotations,
likely due to the larger presence of recent gypsy and copia superfamily
invasions, as only 15% of those with a putative related TE in Dfam are
DNA transposons. Of these LTR transposons, elements related to Bel,
Max-Element, roo, and Quasimodo are private to O. lignaria compared to
M. rotundata. Both species contain ZAM-related elements, but in
O. lignaria this is a particularly abundant subset of TEs (16 elements)
(Supp. File 3).

3.2.1. TE content of the M. rotundata and O. lignaria genomes
Repeatmasker identified 198,434 fragments or potential TE in-
sertions in TEs in M. rotundata (Supp. File 4). This is likely an under-
estimate as the M. rotundata genome is somewhat fragmented. In
O. lignaria, we identified 87,347 TE fragments or potential insertions
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have >3000 insertions. One TE has 2x the number of insertions of its next closest TE (5388 insertions versus 10433). The TEs are in order by number along the X axis.
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(Supp. File 4). 16.98% of the M. rotundata genome is estimated to be TEs,
while only 11.61% in O. lignaria. The M. rotundata genome is also larger
overall (272 MB in M. rotundata, versus 177.2 MB in O. lignaria), thus
this represents a larger number of total base pairs as well. Therefore
M. rotundata bears a considerably larger number of potential TE in-
sertions within its genome than O. lignaria.

3.2.2. Copy number of TEs in the genome of M. rotundata and O. lignaria

Copy number, or number of potential insertions/fragments, is vari-
able between TEs in M. rotundata, with 80 elements having as few as 1
copy and 1 element having as many as 10,000 insertions (Fig. 2, TE 403).
It is possible that older TEs are more fragmented and appear as more
‘copies’. In contrast, in O. lignaria no TE has a copy number greater than
2500. This is in line with our previous results which found that
M. rotundata contained more TE insertions than O. lignaria. Of the 1% of
TEs with the highest copy number, in M. rotundata this includes 9 TEs
with >3000 insertions that are all DNA transposons, only one of which
can be tied to an existing Dfam element (TE 680, CMC-EnSpm DNA
transposon). In O. lignaria this includes 6 TEs with >2000 insertions, 2
DNA transposons, 2 Helitrons, and a copia and a gypsy element.

3.2.3. Diapause phase and laboratory conditions in M. rotundata
Between diapause maintenance (Nov.) and diapause termination
(Jan.) 31 TE families were differentially expressed (Supp. File 5).
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Between diapause termination (Jan.) and post-diapause quiescence
(March/May) 24 TE families were differentially expressed (Supp. File 6).
Between diapause maintenance (Nov.) and post-diapause quiescence
(March/May) 202 TE families were differentially expressed (Supp. File
7; See Supp. File 6 for a PCA). Overlap between the sets of significant TE
families is interesting — in the diapause maintenance/diapause termi-
nation comparison 29 of the 31 TE families were also differentially
expressed between diapause maintenance/post-diapause quiescence (a
significantly higher overlap than expected by chance, hypergeometric
probability p < 4.46 x 10717). In addition, between diapause
termination/post-diapause quiescence 14 of the 24 TE families are also
differentially expressed between diapause maintenance/post-diapause
quiescence (p < 0.006), but there is 0 overlap between the two
respective datasets. Therefore, transcribed TE families are distinct to
particular periods of diapause, and also form part of a larger set of
potentially transcribed TEs between the diapause maintenance and post-
diapause quiescence stages. In addition, a majority of TE families are
expressed at higher levels during diapause maintenance (Nov.)
compared to post diapause quiescence (March/May, 62%), and they
represent the largest fold changes. 59 TE families were differentially
expressed between lab raised and field raised pre-pupae (Figs. 3-4, Supp.
File 5; See Supp. File 6 for a PCA). They are equally split between in-
creases and decreases in expression. If these differences were the result
of a general deregulation of TEs between conditions, an increased copy

O. lignaria Adult diapause/Adult nondiapause

0. lignaria Adult diapause/Dormant prepupae

Fig. 4. A. The number of TEs from different taxonomic categories that were differentially expressed in each comparison between O. lignaria and M. rotundata. B.
Overlapping and unique TEs from each dataset in M. rotundata. Because the Nov./Jan. and Jan./March/May diapause stages had largely overlapping significant TEs
with the Nov./March/May comparison they were grouped into a single comparison. C. Overlapping TEs in O. lignaria, adult diapausing/prepupae dormant and adult

diapausing/non-diapausing.
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number of TEs could result in an increased likelihood of significant
differential expression, however we do not see this relationship in this or
the following analysis of differential TE expression (Supp. File 7).

3.3. M. rotundata temperatures during post-diapause quiescence

168 TE families responded significantly to different temperature
regimes (Figs. 3-4, Supp. File 5; See Supp. File 6 for a PCA). The direction
of expression change is not preferential to either treatment (52% in-
crease in FTR, 48% increase in STR). The largest fold change in any
treatment or species examined in this study is an increase in FTR (~6
fold change) in a DNA transposon (TE 621). This dataset shares 10 TEs
with the diapause and lab/field datasets, suggesting that these TEs are
particularly able to exploit changes in the environment and/or life stage
of the organism (Fig. 4).

3.3.1. Diapausing adult and dormant prepupae in O. lignaria

422 TE families are differentially expressed between stages in
O. lignaria (Supp. File 8; Figs. 3-4; See Supp. File 9 for a PCA). The largest
fold change, and more frequently larger fold changes, are in those TE
families that are upregulated in diapausing individuals compared to
dormant individuals (the largest is ~ 3.7 fold change), though the di-
rection of TE expression change between diapause and dormant in-
dividuals is approximately evenly split.

3.3.2. Diapausing adult and non-diapausing adults in O. lignaria

201 TE families are differentially expressed between diapausing
adults and non-diapausing adults (Fig. 4, Supp. File 8; See Supp. File 9
for a PCA). This includes TE 17, a DNA transposon, which is a large
outlier in p-value and whose log 2 fold change is 4 times higher in
diapausing adults compared to non-diapausing adults. Overall, the di-
rection of change is relatively evenly split with 89 TE families more
highly expressed in non-diapausing adults and 111 TE families more
highly expressed in diapausing adults (44/56%).

4. Discussion

In this study we found abundant differences in TE expression as a
result of life stage, environment, and diapause status. There was no large
overall bias in the direction of change of TE expression, though the
largest fold changes were consistently upregulation in diapause.
M. rotundata diapause stages — maintenance versus termination and
termination versus post-diapause quiescence — share very few tran-
scribed TEs. However, these comparisons include a subset of the sig-
nificant TEs between diapause maintenance and post diapause
quiescence. The most significant difference in terms of number of TE
families was between O. lignaria dormant prepupae and diapausing
adults. O. lignaria prepupae are thought to be in a summer dormancy
stage that resembles diapause (Sgolastra et al., 2012). Our results show
TE activity is very different during these two dormancies, and indeed
finds differential expression of 57% of TE families. The magnitude of
differential TE activity in O. lignaria is also interesting because a smaller
percentage of its genome is occupied by TEs compared to M. rotundata,
and the constituent TE families are present in much lower copy numbers.

Very few studies have investigated the role of different life stages in
TE activity. In one study in Drosophila montana, 15 TEs were found to be
differentially expressed between the diapause stages, 12 of which were
upregulated during diapause (Kankare et al., 2016). In Culex pipiens, two
TEs were upregulated during diapause (Robich et al., 2007). Diapause
upregulation of two TEs in Bombyx mori, and one in Sarcophaga crassi-
palpis, has also been noted (Reynolds et al., 2017; Yamashita et al.,
2001). Typically a small majority of TEs were upregulated during
diapause, and the degree of increase was largest for TEs that were
upregulated during diapause. Our study also finds many more TEs
affected by diapause than these previous investigations, and re-
capitulates the tendency for TEs to be upregulated during diapause with
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larger fold changes.

TE transposition is suppressed by the activity of the piRNA and
siRNA small RNA pathways. The siRNA pathway is well understood and
involves degradation of mRNA transcripts through the interaction of
double stranded RNA with the Dicer2 and Ago2 proteins. This is the
predominant mode of somatic suppression of TEs. In the piRNA pathway
TEs are transcribed and spliced into short RNAs termed piwi-RNAs
(piRNA) (Brennecke et al., 2007). PIWI-clade proteins bind these piR-
NAs and suppress transposon activity transcriptionally and post-
transcriptionally (Brennecke et al., 2007). Suppression can occur
through many mechanisms, such as the formation of heterochromatin or
cleaving of the transcripts of TEs. However, recent research has also
found that piRNAs are important in somatic cells. For example, there is a
twofold increase in transcript abundance of genes encoding components
of the piRNA pathway in larva of Sarcophaga bullata that are destined for
diapause, potentially because the piRNA pathway can direct the for-
mation of additional heterochromatin prior to diapause (Reynolds et al.,
2017; Reynolds et al., 2013). These two genes are also more abundant in
Dianemobius nigrofasciatus that are programmed to enter diapause
compared to embryos programmed for continuous development (Shi-
mizu et al., 2018). In the previous RNA-seq analysis of the M. rotundata
heat and diapause experiments no differences in expression were found
in Dicer2; Ago2; PIWI like protein, or Aubergine like protein, though there
are likely other as yet unannotated argonaute proteins in this species
(Yocum et al., 2018; Yocum et al., 2015). Differences in the activity of
TEs between different diapause stages could be due to either the side
effects from the activity of the piRNA pathway in different contexts,
changes in the location of piRNA induced heterochromatin through
different life stages, or changes in heterochromatin induced by other
genes or environmental factors in both of these spcies.

In diapause M. rotundata gene expression over the course of diapause
development is highly dependent upon the environmental history of the
individual bee (Yocum et al., 2018). The differential regulation of TEs
between the field and laboratory samples strengthen the argument put
forward by Yocum et al. (2018) that these two groups are physiologi-
cally distinct from each other. This could be due to differences in stress
in the two environments, or stress independent differences in the effect
of the environment. In all cases of stress activated TEs, a proportion of
TEs are activated rather than general de-repression, suggesting that
there is a specific mechanism involved (Dubin et al., 2018; Liu et al.,
2021). For example, in Arabidopsis, loss of DNA methylation in response
to heat enhances TE activation, and the effect is position specific (Liu
et al., 2021; Kumar and Wigge, 2010; Tittel-Elmer et al., 2010; Cavrak
et al., 2014). This could be explained by two mechanisms - the afore-
mentioned changes in chromatin structure (Liu et al., 2021; Feschotte,
2008; Drongitis et al., 2019; Diehl et al., 2020) , or stress-specific tran-
scription factors. TEs have been found previously to interact with stress-
specific transcription factors, including providing binding sites (Villa-
nueva-Canas et al., 2019). Following stress, TEs are also associated with
up or down regulation of neighboring genes (Horvath et al., 2017).

Two patterns are clear from this study 1) The largest fold changes in
TE expression occur during diapause as an increase in expression. 2) The
populations of TEs that respond to different environmental or develop-
mental cues are relatively distinct, suggesting it may not be the TE itself
that determines differences in expression, but rather genomic position
and chromatin state or some other local determinant of TE expression
likelihood.
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