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Abstract—Investigation of age-related genes is of great importance
for multiple purposes, for instance, improving our understanding of the
mechanism of ageing, increasing life expectancy, age prediction, and other
healthcare applications. In this work, starting with a set of 27,142 genes,
we develop an information-theoretic framework for identifying genes that
are associated with aging by applying unsupervised and semi-supervised
learning techniques on human dermal fibroblast gene expression data.
First, we use unsupervised learning and apply information-theoretic
measures to identify key features for effective representation of gene
expression values in the transcriptome data. Using the identified features,
we perform clustering on the data. Finally, we apply semi-supervised
learning on the clusters using different distance measures to identify
novel genes that are potentially associated with aging. Performance
assessment for both unsupervised and semi-supervised methods show
the effectiveness of the framework.

I. INTRODUCTION
Aging is a complex process, and is often associated with the pro-

cess of increasing physiological decline, increased risk of illness, and
increased mortality. This process could manifest in terms of various
types of decline in physiological function, such as transcriptional
decline [1]. Early studies on ageing confirm the contribution of
genes to ageing, for instance, in some species such as mouse or
dog even a few number of gene mutations resulting from natural
selection can lead to a significant extension of life span [2]. From
the perspective of cell biology, ageing can be interpreted in terms
of variations in gene expression due to both the environment and
the genetic makeup. While some studies have showed that the
age-associated genes are different among both different tissues and
organisms, further analysis on large datasets identified some general
common patterns [1]. Accordingly, certain changes in the level of
expression, or in the patterns of expression of a subset of genes
could imply that those genes are associated with the process of ageing
[3]. Furthermore, for a given gene, certain patterns of changes in its
expression levels across the human life span could be an indicator
of causal or associative relationship between the gene and the ageing
process. In parallel with advanced experimental investigations in
biological wet-laboratories, detection of the underlying patterns of
expression calls for development of novel computational techniques
for the huge gene expression datasets.

The process of ageing of an organism (also called senescence [4]),
includes nine hallmarks including stem cell reserves depletion, epige-
netic alterations, genomic instability, mitochondrial dysfunction and
a few other halmarks [5]. These hallmarks affect and are influenced
by transcriptional changes [5]. Studies on the mechanism of these
changes could provide some answers on whether these changes are
beneficial or detrimental. Accordingly, some studies show that ageing
process can be regulated by therapeutic steps for longevity to amplify
the protective changes and eliminate the detrimental changes [1], [6].

With an emphasis on the gene expression changes as one of
the main elements of ageing process, there are different sets of
theories including evolutionary theories and passive theories, trying
to explain the hidden mechanisms responsible for gene expression
changes associated with senescence [7]. For instance, a study on
gene expression data of mice confirmed the ageing theory based on
cellular metabolic stability [8]. Although an organism’s case-by-case
differences in the speed of ageing can be caused by efficiency in
cellular and tissue metabolism, the general process of ageing for an
organism is associated with changes in its gene expression. From a
general perspective, recent studies contrast gene expression changes
in terms of global scale versus local scale. This can be interpreted
as redirecting efforts toward identifying certain subsets of genes
responsible for the ageing process of different cell types (such as
brain, pancreatic, kidney, liver, muscle, eye, and cell), tissues, and
even species [1]. Recent studies such as Haustead et al [10] and
Stegeman et al [1] suggest that less than 2% of genes in human
skin are identified with age-related changes in expression levels. See
also [10], [11]. Motivated by the foregoing, our goal in this work is
to further investigate such subset of genes using advanced machine
learning techniques.

In this paper, we develop an information-theoretic computational
framework to analyze a dataset of human dermal fibroblasts tran-
scriptome data with gene expression values for 143 individuals. The
framework is used to identify hidden patterns of gene expression
associated with aging, for some subset of the 27,142 genes. Initially,
an unsupervised approach is used to extract important features using
information-theoretic measurements, based on which the genes are
grouped into clusters with respect to ageing. The clusters are then
further analyzed and refined using semi-supervised learning to iden-
tify potentially new age-related genes, exploiting prior information
from a small subset of genes known to be associated with ageing.

The paper is organized as follows. The next section reviews related
work on gene selection for the ageing process. The next section
presents our three-step methodology: (1) information theoretic fea-
ture measurements, (2) clustering, and (3) semi-supervised learning.
Section V provides an evaluation of the proposed methods. Section
VI provides a brief discussion and conclusion.
A. Prior Work

Machine learning algorithms have surpassed classical signal pro-
cessing methods and have gained dramatic attention of computational
biologists due to multiple advantages such as accuracy, robustness
and good generalization [12], [27], [30], [35]. Specifically, machine
learning has showed its capability for genomic data processing.
One good example is the study of mechanisms associated with
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Fig. 1. Proposed pipeline for identifying age-related genes

ageing through gene expression profiling in order to estimate the
age [13]. The study of the mechanism of ageing, and in particular,
the identification of age-related gene have attracted a lot of attention
over the years [14], especially given its implications on the possibility
for developing therapeutic approaches to slow down or control the
human ageing process [15], [16]. It is hoped that such manipulations
can be implemented at different scales, from whole body to organs to
small tissues [1]. However, most attention has been directed toward
costly experimental studies in laboratories. On the other hand, more
recently, computational methods on selecting age-related genes have
gained more attention, given their potential for facilitating more
cost-effective understanding of mechanism of ageing, for instance,
by providing a guide to experimental researchers for more focused
investigations. For instance, Srivastava et al [17] employed machine
learning tools to predict genes associated with age-related diseases.
De Maclhaes et al [18] investigated age-related genes and provided
a meta-analysis of work on gene expression data of mice, rats and
humans. They considered the noisy nature of gene expression data,
and studied how to associate transcriptional changes with the ageing.
Their results identified a set of 56 genes as overexpressed over the
life span, and another set of 17 as underexpressed. Uddin et. al. [19]
performed an analysis age-related variations in the gene expression
data of porcine tissues in order to identify some reference genes.
They identified 9 genes as the reference genes, and used these for
data normalization of the gene expression data.

Avelar et al [20] perform integrative computational analysis to
select and validate a subset of age-related genes. Based on their com-
parative study they claim that human tissues’ gene over-expression
with age can be used to characterize ageing and identifying age-
related genes as well as age inhibiting genes.

II. METHODOLOGY
In this section, we discuss our dataset from [13] and introduce our

computational framework. Briefly, besides a list of genes identified to
be age-related by previous studies [14], we have a dataset of human
dermal fibroblast gene expression values for 27,142 genes across 143
individuals with age ranging from less that 1 year to 94 years old [13].
We perform a cascade of coarse and fine-grained gene selection using
both unsupervised and semi-supervised learning. In the unsupervised
approach, we first represent the expression values for each gene using
handcrafted information-theoretic measurements. We then apply a
clustering algorithm on the new representation to cluster the genes
into two groups. The idea behind the binary clustering is to group
the genes based on their potential association with ageing. One
rationale here is that, as the vector of expression values for each
gene are represented over age (time axis), binary clustering on these
raw vectors could expose the discriminating dynamic (behavior) of
expression values with respect to aging. Another rationale is that,
rather than just using the raw data for the binary clustering, the
information-theoretic measurements are performed with respect to
aging, thus the binary grouping could help to provide the first level

discrimination between genes that are associated with aging, and
those that are not.

We expect that age-related hidden pattern(s) of changes should
manifest in the form of variations of certain measurements such as
entropy, Kullback-Leibler divergence and correlation between the ex-
pression values and time axis built upon the age range. The credibility
of this idea will be assessed in by contrasting experimental results
using raw data with those obtained using the information-theoretic
measurements. Yet, because noise and other possible unknown factors
could be contributing to the variations in the indicated measurements
along with the age, we cannot be certain that these variations are only
due to hidden patterns associated with the aging process. To address
this issue, we refine the results from the unsupervised approach
using semi-supervised learning. Thus, using a small set of previously
identified genes known to be associated with ageing, we performing
semi-supervised learning for final identification of age-related genes
from the previously clustered genes.

A. Datasets
For this work, we use the human dermal fibroblast transcriptome

data reported in [13] which contains data on gene expression values.
The database of gene expression values consists of a matrix of gene
expression values from 27,142 genes across 143 individuals. Each
row contains the expression values from the genes across 143 subjects
in order of age (from less than 1 to 94 years old). Each column
captures the expression values for each of 27,142 different genes
for a given individual. We note that, the expression values for any
given gene in the data set are measured from different individuals
(143 subjects with age ranging from less than 1 to 94 years old),
rather than across the lifetime of each individual. For a general study
like the one proposed here, this could be important in smoothing out
the effects on the analysis that may be due to the impact of one
individual.

In the context of unsupervised clustering, we consider each row as
a vector representing the expression values for a certain gene across
the age, where it can potentially take a binary label with respect
to the assumption on its association with ageing. However, for the
semi-supervised approach, we have the label for a small number of
genes known to be associated with ageing, and we seek to annotate
the remaining genes.

We also used a database reported by Tacutu et al [14] which listed
307 genes that are known to be associated with ageing, and 243 genes
that are most likely associated with aging.

III. UNSUPERVISED APPROACH

Unsupervised learning as a branch of machine learning that is
established based on the fact that data points are generated by
natural sources with limited complexity, rather than random sources.
It essentially deals with problem domains, such as data clustering,
annotation, and dimensionality reduction [24], [25]. One of the well-
known unsupervised learning algorithms is k-means clustering, where
the goal is to assign the data points to K clusters in an iterative
fashion [26], [34].

In this work, before applying the k-means algorithm, we take an
information-theoretic approach, and compute a few measurements
such as entropy, correlation and K-L divergence, and represent
vector of expression values corresponding to each gene with these
measurements. In fact, extraction of these measurements represent a
limited form of differential gene expression over the age range. Thus,
the measurements are expected to guide the k-means algorithm to
more directly find any potential associations between the genes and
the ageing process. Although we will also represent the result of
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applying K-Means on the raw data to ponder upon the effectiveness
of using these measurements.

Recent studies suggest that less than 2% of genes in the human
skin, retina and blood leucocytes are identified with age-related
changes in expression level [1], [9]–[11]. Accordingly, since we have
a huge number of genes and we want to select only a small subset
of genes, we need to eliminate many of them through clustering.
Therefore, the main idea is to eliminate most of the genes that
are deemed not to contribute to the ageing process. Along this
line, three measurements, namely entropy, correlation, and Kullback-
Leibler divergence are employed to discriminate the genes in terms of
their association with ageing. In the next few sections, we will discuss
these measurements and how we employ them to represent the data,
before applying k-means algorithm. After considering considering
each measurement separately, we combine the individual results using
ensemble modeling.

We expect that genes related to ageing or longevity, will typically
influence aging, or be affected by aging, in a manner that is consistent
over time, along the age axis. Therefore, we divide the expression
values of each gene into two age groups, generally representing young
subjects and old subjects respectively, and then examine the identified
measurements across all the subjects, within each age group, and
between the groups. To find the appropriate age threshold to divide
the subjects into binary groups, we performed experiments using
different ages, namely, 25, 30, 35, 40, and 45. Then we compare
the results to determine the best age threshold.

A. Entropy

We compute the entropy of each gene across all 143 subjects and
also across the pair of age groups for each age threshold.

The entropy of a random variable was first defined by Claude
Shannon in 1948 as the average amount of information or uncertainty
in the variable’s possible outcomes [30]. In information theory
literature, it is represented as follows:

E =
∑
−pi log pi (1)

where pi is the probability of the i-th outcome. However, we need
to compute the entropy of histogram of expression values for each
gene as the entropy of the probability distribution of the values within
the age bins of the histogram, in which pi is defined as the number
of values within a given age bin divided by the total number of
expression values for that gene [29]. Here we empirically set the
number of histogram bins to 7, after testing different values. We
select the genes based on their corresponding contribution to aging,
as measured by the entropy of expression values for each gene across
all the subjects, or within the two separate groups of subjects for a
given age threshold, for instance, Group 1 (1 to 25 years old) and
Group 2 (26 to 94 years old) using an age threshold of 25. In fact,
posing the gene selection problem within the context of age groups
allows for a dynamic consideration in the selection process. That is,
if gene functionality depends on the age of the subject, then, we
expect the model to be able to recognize it. Also, by using multiple
age thresholds, it becomes possible to see which genes play more
significant roles at different stages in life, as captured by different
age ranges.

Entropy Across All Subjects. As the first scenario, we compute
the entropy of genes individually across all 143 subjects and then
select the top T genes with the highest entropy. The intuition behind
this is that the genes conveying more information through their
expression values across age range of 1 to 94, are more probable
to be related to the ageing process.

Entropy Across Subject Groups. As the second scenario, we
divide the subjects into two groups for a given age threshold, based
on their age. For instance, using an age threshold of 35 we will group
the subjects into two age groups: Group 1: ages [1-35], and Group
2: ages [36-94]. Then the entropy of the genes across the subjects
in each age group are computed individually and top T genes are
selected based on their entropy ranking. Thus, each age group will
produce one gene ranking.

Entropy Difference. Given the binary grouping, for a given gene
it becomes possible to consider its entropy difference across the
subjects in the two groups. Thus, as part of the feature measurements,
we also compute the entropy between the expression values for
subjects in Group 1 and Group 2. We rank the genes based on this
difference, and select the top T genes for further consideration.

For our experiments, we have set T=1000.

B. Spearman’s Correlation

Correlation is another feasible metric for exploring the underlying
pattern of relationship between two variables – in this case, between
subject age and expression values of each gene from the individual.
In other words, correlation can be used to measure the possible
association between expression values of the genes and the ageing
process. The outcome of the correlation between two variables
could be positive, neutral, or negative. With positive correlation both
variables change in the same direction; with neutral correlation there
is no relationship in the change patterns of the variables; and with
negative correlation the variables change in opposite directions. Since
we are seeking for any type of age-association, we use the absolute
value of the correlation for further computation and inference.

There are two formulae for computing the correlation, namely
Pearson’s correlation and Spearman’s correlation. The Pearson cor-
relation coefficient can be used to measure the strength of the linear
relationship between two variables when both variables follow a
Gaussian or Gaussian-like distribution. While Spearman’s correlation
can be used for two variables with a nonlinear relationship between
them, and the variables may have a non-Gaussian distribution.

Since we are unsure of the distribution and possible relationships
between these two variables, gene expression values and age, we
need to use Spearman’s correlation as our metric to select the genes
with most contribution. The formulation for Spearman’s correlation
coefficient is presented as follows:

L =
C(R(x), R(y))

S(x)S(y)
, (2)

where x and y are our variables, R(x) and R(x) are rank of variable
x and y, S is the standard deviation and C represent the notation for
covarience.

Similar to entropy, for each gene we also compute the Spearman’s
correlation between the expression values and age, for all subjects,
within each of the two age groups, and the difference in the
correlation for subjects across the two age groups.

C. Kullback-Leibler Divergence

The Kullback-Leibler (KL) divergence (also called relative en-
tropy) measures the difference between two probability distributions
[30]. Suppose we have two discrete probability distributions P
and Q which are defined on the same probability space, Z, the
Kullback–Leibler divergence from Q to P is defined as follows:

DKL(P ||Q) =
∑
z∈Z

P (z) log
P (z)

Q(z)
, (3)
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For our purposes, given the age threshold, for each gene we compute
the KL divergence for the two groups of expression values (as
determined by the given age threshold). The genes are then ranked
by their KL-divergence over the two groups, and we select the top
T genes with maximum divergence.

Given the information-theoretic measurements, we can combine the
individual top T rankings, to obtain one integrated set of genes for
more refined analysis, for instance, using semi-supervised machine
learning methods. For instance, we can combine the tip T genes, by
using simple intersection or union for the individual top-T ranked
gene sets. An alternative approach is to apply further unsupervised
learning techniques on the data, for instance, using k-means cluster-
ing, but this time using the information-theoretic measurements as
the features. The clustering results will then be passed to the semi-
supervised learning algorithm for final refinement of the identified
genes. In this work, we show results for the two approaches.

D. Union of Selected Genes Using Measurements

As it is presented in Table I, the measurements provide different
performance in gene selection, where the best performance is asso-
ciated with K-L divergence. This could be due to the fact that each
gene relationship with aging would only be capture by only one a
few of measurements, and not all of them. Considering this, one way
to select a subset of genes from 27142 genes and pass them to next
stage (semi-supervised approach) is two find the union between top
genes selected by each measurement as the mentioned subset. The
result of this union of top 1000 genes selected by each of the nine
measurements in Table I provides us with 6799 genes. We pass it to
semi-supervised gene selection stage where the results are presented
in Table II.

E. K-means Clustering

A popular clustering method is the k−means algorithm. Though
this algorithm is well known, given the significance of clustering
in our approach, we briefly describe the algorithm below, for com-
pleteness. The k-means clustering algorithm, takes a training set
x(1), ..., x(m), and the goal is to group the data points into a few
predefined number of coherent clusters. To describe a customised
version of the algorithm for this work, say we are given feature
vectors for each gene (data point) x(i) ∈ Rn where n is the
dimension of the feature vector. The algorithm initially selects k (here
k=2) random data points as the centroid of the k clusters, and then
according to the distance of the remaining data points to each of
these centroids, assigns a cluster to the data point. Next, the mean of
each cluster is computed as the new centroid of the cluster, and the
update process of assigning clusters to the data points repeats until
all data points remain at the assigned centroids and consequently the
centroids could not be updated anymore.

More specifically, here rather than 143 measurements, we represent
genes individually by nine information-theoretic measurements as
described above, and apply k-means algorithm on the gene
expression dataset to assign each of the 27,142 genes to one of the
binary clusters. As explained eariler, we here we set k = 2 since we
wish to classify the genes as being associated with age, or otherwise.
Thus, the goal is to predict k = 2 centroids and a label c(i) for
each gene as our data points. The k-means clustering algorithm is
as follows:

1.Randomly initialize the cluster centroids µ1 and µ2.
2. Repeat until convergence {
For each i ∈ {1, 2, ..., 27142}, set:

c(i) = argminj ||x(i) − µj ||2
For every j ∈ {1, 2}, set:

µj =
∑M

i=1 1{c(i)=j}x(i)∑M
i=1 1{c(i)=j} }

IV. SEMI-SUPERVISED APPROACH
Unsupervised gene selection, provided us with two clusters of

genes, which beside the theoretical support, we experimentally ex-
amined that the smaller cluster, with 5669 genes, includes previously
known genes, and hence makes a good case for further refinement for
gene selection. Thus, we seek to further analyse this cluster to select
a small subset of genes using a semi-supervised approach. In order
to efficiently and reliably identify new genes associated with ageing,
we need to leverage our prior knowledge, i.e., we use ’previously
identified subset of age-related genes’ in the literature. Here the
central idea is to use the information of vector of expression values
from each of 307 identified genes to select a new subset of age-
related genes. Therefore, we need an appropriate measurement of the
similarity between the vector of expression values for each gene in
the cluster with 5669 genes and the set of 307 known genes. Mutual
information could be one good metric to find the most similar genes
to the set of known genes. However, mutual information between
two variables requires an exact or at least approximate estimation of
joint probability distribution. However, due to the lack of further
information such as multiple vectors rather than one vector of
expression values for each gene, we can not compute or approximate
the joint probability distribution. Instead, we use Jensen-Shannon
divergence as a probability-based similarity measurement, which is
based on the K–L divergence, except unlike K-L divergence, it always
has a finite value and it is symmetric. On the other hand, in contrast to
the probability-based similarity measurement, we also use an efficient
sample-based similarity measurement to explore the similarity both
from probabilistic point of view and sample-based point of view.
Cosine similarity as a sample-based similarity measurement, could
be a feasible measurement of the similarity in features between two
vectors of expression values in this case.

However, one should consider the fact that these 307 known genes,
obviously would not all function in the same way. For instance, some
of the genes as the cause of ageing, would associate with ageing,
while some of them are those genes that are just influenced by ageing
[1], and some of them might even indirectly slow down the whole
process of ageing. To address this, we initially analyse the probability
space representing all these 307 genes, aiming at finding some sub-
spaces each associated with specific type of gene functionality. This
is akin to identifying anonymous gene families.

A. Sub-Space Analysis

The goal is to perform sub-space search and clustering of the
set of 307 known genes by employing k-means for K = 2, 3, and
then comparing the hypothesized age-related genes resulting from the
unsupervised learning stage against the members of the respective
clusters of the known genes for further similarity analysis. As it
is formerly presented, the k-means algorithm provides us with k
clusters of data points, here clusters of genes. We set number of
clusters k = 2 and k = 3 and refine the gene selection using the
Jensen-Shannon divergence (JSD) and cosine similarity. For k = 2
as binary clustering, the k-means algorithm provided us with two
clusters consisting of 176 and 131 known genes, respectively. For
k = 3, we had clusters consisting of 51, 117 and 139 known
genes, respectively. Latter the results corresponding to each number
of clusters will be assessed.

Age-related genes are not expected to all function in the same
way. Some may have a causal relationship with ageing, that is,
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influencing the aging process, while the function of some others will
be influenced by ageing. Even so, some genes with causal relationship
with ageing could speed up ageing or slow it down. Moreover,
some studies have suggested the possibility of age-related dynamic
changes in form of monotonic over-expression, monotonic under-
expression, or a mixture of these over the life span. Accordingly, our
rationale behind the sub-space search is that these types of different
associations, functionalities or monotonic/non-monotonic patterns of
expression should manifest in terms of ”different” clusters of age-
related genes. Later in this work, we will empirically examine the
role of this type of subspace analysis in terms of clustering of the
known genes [18].

B. Jensen-Shannon Divergence
Jensen-Shannon divergence (JSD) or information radius is an

information-theoretic approach to measure the similarity between two
probability distributions [30]. This similarity measurement which has
been widely employed in bioinformatics and genome comparison, is
represented as follows:

JSD(A||B) =
1

2
D(A||M) +

1

2
D(B||M),

M =
1

2
(A+B)

(4)

where Ai and Bi represent the probability distribution for two given
vectors of gene expression data, and D (.——.) is K-L divergence as
was introduced earlier in Section III-C.

C. Cosine Similarity

Cosine similarity is a well-known approach for measuring similar-
ity between two vectors in inner product space. With this measure
of similarity, we do not need to estimate any probability distribution,
we only need to measure the cosine of the angle between the two
vectors. Let A and B be two non-zero vectors of gene expression
values; the cosine similarity between A and B is computed using the
dot product and the magnitude as follows:

S(A,B) =
A.B

||A||||B|| =
∑n

i=1AiBi√∑n
i=1A

2
i

√∑n
i=1B

2
i

(5)

where Ai and Bi represent the elements of the corresponding vectors
and n is the number of elements of each vector. It is noteworthy to
mention that we perform the cosine similarity on both raw vectors of
expression data for genes (as presented in Table II and III) as well
as a vectors of nine measurements for genes individually. However,
we observed that the results for the raw vectors are better. This could
be due to the fact that in order to extract the phase information from
vectors, we should solely consider the original raw values of the
vectors rather than handcrafted features of that vectors.

D. Similarity to the Set of Known Genes

The unsupervised learning stage will produce two initial sets of
selected genes, namely, one with 6492 (6799-307) genes using union
of top T = 1000 ranked genes, and the other one with 5362 (5669-
307) genes from k-means. We will then refine these initial selections
using semi-supervised methods to select those that are most to the
set of known genes, using cosine similarity and JSD.

As noted earlier, age-related genes are not necessarily monolithic
– they could still cluster into different groups, depending on the basis
of the clustering. Thus, we perform the similarity based refinement
for our gene selection for three scenarios based on the clustering on
the known genes, namely using one cluster, two clusters, and three
clusters, respectively,

First Scenario: One Cluster. To perform gene selection for this
scenario, we compute the average JSD as well as average cosine
similarity of each gene with all 307 genes and then select the top Q
genes with highest similarity values. We do this for both JSD and
cosine. Accordingly we will have:

Sj =

307∑
i=1

|Si,j |
307

; JSDj =

307∑
i=1

JSDi,j

307
, (6)

where |Sj | is the absolute value of similarity between gene number
j (out of 53622) and the whole set of 307 genes known to be age-
related. Similarly, JSDj is the average of the JSD between the j-th
gene and each of the 307 known genes. We use absolute value of
cosine similarity as were are interested in any type of association,
whether positive or negative similarity. To select the most similar
genes in the sense of expression values, we rank the genes based on
cosine similarity as well as JSD separately, and select first Q genes
for each method. For our experiments, we set Q to 500, which is
close to the 2% of genes in the human skin presumably with gene
expression changes associated with ageing [1], [10].

Second Scenario: Two Clusters.

Sjc1 =

176∑
i=1

|Si,j |
176

, Sjc2 =

131∑
i=1

|Si,j |
131

;

Sj = max {Sjc1, Sjc2};

JSDjc1 =

176∑
i=1

|JSDi,j |
176

, JSDjc2 =

131∑
i=1

JSDi,j

131
;

JSDj = max {JSDjc1, Sjc2}

(7)

where Sjc1 and Sjc2 are the similarity between genes number j
(out of 5452) and cluster 1 with 176 genes and cluster 2 with 131
genes, respectively. Next, we rank the genes separately, based on Sj ,
and JSDj , respectively. Then, for each ranking, we select the top Q
genes.

Third Scenario: Three Clusters. Similarly, we perform clustering
to divide the 307 genes into 3 clusters, and compute the similarity
values:

Sjc1 =

139∑
i=1

|Si,j |
139

, Sjc2 =

117∑
i=1

|Si,j |
117

, Sjc3 =

51∑
i=1

|Si,j |
51

;

Sj = max {Sjc1, Sjc2, Sjc3}. Similarly, we compute:

JSDj = max {JSDjc1, JSDjc2, JSDjc3}

(8)

where Sjc1, Sjc2 and Sjc3are the similarity between genes number
j (out of 5452) and clusters 1, 2 and 3, respectively. We select top
Q ranked genes separately, based on Sj and JSDj respectively.

V. RESULTS AND PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed meth-
ods, for both supervised and semi-supervised approaches. Results
of the unsupervised approaches are used as the input to the semi-
supervised learning approach for final gene selection.

A. Evaluation of Unsupervised Approach

In order to evaluate the unsupervised clustering approach, we
contrast the results with the list of the 307 genes [14] known to be
associated with aging. The results using each of the measurements
are presented in Table I. As the table shows, clearly, KL divergence
provided the best performance – recognizing 254 genes out of 307
known age-related genes, within its top T = 1000 ranked genes.
The best age threshold appears to be at age 40, followed by age 35.
Incidentally, these are quite close to the age range 38 to 40, which
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TABLE I
PERFORMANCE OF EACH MEASUREMENT IN RANKING THE GENES WITH
RESPECT TO ASSOCIATION WITH AGING, AT A GIVEN AGE THRESHOLD

(τA). ENTRIES SHOW NUMBER OF THE 307 KNOWN AGE-RELATED GENES
THAT ARE RECOGNIZED WITHIN THE TOP T = 1000 GENES SELECTED BY

EACH MEASUREMENT AT THE INDICATED AGE THRESHOLD.

# Measurement τA =
25

τA =
30

τA =
35

τA =
40

τA =
45

1 Entropy (all subjects) 232 232 232 232 232
2 Entropy (Group 1) 112 166 201 207 132
3 Entropy (Group 2) 108 118 196 192 127
4 Entropy difference 128 124 138 162 125
5 Corr. (all subjects) 214 214 214 214 214
6 Corr. (Group 1) 79 125 177 183 155
7 Corr. (Group 2) 112 108 128 163 125
8 Corr. difference 83 103 116 129 132
9 K-L Divergence 201 209 239 254 233

TABLE II
RESULTS USING THE UNION OF THE INDIVIDUAL TOP T = 1000 RANKED
GENES FROM THE NINE MEASUREMENTS AS INPUT TO THE REFINEMENT

STAGE WITH SEMI-SUPERVISED LEARNING. RESULTS SHOW THE NUMBER
OF THE 243 KNOWN GENES FOUND IN THE TOP Q = 500 SELECTED

GENES USING COSINE SIMILARITY, JSD, AND THEIR COMBINATION IN
THREE SCENARIOS OF CLUSTERING ON 307 KNOWN GENES.

Metric 1 cluster 2 clusters 3 clusters
Cosine 200 (82.3%) 211 (86.8%) 169 (69.54%)

JSD 221 (90.9%) 218 (89.7%) 178 (73.2%)
Combined 218 (89.7%) 223 (91.7%) 163 (67%)

Belsky et al [32] found to be significant in considering the pace of
ageing in young adults. Rahman and Adjeroh [33] also observed that
human physical activity and various biomarkers of biological aging
show a turning point around this age range. These show that the
age range 38 to 40 could represent a major dividing point for most
individuals in terms of age progression.

Besides, the k-means algorithm provides us with two clusters of
5669 and 21,473 genes respectively. Although the second cluster
contains even genes with all measurements equal to zero, the first
cluster (5669 genes) contains all the genes that are known to be
age-related. Therefore, we consider this smaller cluster as the one
that most probably would contain other age-related genes that are
not yet known. Hence, we pass this cluster to the semi-supervised
algorithm to leverage knowledge from known genes to further refine
the selection of new genes that are most likely to be age-related.

B. Results of Semi-supervised Learning

To this end, besides the list of 307 known genes used to train the
semi-supervised learning algorithm, we use an additional 243 genes
also known to be associated with aging to test our proposed methods
for identifying novel genes with a high likelihood of association with
aging.

Table II shows the results using the combined top T ranked
genes from the individual information-theoretic measurements, using
unsupervised learning as input to the semi-supervised method. With
T set at 1000, taking a union of all the top T ranked genes (at
τA = 40, see Table V-A) resulted in a total of 6799 unique genes,
which were then fed to the semi-supervised learning algorithm. The
combined cosine distance and JSD results were obtained by simply
computing the average rank from the two methods.

For the semi-supervised scenarios using different number of clus-
ters, the results show that clustering using k = 2 clusters tend to

TABLE III
RESULTS USING THE CLUSTER OF SELECTED GENES AS AS INPUT TO THE

REFINEMENT STAGE WITH SEMI-SUPERVISED LEARNING. SIMILAR TO
TABLE II, RESULTS SHOW THE NUMBER OF THE 243 KNOWN GENES

FOUND IN THE TOP Q = 500 SELECTED GENES.

Metric 1 cluster 2 clusters 3 clusters
Cosine 228 (93.8%) 238 (97.9%) 199 (81.8%)

JSD 231 (95%) 223 (91.7%) 165 (67.9%)
Combined 234 (96.2%) 243 (100%) 188 (77.3%)

lead to better results for similarity measurements. Tables II and III
show that final selection refinement using inputs as the gene clusters
based on clustering in the high-dimensional feature space performed
better that using the union of the top T ranked genes from individual
information theoretic measurements. The results indicate that, at
k = 2 clusters, the top Q = 500 identified genes contained most, if
not all of the 243 known genes. Thus, each method identified over
250 other genes that are potentially associated with aging. Further
analysis showed that, aside from the 243 known genes, taking the
intersection of the results from the two approaches (combined results
using k = 2 clusters) resulted in a total of 82 unique genes. Thus,
these represent novel age-related genes identified by our proposed
approach.

VI. DISCUSSION AND CONCLUSION
As presented in Table I, one can easily contrast the result of

each of the measurements independently. As it is clear, based on
the recognition of known genes among top 1000 selected genes, K-L
divergence and entropy across all subjects presented the best selection
performance.

On the other hand, in order to assess the effectiveness of repre-
senting each gene with nine measurements to k-means rather than
utilizing raw vector of gene expression values as the input to k-
means algorithm, we perform the k-means on the raw vector of gene
expression values in order to cluster the whole set of 27142 genes
into two cluster. The result of k-means clustering on the raw data
set, presents two clusters with 9479 and 17633 genes respectively.
The second cluster consists of genes with no expression values along
the age range, while the smaller cluster apparently is more associated
with ageing as it contains known genes. As this cluster (9479 genes)
represents more genes than the cluster (5669 genes) attained by k-
Means on measurements, one might consider it less reliable than
then smaller cluster. However, we passed this cluster to the semi-
supervised method for further investigation. The top 500 genes picked
based on cosine similarity to the set of known genes, contain only
56% of the 243 remaining known genes. This strongly implies the
advantage of the k-means on the measurements (as our preprocessing
step) over k-means on the raw gene expression data.

In this work, we present and apply a computational approach
using an information-theoretic framework on a dataset of human
dermal fibroblast gene expression data, in order to identify novel
genes associated with human ageing. First we apply information-
theoretic measurements on the data to compute important features for
our analysis. We then rank the genes based on these measurements,
and perform binary clustering on the genes. Next, we leverage prior
knowledge about the subset of genes already known to be age-
related to further refine the initially identified genes in the clusters.
We presented results showing the performance assessment of the
proposed framework, indicating the accuracy and effectiveness of the
approach. The results could be further improved with availability of
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more known age-related genes. Yet, our results could be used to
further guide laboratory experiment studies on the mechanisms of
ageing and age-related genes.
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