JACC: CARDIOVASCULAR IMAGING VOL. 14, NO. 10, 2021
© 2021 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION
PUBLISHED BY ELSEVIER

MINI-FOCUS: Al, MACHINE LEARNING, AND ECHOCARDIOGRAPHY

Deep-Learning Models for the )
Echocardiographic Assessment of
Diastolic Dysfunction

Ambarish Pandey, MD, MSCS,** Nobuyuki Kagiyama, MD, PuD,>%%* Naveena Yanamala, MS, PuD,"*
Matthew W. Segar, MD, MS,* Jung S. Cho, MD, PuD,"¢ Marton Tokodi, MD,"f Partho P. Sengupta, MD, DMP

ABSTRACT

OBJECTIVES The authors explored a deep neural network (DeepNN) model that integrates multidimensional echo-
cardiographic data to identify distinct patient subgroups with heart failure with preserved ejection fraction (HFpEF).

BACKGROUND The clinical algorithms for phenotyping the severity of diastolic dysfunction in HFpEF remain imprecise.

METHODS The authors developed a DeepNN model to predict high- and low-risk phenogroups in a derivation cohort
(n=1,242). Model performance was first validated in 2 external cohorts to identify elevated left ventricular filling pressure
(n = 84) and assess its prognostic value (n = 219) in patients with varying degrees of systolic and diastolic dysfunction. In 3
National Heart, Lung, and Blood Institute-funded HFpEF trials, the clinical significance of the model was further validated
by assessing the relationships of the phenogroups with adverse clinical outcomes (TOPCAT [Aldosterone Antagonist
Therapy for Adults With Heart Failure and Preserved Systolic Function] trial, n = 518), cardiac biomarkers, and exercise
parameters (NEAT-HFpEF [Nitrate's Effect on Activity Tolerance in Heart Failure With Preserved Ejection Fraction] and
RELAX-HF [Evaluating the Effectiveness of Sildenafil at Improving Health Outcomes and Exercise Ability in People With
Diastolic Heart Failure] pooled cohort, n = 346).

RESULTS The DeepNN model showed higher area under the receiver-operating characteristic curve than 2016 American
Society of Echocardiography guideline grades for predicting elevated left ventricular filling pressure (0.88 vs. 0.67;

p = 0.01). The high-risk (vs. low-risk) phenogroup showed higher rates of heart failure hospitalization and/or death, even
after adjusting for global left ventricular and atrial longitudinal strain (hazard ratio [HR]: 3.96; 95% confidence interval
[CI]: 1.24 to 12.67; p = 0.021). Similarly, in the TOPCAT cohort, the high-risk (vs. low-risk) phenogroup showed higher
rates of heart failure hospitalization or cardiac death (HR: 1.92; 95% Cl: 1.16 to 3.22; p = 0.01) and higher event-free
survival with spironolactone therapy (HR: 0.65; 95% Cl: 0.46 to 0.90; p = 0.01). In the pooled RELAX-HF/NEAT-HFpEF
cohort, the high-risk (vs. low-risk) phenogroup had a higher burden of chronic myocardial injury (p < 0.001), neuro-
hormonal activation (p < 0.001), and lower exercise capacity (p = 0.001).

CONCLUSIONS This publicly available DeepNN classifier can characterize the severity of diastolic dysfunction and
identify a specific subgroup of patients with HFpEF who have elevated left ventricular filling pressures, biomarkers of
myocardial injury and stress, and adverse events and those who are more likely to respond to spironolactone.

(J Am Coll Cardiol Img 2021;14:1887-1900) © 2021 by the American College of Cardiology Foundation.
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ABBREVIATIONS

AND ACRONYMS

ASE = American Society of

Echocardiography

AUROC = area under the
receiver-operating
characteristic curve

CI = confidence interval

DeepNN = deep neural
network

GLS = global longitudinal
strain

HF = heart failure

HFpEF = heart failure with
preserved ejection fraction

HR = hazard ratio
LV = left ventricular

LVDD = left ventricular
diastolic dysfunction

MLHFQ = Minnesota Living

With Heart Failure
Questionnaire

NT-proBNP = N-terminal pro-

brain natriuretic peptide

PALS = peak atrial longitudinal

strain

TDA = topological data analysis

VO, peak = peak exercise
oxygen uptake

he development of heart failure with

preserved ejection fraction (HFpEF)

encompasses a complex interplay
of the varying burden of left ventricular dia-
stolic dysfunction (LVDD) and extracardiac
comorbidities (1-3). Because of this heteroge-
neous presentation, assessing the severity of
LVDD is useful for understanding the relative
contribution of cardiac and extracardiac fac-
tors underlying HFpEF (3,4). Although inva-
sive hemodynamic assessment using cardiac
catheterization is currently the gold stan-
dard, echocardiography is the most
commonly used noninvasive test for routine
assessment of diastolic function. Multiple
studies have demonstrated the prognostic
value of diastolic function parameters for
predicting adverse clinical outcomes in pa-
tients with HFpEF (5,6). However, the algo-
rithmic approaches for integrating the
echocardiographic parameters of LVDD in
patients with heart failure (HF), particularly
HFpEF, using noninvasive echocardio-
graphic methods remain imprecise (7,8).
The correlation between echocardiographic
and invasive measures of left ventricular
(LV) filling pressure and diastolic function
is modest (9-11). Furthermore, up to one-
third of patients with clinical HFpEF are deemed to
have normal diastolic function (6). Moreover, the cur-
rent guideline-based identification of LVDD relies on
decision trees that provide limited insights into the
multivariate and highly nonlinear interactions that
underlie the development of LVDD (6,12,13). Thus,
there is a need for novel approaches that can provide
multiparametric integration of different echocardio-
graphic characteristics to better delineate the pheno-
typic presentation of HFpEF. In this study, we

combined unsupervised and supervised machine
learning approaches to develop and validate a deep-
learning solution for phenotyping patients with
HFpEF. First, we used a patient-patient similarity
network developed using compressed unsupervised
representation of echocardiographic data to identify
meaningful patient subgroups of LVDD (high and
low risk). Following this, a deep neural network
(DeepNN) classifier was developed using class labels
assigned on the basis of identification of the high-
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and low-risk subgroups. We validated the DeepNN
in 5 external cohorts: 1) 2 prospectively recruited co-
horts to test its ability to predict the presence of
elevated LV filling pressure measured during cardiac
catheterization and prognostic value in predicting
adverse cardiac events; and 2) 3 diverse, multi-
institutional independent datasets available from
HFpEF clinical trials to test associations with cardiac
biomarkers, exercise parameters, prognostic value,
and the response to therapeutic interventions.

METHODS

DEVELOPMENT OF A DeepNN MODEL OF LVDD.
We previously described an unsupervised approach
that integrates 9 echocardiographic variables into a
similarity network using topological data analysis
(TDA) in which patients (n = 1,242) with varying de-
grees of systolic and diastolic dysfunction are pre-
sented as a continuous loop (14). The details of the
study cohort used for the model development are
detailed in Supplemental e-Methods-I. The devel-
oped unsupervised TDA network similarity model
used routinely measured echocardiographic parame-
ters, namely, ejection fraction, LV mass index, early
diastolic transmitral flow velocity (E), late diastolic
transmitral flow velocity (A), E/A ratio, early diastolic
relaxation velocity (e’), E/e’ ratio, left atrial volume
index, and tricuspid regurgitation peak. We have
previously published the method for defining the re-
gions of a TDA loop with distinct prognostic outcomes
(14). Briefly, once the TDA-based loop structure was
created, the loop was subdivided into 4 groups of
patients for statistical analysis. For this, for each pa-
tient with abnormal values according to the guide-
lines for the variables used in creating the model, the
multidimensional Euclidean distance from the cutoff
values were calculated. The distances were then used
in the network to generate autogroups using
agglomerative hierarchical clustering, which identi-
fied 40 clusters of nodes within the loop. The mean
distance for each cluster was calculated, and the
smallest distance was identified. Subsequently, 9
clusters adjacent to this cluster (the first 10 clusters)
were selected to create the first region in the loop,
and the remaining 30 clusters were divided into 3
regions containing 10 adjacent clusters of nodes each
(14). The patients were assigned a low-risk (regions 1
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High- and low-risk patients with diastolic dysfunction were clustered using an unsupervised clustering approach. After labeling the patients using unsupervised
learning, a supervised deep-learning classifier was developed to predict the high- and low-risk patient phenogroups. For further clinical validation, the deep-learning

classifier was used to label an individual patient's risk phenogroup using diastolic parameters in external cohorts.

and 2) or high-risk (regions 3 and 4) label depending
on their location on a TDA network loop structure
(Central Illustration). After labeling the patients as
high or low risk using the unsupervised TDA approach
described previously (14), a cloud-based automated
machine learning platform (OptiML, BigML, Corvallis,
Oregon) was used to train multiple supervised ma-
chine learning algorithm Supplemental e-Table 1 and
select the best performing classifier, a DeepNN for
predicting the high- and low-risk phenogroups of
LVDD. The technical specifications of the DeepNN
classifier and the model development process are
described in Supplemental e-Methods-II. The devel-
oped DeepNN classifier for LVDD is publicly acces-
sible at https://wvu-model.herokuapp.com.

MODEL EVALUATION. Model performance and clin-
ical relevance of the developed DeepNN model was
evaluated as follows across different external vali-
dation cohorts: 1) model discrimination and inter-
pretability using area under the curve and predicted
probability correlations with invasively obtained

hemodynamic pressures to identify patients with
elevated filling pressure; and 2) model generaliz-
ability and clinical relevance to evaluate the ability of
the model to identify patients with low- and high-risk
phenotypes for survival status and/or adverse cardiac
events. The Institutional Review Board at West Vir-
ginia University approved the study protocol, and all
study participants in the prospective validation
studies provided written informed consent.

Step 1: external validation cohort for predicting invasive
measures of LV filling pressure. The DeepNN model’s
external validity for LVDD was evaluated against an
invasive assessment of LV filling pressure in a cohort
of patients with echocardiographic and invasive he-
modynamic studies (Supplemental e-Methods-III).
Briefly, the hemodynamic validation cohort included
84 patients with varying degrees of systolic and dia-
stolic dysfunction who underwent echocardiography
and invasive hemodynamic assessment with right
heart catheterization (n = 25) or left heart catheteri-
zation (n = 59). Sixty-three patients underwent both
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(A) The receiver-operating characteristic curves demonstrated the performance of the deep-learning model of diastolic dysfunction in the derivation and
validation cohorts with (B) feature importance of the echocardiographic parameters and (C) model performance noted with serial removal of different
echocardiographic variables. A = late diastolic transmitral flow velocity; E = early diastolic transmitral flow velocity; e’ = early diastolic relaxation velocity
at septal mitral annular position; EF = ejection fraction; LVMi = left ventricular mass index; TRV = tricuspid regurgitation velocity.

tests on the same day, and the remaining 21 under-
went both tests within 72 h. We used a previously
described protocol for invasive hemodynamic
assessment in these cohorts (15,16). Elevated LV
filling pressure was defined by pulmonary capillary
wedge pressure, as measured on right heart cathe-
terization, or LV pre-atrial contraction pressure, as
assessed on left heart catheterization, >15 mm Hg
(9,10,17). The DeepNN model was implemented in the
hemodynamic external validation cohort to identify 2
phenogroups (high-risk vs. low-risk) of patients on
the basis of the echocardiographic characteristics.
The 2016 American Society of Echocardiography (ASE)
guideline-based LVDD grade was also assessed in the
study participants on the basis of the available
echocardiographic parameters (18). To explore the
relationship between predicted probabilities and the

distribution of LV filling pressure among the patients,
the class prediction probabilities were first calibrated
so that the probabilities were transformed to quantile
or rank-based z-scores using the inverse of the cu-
mulative distribution function. The inverse of the
cumulative distribution function (or quantile func-
tion) returns values of x that would make f(x) (e.g.,
logistic regression) return a predicted probability
value of p.

Step 2: external validation cohort for predicting clinical
outcomes. The DeepNN model’s external validity for
predicting clinical outcomes related to LVDD and its
incremental value in relation to speckle-tracking
echocardiography-derived biomarkers were prospec-
tively evaluated in 219 consecutive subjects with
varying degrees of systolic and diastolic dysfunction
in whom echocardiography was performed between
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Boxplot showing the distribution of left ventricular (LV) filling pressure by low- and high-risk phenogroups (A) and 3-dimensional scatterplot
(B) showing the relationship between predicted probabilities and the distribution of LV filling pressure among the patients. The linear
projections of calibrated class prediction probabilities (quantile or rank-based z-scores of deep neural network [DeepNN] class probabilities)
and LV filling pressure (millimeters of mercury) were plotted against low- and high-risk phenogroups. The receiver-operating characteristic
curves compare the performance of the 2016 American Society of Echocardiography guideline-based assessment of diastolic dysfunction
versus the DeepNN model of diastolic dysfunction in predicting elevated filling pressures as assessed by invasive hemodynamic parameters in
the subset of participants with classifiable diastolic function grade by the 2016 guideline (C) and in the overall cohort, including those with
classifiable and indeterminate diastolic function grade by the 2016 guideline (D). AUC = area under the curve.

July 2017 and December 2018. In addition to detailed
standard 2-dimensional and Doppler echocardio-
graphic data with detailed diastolic function assess-
ments, we measured global longitudinal strain (GLS)
and peak atrial longitudinal strain (PALS) (Supple-
mental e-Methods-IV). Patients’ electronic medical

records were reviewed for post-echocardiographic
follow-up. Hospitalizations were classified on the
basis of the International Classification of Diseases-
Tenth Revision coding system. The primary end-
points included a composite of all-cause death and
hospitalization related to HF.
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TABLE 1 Comparison of Baseline Characteristics of Study Participants in the External
Clinical Outcome Validation Cohort Stratified by the Deep Neural Network Model-Based
Phenogroups of Diastolic Dysfunction

Low-Risk High-Risk
(n =103) (n =116) p Value
Demographics

Female 60 (58.25) 55 (47.41) 0.mn
Age, yrs 49.90 +17.20 65.39 + 13.69 <0.0071°
BMI, kg/m? 29.14 + 6.77 29.41 + 6.82 0.76
Hypertension 55 (53.40) 97 (83.62) <0.0001*
Diabetes mellitus 18 (17.48) 48 (41.38) <0.0001*
CKD 7 (6.80) 20 (17.24) 0.02°
History of CVA 10 (9.71) 19 (39.58) 0.15
COPD 18 (17.48) 26 (22.41) 0.36
Atrial fibrillation 3(2.91) 33 (28.45) <0.00071°
NYHA functional class <0.00071°

land Il 96 (93.20) 61 (52.59)

Il and IV 7 (6.80) 55 (47.41)
HF classification” <0.0007°

No HF 42 (40.78) 6 (5.17)

Stage A 47 (45.63) 29 (25.00)

Stage B 10 (9.71) 18 (15.52)

Stage C 4 (3.88) 49 (42.24)

Stage D 0 (0.00) 14 (12.07)
LVH <0.0001*

No LVH 74 (71.84) 46 (39.66)

Concentric remodeling 28 (27.18) 20 (17.24)

Concentric hypertrophy 1(0.97) 20 (17.24)

Eccentric hypertrophy 0 (0.00) 30 (25.86)

Clinical outcome

MACCE 10 (9.71) 22 (18.97) 0.05
HF 2 (1.94) 18 (15.52)
Death 12 (11.65) 37 (31.90) 0.0003

All-cause death 3(2.91) 23 (19.83)

Cardiac death 1(0.97) 7 (6.03)

Noncardiac death 1(0.97) 5(4.31)

Unknown cause 1(0.97) 1 (9.48)
Hospitalization

All-cause hospitalization 27 (26.21) 57 (49.14) 0.0005"

Cardiac hospitalization 14 (13.59) 34 (29.31) 0.005"

Continued on the next page

Step 3: external validation for predicting long-term out-
comes in patients with HFpEF: TOPCAT echocardiography
substudy. Following the validations performed in
steps 1 and 2, which included mixed populations of
patients with both reduced and preserved ejection
fractions, we focused on understanding model per-
formance specifically for patients with HFpEF. For
this we used the data from the randomized, placebo-
controlled TOPCAT (Aldosterone Antagonist Therapy
for Adults With Heart Failure and Preserved Systolic
Function) trial for clinical validation of the DeepNN
model (Supplemental e-Methods-V). We used a
publicly released and de-identified version of the
trial database obtained from the National Heart,
Lung, and Blood Institute’s Biologic Specimen and
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Data Repository Information Coordinating Center
(BioLINCC). The outcome of interest for this analysis
was the composite of aborted cardiac arrest, hospi-
talization for management of HF, or cardiovascular
death (19). Similar to the hemodynamic validation
cohort, the 2016 ASE guideline-based LVDD grade
was also assessed among the study participants in
the TOPCAT echocardiography cohort on the basis of
the available echocardiographic parameters (18).
Step 4: external validation for assessing biomarkers and
exercise performance in HFpEF: RELAX-HF and NEAT-
HFpEF cohort. Data from the randomized, placebo-
controlled RELAX-HF (Evaluating the Effectiveness
of Sildenafil at Improving Health Outcomes and Ex-
ercise Ability in People With Diastolic Heart Failure)
and NEAT-HFpEF (Nitrate’s Effect on Activity Toler-
ance in Heart Failure With Preserved Ejection Frac-
tion) trials were obtained from the National Heart,
Lung, and Blood Institute’s BioLINCC data repository
and used for the external validation of the DeepNN
model of LVDD against cardiac biomarkers and mea-
sures of exercise performance in patients with
HFpEF. The details of the trial protocols, inclusion
and exclusion criteria, and primary results of the
RELAX-HF and NEAT-HFpEF trials have been re-
ported previously and are summarized in Supple-
mental e-Methods-VI (20,21). The biomarkers of
interest were baseline measures of troponin I and N-
terminal pro-brain natriuretic peptide (NT-proBNP)
levels. The exercise and quality-of-life parameters of
interest were peak exercise oxygen uptake (VO,peak)
and Minnesota Living With Heart Failure Question-
naire (MLHFQ) score, respectively. Protocol details
pertaining to exercise testing, quality-of-life assess-
ment, and biomarker assessments have been reported
previously (20).

STATISTICAL ANALYSIS. During model develop-
ment, the study participants’ baseline characteristics
across the 2 phenogroups in the training cohort and
the internal validation cohorts were compared using
the chi-square test for categorical variables and 1-way
analysis of variance for variables.
Furthermore, during internal validation, the DeepNN
model’s accuracy to predict phenogroups was
assessed using the area under the receiver-operating
characteristic curve (AUROC). To assess the contri-
bution of different echocardiographic parameters to-
ward the DeepNN model’s performance,
sequentially removed diastolic parameters and eval-
uated the performance of the resulting models.

continuous

we

Following the development of the DeepNN model of
LVDD, we tested its performance in multiple external
validation cohorts (invasive hemodynamic validation
cohort, outcome validation cohort, and HFpEF trial
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cohorts including the TOPCAT echocardiography,
RELAX-HF, and NEAT-HFpEF cohorts) to identify the
high- and low-risk phenogroups. In the invasive he-
modynamic validation cohort, the classification per-
formance of the DeepNN model and the 2016 ASE
guideline-based algorithm to predict elevated LV
filling pressure (>15 mm Hg) was assessed using the
AUROC. In the clinical outcome validation cohort and
the TOPCAT echocardiography cohort, the primary
composite endpoint’s risk across the phenogroups
was assessed using time-to-event analysis with the
log-rank test and adjusted Cox proportional hazards
models. In the clinical outcome validation cohort, a
multivariate Cox model was constructed for the pre-
diction of primary clinical endpoints using phe-
nogroup label, GLS, and PALS as covariates. The Cox
models for TOPCAT echocardiography cohort were
adjusted for age, sex, race, history of diabetes,
country of enrollment, and enrollment stratum,
consistent with the primary TOPCAT analysis. An
additional Cox model was also constructed with
adjustment for the MAGGIC (Meta-Analysis Global
Group in Chronic Heart Failure) risk score to deter-
mine the association of the phenogroup with risk for
the primary clinical endpoint independent of the
well-established clinical risk score (22). We also
evaluated the treatment effect of spironolactone (vs.
placebo) for the primary composite endpoint within
each phenogroup. Furthermore, the reclassification of
participants with different LVDD grade determined
by the 2016 ASE guideline-based algorithm using the
DeepNN model was also assessed. In the RELAX-HF
and NEAT-HFpEF cohorts, the association of the
DeepNN model-based phenogroups with baseline
measures of cardiac biomarkers (cardiac troponin I
and NT-ProBNP) and performance
(VO,peak). MLHFQ score was assessed using the
following adjusted linear regression models con-
structed separately for each outcome: model 1, age,
sex, and race; model 2, model 1 plus body mass index

exercise

(except for VO,peak model), diabetes, blood pressure,
kidney function, hemoglobin, smoking status, atrial
fibrillation, and New York Heart Association func-
tional class. The data from the RELAX-HF and NEAT-
HFpEF cohorts were pooled for the outcomes that
were uniformly reported across the 2 cohorts (NT-
proBNP and MLHFQ score). The following software
programs were used for analyses: Ayasdi platform
version 7.9 (Ayasdi, Palo Alto, California) for the TDA
and phenogroup label generation, Stata version 14.2
(StataCorp, College Station, Texas), and R version
3.6.3 (R Foundation for Statistical Computing) for
statistical analyses. Statistical significance was tested
with a 2-sided p value <0.05.
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TABLE 1 Continued
Low-Risk High-Risk
(n =103) (n =116) p Value
Echocardiography
LVEDD, mm 44.20 £+ 5.12 50.43 + 9.05 <0.0071°
LVESV, ml 3715 £ 11.01 70.59 + 43.10 <0.0071°
LVEDV, ml 100.96 + 24.58 132.67 + 52.90 <0.0071°
LVSV, ml 63.68 + 16.83 63.03 + 22.48 0.81
LVEF, % 63.64 + 6.13 49.65 + 14.34 <0.0071°
LV mass index, g/m? 65.99 +16.83 106.10 + 40.57 <0.007°
E, cm/s 82.99 +16.38 85.23 + 29.91 0.5
A, cm/s 69.77 + 22.48 73.46 + 26.77 0.28
E/A ratio 131+ 0.56 1.27 + 0.69 0.68
e, cm/s 9.10 £+ 2.22 539 +1.89 <0.007°
E/e’ ratio 9.30 + 2.41 17.62 + 9.20 <0.0071°
LA volume index, ml/m? 21.69 + 7.92 37.08 +16.11 <0.0071°
Moderate or greater valve disease 2 (1.94) 22 (18.97) 0.00004*
Speckle-tracking echocardiography
GLS, % —19.20 + 3.41 —14.05 + 5.82 <0.007°
LV SRs, s7! —0.90 + 0.19 -0.63 +£0.28 <0.007°
LV SRe, s 0.77 + 0.22 0.49 +0.23 <0.007°
PALS, % 38.65 +10.99 23.43 +£11.98 <0.0071°
PACS, % 17.56 + 6.34 12.06 + 7.04 <0.0071°
LA SRs, s 121+ 034 0.75 + 0.38 <0.0071°
LA SRe, s —-0.91+0.38 —0.58 + 0.36 <0.0071°

systolic strain rate.

Values are n (%) or mean + SD. ®p < 0.05 comparing between the high-risk and low-risk groups using 1-way
analysis of variance where mean is reported and using chi-square or Fisher exact test where frequency is re-
ported. °Classification system of the American College of Cardiology and the American Heart Association.

A = late diastolic transmitral flow velocity; BMI = body mass index; CKD = chronic kidney disease;
COPD = chronic obstructive lung disease; CVA = cerebrovascular accident; E = early diastolic transmitral flow
velocity; ¢’ = early diastolic relaxation velocity at septal mitral annular position; GLS = global longitudinal strain;
HF = heart failure; LA = left atrial; LV = left ventricular; LVEDD = left ventricular end-diastolic dimension;
LVEDV = left ventricular end-diastolic volume; LVEF = left ventricular ejection fraction; LVH = left ventricular
hypertrophy; LVESD = left ventricular end-systolic dimension; LVESV = left ventricular end-systolic volume;
MACCE = major adverse cardiac and cerebrovascular event(s); NYHA = New York Heart Association; PACS = peak
atrial contraction strain; PALS = peak atrial longitudinal strain; SRe = peak early diastolic strain rate; SRs = peak

RESULTS

MODEL TRAINING AND INTERNAL VALIDATION OF
THE DeepNN MODEL. In the training cohort
(n = 990), the DeepNN model showed excellent ac-
curacy by cross-validation in the training set
(AUROC = 0.988, accuracy = 92.1%) (Figure 1). In the
internal validation set (n = 252), the model continued
to perform with high diagnostic accuracy
(AUROC = 0.997, accuracy = 96.0%) for predicting the
high- and low-risk patient phenogroups. The model
continued to perform well even after performing
feature elimination (other than e’) to systematically
exclude individual LV diastolic function parameters
(AUROC = 0.945 to 0.997, accuracy = 92.1% t0 96.4%).
The model performance showed lower accuracy
(72.3% to 74.7%) in the absence of e/, although the
AUROCs still suggested diagnostic value (0.945 to
0.955) (Figure 1, Supplemental e-Table 2). Tissue
Doppler velocity (e’) was the most important
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FIGURE 3 Survival Analysis in the Clinical Outcome Validation Cohort
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Kaplan-Meier curves demonstrating risk for the primary composite event among participants of the clinical outcome cohort stratified by the deep
neural network model of diastolic dysfunction-based phenogroups in the entire cohort (A) and in patients with preserved left ventricular
ejection fraction (LVEF) (B) Participants were censored at the end of the study follow-up as reflected in the number at risk at month 35.

echocardiographic parameter for predicting the
DeepNN model-based phenogroups followed by E/e’,
LV mass, ejection fraction, and left atrial size
(Figure 1B).

The study participants’ baseline characteristics in
the training and internal validation datasets stratified
by the DeepNN model-based phenogroups (high risk:
52% training and 53.5% internal validation cohort
participants) are shown in Supplemental e-Table 3.
Participants in the high-risk phenogroup were older,
had a higher burden of comorbidities, and had greater
abnormalities in cardiac structure and function with
higher E/e’ ratio, LV mass, ejection fraction, and left
atrial volume index.

INVASIVE HEMODYNAMIC VALIDATION. Baseline char-
acteristics of study participants in the invasive hemo-
dynamic validation cohort stratified by the DeepNN
model-based phenogroups (60% high risk) are shown
in Supplemental e-Table 4. The pattern of differences
in patients’ baseline clinical characteristics in the high-
versus low-risk phenogroups in the invasive hemody-
namic validation cohort was similar to that noted in the
model development and internal validation cohorts
discussed earlier. Compared with the low-risk phe-
nogroup, participants in the high-risk phenogroup

showed higher LV filling pressure (p = 0.004)
(Figure 2A). More important, within the high-risk
phenogroup, the calibrated values of predicted prob-
ability (normalized quantile scores) showed a linear
association (r = 0.76; p < 0.0001) with LV filling pres-
sure, suggesting the ability of the trained DeepNN
model in predicting elevated LV filling pressure. A
correlation coefficient of 0.62 (p < 0.001) was observed
across the entire invasive hemodynamic validation
cohort. No significant correlation was observed be-
tween LV filling pressure and probabilities within the
low-risk phenogroup. Furthermore, visualization of
the linear projections of calibrated predicted proba-
bility and phenogroups against LV filling pressure
showed a clear separation of patients with elevated LV
filling pressure and a strong correlation (r = 0.99;
p < 0.001) in the vector space by capturing the differ-

ences in probabilities within and across the low- and
high-risk phenogroups (Figure 2B).

Among patients for whom the 2016 guideline was
able to grade LVDD (n = 69) after excluding patients
labeled as indeterminate, both the DeepNN model
and the guideline had comparable discriminative
performance in predicting elevated LV filling pres-
sure, with comparable AUROCs (0.89 vs. 0.83,
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respectively; p = 0.32) (Figure 2C). However, for the
entire group, which also included patients labeled as
indeterminate, the DeepNN model showed a signifi-
cantly higher AUROC compared with the 2016
guideline (0.88 vs. 0.67; p = 0.01) (Figure 2D and
Supplemental e-Table 5).

CLINICAL OUTCOME VALIDATION. The DeepNN
model identified 53% (n = 116) participants as high
risk and 47% (n = 103) as low risk. Compared with the
low-risk phenogroup, participants in the high-risk
phenogroup were older, had a higher burden of
comorbidities, and had a higher incidence of death
and HF hospitalization (Table 1). Among echocardio-
graphic characteristics, participants in the high-risk
phenogroup had a greater cardiac structure and
functional impairment burden, with lower ejection
fraction, higher LV end-diastolic volume and left
atrial size, higher E/e’ ratio, lower e’ velocity, and
impaired GLS and PALS (Table 1). The Kaplan-Meier
survival curve demonstrated a significantly lower
rate of the primary endpoint (all-cause mortality
and/or HF hospitalization) in the low-risk phe-
nogroup (log-rank p < 0.0001) both for the overall
population and for patients with LV ejection fractions
>50% (Figure 3). Even after incorporating GLS and
PALS in a multivariate model, the high-risk phe-
nogroup remained as a significant independent pre-
dictor of event-free survival (hazard ratio [HR]: 3.96;
95% confidence interval [CI]: 1.24 to 12.67; p = 0.021)
(Supplemental e-Table 6).

CLINICAL OUTCOME VALIDATION (TOPCAT
SUBSTUDY). Among participants in the TOPCAT
echocardiography cohort, the DeepNN model was
mapped on 518 participants after excluding those
who did not have adequate echocardiographic infor-
mation (n = 136). The clinical characteristics of the
excluded cohort were not different from those of our
final cohort (Supplemental e-Table 7). The DeepNN
model identified 81.1% (n = 420) participants as high
risk and 18.9% (n = 98) as low risk. Compared with
the low-risk phenogroup, participants in the high-risk
phenogroup were older, were more commonly Afri-
can American, had higher blood pressure, and had
lower hemoglobin levels (Table 2). Among echocar-
diographic characteristics, participants in the high-
risk phenogroup had a greater cardiac structure and
functional impairment burden, with lower ejection
fraction, higher LV end-diastolic volume and left
atrial size, higher E/e’ ratio, and lower e’ velocity
(Table 2).

The primary composite outcome’s cumulative
incidence was higher in the high-risk than the low-
risk phenogroup (34.0% Vvs. 17.3%; p < 0.002)
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(Figure 4). In adjusted Cox models, high-risk phe-
nogroup participants had a significantly increased
risk for the primary composite endpoint (HR: 1.92;
95% CI: 1.16 to 3.22; p = 0.01). Consistent associa-
tions were also observed in the Cox model adjusted
for the MAGGIC risk score (HR: 2.10; 95% CI: 1.20 to
3.47; p = 0.0003). In phenogroup-stratified analysis,
spironolactone was significantly associated with a
lower risk for the primary composite outcome in the
high-risk phenogroup (HR for spironolactone vs.
placebo: 0.65; 95% CI: 0.46 to 0.90; p = 0.01) but not
in the low-risk phenogroup (HR for spironolactone
vs. placebo: 1.13; 95% CI: 0.44 to 2.93; p = 0.80).
There was no significant interaction between treat-
ment arm and diastolic function phenogroup for the
risk for the primary composite outcome on statistical
testing.

RECLASSIFICATION OF DIASTOLIC FUNCTION
GRADING IN TOPCAT ECHOCARDIOGRAPHY
COHORT. The 2016 ASE guideline identified 33.8%
participants as having grade I LVDD, 23.7% as having
grade II or III LVDD, and 42.5% as having
indeterminate-grade LVDD. The cumulative risk for
the composite clinical outcome was higher in patients
with grade II or III versus grade I LVDD and those with
indeterminate grades of diastolic function (event rate
39% Vs. 28% VS. 29%).

Among participants identified with high grade (II
or III) LVDD by the 2016 guideline, almost all (94%)
were concordantly classified in the high-risk phe-
nogroup by the DeepNN model. In contrast, a sub-
stantial reclassification was noted for patients with
low grade (grade I) LVDD or indeterminate diastolic
function grade, with 73% and 80% of participants
being discordantly reclassified into the high-risk
phenogroup, respectively. Reclassification of the
participants with grade I or indeterminate diastolic
function grade by the DeepNN model was associated
with restratification in the risk for the primary com-
posite event, with a significantly higher risk noted
among those reclassified into the high- versus low-
risk phenogroup (Figure 5).

CARDIAC BIOMARKERS AND EXERCISE PERFOR-
MANCE PATIENTS WITH HFpEF. In the pooled cohort
of participants from the RELAX-HF and NEAT-HFpEF
trials, the DeepNN model identified 74% of partici-
pants in the high-risk phenogroup. The baseline
characteristics of the pooled cohort participants
stratified by the DeepNN model-based phenogroup
are shown in Supplemental e-Table 8. Consistent with
observations in the TOPCAT trial cohort, participants
in the high-risk phenogroup in the RELAX-HF/NEAT-
HFpEF cohort were older, had higher blood pressure,
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TABLE 2 Comparison of Baseline Characteristics of the DeepNN Model Based
Phenogroups Diastolic in the TOPCAT Trial Echo-Sub Study Cohort

Low-Risk High-Risk
(n =98) (n = 420) P-value
Clinical and demographic characteristics
Age, y 69.1+9.6 71.5 +£10.0 0.04
Female 55 (56.1) 202 (48.1) 0.19
Race 0.02

White 82(83.7) 296 (70.5)

Black 14 (14.3) 95 (22.6)

Other 2 (2.0) 29 (6.9)
Hospitalization eligibility stratum 51(52.0) 246 (58.6) 0.29
Country 0.36

us 72 (73.5) 315 (75.0)

Canada 17 (17.3) 62 (14.8)

Brazil 9(9.2) 32(7.6)

Argentina 0 (0.0) 1 (2.6)

BNP, pg/mL 320.9 +293.9 443.6 + 499.6 0.13
NT-proBNP, pg/mL 854.8 +371.3 1812.8 + 2240.5 0.10
Prior myocardial infarction 16 (16.3) 96 (22.9) 0.20
COPD 17 (17.3) 75 (17.9) 0.99
Hypertension 90 (91.8) 383 (91.4) 0.99
Diabetes category 0.10

No diabetes 59 (60.2) 203 (48.4)

Insulin dependent diabetes 21 (21.4) 109 (26.0)

Non-insulin dependent diabetes 18 (18.4) 107 (25.5)

Current smoker 7(7.0) 30 (7.2) 0.99
Ever smoker 50 (54.9) 211 (54.2) 0.99
NYHA functional class (=) 39 (39.8) 147 (35.3) 0.47
Heart rate, beats/min 70.9 £ 121 69.1 +11.6 0.17

Systolic blood pressure, mm Hg 121.8 £16.3 128.2 £ 15.8 <0.01
Body mass index, kg/m? 349+ 85 335+79 0.12

Sodium, mg/dL 139.5 £ 3.4 139.5 +£ 3.0 0.98
Potassium, mg/dL 42+ 04 41+ 04 0.35
Blood urea nitrogen, mg/dL 23.7 £12.7 252 +123 0.30
Glucose, mg/dL 1221 + 62.1 125.3 + 62.9 0.65
Hemoglobin, g/dl 13.0+1.6 126 £1.7 0.04
Aspartate Transaminase, U/L 26.0 £+ 1.4 2514123 0.51

Total bilirubin, mg/dL 0.6 +04 0.7+ 0.5 0.34
Albumin, g/dL 39+04 38+04 0.7

QRS duration, ms 94.5 £ 22.7 108.2 +32.3 <0.01
Angiotensin-converting enzyme inhibitor 50 (51.0) 233 (55.5) 0.49
Angiotensin receptor blocker 21 (21.4) 128 (30.5) 0.10
Beta blocker 80 (81.6) 338 (80.5) 0.91

Diuretic 87 (88.8) 378 (90.0) 0.86
Aspirin 50 (51.0) 257 (61.2) 0.08
Statin 67 (68.4) 292 (69.5) 0.92
Warfarin 40 (40.8) 124 (29.5) 0.04

Continued on the next page

and had a higher burden of comorbidities, including
atrial fibrillation and renal dysfunction.

In adjusted analysis, participants in the high-risk
phenogroup had significantly higher levels of high-
sensitivity troponin and NT-proBNP, suggesting a
greater burden of chronic myocardial injury and

JACC: CARDIOVASCULAR IMAGING, VOL. 14, NO. 10, 2021
OCTOBER 2021:1887-1900

stress (Table 3). High-risk phenogroup membership
was also significantly associated with lower exercise
capacity (VO,peak) and worse quality of life (MLHFQ
score) independent of other potential confounders
(Table 3).

DISCUSSION

Over the years, several echocardiographic algorithms
have been proposed for the assessment of LVDD using
a list of sequential heuristics that combine dichoto-
mously defined abnormalities in diastolic echocar-
diographic parameters (18,23). However, recent
studies demonstrated poor concordance among these
algorithms, resulting in a prevalence of LVDD in the
general population ranging from 2% to 35% (24).
Although the 2016 ASE guideline on LVDD proposed a
conceptually simplified approach (18), the algorithm
has resulted in higher proportions of patients classi-
fied as normal or indeterminate (9,13,25,26). More-
over, lower sensitivity and negative predictive value
have been reported for diagnosing HFpEF compared
with gold-standard exercise invasive hemodynamic
studies (26). The DeepNN model proposed in this
study addresses some of these limitations. First, the
pipeline integrates multiparametric echocardio-
graphic assessment and classifies diastolic function
for nearly all cases, including those considered
indeterminate by the existing guidelines. Notably,
the DeepNN model had higher discrimination than
the 2016 ASE guidelines for assessing elevated LV
filling pressures and successfully reclassified 70% to
80% of patients with HFpEF with low-grade (stage 1)
or indeterminate LVDD into the high-risk phe-
nogroup. Second, among patients with established
HFpEF, the DeepNN model can risk-stratify patients
with HFpEF such that those in the high-risk phe-
nogroup had significantly elevated biomarkers to
suggest chronic myocardial injury and stress, worse
exercise capacity, and poor quality of life, indepen-
dent of other confounders. Finally, the high-risk
phenogroup DeepNN model of LVDD identified pa-
tients with clinical HFpEF who have worse long-term
outcomes and may benefit from treatment with spi-
ronolactone (Central Illustration).

Several prior studies have used machine learning-
based clustering approaches to identify distinct phe-
nogroups of patients with HFpEF. Shah et al. (2)
classified patients with HFpEF into 3 distinct sub-
groups, which differed in clinical, echocardiographic,
and hemodynamic characteristics and risk for adverse
outcomes on longitudinal follow-up. Similarly, Kao
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et al. (27) identified 6 unique phenogroups of patients
. . . TABLE 2 Continued

with HFpEF in a secondary analysis of the I-PRE-
SERVE (Irbesartan in Heart Failure With Preserved Low-Risk High-Risk

. . (n =98) (n = 420) P-value
Systolic Function) and CHARM Preserved (Cande- . . =

cil 1 H Fail A £ Echocardiographic characteristics
sartan . 1 elxetl mn . eart al ur? . Sses.sment . o Ejection fraction, % 64.6 + 5.5 587 +79 <0.01
Reduction in Mortality and Morbidity) trials using LV diastolic diameter, cm 45405 49406 <0.01
latent class analysis. Compared with the previous E-wave velocity, m/s 09+02 0.9+0.3 019
studies, the DeepNN approach presented in our study A-wave velocity, m/s 0.7+ 0.2 0.7 +0.3 0.99
focused primarily on identifying patients with HFpEF E/a ratio 13+06 14 +£07 0.24
who had a higher burden of cardiac abnormalities. Peak TR velocity, cm/s 27+£04 28+05 0.08
3
Thus, the high-risk phenogroup had a higher preva- LA volume, crm 506 £18.2 637+ 280 <001
lence of elevated E/e’ ratio, lower e/, and higher LV LA volume indexed, cm’/m 28+80 1313 ool
. > ? & . LV mass indexed, g/m? 84.0 +20.3 1126 + 30.2 <0.01
mass and higher levels of biomarkers of myocardial E/e septal 105+ 33 182+ 7.0 <0.01
injury and stress, whereas the low-risk phenogroup E/e’ lateral 91435 133462 <0.01
had a higher burden of obesity and lesser degree of E' septal, cm/s 88+ 25 5.6+ 1.8 <0.01
cardiac abnormalities. These findings suggest that the E' lateral, cm/s 10.5 +35 7.9 +31 <0.01
DeepNN model identified a biologically meaningful
h £ di . . . HFpEF Values are n (%) or mean =+ SD.
p eHOtype 0 cardiac lmpalrment n p : BNP = brain natriuretic peptide; NT-proBNP = N-terminal pro-brain natriuretic peptide; TOPCAT =
Furthermore, the phenogroups identified by the Aldosterone Antagonist Therapy for Adults With Heart Failure and Preserved Systolic Function; TR = tricuspid
. . . regurgitation; other abbreviations as in Table 1.

DeepNN model also demonstrated significant differ- 9ure

ences in quality of life and exercise capacity and risk
for adverse clinical outcomes.
Several cardioprotective pharmacotherapies have

failed to improve clinical outcomes in large phase III FIGURE 4 Survival Analysis in the TOPCAT Trial

clinical trials of patients with HFpEF (3). The patho-

physiological and phenotypic heterogeneity in HFpEF 100 -

has contributed substantially to the lack of effective 90 -

therapies for this disease, highlighting the need for _ 80

novel approaches to identify prognostically and 3\; 70 4

therapeutically homogenous phenogroups (1-3,28). % 60 1

The DeepNN model evaluated in this study is an _'8“ 50 ]

attempt to address this knowledge gap. The high-risk E

“cardiac impairment” phenotype identified by the % 407

DeepNN model was also more adaptable and é 301

benefited significantly from spironolactone. In 20 1

contrast, the low-risk phenogroup did not have sig- 10 ~

nificant LVDD, and their risk for adverse events was 0, P= 0.I0018 : : : : : .
not modified by spironolactone. Thus, the significant, 0 1 2 3 4 5 6 7
independent association of DeepNN classifier-based Time (Years)

phenogroups with different biologic measures of |Numberatrisk
Group: Low-Risk

98 88 7 39 25 14 6 0
Group: High-Risk
420 339 248 160 99 30 5 0]

disease severity and risk for adverse clinical out-
comes highlights the model’s robustness, clinical
validity, and external generalizability. With our
DeepNN classifier being made publicly available, we
further anticipate that more work can be done to
confirm and discover the mechanistic underpinnings

Phenotype —— Low-Risk High-Risk

Kaplan-Meier curves demonstrating risk for the primary com-
posite event among participants of the TOPCAT (Aldosterone
Antagonist Therapy for Adults With Heart Failure and Preserved

underlying the observed phenotypic differences.
Moreover, the classifier may be useful to test the

responsiveness of HFpEF phenogroups to new HF Systolic Function) echocardiography cohort stratified by the

therapies in future clinical trials. deep neural network model of diastolic dysfunction-based
phenogroups. Participants were censored at the end of the

STUDY LIMITATIONS. First, the DeepNN classifier was study follow-up as reflected in the number at risk at year 7.

developed primarily to use a set of echocardiographic
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FIGURE 5 Reclassification of Guideline-Based Grades of Diastolic Dysfunction

2016 Guideline DL Model Classifier
Grade 1

N =175 (33.8%)
Event Rate = 28%

27%

Low-Risk
N =98 (18.9%)
(Event rate 17.3%)
Grade 2/3
N =123 (23.7%)
Event Rate = 39%
High-Risk
N =420 (81.1%)
(Event rate 34%)

Indeterminate

N =220 (42.5%)
Event Rate = 29%

80%

Although most patients with grade II or Il diastolic dysfunction (94%) were classified in
the high-risk phenogroup, the biggest benefit of the classifier was in its ability to
reclassify the patients in whom diastolic dysfunction could not be determined using
guideline-based grading. DL = deep learning.

variables that are currently recommended for assess-
ing LVDD and have well-established prognostic role
for cardiovascular diseases. This was done to allow a
more pragmatic and generalizable application of the
DeepNN classifier to routinely collected echocardio-
graphic data. Moreover, in the outcome validation

cohort, the high-risk phenogroup remained an
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independent predictor of adverse outcomes even after
addition of more novel echocardiographic parameters
such as LV and atrial strain in phenotyping LVDD. This
is consistent with a subgroup analysis from TOPCAT
study, in which the association between left atrial
strain and HF hospitalizations were not significant
after adjustments for other echocardiographic systolic
and diastolic parameters (29). Nevertheless, more in-
depth considerations and potential integration of
strain parameters with DeepNN classifiers need to be
investigated in the future studies.

Second, the DeepNN classifier leverages only
resting echocardiographic parameters to predict
resting diastolic function phenotypes. The addition of
new biomarkers that reflect inflammation, myocyte
remodeling, extracellular matrix remodeling, and
endothelial dysfunction and other variables such as
ventriculovascular coupling could enrich the risk
prediction and would need to be addressed in future
studies. Moreover, a significant proportion of patients
with HFpEF have LVDD unmasked with exercise only.
Future studies with this model are needed to deter-
mine if the DeepNN classifier can predict exercise-
related diastolic impairment.

CONCLUSIONS

Our DeepNN classifier thus offers a viable solution to
overcome the limitations of the existing clinical
standards for accurately characterizing the burden of
LVDD in HFpEF. The use of this classifier to identify a
high-risk subgroup of patients with HFpEF with un-
derlying cardiac
vestigators to refine strategies and therapies to

impairment will motivate in-

TABLE 3 Adjusted Association of Deep Neural Network Model of Diastolic Dysfunction Phenogroups With Measures of Cardiac Injury,
Stress, and Exercise Parameters in Patients With Heart Failure With Preserved Ejection Fraction

Model 1 Model 2
Outcome of Interest Standardized Beta (95% CI) p Value Standardized Beta (95% CI) p Value
Troponin | 0.37 (0.04 to 0.69) 0.001 0.42 (0.09 to 0.75) 0.01
NT-proBNP? 0.42 (0.18 to 0.66) 0.001 0.30 (0.07 to 0.54) 0.01
Peak VO, —0.35 (-0.64 to —0.07) 0.02 —0.29 (-0.55 to —0.03) 0.03
Peak exercise workload —0.35 (-0.63 to —0.07) 0.01 —0.25 (-0.52 to 0.01) 0.06
MLHFQ score —0.31(-0.56 to —0.06) 0.02 —0.32 (-0.56 to —0.08) 0.01

transformed.

Separate multivariate-adjusted models were constructed for each cardiac biomarker and exercise parameter (dependent outcome variable of interest) with the phenogroup as
the primary exposure variable (high risk vs. 1 [reference]) and adjustment for the following covariates: model 1, age, sex, and race; model 2: model 1 plus diabetes, systolic blood
pressure, estimated glomerular filtration rate, hemoglobin, smoking status, atrial fibrillation, and New York Heart Association functional class. Additionally, model 2 was
adjusted for body mass index for outcomes of troponin I, NT-proBNP, and MLHFQ score but not for peak VO,, as peak VO, is already indexed for body weight. Models for NT-
proBNP and MLHFQ score outcomes used pooled participants from the RELAX-HF (Evaluating the Effectiveness of Sildenafil at Improving Health Outcomes and Exercise Ability
in People With Diastolic Heart Failure) and NEAT-HFpEF (Nitrate's Effect on Activity Tolerance in Heart Failure With Preserved Ejection Fraction) cohorts, as these parameters
were consistently reported in both trials. Models for troponin | and exercise test parameters used only RELAX-HF cohort participants, as these parameters were not reported in
the NEAT-HFpEF cohort. Beta (95% Cl) represents the parameter estimate per 1 SD derived from the multivariate-adjusted linear regression models. The beta coefficient
represents the change in outcome of interest per SD noted when the exposure variable was varied from low-risk to high-risk phenogroup keeping other covariates fixed. *Log

Cl = confidence interval; MLHFQ = Minnesota Living With Heart Failure Questionnaire; NT-proBNP = N-terminal pro-brain natriuretic peptide; VO, = oxygen uptake.
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manage HFpEF and discover the mechanistic un-
derpinnings underlying the phenotypic differences
and clinical outcomes.
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PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE: A DeepNN
model of diastolic function can overcome the limitations of
the existing guideline-based approach in identifying patients
with elevated filling pressures and risk-stratify patients with
greater impairment in cardiac structure, function, and exercise
capacity who may benefit from therapies such as
spironolactone

TRANSLATIONAL OUTLOOK: Future studies are needed to
determine the mechanistic pathways underlying the usefulness
of the DeepNN model for identifying patients with HFpEF who
respond to specific cardioprotective therapies.
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