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Electrocardiogram-Based Machine Learning Emulator
Model for Predicting Novel Echocardiography-Derived
Phenogroups for Cardiac Risk-Stratification: A Prospective
Multicenter Cohort Study

Heenaben B. Patel, MBBS,' Naveena Yanamala, PhD, MS,'2 Brijesh Patel, DO," Sameer Raina, MD,
MBA," Peter D. Farjo, MD," Srinidhi Sunkara, BTech,' Marton Tokodi, MD,"® Nobuyuki Kagiyama, MD,
PhD,'#5 Grace Casaclang-Verzosa, MD," Partho P. Sengupta, MD, DM’

'Division of Cardiology, West Virginia University Heart and Vascular Institute, Morgantown, WV; 2Institute for Software
Research, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA; *Heart and Vascular Center,
Semmelweis University, Budapest, Hungary; “‘Department of Cardiovascular Biology and Medicine, Juntendo University,
Tokyo, Japan; °Department of Digital Health and Telemedicine Research and Development, Juntendo University,
Tokyo, Japan

Purpose Electrocardiography (ECG)-derived machine learning models can predict echocardiography (echo)-
derived indices of systolic or diastolic function. However, systolic and diastolic dysfunction frequently
coexists, which necessitates an integrated assessment for optimal risk-stratification. We explored
an ECG-derived model that emulates an echo-derived model that combines multiple parameters for

identifying patient phenogroups at risk for major adverse cardiac events (MACE).

Methods In this substudy of a prospective, multicenter study, patients from 3 institutions (n=727) formed an
internal cohort, and the fourth institution was reserved as an external test set (n=518). A previously
validated patient similarity analysis model was used for labeling the patients as low-/high-risk
phenogroups. These labels were utilized for training an ECG-derived deep neural network model to
predict MACE risk per phenogroup. After 5-fold cross-validation training, the model was tested on the

reserved external dataset.

Results Our ECG-derived model showed robust classification of patients, with area under the receiver operating
characteristic curve of 0.86 (95% CI: 0.79-0.91) and 0.84 (95% CI: 0.80-0.87), sensitivity of 80% and
76%, and specificity of 88% and 75% for the internal and external test sets, respectively. The ECG-
derived model demonstrated an increased probability for MACE in high-risk vs low-risk patients (21%
vs 3%; P<0.001), which was similar to the echo-trained model (21% vs 5%; P<0.001), suggesting

comparable utility.

Conclusions  This novel ECG-derived machine learning model provides a cost-effective strategy for predicting
patient subgroups in whom an integrated milieu of systolic and diastolic dysfunction is associated with

a high risk of MACE. (J Patient Cent Res Rev. 2022;9:98-107.)

surface electrocardiography; echocardiography; diastolic dysfunction; machine learning; topological
data analysis

Keywords

ardiovascular disease is the leading cause of
morbidity and mortality globally and enacts an
estimated health care cost of more than $200 billion

in the United States annually.! Effective, economical, and
personalized prevention and risk-stratification strategies
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are imperative to mitigate this burden.? With each patient
visit, based on symptomatology and provider preference,
further testing with questionable cost-effectiveness may be
ordered.’ For instance, more than 30% of echocardiograms
are performed outside of appropriate use criteria.**

To address these concerns, machine learning, a subfield
of applied artificial intelligence, has been applied to
extract features from simpler cost-effective tests like
signal-processed surface electrocardiography (spECG).%?
These models have the potential to optimize downstream
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testing by predicting individual echocardiographic (echo)
parameters, computed tomography-derived coronary
artery calcium scoring, or laboratory test features like
hyperkalemia.®® Recent advances in machine learning
offer an emerging role for its use in integrating spECG
and echo, with the potential for disease diagnosis, risk-
stratification, and prediction of clinical outcomes.'”
Clinical risk-stratification strategies often require
the integration of various clinical parameters; for
example, optimal echo evaluation relies on expert
insights that can integrate multiple parameters, such
as 2-dimensional measurements and Doppler-derived
parameters of left ventricular structure, systolic function,
and diastolic function, for a given individual. To this
end, we have recently described the role of unsupervised
machine learning approaches using patient similarity
analysis for integrating multiple echo parameters and
phenogrouping patients with similar cardiac structure,
systolic and diastolic function, and associated valvular
heart diseases.!"'> Using multiple external validation
steps, these phenogroups were shown to be superior to
conventional guidelines-based strategies for integrating
echo parameters for predicting the risk of major adverse
cardiac events (MACE).!>*

In the investigation presented herein, we sought to
transfer the knowledge of echo-derived risk prediction
to develop an electrocardiogram (ECG)-based prediction
model that emulates echo-derived risk phenogroups of
cardiac dysfunction.”” We hypothesized that machine
learning modeling using ECG and clinical parameters
could effectively transcribe and approximate echo-based
risk-stratification models for predicting patients at risk
for MACE.

A parallel co-learning approach informed the development
of a model using ECG, spECG, and clinical variables
that emulates a model previously developed using echo
variables.”> Such multimodal co-learning approaches
have been used in various techniques — emotion
detection using electroencephalography and eye signals,
audiovisual speech recognition devices for visually
impaired persons (sensory signal and voice signal use),
behavior, and action recognition for security reasons
— to create a fusion model for better predictions.'>!'® A
dataset where the information is originated from different
sources can be considered multimodal, and the concept
of parallel co-learning can be applied when data come
from different modalities with overlapping instances,'’
ie, both ECG and echo data of the same patient. As a
final validation step, we compared the performance of
the ECG-based model with an independent, previously
published echo-based model' to predict MACE.
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METHODS

Study Cohort

This study performed secondary analysis on data collected
from a large trial. The patients included in this study
were enrolled at the following institutions (n=1461):
1) Icahn School of Medicine at Mount Sinai in New
York (NCT02560168); 2) the University of California,
Los Angeles (UCLA) (NCT02873052); 3) Windsor
Cardiac Center in Ontario, Canada; and 4) West Virginia
University (WVU) in Morgantown, West Virginia.!” The
original trial and this study complied with the Declaration
of Helsinki.'® All sites received proper ethical oversight
from WVU’s institutional review board, and appropriate
consent was obtained from study participants.

Subjects were screened before enrollment for the site-
specific inclusion and exclusion criteria as detailed
in Online Appendix A. This study aimed to develop a
machine learning model using spECG, ECG, and clinical
parameters to predict patient subgroups with high or
low risk of MACE delineated using echo. The steps to
develop this model for the study are outlined in Figure 1,
and details of MyoVista® spECG (HeartSciences) can be
found in Online Appendix A.

Machine Learning Model Development

Data collected from three geographically separated
institutions — Mount Sinai, UCLA, and Windsor Cardiac
Center — were included in the final model development
(n=727 patients). WVU served as an external validation
dataset for further evaluation of the developed model
(n=518 patients). As a first step, echo-derived high- or
low-risk phenogroup labeling was performed using a
topological data analysis (TDA) approach, described
previously.”? Briefly, 9 echo parameters, including
ejection fraction (EF), left ventricular mass index, left
atrial volume index (LAVi), early diastolic transmitral
flow velocity (E), late diastolic transmitral flow velocity
(A), E/A ratio, early diastolic relaxation velocity (e’),
E/e’ ratio, and tricuspid regurgitation peak velocity (TR
Vi) Were used for TDA prediction of risk phenotypes.
Patients were assigned low-risk (regions 1 and 2) or high-
risk (regions 3 and 4) labels depending on their location
in the TDA loop structure. These regions were found to
have distinct left ventricular structure and functional echo
parameters, along with a significant difference in MACE-
related rehospitalization and death.'> TDA was shown to
identify data points associated with patients of similar
phenotypic features from a multidimensional feature space
and ultimately formed clusters on a similarity network.
Enrollment characteristics of the prior study cohort used
for the TDA model development are detailed in Online
Appendix A. Thus, these previously validated echo-
based risk phenotypes were used as a class label to train
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Model Development and Validation Dataset

Input Features

Clinical parameters

Site 1
(n=194)
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(n=142)
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Figure 1. Steps to develop a machine learning emulator model to predict echocardiographically defined patient
subgroups. A total of 961 signal-processed electrocardiograms (ECGs), traditional ECGs, and clinical features
were initially considered input features. Data were preprocessed and normalized. Boruta feature selection was
performed using R, and only 51 significant features were used for model development. This was followed by
obtaining echo-derived high-risk or low-risk labels for each patient through batch prediction from a previously
validated model of topological data analysis (looped network of progressive cardiac dysfunction).’? After training
with 5-fold cross-validation, the model was subsequently tested on the reserved dataset for external validation.

and develop an ECG-based supervised machine learning
model. Subjects with missing echo parameters to obtain
TDA-derived risk group labels were excluded (n=216)
from the analysis due to the nonfeasibility of training
supervised machine learning for this group.

Clinical parameters such as age, sex, height, weight, body
surface area, body mass index, heart rate, systolic blood
pressure, diastolic blood pressure, and history of coronary
artery disease, diabetes, hypertension, hyperlipidemia,
and tobacco abuse, along with spECG (n=520) and ECG
(n=427) parameters, were initially considered as input
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features for the training of a supervised machine learning
algorithm. We preprocessed our data to remove columns
with zero variance, normalized all of the ECG data, and
performed feature selection to select meaningful features
using the Boruta algorithm in the R statistical environment
to improve model accuracy.” Out of 961 clinical,
spECG, and ECG features considered initially, the Boruta
algorithm selected 51 significant features that were used for
the machine learning model development. Boruta feature
selection automatically identifies attributes from the dataset
that are paramount for predicting outcomes and removing
unnecessary features that have the least effect on the

Original Research




same. This can be achieved by making shadow attributes,
randomizing them, and calculating z-scores using a random
forest equation, cross-referencing maximum z-scores to
eliminate “unimportant” attributes, then repeating the
process until all important features are identified.”!

ECG-Based Deep-Learning Classifier and Internal
Validation

A deep neural network (DNN) is a collection of neurons
where multiple layers are sequentially organized —
starting as the input layer, followed by hidden layers,
and, lastly, an output layer. Input layers bring the initial
data for system processing in neurons. Each layer
propagates information after adding weighted input, then
transforms this information with nonlinear functions by
mathematical computation.?? As a result, it derives values
as an output to the next layer for the subsequent neuron
activation and makes an optimized prediction based on
the precise neural network structure.

In this vein, ECG-based models were developed on the
training set of clinical, spECG, and traditional ECG
features employing a cloud-based automated machine
learning platform (http://bigml.com, OptiML, BigML,
Inc.). Numerous supervised machine learning algorithms,
such as boosted trees, Deepnets (an optimized version of
DNNSs), random decision forest, bootstrap decision forest,
and logistic regression models were trained and evaluated
using 5-fold cross-validation to predict and classify patients
who were labeled as high- or low-risk phenogroups using
echo variables. To minimize the misprediction of high risk
to the low-risk group due to class imbalance, the model
development was optimized for the F-score of the high-risk
group during the training process. Evaluation parameters
such as accuracy, precision, recall, F-measure, and phi
coefficient were used to compare various models and select
the best-performing model.

In our evaluation analysis, auto network search, a type
of Deepnets algorithm, was the best performing model
generated by the BigML platform. This model assessed
a total of 128 networks, and the auto network search
optimization chose an ensemble of the top 7 best-
performing networks for building the final predictive
DNN model. The network search is not a random process
but, in fact, a stepwise mathematical modeling method
using Bayesian parameter optimization to identify
hyperparameters during the search.

External Validation Cohort and Follow-Up on
Outcomes

To evaluate performance and overall generalizability of
the developed DNN model, we used an unseen cohort of
patients (test dataset) from the fourth institution (WVU)

Original Research

not included during the model training process to determine
the prediction accuracy. The patients in the external test
cohort (n=518) were followed up for clinical outcomes,
including cardiac death and MACE rehospitalization
as defined by International Classification of Diseases,
Ninth/Tenth Revision coding. The follow-up was
censored at 38 months. Outcomes of interest for MACE
include hospitalization for heart failure, myocardial
ischemia, and revascularization (percutaneous coronary
intervention or coronary artery bypass grafting); stroke;
and cardiac death. The external validity of the DNN
model for predicting clinical outcomes was evaluated.

Statistical Analysis

We performed the Shapiro-Wilk test to check
normality of the data. We used parametric methods
for the variables that were normally distributed and
nonparametric tests for nonnormal distributions for
all statistical analyses. Continuous variables were
expressed as mean + standard deviation or median
(interquartile range), whereas categorical variables
were presented as counts (percentages). Comparisons
of continuous variables between the training and test
set were performed using an independent sample
t-test. If all cells of the contingency table contained 5
or more patients, then a chi-squared test was used to
analyze categorical variables. If this assumption was
not met, we performed a Fisher’s exact test. To evaluate
whether both modalities led to similar clinical outcome
predictions, we performed survival analysis on the
follow-up data using Kaplan-Meier curves. In addition,
a Cox proportional hazards regression model calculated
a hazard ratio associated with MACE outcomes, time
to the event, and predicted phenogroups. Medcalc for
Windows 19.6 and R statistical analysis software was
used for all statistical calculations. A P-value of <0.05
was considered statistically significant.

RESULTS

Study Population

The baseline clinical characteristics of the study cohort
(training and test sets) are shown in Table 1. The patient
population of the test dataset was significantly younger
(P<0.0001), had a greater body size (P<0.0001), and
had a significantly higher prevalence of coronary artery
disease (P<0.0001) than the training dataset. In contrast,
patients in the training dataset had a higher prevalence
of valvular heart disease including moderate-to-severe
aortic, mitral, or tricuspid regurgitation (P<0.0001),
a higher prevalence of left ventricular hypertrophy
(P<0.0001), and more frequently had septal e’ of <7 cm/s
or lateral e’ of <10 cm/s, TR V., of >2.8 m/s, and LAVi
of >34 ml/m? (P<0.0001 for all).

aah.org/jpcrr

101


http://www.aah.org/jpcrr
http://bigml.com

Table 1. Characteristics of the Internal (Training) and the External (Validation) Test Cohorts

Internal External
Characteristic n=727 n=518 P
Age, years 61+ 14 50 + 16 <0.0001*
Sex, male 406 (55.85%) 236 (45.56%) 0.0003*
Race <0.0001*
White 406 (55.85%) 476 (91.89%)
African-American 57 (7.84%) 5(0.97%)
Hispanic 35 (4.81%) 6 (1.16%)
Asian 24 (3.30%) 17 (3.28%)
Other or Unknown 205 (28.20%) 14 (2.70%)
Body mass index, kg/m? 29.09 +6.08 32.25+9.33 <0.0001*
Vitals
Systolic blood pressure, mm Hg 130 £ 18 129+ 18 0.46
Diastolic blood pressure, mm Hg 76 (69-83) 77 (70-84) <0.0001*
Heart rate, beats/minute 66 = 11 74 £ 14 <0.0001*
Comorbidities
Diabetes mellitus 179 (24.62%) 108 (20.85%) 0.11
Hypertension 407 (55.98%) 316 (61.00%) 0.07
Hyperlipidemia 443 (60.94%) 306 (59.07%) 0.5
History of CAD, PCI, or CABG 46 (6.33%) 137 (26.45%) <0.0001*
Echocardiography
Reduced ejection fraction (<50%) 52 (7.15%) 35 (6.76%) 0.78
Left ventricular hypertrophy (concentric and eccentric) 161 (22.15%) 52 (10.04%) <0.0001*
Aortic stenosis (moderate to severe) 19 (2.61%) 10 (1.93%) 0.43
Aortic regurgitation (moderate to severe) 44 (6.05%) 3 (0.58%) <0.0001*
Mitral regurgitation (moderate to severe) 50 (6.88%) 7 (1.35%) <0.0001*
Tricuspid regurgitation (moderate to severe) 40 (5.50%) 5 (0.97%) <0.0001*
LVDD index
Average E/e’ > 14 60 (8.25%) 45 (8.69%) 0.78
Septal e’ <7 cm/s or lateral €’ < 10 cm/s 455 (62.59%) 252 (48.65%) <0.0001*
TR Vinax > 2.8 m/s 81 (11.14%) 13 (2.51%) <0.0001*
LAVi > 34 ml/m? 166 (22.83%) 69 (13.32%) <0.0001*
LVDD (2 or more criteria met) 151 (20.77%) 76 (14.67%) 0.006*

Values are presented as counts (%), mean * standard deviation, or, in the case of nonnormal distribution for diastolic blood
pressure, median (interquartile range). P-values were calculated using an independent t-test where the mean is reported and
chi-squared or Fisher’s exact test where frequencies are reported.

*P<0.05 indicates significant difference between training and external test set.

CAD, coronary artery disease; PCl, percutaneous coronary intervention; CABG, coronary artery bypass graft; E, early
diastolic mitral wave velocity; e', tissue Doppler-derived early diastolic mitral annular velocity; LAVi, left atrial volume index;
LVDD, left ventricular diastolic dysfunction;, TR V., tricuspid regurgitation peak velocity.

Performance Evaluation of the ECG-Based DNN

Despite the inherent difference in the population
characteristics and geographical location, the developed
predictive model was able to effectively identify and
predict TDA-derived echo-based patient subgroups at
low or high risk of MACE. The DNN model showed
robust classification of patients with areas under the
receiver operating characteristic curves (AUC) of 0.86
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(95% CI: 0.79-0.91) and 0.84 (95% CI: 0.80-0.87),
sensitivities of 80% and 76%, and specificites of 88%
and 75% for the internal and external test datasets,
respectively (Figure 2). Here, an AUC number of 0.86
indicates that there is an 86% chance that the model
will be able to distinguish between positive class (high
risk for MACE events) and negative class (low risk for
MACE events) for the internal test dataset and, similarly,

Original Research



Figure 2. Receiver
operating characteristic
curves for the deep neural
network model predicting
echocardiographically
defined patient subgroups
at low or high risk of major
adverse cardiac events for
5-fold cross-validation (A)
and external validation (B).
An area under the curve
(AUC) of >0.5 indicates
better predictive values.
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Figure 3. The importance of features within the
developed deep neural network model. Of the

51 features selected, 51% came from signal-
processed electrocardiograms, 45% from traditional
electrocardiograms, and 4% from clinical features.

The details of these features are described in Online
Supplemental Table S1. Amp, amplitude; PMH of CAD,
past medical history of coronary artery disease; DAM,
depolarization average measure; Dur, duration; REI,
repolarization early minimum.
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Figure 4. Kaplan-Meier curves for major adverse cardiovascular events (MACE) in the test set and for time-to-event
analysis of the external test set. The outcomes of interest include events such as MACE-related rehospitalization
and cardiac death in the external validation cohort that occurred throughout the 3-year follow-up period. All patients
were censored at study follow-up at 38 months. Survival analysis was done using predicted probabilities for high-risk
and low-risk groups for signal-processed electrocardiographic (spECG), traditional electrocardiographic, and clinical
feature-based machine learning model (A), and for directly echocardiographic (echo) parameter-trained machine
learning (B); P<0.0001 on log-rank test for both plots. The plots demonstrate similar performance for the high-risk
group (survival proportion of 0.79 for A and B) and slightly improved performance for a low-risk group [survival
proportion of 0.97 for A and 0.79 for B) using the spECG model when compared with the directly echo-trained model.
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84% chance for the external dataset; the higher the value
of AUC, the better the model is at predicting negative
classes as negative and positive classes as positive. The
slightly lower performance of the model in the external
validation group could be attributable to the underlying
disease status of its heterogeneous population from a
distinct geographic location.

Evaluation plots corresponding to the external validity
of the DNN model for predicting clinical outcomes are
shown in Figure 2. The performance metrics of the model
are shown in Table 2. Moreover, we have compared the
performance of this model to a model trained only using
standard ECG data, and the performance findings were
AUC of 0.79 for internal and 0.75 for the external test
set using 80% data for training and 20% data as a testing
dataset. The model was tested extensively, and the very
low performance found using only standard ECG features
suggests that the addition of signal-processed ECG data is
informative and helpful for predicting outcomes of interest.

Features of Importance

Of 961 available features (14 clinical, 520 spECG, and 427
ECQ), 51 features selected by the Boruta algorithm came
mainly from spECG (n=26, 51%), followed by traditional
ECG (n=23, 45%) and clinical features (n=2, 4%). The list
of the 51 Boruta-selected features is summarized in Online
Supplemental Table S1. Among the 51 features, the most
important for classification were the clinical features age
and past medical history of coronary artery disease, the
spECG features depolarization average measure in lead I
and IV and repolarization early minimum in lead V5, and
the conventional ECG features QRS duration in lead V4,
P-to-P amplitude in V5, T duration in lead 1, T amplitude
in lead II (positive) and ST-T amplitude of >38 mv in
lead I — collectively, these measures provided a robust
prediction of MACE in the external test set.

The top 10 features are shown in Figure 3. Interestingly,
age (12.45%) was the most important among all selected
features.

Time-to-Event Survival Analysis

The ECG-predicted model demonstrated an increased
probability for MACE in high-risk compared to low-risk
patients (21% vs 3%; P<0.001); the results were similar
to the echo-trained model (21% vs 5%; P<0.001),
suggesting a comparable utility of ECG instead of echo
to identify patients at risk of MACE events (Figure 4).
In addition, the patients labeled as high risk using the
ECG-trained model had less chance of survival than
the low-risk group (Figure 4A; log-rank P<0.0001).
These results were similar or almost identical to the
echo-trained model (Figure 4B; log-rank P<0.0001).
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Table 2. Performance of Deep Neural Network
Prediction Model on Training and External Datasets

5-fold cross- External

Metric validation validation
AUC ROC? 0.86 (95% CI:  0.84 (95% CI:

0.79-0.91) 0.80-0.87)
Accuracy® 0.84 0.75
F-measure® 0.80 0.71
Precision? 0.80 0.70
Recall® 0.80 0.76

@Area under the receiver operating characteristic curve.

bProportion of correct predictions out of total predictions that
were generated.

°F-score is a weighted mean considering both precision and
recall measures.

4Proportion of true positive predicted values identified out of
all true-positive and false-positive values.

eProportion of actual positive values identified from total
true-positive and false-negative values.

In the Cox proportional-hazards regression analyses,
an increased risk of MACE was observed for high-
risk phenogroups (hazard ratio: 8.17 [95% CI: 3.97 to
16.82]; P<0.0001) when compared with patients that
belong to low-risk phenogroups.

DISCUSSION

Recent deep-learning approaches have utilized large
retrospective ECG datasets for developing generalizable
machine learning models for predicting left ventricular
systolic function.® In contrast, we used a novel emulator-
model approach wherein, despite a smaller training sample
size, we were able to achieve a high level of performance
for identifying echo-based risk phenotypes. These risk
phenotypes were shown to successfully integrate left
ventricular structure and function for predicting future
MACE." Both the training and testing were done using
a prospectively obtained database of more than 1200
participants from multiple centers located in North
America. Notably, generalizability of the model also was
tested using an external test site, as ability to adapt properly
to new data is central to the success of any predictive
machine learning model.* Moreover, we trained the ECG
model for identifying echo-based risk phenotype. Finally,
in addition to predicting phenogroups, we tested the model
performance for predicting future MACE with 3 years
of clinical follow-up data. These findings confirm our
hypothesis that knowledge developed on an echo-derived
model can be successfully transferred to an ECG-derived
model by using a co-learning technique. Furthermore, the
survival analysis comparing ECG-trained vs echo-trained
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models demonstrated almost identical results for MACE
in high-risk patients, suggesting the potential use of ECG
modality as a valuable alternative cost-effective risk-
stratification tool.

Several studies have demonstrated the utility of standard
ECG parameters for predicting clinical cardiac outcomes
with or without using machine learning algorithms.?-!
A prospective study conducted by Al-Zaiti et al in three
tertiary U.S. hospitals demonstrated the utility of machine
learning-based prediction of acute coronary syndrome
using 12-lead standard ECG.” Similarly, myocardial
infarction, stroke, and mortality predictors were identified
using ECG.**?7 While the use of single parameters like
ejection fraction can predict the development of heart
failure, considerable bias may be introduced in diagnosing
overall categories of heart failure syndromes that present
with varying extents of systolic and diastolic dysfunction.
However, chronic heart failure is a complex, multifactorial
syndrome consisting of many overlapping phenotypes,>
in which the features of structural remodeling and systolic
and diastolic dysfunction slowly progress from subclinical
stages toward the development of overt heart failure.

Since heart failure does not emerge as a uniform phenotype,
but instead as a disease spectrum of overlapping
phenotypes, we previously investigated this continuum
using patient similarity analysis. Specifically, we used
TDA, a fundamental advancement in machine learning,
which demonstrated the importance of understanding
the “shape” of data to extract meaningful insights.*® This
technology allowed precise phenotypic recognition of the
continuum of left ventricular response patterns during
the progression of heart failure.!! In the present study, we
used the previous knowledge of the echo-derived TDA
model to train our surrogate ECG-derived model. Several
ECG features, including QRS duration, P-to-P amplitude,
T duration/amplitude, and ST-T amplitude were among
the most important variables for discriminating between
high-risk and low-risk phenogroups. Intraventricular
conduction delay and widening of QRS complex, QRT/T
angle, QT-T durations, and ST-depressions are among
several markers that predicted cardiovascular events in
large-population studies.*

The addition of spECG parameters in the present study
was done to extract and identify robust meaningful
information from the electrical signal activities that lie
in a large amount of wavelet-transformed cardiac energy
data captured using MyoVista spECG. The quantitative
values of cardiac energy at various time points of the
cardiac cycle, along with frequency and amplitude data
for a specific wave, generated more than 500 features to
feed machine learning algorithms. The eventual machine
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learning algorithm implemented was able to detect
meaningful information from the ECG as well as spECG
signals linked to the echo-derived TDA phenogroups.

Limitations

This study had a relatively short-term follow-up to predict
MACE. Perhaps a similar survey with longer follow-up
could provide a cross-over of the risk groups and further
shed light on the change in prognostication over time.
Our analysis did not account for differences in spECG
over time with treatment or lack thereof. The assessment
of dynamic changes in spECGs and echocardiograms
with time could provide essential clues about the
interrelationship of structural and electrophysiologic
changes in the heart that ultimately lead to MACE.
Additionally, we did not use ECG nor spECG variables to
predict MACE directly. Although the latter strategy could
be employed independent of echo variables, it would
endanger the potential value of explanation offered when
associating with echo features of cardiac structure and
function. Nevertheless, future strategies to combine both
ECG and echo variables deserve important considerations
in larger patient databases.

CONCLUSIONS

Utilizing a wide spectrum of data — traditional and signal-
processed ECG, patient demographics, and comorbidities
—  successfully  predicted  echocardiographically
defined patient subgroups at high risk of major adverse
cardiovascular events. Results demonstrate the potential
value of machine learning-driven algorithms for rapid
decision-making in an office-based setting to evaluate
and monitor the progress of the patient and justify
appropriate downstream referral for additional tests like
echocardiography or other interventions.

Patient-Friendly Recap

* An integrated assessment of heart function using
clinical and electrocardiographic (ECG) features
found to be reflective of echocardiographic analysis
could help group patients by their risk for major
cardiac events.

* Authors developed an ECG-based machine learning
model to mirror echo-derived measures of function.

* They found that a spectrum of ECG features,
patient demographics, and comorbidities was
predictive of high or low risk as defined by echo.

* Refined ECG-based risk-stratification can provide
a cost-effective strategy for classifying patients by
their underlying and clinically meaningful cardiac
dysfunction.
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