
Journal of Patient-Centered Journal of Patient-Centered 

Research and Reviews Research and Reviews 

Volume 9 Issue 2 Article 2 

4-18-2022 

Electrocardiogram-Based Machine Learning Emulator Model for Electrocardiogram-Based Machine Learning Emulator Model for 

Predicting Novel Echocardiography-Derived Phenogroups for Predicting Novel Echocardiography-Derived Phenogroups for 

Cardiac Risk-Stratification: A Prospective Multicenter Cohort Cardiac Risk-Stratification: A Prospective Multicenter Cohort 

Study Study 

Heenaben B. Patel 
Naveena Yanamala 
Brijesh Patel 
Sameer Raina 
Peter D. Farjo 
Srinidhi Sunkara 
Márton Tokodi 
Nobuyuki Kagiyama 
Grace Casaclang-Verzosa 
Partho P. Sengupta 

Follow this and additional works at: https://aah.org/jpcrr 

 Part of the Cardiology Commons, Cardiovascular Diseases Commons, Cardiovascular System 

Commons, Community Health and Preventive Medicine Commons, Equipment and Supplies Commons, 

and the Other Analytical, Diagnostic and Therapeutic Techniques and Equipment Commons 

Recommended Citation Recommended Citation 
Patel HB, Yanamala N, Patel B, Raina S, Farjo PD, Sunkara S, Tokodi M, Kagiyama N, Casaclang-Verzosa G, 
Sengupta PP. Electrocardiogram-based machine learning emulator model for predicting novel 
echocardiography-derived phenogroups for cardiac risk-stratification: a prospective multicenter cohort 
study. J Patient Cent Res Rev. 2022;9:98-107. doi: 10.17294/2330-0698.1893 

Published quarterly by Midwest-based health system Advocate Aurora Health and indexed in PubMed Central, the 
Journal of Patient-Centered Research and Reviews (JPCRR) is an open access, peer-reviewed medical journal 
focused on disseminating scholarly works devoted to improving patient-centered care practices, health outcomes, 
and the patient experience. 

https://institutionalrepository.aah.org/jpcrr
https://institutionalrepository.aah.org/jpcrr
https://institutionalrepository.aah.org/jpcrr/vol9
https://institutionalrepository.aah.org/jpcrr/vol9/iss2
https://institutionalrepository.aah.org/jpcrr/vol9/iss2/2
https://institutionalrepository.aah.org/jpcrr?utm_source=institutionalrepository.aah.org%2Fjpcrr%2Fvol9%2Fiss2%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/683?utm_source=institutionalrepository.aah.org%2Fjpcrr%2Fvol9%2Fiss2%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/929?utm_source=institutionalrepository.aah.org%2Fjpcrr%2Fvol9%2Fiss2%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/977?utm_source=institutionalrepository.aah.org%2Fjpcrr%2Fvol9%2Fiss2%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/977?utm_source=institutionalrepository.aah.org%2Fjpcrr%2Fvol9%2Fiss2%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/744?utm_source=institutionalrepository.aah.org%2Fjpcrr%2Fvol9%2Fiss2%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/944?utm_source=institutionalrepository.aah.org%2Fjpcrr%2Fvol9%2Fiss2%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/994?utm_source=institutionalrepository.aah.org%2Fjpcrr%2Fvol9%2Fiss2%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.17294/2330-0698.1893


98	 JPCRR • Volume 9, Issue 2 • Spring 2022 Original Research

Cardiovascular disease is the leading cause of 
morbidity and mortality globally and enacts an 
estimated health care cost of more than $200 billion 

in the United States annually.1 Effective, economical, and 
personalized prevention and risk-stratification strategies 

are imperative to mitigate this burden.2 With each patient 
visit, based on symptomatology and provider preference, 
further testing with questionable cost-effectiveness may be 
ordered.3 For instance, more than 30% of echocardiograms 
are performed outside of appropriate use criteria.4,5

To address these concerns, machine learning, a subfield 
of applied artificial intelligence, has been applied to 
extract features from simpler cost-effective tests like 
signal-processed surface electrocardiography (spECG).6-9 

These models have the potential to optimize downstream 

Purpose	� Electrocardiography (ECG)-derived machine learning models can predict echocardiography (echo)-
derived indices of systolic or diastolic function. However, systolic and diastolic dysfunction frequently 
coexists, which necessitates an integrated assessment for optimal risk-stratification. We explored 
an ECG-derived model that emulates an echo-derived model that combines multiple parameters for 
identifying patient phenogroups at risk for major adverse cardiac events (MACE).

Methods	� In this substudy of a prospective, multicenter study, patients from 3 institutions (n=727) formed an 
internal cohort, and the fourth institution was reserved as an external test set (n=518). A previously 
validated patient similarity analysis model was used for labeling the patients as low-/high-risk 
phenogroups. These labels were utilized for training an ECG-derived deep neural network model to 
predict MACE risk per phenogroup. After 5-fold cross-validation training, the model was tested on the 
reserved external dataset.

Results		� Our ECG-derived model showed robust classification of patients, with area under the receiver operating 
characteristic curve of 0.86 (95% CI: 0.79–0.91) and 0.84 (95% CI: 0.80–0.87), sensitivity of 80% and 
76%, and specificity of 88% and 75% for the internal and external test sets, respectively. The ECG-
derived model demonstrated an increased probability for MACE in high-risk vs low-risk patients (21% 
vs 3%; P<0.001), which was similar to the echo-trained model (21% vs 5%; P<0.001), suggesting 
comparable utility.

Conclusions	� This novel ECG-derived machine learning model provides a cost-effective strategy for predicting 
patient subgroups in whom an integrated milieu of systolic and diastolic dysfunction is associated with 
a high risk of MACE. (J Patient Cent Res Rev. 2022;9:98-107.)
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testing by predicting individual echocardiographic (echo) 
parameters, computed tomography-derived coronary 
artery calcium scoring, or laboratory test features like 
hyperkalemia.6-9 Recent advances in machine learning 
offer an emerging role for its use in integrating spECG 
and echo, with the potential for disease diagnosis, risk-
stratification, and prediction of clinical outcomes.10 
Clinical risk-stratification strategies often require 
the integration of various clinical parameters; for 
example, optimal echo evaluation relies on expert 
insights that can integrate multiple parameters, such 
as 2-dimensional measurements and Doppler-derived 
parameters of left ventricular structure, systolic function, 
and diastolic function, for a given individual. To this 
end, we have recently described the role of unsupervised 
machine learning approaches using patient similarity 
analysis for integrating multiple echo parameters and 
phenogrouping patients with similar cardiac structure, 
systolic and diastolic function, and associated valvular 
heart diseases.11,12 Using multiple external validation 
steps, these phenogroups were shown to be superior to 
conventional guidelines-based strategies for integrating 
echo parameters for predicting the risk of major adverse 
cardiac events (MACE).13,14

In the investigation presented herein, we sought to 
transfer the knowledge of echo-derived risk prediction 
to develop an electrocardiogram (ECG)-based prediction 
model that emulates echo-derived risk phenogroups of 
cardiac dysfunction.12 We hypothesized that machine 
learning modeling using ECG and clinical parameters 
could effectively transcribe and approximate echo-based 
risk-stratification models for predicting patients at risk 
for MACE.

A parallel co-learning approach informed the development 
of a model using ECG, spECG, and clinical variables 
that emulates a model previously developed using echo 
variables.15 Such multimodal co-learning approaches 
have been used in various techniques — emotion 
detection using electroencephalography and eye signals, 
audiovisual speech recognition devices for visually 
impaired persons (sensory signal and voice signal use), 
behavior, and action recognition for security reasons 
— to create a fusion model for better predictions.15,16 A 
dataset where the information is originated from different 
sources can be considered multimodal, and the concept 
of parallel co-learning can be applied when data come 
from different modalities with overlapping instances,15 
ie, both ECG and echo data of the same patient. As a 
final validation step, we compared the performance of 
the ECG-based model with an independent, previously 
published echo-based model12 to predict MACE.

METHODS
Study Cohort
This study performed secondary analysis on data collected 
from a large trial. The patients included in this study 
were enrolled at the following institutions (n=1461): 
1) Icahn School of Medicine at Mount Sinai in New 
York (NCT02560168); 2) the University of California, 
Los Angeles (UCLA) (NCT02873052); 3) Windsor 
Cardiac Center in Ontario, Canada; and 4) West Virginia 
University (WVU) in Morgantown, West Virginia.17 The 
original trial and this study complied with the Declaration 
of Helsinki.18 All sites received proper ethical oversight 
from WVU’s institutional review board, and appropriate 
consent was obtained from study participants.

Subjects were screened before enrollment for the site-
specific inclusion and exclusion criteria as detailed 
in Online Appendix A. This study aimed to develop a 
machine learning model using spECG, ECG, and clinical 
parameters to predict patient subgroups with high or 
low risk of MACE delineated using echo. The steps to 
develop this model for the study are outlined in Figure 1, 
and details of MyoVista® spECG (HeartSciences) can be 
found in Online Appendix A.

Machine Learning Model Development
Data collected from three geographically separated 
institutions — Mount Sinai, UCLA, and Windsor Cardiac 
Center — were included in the final model development 
(n=727 patients). WVU served as an external validation 
dataset for further evaluation of the developed model 
(n=518 patients). As a first step, echo-derived high- or 
low-risk phenogroup labeling was performed using a 
topological data analysis (TDA) approach, described 
previously.12 Briefly, 9 echo parameters, including 
ejection fraction (EF), left ventricular mass index, left 
atrial volume index (LAVi), early diastolic transmitral 
flow velocity (E), late diastolic transmitral flow velocity 
(A), E/A ratio, early diastolic relaxation velocity (e’), 
E/e’ ratio, and tricuspid regurgitation peak velocity (TR 
Vmax) were used for TDA prediction of risk phenotypes. 
Patients were assigned low-risk (regions 1 and 2) or high-
risk (regions 3 and 4) labels depending on their location 
in the TDA loop structure. These regions were found to 
have distinct left ventricular structure and functional echo 
parameters, along with a significant difference in MACE-
related rehospitalization and death.12 TDA was shown to 
identify data points associated with patients of similar 
phenotypic features from a multidimensional feature space 
and ultimately formed clusters on a similarity network. 
Enrollment characteristics of the prior study cohort used 
for the TDA model development are detailed in Online 
Appendix A. Thus, these previously validated echo-
based risk phenotypes were used as a class label to train 

http://www.aah.org/jpcrr
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and develop an ECG-based supervised machine learning 
model. Subjects with missing echo parameters to obtain 
TDA-derived risk group labels were excluded (n=216) 
from the analysis due to the nonfeasibility of training 
supervised machine learning for this group.

Clinical parameters such as age, sex, height, weight, body 
surface area, body mass index, heart rate, systolic blood 
pressure, diastolic blood pressure, and history of coronary 
artery disease, diabetes, hypertension, hyperlipidemia, 
and tobacco abuse, along with spECG (n=520) and ECG 
(n=427) parameters, were initially considered as input 

features for the training of a supervised machine learning 
algorithm. We preprocessed our data to remove columns 
with zero variance, normalized all of the ECG data, and 
performed feature selection to select meaningful features 
using the Boruta algorithm in the R statistical environment 
to improve model accuracy.19,20 Out of 961 clinical, 
spECG, and ECG features considered initially, the Boruta 
algorithm selected 51 significant features that were used for 
the machine learning model development. Boruta feature 
selection automatically identifies attributes from the dataset 
that are paramount for predicting outcomes and removing 
unnecessary features that have the least effect on the 

Figure 1.  Steps to develop a machine learning emulator model to predict echocardiographically defined patient 
subgroups. A total of 961 signal-processed electrocardiograms (ECGs), traditional ECGs, and clinical features 
were initially considered input features. Data were preprocessed and normalized. Boruta feature selection was 
performed using R, and only 51 significant features were used for model development. This was followed by 
obtaining echo-derived high-risk or low-risk labels for each patient through batch prediction from a previously 
validated model of topological data analysis (looped network of progressive cardiac dysfunction).12 After training 
with 5-fold cross-validation, the model was subsequently tested on the reserved dataset for external validation.
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same. This can be achieved by making shadow attributes, 
randomizing them, and calculating z-scores using a random 
forest equation, cross-referencing maximum z-scores to 
eliminate “unimportant” attributes, then repeating the 
process until all important features are identified.21

ECG-Based Deep-Learning Classifier and Internal 
Validation
A deep neural network (DNN) is a collection of neurons 
where multiple layers are sequentially organized — 
starting as the input layer, followed by hidden layers, 
and, lastly, an output layer. Input layers bring the initial 
data for system processing in neurons. Each layer 
propagates information after adding weighted input, then 
transforms this information with nonlinear functions by 
mathematical computation.22 As a result, it derives values 
as an output to the next layer for the subsequent neuron 
activation and makes an optimized prediction based on 
the precise neural network structure.

In this vein, ECG-based models were developed on the 
training set of clinical, spECG, and traditional ECG 
features employing a cloud-based automated machine 
learning platform (http://bigml.com, OptiML, BigML, 
Inc.). Numerous supervised machine learning algorithms, 
such as boosted trees, Deepnets (an optimized version of 
DNNs), random decision forest, bootstrap decision forest, 
and logistic regression models were trained and evaluated 
using 5-fold cross-validation to predict and classify patients 
who were labeled as high- or low-risk phenogroups using 
echo variables. To minimize the misprediction of high risk 
to the low-risk group due to class imbalance, the model 
development was optimized for the F-score of the high-risk 
group during the training process. Evaluation parameters 
such as accuracy, precision, recall, F-measure, and phi 
coefficient were used to compare various models and select 
the best-performing model.

In our evaluation analysis, auto network search, a type 
of Deepnets algorithm, was the best performing model 
generated by the BigML platform. This model assessed 
a total of 128 networks, and the auto network search 
optimization chose an ensemble of the top 7 best-
performing networks for building the final predictive 
DNN model. The network search is not a random process 
but, in fact, a stepwise mathematical modeling method 
using Bayesian parameter optimization to identify 
hyperparameters during the search.

External Validation Cohort and Follow-Up on 
Outcomes
To evaluate performance and overall generalizability of 
the developed DNN model, we used an unseen cohort of 
patients (test dataset) from the fourth institution (WVU) 

not included during the model training process to determine 
the prediction accuracy. The patients in the external test 
cohort (n=518) were followed up for clinical outcomes, 
including cardiac death and MACE rehospitalization 
as defined by International Classification of Diseases, 
Ninth/Tenth Revision coding. The follow-up was 
censored at 38 months. Outcomes of interest for MACE 
include hospitalization for heart failure, myocardial 
ischemia, and revascularization (percutaneous coronary 
intervention or coronary artery bypass grafting); stroke; 
and cardiac death. The external validity of the DNN 
model for predicting clinical outcomes was evaluated.

Statistical Analysis
We performed the Shapiro-Wilk test to check 
normality of the data. We used parametric methods 
for the variables that were normally distributed and 
nonparametric tests for nonnormal distributions for 
all statistical analyses. Continuous variables were 
expressed as mean ± standard deviation or median 
(interquartile range), whereas categorical variables 
were presented as counts (percentages). Comparisons 
of continuous variables between the training and test 
set were performed using an independent sample 
t-test. If all cells of the contingency table contained 5 
or more patients, then a chi-squared test was used to 
analyze categorical variables. If this assumption was 
not met, we performed a Fisher’s exact test. To evaluate 
whether both modalities led to similar clinical outcome 
predictions, we performed survival analysis on the 
follow-up data using Kaplan-Meier curves. In addition, 
a Cox proportional hazards regression model calculated 
a hazard ratio associated with MACE outcomes, time 
to the event, and predicted phenogroups. Medcalc for 
Windows 19.6 and R statistical analysis software was 
used for all statistical calculations. A P-value of <0.05 
was considered statistically significant.

RESULTS
Study Population
The baseline clinical characteristics of the study cohort 
(training and test sets) are shown in Table 1. The patient 
population of the test dataset was significantly younger 
(P<0.0001), had a greater body size (P<0.0001), and 
had a significantly higher prevalence of coronary artery 
disease (P<0.0001) than the training dataset. In contrast, 
patients in the training dataset had a higher prevalence 
of valvular heart disease including moderate-to-severe 
aortic, mitral, or tricuspid regurgitation (P<0.0001), 
a higher prevalence of left ventricular hypertrophy 
(P<0.0001), and more frequently had septal e’ of <7 cm/s 
or lateral e’ of <10 cm/s, TR Vmax of >2.8 m/s, and LAVi 
of >34 ml/m2 (P<0.0001 for all). 

http://www.aah.org/jpcrr
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Performance Evaluation of the ECG-Based DNN
Despite the inherent difference in the population 
characteristics and geographical location, the developed 
predictive model was able to effectively identify and 
predict TDA-derived echo-based patient subgroups at 
low or high risk of MACE. The DNN model showed 
robust classification of patients with areas under the 
receiver operating characteristic curves (AUC) of 0.86 

(95% CI: 0.79–0.91) and 0.84 (95% CI: 0.80–0.87), 
sensitivities of 80% and 76%, and specificites of 88% 
and 75% for the internal and external test datasets, 
respectively (Figure 2). Here, an AUC number of 0.86 
indicates that there is an 86% chance that the model 
will be able to distinguish between positive class (high 
risk for MACE events) and negative class (low risk for 
MACE events) for the internal test dataset and, similarly, 

Characteristic
Internal  
n=727

External  
n=518 P

Age, years 61 ± 14 50 ± 16 <0.0001*
Sex, male 406 (55.85%) 236 (45.56%) 0.0003*
Race <0.0001*
   White 406 (55.85%) 476 (91.89%)
   African-American 57 (7.84%) 5 (0.97%)
   Hispanic 35 (4.81%) 6 (1.16%)
   Asian 24 (3.30%) 17 (3.28%)
   Other or Unknown 205 (28.20%) 14 (2.70%)

Body mass index, kg/m2 29.09 ± 6.08 32.25 ± 9.33 <0.0001*
Vitals
   Systolic blood pressure, mm Hg 130 ± 18 129 ± 18 0.46
   Diastolic blood pressure, mm Hg 76 (69–83) 77 (70–84) <0.0001*
   Heart rate, beats/minute 66 ± 11 74 ± 14 <0.0001*
Comorbidities
   Diabetes mellitus 179 (24.62%) 108 (20.85%) 0.11
   Hypertension 407 (55.98%) 316 (61.00%) 0.07
   Hyperlipidemia 443 (60.94%) 306 (59.07%) 0.5
   History of CAD, PCI, or CABG 46 (6.33%) 137 (26.45%) <0.0001*
Echocardiography
   Reduced ejection fraction (<50%) 52 (7.15%) 35 (6.76%) 0.78
   �Left ventricular hypertrophy (concentric and eccentric) 161 (22.15%) 52 (10.04%) <0.0001*
   Aortic stenosis (moderate to severe) 19 (2.61%) 10 (1.93%) 0.43
   Aortic regurgitation (moderate to severe) 44 (6.05%) 3 (0.58%) <0.0001*
   Mitral regurgitation (moderate to severe) 50 (6.88%) 7 (1.35%) <0.0001*
   Tricuspid regurgitation (moderate to severe) 40 (5.50%) 5 (0.97%) <0.0001*

LVDD index
   Average E/e’ > 14 60 (8.25%) 45 (8.69%) 0.78
   Septal e’ < 7 cm/s or lateral e’ < 10 cm/s 455 (62.59%) 252 (48.65%) <0.0001*
   TR Vmax > 2.8 m/s 81 (11.14%) 13 (2.51%) <0.0001*
   LAVi > 34 ml/m2 166 (22.83%) 69 (13.32%) <0.0001*
   LVDD (2 or more criteria met) 151 (20.77%) 76 (14.67%) 0.006*

Table 1.  Characteristics of the Internal (Training) and the External (Validation) Test Cohorts

Values are presented as counts (%), mean ± standard deviation, or, in the case of nonnormal distribution for diastolic blood 
pressure, median (interquartile range). P-values were calculated using an independent t-test where the mean is reported and 
chi-squared or Fisher’s exact test where frequencies are reported.

*P<0.05 indicates significant difference between training and external test set.

CAD, coronary artery disease; PCI, percutaneous coronary intervention; CABG, coronary artery bypass graft; E, early 
diastolic mitral wave velocity; e', tissue Doppler-derived early diastolic mitral annular velocity; LAVi, left atrial volume index; 
LVDD, left ventricular diastolic dysfunction; TR Vmax, tricuspid regurgitation peak velocity.
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Figure 3.  The importance of features within the 
developed deep neural network model. Of the 
51 features selected, 51% came from signal-
processed electrocardiograms, 45% from traditional 
electrocardiograms, and 4% from clinical features. 
The details of these features are described in Online 
Supplemental Table S1. Amp, amplitude; PMH of CAD, 
past medical history of coronary artery disease; DAM, 
depolarization average measure; Dur, duration; REI, 
repolarization early minimum.

A B Figure 2.  Receiver 
operating characteristic 
curves for the deep neural 
network model predicting 
echocardiographically 
defined patient subgroups 
at low or high risk of major 
adverse cardiac events for 
5-fold cross-validation (A) 
and external validation (B). 
An area under the curve 
(AUC) of >0.5 indicates 
better predictive values.

Figure 4.  Kaplan-Meier curves for major adverse cardiovascular events (MACE) in the test set and for time-to-event 
analysis of the external test set. The outcomes of interest include events such as MACE-related rehospitalization 
and cardiac death in the external validation cohort that occurred throughout the 3-year follow-up period. All patients 
were censored at study follow-up at 38 months. Survival analysis was done using predicted probabilities for high-risk 
and low-risk groups for signal-processed electrocardiographic (spECG), traditional electrocardiographic, and clinical 
feature-based machine learning model (A), and for directly echocardiographic (echo) parameter-trained machine 
learning (B); P<0.0001 on log-rank test for both plots. The plots demonstrate similar performance for the high-risk 
group (survival proportion of 0.79 for A and B) and slightly improved performance for a low-risk group [survival 
proportion of 0.97 for A and 0.79 for B) using the spECG model when compared with the directly echo-trained model.

A B

http://www.aah.org/jpcrr
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84% chance for the external dataset; the higher the value 
of AUC, the better the model is at predicting negative 
classes as negative and positive classes as positive. The 
slightly lower performance of the model in the external 
validation group could be attributable to the underlying 
disease status of its heterogeneous population from a 
distinct geographic location.

Evaluation plots corresponding to the external validity 
of the DNN model for predicting clinical outcomes are 
shown in Figure 2. The performance metrics of the model 
are shown in Table 2. Moreover, we have compared the 
performance of this model to a model trained only using 
standard ECG data, and the performance findings were 
AUC of 0.79 for internal and 0.75 for the external test 
set using 80% data for training and 20% data as a testing 
dataset. The model was tested extensively, and the very 
low performance found using only standard ECG features 
suggests that the addition of signal-processed ECG data is 
informative and helpful for predicting outcomes of interest.

Features of Importance
Of 961 available features (14 clinical, 520 spECG, and 427 
ECG), 51 features selected by the Boruta algorithm came 
mainly from spECG (n=26, 51%), followed by traditional 
ECG (n=23, 45%) and clinical features (n=2, 4%). The list 
of the 51 Boruta-selected features is summarized in Online 
Supplemental Table S1. Among the 51 features, the most 
important for classification were the clinical features age 
and past medical history of coronary artery disease, the 
spECG features depolarization average measure in lead I 
and IV and repolarization early minimum in lead V5, and 
the conventional ECG features QRS duration in lead V4, 
P-to-P amplitude in V5, T duration in lead 1, T amplitude 
in lead II (positive) and ST-T amplitude of >38 mv in 
lead I — collectively, these measures provided a robust 
prediction of MACE in the external test set. 

The top 10 features are shown in Figure 3. Interestingly, 
age (12.45%) was the most important among all selected 
features.

Time-to-Event Survival Analysis
The ECG-predicted model demonstrated an increased 
probability for MACE in high-risk compared to low-risk 
patients (21% vs 3%; P<0.001); the results were similar 
to the echo-trained model (21% vs 5%; P<0.001), 
suggesting a comparable utility of ECG instead of echo 
to identify patients at risk of MACE events (Figure 4). 
In addition, the patients labeled as high risk using the 
ECG-trained model had less chance of survival than 
the low-risk group (Figure 4A; log-rank P<0.0001). 
These results were similar or almost identical to the 
echo-trained model (Figure 4B; log-rank P<0.0001). 

In the Cox proportional-hazards regression analyses, 
an increased risk of MACE was observed for high-
risk phenogroups (hazard ratio: 8.17 [95% CI: 3.97 to 
16.82]; P<0.0001) when compared with patients that 
belong to low-risk phenogroups.

DISCUSSION
Recent deep-learning approaches have utilized large 
retrospective ECG datasets for developing generalizable 
machine learning models for predicting left ventricular 
systolic function.23 In contrast, we used a novel emulator-
model approach wherein, despite a smaller training sample 
size, we were able to achieve a high level of performance 
for identifying echo-based risk phenotypes. These risk 
phenotypes were shown to successfully integrate left 
ventricular structure and function for predicting future 
MACE.12 Both the training and testing were done using 
a prospectively obtained database of more than 1200 
participants from multiple centers located in North 
America. Notably, generalizability of the model also was 
tested using an external test site, as ability to adapt properly 
to new data is central to the success of any predictive 
machine learning model.24 Moreover, we trained the ECG 
model for identifying echo-based risk phenotype. Finally, 
in addition to predicting phenogroups, we tested the model 
performance for predicting future MACE with 3 years 
of clinical follow-up data. These findings confirm our 
hypothesis that knowledge developed on an echo-derived 
model can be successfully transferred to an ECG-derived 
model by using a co-learning technique. Furthermore, the 
survival analysis comparing ECG-trained vs echo-trained 

Original Research

Metric
5-fold cross-

validation
External 

validation
AUC ROCa 0.86 (95% CI: 

0.79–0.91)
0.84 (95% CI: 

0.80–0.87)
Accuracyb 0.84 0.75
F-measurec 0.80 0.71
Precisiond 0.80 0.70
Recalle 0.80 0.76

Table 2.  Performance of Deep Neural Network 
Prediction Model on Training and External Datasets

aArea under the receiver operating characteristic curve.
bProportion of correct predictions out of total predictions that 
were generated.
cF-score is a weighted mean considering both precision and 
recall measures.
dProportion of true positive predicted values identified out of 
all true-positive and false-positive values.
eProportion of actual positive values identified from total 
true-positive and false-negative values.
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models demonstrated almost identical results for MACE 
in high-risk patients, suggesting the potential use of ECG 
modality as a valuable alternative cost-effective risk-
stratification tool.

Several studies have demonstrated the utility of standard 
ECG parameters for predicting clinical cardiac outcomes 
with or without using machine learning algorithms.25-31 
A prospective study conducted by Al-Zaiti et al in three 
tertiary U.S. hospitals demonstrated the utility of machine 
learning-based prediction of acute coronary syndrome 
using 12-lead standard ECG.25 Similarly, myocardial 
infarction, stroke, and mortality predictors were identified 
using ECG.26,27 While the use of single parameters like 
ejection fraction can predict the development of heart 
failure, considerable bias may be introduced in diagnosing 
overall categories of heart failure syndromes that present 
with varying extents of systolic and diastolic dysfunction. 
However, chronic heart failure is a complex, multifactorial 
syndrome consisting of many overlapping phenotypes,32 
in which the features of structural remodeling and systolic 
and diastolic dysfunction slowly progress from subclinical 
stages toward the development of overt heart failure.

Since heart failure does not emerge as a uniform phenotype, 
but instead as a disease spectrum of overlapping 
phenotypes, we previously investigated this continuum 
using patient similarity analysis. Specifically, we used 
TDA, a fundamental advancement in machine learning, 
which demonstrated the importance of understanding 
the “shape” of data to extract meaningful insights.33 This 
technology allowed precise phenotypic recognition of the 
continuum of left ventricular response patterns during 
the progression of heart failure.11 In the present study, we 
used the previous knowledge of the echo-derived TDA 
model to train our surrogate ECG-derived model. Several 
ECG features, including QRS duration, P-to-P amplitude, 
T duration/amplitude, and ST-T amplitude were among 
the most important variables for discriminating between 
high-risk and low-risk phenogroups. Intraventricular 
conduction delay and widening of QRS complex, QRT/T 
angle, QT-T durations, and ST-depressions are among 
several markers that predicted cardiovascular events in 
large-population studies.34

The addition of spECG parameters in the present study 
was done to extract and identify robust meaningful 
information from the electrical signal activities that lie 
in a large amount of wavelet-transformed cardiac energy 
data captured using MyoVista spECG. The quantitative 
values of cardiac energy at various time points of the 
cardiac cycle, along with frequency and amplitude data 
for a specific wave, generated more than 500 features to 
feed machine learning algorithms. The eventual machine  
 

learning algorithm implemented was able to detect 
meaningful information from the ECG as well as spECG 
signals linked to the echo-derived TDA phenogroups.

Limitations
This study had a relatively short-term follow-up to predict 
MACE. Perhaps a similar survey with longer follow-up 
could provide a cross-over of the risk groups and further 
shed light on the change in prognostication over time. 
Our analysis did not account for differences in spECG 
over time with treatment or lack thereof. The assessment 
of dynamic changes in spECGs and echocardiograms 
with time could provide essential clues about the 
interrelationship of structural and electrophysiologic 
changes in the heart that ultimately lead to MACE. 
Additionally, we did not use ECG nor spECG variables to 
predict MACE directly. Although the latter strategy could 
be employed independent of echo variables, it would 
endanger the potential value of explanation offered when 
associating with echo features of cardiac structure and 
function. Nevertheless, future strategies to combine both 
ECG and echo variables deserve important considerations 
in larger patient databases.

CONCLUSIONS
Utilizing a wide spectrum of data — traditional and signal-
processed ECG, patient demographics, and comorbidities 
— successfully predicted echocardiographically 
defined patient subgroups at high risk of major adverse 
cardiovascular events. Results demonstrate the potential 
value of machine learning-driven algorithms for rapid 
decision-making in an office-based setting to evaluate 
and monitor the progress of the patient and justify 
appropriate downstream referral for additional tests like 
echocardiography or other interventions.

Patient-Friendly Recap
• �An integrated assessment of heart function using 

clinical and electrocardiographic (ECG) features 
found to be reflective of echocardiographic analysis 
could help group patients by their risk for major 
cardiac events.

• �Authors developed an ECG-based machine learning 
model to mirror echo-derived measures of function.

• �They found that a spectrum of ECG features, 
patient demographics, and comorbidities was 
predictive of high or low risk as defined by echo.

• �Refined ECG-based risk-stratification can provide 
a cost-effective strategy for classifying patients by 
their underlying and clinically meaningful cardiac 
dysfunction.
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