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Abstract—Spoofing has been identified a form of market
manipulation, and it is harmful to the stability of the financial
market. However, the effect of spoofing activity is hard to
analyze due to its complex interactions within the market and
lack of data. This paper presents an agent-based simulation
model of the continuous double auction market to replicate
and analyze the market dynamics under spoofing conditions.
The simulated market consists of fundamentalist, chartist, zero
intelligence agents, and spoofing agents where several existing
market stylized facts are reproduced and validated. The results
show that in the presence of the spoofing agents and their market
manipulation activities, the market volatility would increase, and
spoofing activities would exacerbate the price variations. The
fundamentalist agents would suffer a loss during the spoofing
period but would be able to make profit during the price recovery
phase. The chartist agents would suffer a loss when the spoofing
agent realized its profit and the price recovers to its normal
condition where they falsely believed the price movement trend
would continue. The Sharpe ratio analysis also indicates the
market manipulation activities of the spoofing agent would give
themselves an unfair advantage resulting in a significantly higher
Sharpe ratio than the other agents.

Index Terms—Agent-based model, spoofing, fundamentalist,
chartist, LOB

I. INTRODUCTION

Algorithmic trading is a double-edged sword. The financial
market has well acknowledged its ability to provide more
liquidity [1] and improve the price discovery process [2]. But,
at the same time, it may also make the financial market vul-
nerable to other new market manipulation practices driven by
algorithms. In the spoofing case involving algorithmic trading,
the algorithms inject fraudulent orders into the limit order
book. Other traders who extract the market information from
the limit order book may be misled by the false information
and alternate their trading decision and place their order in
favor of spoofers [3]. This paper aims to investigate the impact
of the spoofing strategies on both other market participants and
the market quality in general.

The spoofing’s effect to undermine the market stability and
exert negative impact on investors was first brought to public
sight on May 6, 2010, during which the Dow Jones Industrial
Average experienced the largest one-hour price decline in its
history by falling down by 9 percent and recovered by 5
percent at the end of the day [4]. The chain-reaction also

caused “many individual securities and ETFs experienced ex-
treme price fluctuations and traded in a disorderly fashion” [5].
This event is commonly known as the “Flash Crash”. In
the later years, it was proven that spoofing trading activities
was attributed to the “Flash Crash”. Despite its detrimental
effect on the financial market, the complex causal factors and
irreproduciblility make the spoofing case hard to analyze.

This paper aims to reproduce the spoofing in an agent-
based simulation model and study its impact on other market
participants. In the model, the continuous double auction
market with single security is implemented, and agents interact
by placing bid or ask orders with specified prices and sizes
in the limit order book. At each simulation time, the market
price will be determined by the average of the highest bid
price and the lowest ask price. The arrival and cancellation
of the orders of agents follows the exponential distribution.
Upon each trading time, the different groups of agents’ trading
actions will be characterized by their own heuristic functions.
By applying the Monte Carlo simulation method, the simulated
results are verified with stylized facts of financial time series.
A major contribution of the model into the existing ABM
literature is that the Chartists are not only making decisions
based on their heuristic function but also are responsive to
limit order book dynamics. Moreover, the model is able to
replicate the upward or downward price movement and the
price recovery process under the spoofing market conditions.
In addition, the market dynamics, volatility and agents’ profit
are analyzed. We show that spoofing strategies would increase
the market volatility i.e. prolong the normal price discovery
process. At the same time, the spoofing agents bear much
lower risk in making profit.

The rest of the paper is organized as follows. Section II
introduces the agent-based simulation model, its significance
in financial market simulations, and the previous research
review. Section III demonstrates the design of the continuous
double auction market and the behaviors of agents in the
market. Section IV summarizes the normal market simulation,
the verification of stylized facts, and section V discusses
spoofing simulation, market dynamics and other measurements
during the simulation time. Lastly, section VI provides the
summary and concluding remarks of the paper.



II. LITERATURE REVIEW

The agent-based simulation model (ABM), also known as
the individual-based simulation model (IBM), is a computa-
tional simulation in which artificial entities interact over time
within customized environments [6]. Rules will determine the
agents’ actions, but the interactions of the different agents
will be capable of producing behaviors that resemble real-
world complex systems. Because of its ability to simulate
dynamics in sophisticated systems, agent-based simulation is
widely used in many scientific domains, including biology,
epidemiology, social science, economy, and finance.

A. Agent-based Model in Artificial Market Simulation

Because of its ability to replicate the realistic market
conditions, the agent-based simulation models gain extensive
attention in the discussion of market design and regulations.
Mizuta et al. (2015) [7] build an artificial market model to
investigate the effectiveness of price variation limit and up-
tick rule in limiting the volatile price variation caused by
erroneous orders and the dark pool’s ability to stabilize the
market. They conclude that the time span of the price variation
limit should be shorter than the life span of erroneous orders,
and the up-tick rule is effective in limiting price fluctuations.
The dark pool mechanism is able to improve the stability of
the market, but overusing the dark pool would lead to an
increase in the kurtosis of returns. Nagumo et al. (2017) [8]
presents an artificial two-market model to examine the share-
deprivation effect. In their simulation, the market with a
smaller tick size would have more advantages and deprive the
trading volume of the market with a larger tick size. Yang
et al. (2020) [9]’s model further expands the discussion.
They found the smaller tick size would lead to smaller bid-
ask spread and larger trading volume but at the expense of
smaller market depth. Compared to the uniform tick size
system, the combination stepwise tick system based on price
and volume would improve the market quality in terms of
liquidity, volatility, and price efficiency.

Due to the ability to replicate the financial market, agent-
based simulation models are often used as a tool to in-
vestigate financial market properties. Bookstaber and Pad-
drik (2015) [10] present a micro-structured liquidity dynamic
model within the agent-based simulation framework. Within
the model, the interactions among market making, liquidity
supplying, and liquidity demanding agents are able to repro-
duce realistic liquidity crisis events. Yang et al. (2014) [11]
simulates social media networks to investigate the propagation
of Twitter information in the financial market and its impact.
Their results show the spread of malicious messages would
influence the agents’ trading actions and could trigger an
extreme price fluctuation event. Reducing the critical nodes
with the highest betweenness centrality may be an effective
preventive policy to limit the market manipulation activities
through social networks.

B. Agent-Based Simulation Model for Spoofing

Despite its detrimental effect to disrupt the financial mar-
ket, the flash crash event and spoofing market manipulation
behavior are hard to analyze because of its irreproducibility
and the complex interactions within the market. Later findings
prove the flash crash event is not an isolated case where
spoofing market manipulation behavior influences the market.
In 2020, the CFTC brought up a dozen spoofing enforcement
actions and filed complaints to several financial institutions.
Therefore, an agent-based simulation model reflecting the
statistical properties of realistic financial markets will provide
more insight into microstructure dynamics and guidance to
regulate spoofing activities.

Paddrik et al. (2012) [12] suggest an agent-based simulation
model simulating the flash crash event, in which the market is
composed of the interactions among fundamental investors,
market makers, opportunistic, high-frequency traders, and
small traders. Different types of agents are characterized by
their trade speed, position limit, order size, and order price
selections. The characteristics of the flash crash event are
accurately recreated, and the authenticity of the model is ver-
ified with stylized facts. Hayes et al. (2012) [13]’s following
work further improves the model by adding intelligent high-
frequency market makers. The high-frequency market makers
passively participate in the market with inventory limits and
cancel their orders when the bid-ask volume difference ex-
ceeds a specified threshold.

While using attributes to define agents’ behaviors in the sim-
ulation, heuristic functions enable agents to actively evaluate
the simulated markets and give them autonomy to react ac-
cordingly, which makes agents’ interactions more complex and
enhances the model’s ability to describe real-world systems.
Westerhoff (2016) [14] proposes a fundamentalist-chartist’s
approach to simulating the artificial financial market. Within
the model, the log price of the asset is driven by the demand
of the agents participating in fundamental or chartist strategy.
Each simulation time, the number of orders of fundamental
strategy is formalized by the deviation between the current
asset price and its own fundamental value and the charitst
strategy’ orders correlated to the short-term price movement.
The attractiveness of one strategy will be calculated based on
the previous round’s return, and the softmax function normal-
izes the weights of strategies. Following the fundamentalist-
chartist’s framework, Leal et al. (2016) [15] ’s work further
extends the model in the context of high-frequency trading and
flash crash. The low-frequency agents constantly switch their
strategy between fundamentalist and chartist depending on the
strategy’s profitability in the last time. The probability low-
frequency agents behave in a specific strategy is determined
by the similar fashion of Westerhoff (2016) [14]’s model.
The high-frequency agents are activated when the last price
change in the market is above a fixed threshold sampled from a
uniform distribution with bounded support. The volatile price
fluctuation similar to the flash crash event is endogenously
generated within simulations, and the model is able to replicate



some of the main stylized facts of financial markets. In the
further discussion of Leal and Mauro (2019) [16], the model is
applied to investigate the effectiveness of regularizations on the
occurrence and duration of flash crashes. The simulation result
suggests that the implementation of minimum resting time
and cancellation fees would lead to lower market volatility
during incidents. The introduction of transaction tax would
also increase market stability but with lower effectiveness.
On the other side, restricting the high-frequency traders with
regulatory policies would weaken the market resilience be-
cause they potentially positively affect liquidity restoration
and price recovery after the crash. The work of Wang et al.
(2021) [17] presents a computation model of spoofing. The
background agents apply a heuristic belief learning strategy to
evaluate the information in the limit order book to determine
trading with the intent to maximize their surplus. The spoofing
agents continuously cancel and submit a large order one tick
behind the best bid price, to feign a strong buying power. The
simulation analysis shows the heuristic belief learning agents
are vulnerable to spoofing attacks, and spoofing decreases
the market surplus. A cloaking mechanism, a mechanism that
symmetrically hides a fixed number of price levels from the
best bid and ask, is purposed to curb the spoofing, with the
effect to diminish spoofing but reduce the surplus.

III. MODEL DESIGN

In this section, we discuss the design of the agent-based
model using the standard design process. First we outline the
market settings, and then we describe different types of agents
and their behaviors.

A. Market Topology

The simulation market setting in the model is a continuous
double auction market with a single security. The security will
have a constant fundamental value (F ) at each simulation
time. Agents will interact by submitting limit orders with
specified order sizes and order prices to the limit order book.
Different types of agents will use different heuristic functions
to evaluate the information in the order book and decide their
trading actions. Every simulation period agents may submit an
order, cancel the unmatched orders, or do nothing. A matching
engine in the limit order book checks for trade execution
between each period based on buy and sell orders.

In the simulation model, the limit order submitted by agents
will be characterized by:

• Order Size (S): The empirical finding suggests the size
of limit orders in the limit order book can be well fitted by
a lognormal distribution [18]. Therefore, in the simulation
model, the order size of agents will be described by:

S = int(Zs) + γ (1)

The random variable Zs is sampled from a truncated
lognormal distribution with ln(Zs) ∼ N(0, σs). The
sampled variable Zs will be rounded to integer with in
range[Zl, Zu], and the γ is a variable to shift the entire
sample distribution.

• Order Prices: Following the liquidity model of Book-
staber and Paddrik (2015) [10], the limit order price
will follow a lognormal distribution as well. At each
simulation time, an agent will decide its trading direction
via its own heuristic function. With the trading action,
the price of the limit order will be determined by:

Pbid = Pt(2.0− Zp/λp) (2)

Pask = PtZp/λp (3)

In the above equations, the Pt is the current market mid-
price, and the Zp is a lognormal random variable with
ln(Zp) ∼ N(0, 0.25). The price movement ratio will be
truncated within [0, 2] The λp parameter will govern the
overlapping bid and ask orders.
From the bid and ask order price distributions:

– The agent will have a higher probability of placing
the order price near the current mid-price and a lower
probability of placing away from the current mid-
price. Therefore, after matching the crossed orders,
the remaining orders will accumulate around the
price level close to the mid-price, and fewer orders
accumulate around the price level away from the
current mid-price.

– Sampled order prices will center around the current
mid-price, with part of the order across the current
mid-price. The overlapping of the crossed bid and
ask orders will be matched with another side.

• Order Arrival and Order Life Span: The duration of
the agent’s order arrival and order cancellation follows the
exponential distribution. When a new order is generated,
it will be assigned a life span. If the order in the limit
order book is not fully fulfilled in its life span, the agents
will cancel it. The order arrival rate is unique to different
types of agents. In the simulation model, the chartists will
monitor the market more closely than the fundamentalist
to look for possible trading opportunities. Thus chartists
will have a shorter average order arrival time than and
tend to trade more frequently than the fundamentalist.

B. Agents

1) Fundamentalist Agents
Following to Westerhoff (2016) [14]’s fundamentalist-

charitist’s approach, the fundamentalists have an informed
view of security. They places orders to stabilize the market
and reduce mispricing in the market. The heuristic function of
fundamentalist is defined as:

JF (t) = a(F − Pt) + σF ϵ (4)

The parameter a and parameter σF are greater than 0, and
are sampled from uniform distribution for each individual
agent. The ϵ is a standard normal random variable. Funda-
mentalists decide their trading actions based on the difference
between the current market price and asset fundamental value.
The variable ϵ represents the randomness introduced in agents’
decision process. Agents will react accordingly when the



mispricing signals outperform the random observations. Based
on the heuristic value JF (t), the fundamentalist agents will
place:

• Bid orders when the mid price is less than the fundamen-
tal value , thus JF (t) > 0

• Ask orders when the mid price is greater than the
fundamental value , thus JF (t) < 0

2) Chartist Agents
The chartist agents’ trading actions are made by exploiting

the past price changes and information in the book shape.
The chartist agents follow the momentum trading strategy and
seek to benefit from the potential price movement direction.
The heuristic function of the agents are defined as:

JC(t) = c
1

W

W∑
i=0

(Pt−i − Pt−i−1) + dI + σCϵ (5)

where the I is the agent’s measurement of order book
imbalance and is defined as:

I =

{
max( V olBid

V olAsk
− 1− TI , 0), V olBid > V olAsk

−max(V olAsk

V olBid
− 1− TI , 0), V olAsk > V olBid

(6)

The parameter c, d and σC are greater than 0, and are
sampled from uniform distribution for each individual agent.
The ϵ is a standard normal random variable. The heuristic
of chartist agents consists of two parts. First, the agents will
evaluate the past price changes with an evaluation window
of size W . The evaluation window size is sampled from
the uniform distribution, and each agent would make their
trading decision based on different lengths of price history.
Since chartist agents tend to follow the market trend, agents
will place bid orders if the upward movements of prices
are presented in the market and will place ask orders if the
markets move downward. Second, the chartist agents will
exploit the order book imbalance information to make their
trading direction. If the imbalance volume ratio of bid and
ask sides are significant than the thresholds, the agents will
place orders accordingly due to buying or selling pressures.

3) Zero Intelligence Agents
The zero intelligence agents serve as the background agents

during the simulation. Unlike the fundamentalist or chartist
agents, the zero intelligence agents do not have a heuristic
function to evaluate and exploit the information in the price
history or order book. At each simulation time, the zero
intelligence agents will have equal probability to place either a
bid or ask order with a specified constant order size (SZ) and
order life span (LZ). The unfulfilled orders will be canceled
after reaching their life span.

4) Spoofing Agent
By submitting the spoofing orders to the limit order book,

the spoofing agents intend to feign the buying or selling pres-
sure and affect other agents’ trading decisions. The spoofing
agent arrives at the market at a certain simulation time (St)
with a clear intention to manipulate the market price upward
or downward. To profit from the market manipulation activity,

the spoofing agent first establishes its position at arrival time
and places a limit bid or ask order with its desired price
(Sp). Then the agent will keep injecting the spoofing orders to
the opposite direction of that limit order to create fallacious
buying or selling pressures. The size of the spoofing orders
is proportional to the current market volume and gradually
increases with step (Ss) until it reaches the specified ratio
limit (Sl). From the empirical analysis, the spoofers are high-
frequency traders who frequently modify their spoofing order
to avoid transactions. In the simulation model, the spoofing
agents will cancel all their previous spoofing orders and place
new orders to ensure orders are anchored to the price level
relative to the current best bid price or best ask price.

IV. EXPERIMENTATION

A. Normal Market Simulation

Parameter Value Description
σs 2.5 Underlying normal standard deviation of order size lognormal random variable Zs

γ 3.0 Parameter for order size function
[Zl, Zu] [1, 10] Truncated order size lower bound and upper bound

σp 0.25 Standard deviation of order price lognormal random variable Zp

λp 0.8 Parameter for order price function
NZ 100 Number of zero intelligence agents
SZ 1 Constant order size for zero intelligence agents
LZ 2 Order life span for zero intelligence agents
NF 200 Number of fundamentalist agents
AF 15 Average order arrival time of fundamentalist agents
LF 5 Average order life span of fundamentalist agents

[al, au] [0.1, 0.15] Lower and upper bound of parameter a of fundamentalist agents heuristic function
[σl

F , σ
u
F ] [1.0, 2.0] Lower and upper bound of parameter σF of fundamentalist agents heuristic function

NC 200 Number of chartist agents
AF 5 Average order arrival time of chartist agents
LC 5 Average Order life span of chartist agents

[cl, cu] [0.0025, 0.01] Lower and upper bound of parameter c of chartist agents heuristic function
[Wl,Wu] [3, 10] Lower and upper bound of evaluation window size of chartist agents
[dl, du] [0.08, 0.1] Lower and upper bound of parameter d of chartist agents heuristic function
[T l

I , T
u
I ] [0.4, 1.0] Lower and upper bound of imbalance ratio TI of chartist agents heuristic function

[σl
C , σ

u
C ] [0.1, 0.2] Lower and upper bound of parameter σC of chartist agents heuristic function

TABLE I: Parameters for the simulation model

The parameters of the model are summarized in Table I.
In this study, there are 500 agents in the simulation model.
The agents’ heuristic parameters are sampled from uniform
distributions to ensure the behavior heterogeneity of agents.
Compared with fundamentalist agents, the chartist agents as
technical traders would have a faster trading speed to profit
from the short-term price variations.

Fig. 1: Market dynamic

From 2000 simulation results, the equilibrium price forma-
tion process is observed with occasional extreme fluctuations.



Figure 1 presents the rolling average of agents’ trading di-
rection and market price with a window size of 50. At each
time point, the average heuristic value of each agents group is
calculated. If the average heuristic value is larger than 0, the
group of agents’ trading direction will be recorded as 1.0 to
denote a buy action. If the average heuristic value is less than
0, the group of agents’ trading direction will be recorded as
-1.0 to denote a sell action. From the plot, it is clear that the
trading actions of fundamentalist agents are inverse to the price
movement directions, and the chartist agents would follow the
sharp price movement in the market. The market dynamic
can be summarized as the fundamentalist agents stabilize the
market and chartist agents exacerbate the price variations [14].

B. Stylized Facts and Model Validation

The financial time series have well-established stylized
facts, which reflect the common statistical properties of prices
or returns. Therefore, to verify whether the simulated market
is able to replicate the characteristics of the financial market,
the price and return series generated by the simulation model
should be checked to see if they are aligned with empirical
properties. The tests are carried out with the Monte-Carlo
simulation with 200 iterations, and each iteration is simulated
for 2000 steps. The mid-prices of each simulation time are
recorded, and the return of each simulation time is calculated
as log returns, which is defined by rt = log(Pt)− log(Pt−1)
where Pt is the price at time t.

For the the i-th result of the Monte-Carlo simulation with
N simulations, the measurements (Yi) of the return series are
estimated and averaged to calculate the sample mean (Ŷ ) the
95% confidence interval by:

Ŷ ± z0.95
S√
N

, and Ŷ =
1

N

N∑
i=1

Yi (7)

with normal score z0.95 = 1.645 and S as sampling standard
deviation defined by S =

√
1

N−1

∑N
i=1(Yi − Ŷ )2.

1) Absence of Autocorrelation

Fig. 2: Autocorrelation function

It is well established that the autocorrelation of the return se-
ries of the financial market is insignificant except for the short
time interval where the microstrcture effect present, which

demonstrates the unpredictability of the future movement of
the price series [19]. The autocorrelations of simulated return
series are calculated by:

C(τ) = corr(r(t), r(t+ τ)) (8)

where corr(a, b) is the correlation function and τ is the
lag. Figure 2 shows the autocorrelation function and its 95%
confidence interval of simulated returns series for 100 lags.
The autocorrelation for the short lags is relatively larger
than those of long lags and gradually decays to zero as lag
increases, which shows our simulation result is consistent with
empirical findings.

2) Aggregational Gaussianity

Fig. 3: Return distribution for different time scale

From the empirical study, the distribution of returns will
gradually approach a normal distribution shape as the return
calculation interval increases. Instead of using Monte Carlo
simulation, a single market simulation is run with an extended
period of 30000 steps. The return distributions of log return
calculated in different intervals are shown in Figure 3. As
shown in the picture, the distribution will gradually approach
the normal form and become less fat-tailed form with the
increase of the return calculation interval.

3) Heavy Tail Distribution of Returns

Fig. 4: Q-Q plot for one simulation returns, with steps=2000

Figure 4 shows the Q-Q plot of one simulation returns with
simulation steps equal to 2000. From the plot, the fat-tailed



distribution is witnessed in our simulation model. Another way
to test for fat-tailed distribution is to calculate the kurtosis of
the return series. The kurtosis is defined as:

Kurt(x) =
E[(x− µ)4]

(E[(x− µ)2])2
(9)

where µ is the mean of the distribution. For the distribution
with fat-tailed property, the kurtosis value will be larger than
3. Calculating the kurtosis for 200 return series simulated with
the Monte Carlo method, a one-sided t-test can be conducted
with the following hypotheses:

H0: The kurtosis values of simulated return series is equal
to 3.0;

Ha: The kurtosis values of simulated return series is larger
than 3.0.

The results of return series kurtosis and t-test result is
summarized in Table II, which indicates the fat-tailed property
is statistically significant across all simulated return series.

Measurements Value
Average kurtosis values 3.766

Standard Deviation of kurtosis values 0.189
p-value of t-test 6.879× 10−126

TABLE II: Monte Carlo simulated kurtosis observations

4) Gain/Loss Asymmetry
The gain/loss asymmetry suggests the drawdown in stock

prices will be larger than the upward movement. The property
can be verified by examing if the skewness:

Skew(x) =
E[(x− µ)3]

(E[(x− µ)2])
3
2

(10)

of the simulated return series distribution is negative. Similar
to the kurtosis test in fat-tailed property, the skewness is
calculated for the 200 return series generated by the Monte
Carlo simulation. A one-sided t-test is conducted to ensure
negative skewness property is statistically significant across
all simulated return series with hypotheses:

H0: The skewness values of simulated return series is equal
to 0;

Ha: The skewness values of simulated return series is less
than 0.

The result of table III verifies the gain/loss asymmetry
property in the simulated return series.

Measurements Value
Average skewness values -0.064

Standard Deviation of kurtosis values 0.069
p-value of t-test 3.614× 10−29

TABLE III: Monte Carlo simulated skewness observations

5) Leverage Effect
The leverage effect states the correlation between returns

and subsequent squared returns:

Cl(τ) = corr(r(t), r(t+ τ)2) (11)

would start from negative value and gradually diminish to
values close to zero [19]. Figure 5 shows the correlation
between simulated log-returns and their subsequent squared
returns for lag from 1 to 20. From the plot, the correlation
starts from -0.038 and gradually decreases to 0 after lag
3, which indicates the leverage effect is presented in the
simulated return series.

Fig. 5: Correlation between returns and subsequent squared
returns

V. SPOOFING SIMULATION

A. Simulation Result

In the previous part, the ability of the model to replicate
the realistic financial time series is verified by checking
the stylized facts. To simulate the market under spoofing
conditions, the spoofing agents with parameters are listed in
Table IV are introduced to produce upward price manipulation
and downward price manipulation.

Spoofing Agent A Spoofing Agent B
Price Manipulating Direction Upward Downward

Arrival Time (St) 1000 1000
Spoofing Limit Order Price (Sp) 500 100
Trading Volume Ratio Limit (Sl) 0.6 0.6

Trading Volume Increase Step (Ss) 0.01 0.01
Spoofing Order Relative Price Level (Si) 0.7 1.3

TABLE IV: Spoofing agent parameters

At the arrival time St, the spoofing agent will enter the
market with the purpose of manipulating the price to either
upward or downward. In order to profit from the market
manipulation activity, the spoofing agent will establish a
position at the arrival time and place a spoofing limit order at
the price level (Sp) which it intended to manipulate and cancel
after the limit order is traded. At each simulation time after
arrival point, the spoofing agent will feign spurious buying or
selling pressure by supplying the spoofing order to the bid or
ask side at best bid price or best ask price multiply Si. It is
common to assume that the spoofers would be high-frequency
traders who rapidly modify and cancel the submitted orders.
To reflect this characteristic in the modeling, at each simulation
time, the spoofing agent will cancel all submitted orders and
place new orders to avoid the risk of spoofing orders being
traded with other agents. The volume of the spoofing orders



is proportional to the current market volume with an upper
ratio limit Sl, and the ratio gradually increases by a step of
Ss. The upward and downward manipulations are performed
during the simulation by spoofing agent A and spoofing agent
B, respectively. The two agents are only different at their
price manipulation direction and the price level they decided
to influence the market.

(a) Upward spoofing simulation

(b) Downward spoofing simulation

Fig. 6: Upward and downward spoofing simulation

Figure 6 presents the results of spoofing simulation. Once
the spoofing agent arrives at the market, it will submit the
spoofing orders to the corresponding side and gradually exert
the influence on the order book imbalance. On another side
of the market, the liquidity begins to decrease as the price
changes. After the limit order of the spoofing agent is traded
and the price goes beyond its desired price level, the spoofing
agent would stop updating its spoofing orders, and the order
depth of spooging side suddenly dropdown. With the interac-
tion of fundamentalist and chartist agents, the price eventually
recovers to the price level of normal market condition.

B. Market Dynamics
Figure 7 shows the heuristic curve of the fundamentalist and

chartist agents. At each simulation time, the average value of
the heuristic across all agents is calculated to represent the
overall trading actions for the type of agents. For both types
of agents, the positive heuristic value would signal a buy order,
and the negative heuristic value would signal a sell order.

When the spoofing agents arrive at the market and artifi-
cially create an order imbalance, the fake increasing buying

Fig. 7: Average heuristics values for agents during spoofing

pressure would coordinate a part of the chartist agents with
lower order imbalance thresholds to place the buy orders and
initiate a price divergence. In the meantime, the initiated price
increasing trend would further activate more chartist agents.
The joint forces of the increasing order book imbalance and
upward price movement trend eventually caused the rapid
increase in the average heuristic value of chartist agents. The
fundamentalist agents perceive the price variation and keep the
false belief the price would return to its fundamental value
and place sell orders. Due to the trading speed difference,
the buying power of coordinated chartist agents dominates the
market, and price increases.

After the spoofing limit order is traded and the profit
is obtained, the spoofing agent cancels all spoofing orders.
With the absence of misleading buying power and the price
correction exerted by fundamentalist agents, the coordination
in chartist agents rapidly disappeared, which can be observed
by their heuristic value quickly reversing to zero. The price
correction force of fundamentalist agents will initiate the price
recovery process. With the continuous price decreasing trend
identified in the market, some chartist agents would place
the sell orders to join the movement and exacerbate the
trend. The synchronized trading actions would create an order
book imbalance reversed to the spoofing time (the order book
imbalance can be observed in Figure 6), which in turn activates
more chartist agents. In the end, the price gradually enters
equilibrium and returns to normal market condition.

C. Market Volatility

The volatility estimation of the market is measured by the
standard deviation of the return of the market price. At each
simulation time t, the return of the market price is measured
by:

Rt =
Pt − Pt−1

Pt−1
(12)

where Pt is the current market price. The volatility during the
spoofing time is measured within the spoofing agent arrival
time (St), and when the price first recovery back around its
fundamental value. The recovery time Sr is defined by:

Sr = argmax
t

(|Pt − F | < T ) (13)



where F = 300 and T = 10 for the simulation where we will
consider the price has returned to the normal price level.

Fig. 8: Volatility estimation

Figure 8 shows the volatility estimations during the spoofing
and normal market condition for 50 independent simulations.
The volatility estimation of normal market condition is calcu-
lated with a pooled return series with a window size of 500.
The plots show that volatility during the spoofing time diverges
from the normal market condition. The presence of spoofer
and its market manipulation activity would exacerbate the
market volatility and increase the price variations. Therefore,
the presence of spoofing agent would also prolong the normal
market price discovery process.

D. Agents’ Profit

To understand how spoofing affects different types of
agents’ profit, we need first to discuss how the profit is
obtained for different agents. The agents profit by making an
expectation about the future price movement. And we will
only take the traded limit order into our consideration. For a
given traded order, the profit (Ω) of agents’ limit order at time
t is calculated by:

Ω(t) = (Pt − P̂t−1)Sign(J(t
∗)) (14)

where Pt is current market price, the P̂t−1 is the limit order
price traded at time t− 1 and the J(t∗) is the agent heuristic
value when the limit order is placed. The Sign(x) function is
defined as:

Sign(x) =

{
1, if x > 0.

−1, otherwise
(15)

For both fundamentalist and chartist agents, their trading
action is correlated with their heuristic by:

• A bid order if J(t) > 0
• A ask order if J(t) < 0

If the limit order is a bid order, when the order is traded,
the agent’s expectation about the price movement will give it
profit with long position by Pt−P̂t−1(with Sign(J(t∗)) = 1).
If the limit order is ask order, the agent will achieve profit
with short position by P̂t−1 − Pt(with Sign(J(t∗)) = −1).
According to the order price sampling distribution, the agents

may sample an order price across the current best bid or
ask price to express their intention to trade, and the orders
will be matched immediately. Therefore, these orders will
be regarded as market orders, and the order price will be
the current market price. Figure 9 presents the instantaneous
profit of fundamentalist and chartist agents during the spoofing
simulation. The fundamentalist agents expect the price would
move toward the fundamental value when the price diverges.
But with the influence of spoofing agent, the equilibrium of
price dynamics no longer exists. As a result, the fundamen-
talist agents continuously make false expectations of price
movement and suffer losses from their trading activity. After
spoofing, the price gradually reverses to the normal price level
in the price recovery process, and the fundamentalist agents
would be able to make profits. For the chartist agents, its
heuristic function enables them to capture and follow the sharp
price movement. Thus, they would be able to make profits
from rapid price upward movement and downward movement.
But they would suffer a loss when spoofing limit order is
traded and the price recovery process started, at which they
falsely believe the upward price movement will continue.

(a) Fundamentalist agents

(b) Chartist agents

Fig. 9: Profit during spoofing simulation

E. Agents’ Sharpe Ratios

The Sharpe ratio is a measurement of an investment return
compared to its risk. The higher Sharpe ratio indicates the
investor can obtain more return with a given risk level. Before
calculating the Sharpe ratio for different agents, the return



series of agents needs to be determined first. For a given agent,
its cumulative wealth is measured by its cumulative position
and the price the agent cost to establish that position. At a
given time t, the agent accumulative wealth(W (t)) is:

W (t) =
t∑

i=t̂

Oi · P̂i · Sign(J(i)) (16)

where Oi is the order size for limit order placed at time i, the
P̂i is the limit order price, and the J(i) is the agent heuristic
value when the limit order is placed. As in the previous part,
if the limit order’s price is across the best bid/ask price, it will
be regarded as a market order, and the order price will be the
current market price. And the agent’s cumulative net position
(N(t)) at time t is calculated by:

N(t) =
t∑

i=t̂

Oi · Sign(J(i)) (17)

At each time t, the agent would re-evaluate the cost (W
′
(t))

to establish the same net position with the current market price
by:

W
′
(t) = N(t) · Pt (18)

and the agent’s return at time t is measured by:

R(t) =


W

′
(t)−W (t)
W (t) , if N(t) ≥ 0.

W (t)−W
′
(t)

W (t) , if N(t) < 0.
(19)

In other words, at each time t, the agent’s return is measured
in an unrealized manner. If the cost to establish the same
cumulative position with the current market price is greater
than the agent’s actual cost (wealth) with its trading activities,
the agent will have a positive return. Otherwise, the agent
would have a negative return at time t. And if the agent’s net
position is negative, we will assume the agent is shorting the
security, and its return would be the opposite of the agent’s
return as it takes a long position. With the return series R(t),
the agent’s Sharpe ratio is measured by:

Sharpe ratio =
E[R(t)]

σ(R(t))
(20)

As stated in the previous part, the spoofing agent profits by
establishing the position when it enters the market, placing
a limit order in the opposite direction, and manipulating the
price to the level where the limit order is traded. To calculate
its Sharpe ratio, when the spoofing agent arrivals at the market,
we will assume it places a unit size order with market price
and unit size limit order with the price it intends to manipulate.

Figure 10 presents the boxplot of the average Sharpe ratio
in different agent types for 50 independent simulations. The
beginning of the evaluation window is set to the arrival time
of the spoofing agent, and the spoofing end time follows the
definition in Equation (13). From the plot, it is clear that
the market manipulation activity of the spoofing agent would
give it an unfair advantage and result in a significantly higher
Sharpe ratio than the other two types of agents. Compared to

Fig. 10: Boxplot for Sharpe ratios of different agent types

the fundamentalist agents, the Chartist agents would have more
benefit opportunities and be able to benefit not only from the
price recovery process but also from the price increase process.
Thus, they have a higher Sharpe ratios than the fundamentalist
agents.

VI. CONCLUSIONS

In this paper, we introduce an agent-based simulation model
to replicate the spoofing market manipulation activity. The
model consists of four types of agents: fundamentalist, chartist,
zero-intelligence agent, and spoofing agent. The agents decide
their trading actions with their heuristic function, the parame-
ters of agents are sampled from uniform distributions to ensure
their heterogeneity. Without the presence of the spoofing
agents, the market can form an equilibrium price series, and
its statistical property is verified with the stylized facts, such
as the absence of autocorrelation, aggregational gaussianity,
heavy tail distribution of returns, gain/loss asymmetry, and
leverage effect. During the spoofing simulation, the spoofing
agents manipulate the market by supplying the spoofing orders,
and the model can simulate both upward and downward price
movement of spoofing activity.

In addition, the market dynamics, volatility, and agents’
profit are analyzed. From the simulation, the spoofing orders of
the spoofing agent would exert the order book imbalance and
coordinate the chartist agents’ trading actions to manipulate
the price level of the market. After the spoofing agent obtained
its profit and exited the market, the market would return to
its original price level with the interactions of chartist and
fundamentalist agents. The presence of the spoofing agent and
its market manipulation activity would increase the market
volatility and exacerbate the price variations. The fundamen-
talist agents would suffer a loss during the spoofing time but
would be able to make a profit during the price recovery
process. The chartist agents would suffer a loss when the
spoofing agent realized its profit and the price recovery process
started, at which they falsely believed the price movement
trend would continue. The Sharpe ratio analysis also indicates
the market manipulation activity of the spoofing agent would
give it an unfair advantage and result in a significantly higher
Sharpe ratio than the other two types of agents.



This simulation model can be further extended by adding
more types of agents. The current model only consists of
four types of agents, which may be limited in representing
the role of various investors in the real financial market. The
model fidelity to the real market can be further improved
by incorporating more agent types such as market makers,
liquidity suppliers, and arbitrageurs. Furthermore, adding the
agents with learning ability would also be a possible direction.
In the existing model framework, the agents’ behaviors are
well defined by their heuristic functions, which fails to capture
the learning characteristics of investors and makes the agents
always act in the same way no matter how the market condition
changes.
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