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ABSTRACT 
Compared with investing in individual stocks, ETF investment is capable of diversify- 
ing the non-systematic risk or exposure to broad market or industry sectors.The aim of 
thispaper isto developa jumpcontagion modeling framework to understand the con- 
tagion effect of market jump events of energy sector ETFs using multivariate Hawkes 
process modeling approach.Through analyzing intraday high-frequency market data, 
wefind that negative index jumps lead index pricediscovery processes, and their influ- 
encesdisappear faster than the positive index jumpsin both the S&PSOO and the crude 
oil futures. And on average, the self contagion in negative jumps is stronger than the 
self contagion in the positive jumps across all ETF groups. However, the ETFs focused 
on the master limited partnership (MLP) segment show less negative self contagion 
and relatively stronger positive self contagion than the other energy ETFs. Overall, the 
influence of negative jumps on ETFs from both the equity index and the energy future 
index isstronger than that of the positive jumps. And the influence of the equity index 
(S&PSOO) jump on ETFs lasts longer than that of the crude oil futures index (CLC1). 
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1. Introduction 

Energy economy has attracted attention from researchers for more than a century as our modern life relies on 
affordable and adequate supply of energy. In particular, the price movement of crude oil has been attributed 
to market recessions, periods of excessive inflation, reduced productivity and lower economic growth. With its 
significant impact on the financial market, shocks of price action within the energy market would be of major 
concerns for investors and regulators. In this paper, we aim to investigate the shock transmission effect on one 
of the most popular energy investment vehicles: Exchange Traded Funds (ETFs). 

Empirical studies have suggested a strong linkage between energy crude oil prices and macroeconomic 
conditions (Hamilton 2003; Barsky and Kilian 2004; Du, Yanan, and Wei 2010; Acaravci, Ozturk, and Yilmaz 
Kandir 2012; Ordu and Soyta 2016). On the one hand, the surge of energy prices contributes to higher input 
cost for firms, which leads to declining profits and collectively affects the macroeconomic conditions. On the 
other hand, rising energy prices increase cost-push inflationary pressure and lead to an increase in nominal 
interest rate (Sadorsky 1999). Subsequently, such an increase in energy prices leads to higher financing cost for 
enterprises and negatively affects the financial markets. Macroeconomic conditions also play a significant role 
in crude oil prices in different states of the business cycle. During the prosperity phase, the economy is at its 
peak of the trade cycle with strong consumption and productivity leading to an increased demand for energy; 
during the depression phase, the economy experiences a significant decline in economic activities leading to a 
decreased demand for energy. 
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In recent years, index ETFs, which track the performance of specific benchmark indices byholding a diversi- 
fied setof assets such asstocks, commodities, or bonds, have become attractive investment options for investors. 
In contrast to individual stock picking, investing in ETFs diversifies the non-systematic risk and exposure to 
market indices and industry sectors. ETFs typically collect lower management fees, exhibit a higher degree of 
transparency and flexibility when compared to traditional mutual funds. As a result, ETFs have become an 
important source of information dissemination in the financial market. Specifically within the energy sector, 
crude oil is one of the world's most important commodities serving as a major energy source for economic 
development. The volatility of crude oil futures hasa material impact on the global economy and financial mar- 
ketstability (Wang etal. 2016; Amelieand Dame 2017;Gong and Lin 2018).Therefore, it isespecially important 
for investors and risk managers to understand the empirical spillover effects of jump events relating to major 
energy ETF instruments. 

When price interaction among multiple markets is analyzed in the context of returns, testing of spillover 
effects is mostly based on the well-known Granger (non-) causality test in a vector autoregressive process (Eun 
and Shim 1989; Hamao, Masulis, and Ng1990; Forbes and Rigobon 2002). Forbes and Rigobon (2001) define 
contagion as a significant increase in cross-market linkages after a shock to one country (or groupof countries). 
Thisdefinition specifically refers to contagion effect if the cross-market comovement increasessignificantly after 
the shock. A number of studies have examined the shock transmission mechanism across different markets. 
Kaminsky and Reinhart {1998); Baig and Goldfajn (1999); Dornbusch, Chul Park, and Claessens (2000); Ang 
and Chen (2002); Bae, Andrew Karolyi, and Stulz (2003); Tang and Xiong (2012). The transmission of 
shocks has been measured by either simple cross-market correlation coefficients or probit models. A second 
approach to test for contagion is to use an ARCH (Engle 1982) or GARCH (Bollerslev 1986) framework 
to estimate the variance-covariance transmission mechanism across countries. Some popular specifications 
include the multivariate extension of the model proposed by McAleer, Hoti, and Chan (2009), the matrix- 
exponential GARCH (Kawakatsu 2006), or the asymmetric BabaEngleKraftKroner (BEKK) model (Engle 
and Kroner 1995; Kroner and Ng 1998). Spillover effects can also be tested in terms of the conditional 
volatility. Modelling and testing spillovers between the energy and agricultural markets have typically been 
based on estimating multivariate conditional volatility models, specifically the BEKK model of Engle and 
Kroner (1995) and the DCC model of Engle (2002). However, Chang, McAleer, and Wang (2018a, 2018b) 
conduct an in-depth literature review pointing to the incorrect applications of the full BEKK and DCC 
models for testing volatility spillover effects. Nevertheless, we argue that major shocks are rare events, and 
the existing methods of testing spillover or contagion tend to adapt to normal and near-normal conditions. 
Unusual and extreme market events tend to have much more substantial net impacts despite occurring a 
much smaller proportion of the time. One of the major contributions of this study is to offer a different 
framework to study the contagion effect of these unusual market events using a multivariate Hawkes process 
framework. 

This research focuses on 'tail' market events and aims to understand the shock transmission mechanism 
between financial market and major typesofenergy ETFs using multivariate Hawkes process approach. Hawkes 
process model was first introduced by A.G Hawkes in the 1970s (Hawkes 1971) and more recently it has been 
widelyapplied in variousstudies relatedto the financial markets (Bacry,Mastromatteo, and Muzy 2015). Hawkes 
process model seeks to explain how the occurrence of an event will increase or decrease the probability of future 
occurrences of the same event or other events. In financial applications, it captures the contagion effect of jump 
events that can be observed in asset price movements. Risk, especially involving large swings of price move- 
ment, is a primary concern for investors and risk managers. As a result, return jump events are of great interest 
to researchers and market practitioners. Unlike traditional regression or linear timeseries models, the multivari- 
ate Hawkes processes do not require that the underlying time series data arestationary. Instead, it takes account 
of the occurrences of large market jump events. In this research, we collect historical time series price data of 
the S&P 500 index, crude oil futures and the 24largest energy ETFs byasset under management and build mul- 
tivariate Hawkes process models of large shock events. By analyzing the model parameters, we aim to uncover 
the directions ofinformation flow and explain the pricediscovery process between financial market and energy 
ETFs. From an investment perspective, such knowledge would facilitate the decision-making process on con- 
structing optimal portfolios and hedging the volatility of the energy sector. From a regulatory perspective, the 
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empirical insights should help understand the potential risk propagation mechanism between the overall finan- 
cial market and the energy sector. Specifically, we divide the 24 energy ETFs into three distinct groups on the 
basisof their operations i.e. equity1, master limited partnership (MLP)2, and infrastructure3. The main purpose 
of the study is to investigate the empirical mechanisms of large jump events in these energy ETFs and financial 
market, namely their rollover, cross-excitation, and time-decaying effects. 

Overall, we find that energy ETFs share some common attributes with other ETFs that return jumps are 
highly correlated with the U.S. equity market. The market index jumps consistently lead ETF jumps in both 
positive and negative directions. In other words, major market indices, i.e. S&P500 and crude oil futures, lead 
the price discovery process in both positive and negative directions. We find that negative index jumps lead 
index price discovery processes, and their influences disappear faster than the positive index jumps. And on 
average, the self contagion in negative jumps is stronger than the self contagion in the positive jumps across all 
ETF groups. However, the ETFs focused on the master limited partnership (MLP) segment show less negative 
self contagion and relatively stronger positive self contagion than the other energy ETFs. Overall, the influence 
of negative jumps on ETFs from both the equity index (S&P500) and the energy future index (CLCl) isstronger 
than the influence of the positive jumps. And the influence of the equity index jump on ETFs lasts longer than 
that of energy future index. To the best of our knowledge, this research is the first study to focus on analyzing 
jump events within the energy sector and document the directional jump transmission from financial market 
to energy ETFs. 

The rest of the paper is organized as follows. In Section 2, we conduct a literature review on the state of 
energy finance and ETFs, along with their empirical relations with the U.Sequity market. In Section 3, we detail 
the data collection process and present the methodologies of the bipower variation jump identification and the 
multivariate Hawkes process. In Section 4, wediscuss various jump effects along with their implications from the 
parameter calibration process. In the last section, we condude the findings of our study with key contributions. 

 

2. Literature review 

Economists have long been intrigued by empirical evidence that oil price shocks may be closely related to 
macroeconomic performance, but the answer has never been straightforward (Rotemberg and Woodford 1996; 
Barsky and Kilian 2004).It has become widely accepted in recent years that the priceof crude oil since the 1970s 
has responded to some of the same economic forces that drive stock prices, making it necessary to control for 
reverse causality (Hamilton 2003; Hammes and Wills 2005; Kilian 2008). The instability of regressions based 
on oil prices and, in particular, why higher oil prices seem to matter less today than in the 1970s and early 
1980s (Kilian 2009). Kilian and Park (2009) document that the demand and supply shocks driving the global 
crude oil market jointly account for 22% of the long-run variation in U.S. real stock returns. The responses of 
industry-specific U.S. stock returns to demand and supply shocks in the crude oil market are consistent with 
accounts of the transmission of oil price shocks that emphasize the reduction in domestic final demand. 

More recently, Benkraiem et al. (2018) show the impact of energy price shocks on financial market prices by 
analyzing the relationship between S&P 500 Index and energy prices that include WTI, gasoline, heating, diesel 
and natural gas prices. Based on the Quantile Autoregressive Distributed Lags (QARDL) model, the empirical 
results infer that crude oil and natural gas are key economic variables to explain short-run and long-run stock 
market dynamics. In another study, Bastianin and Manera (2018) reveal the response of the U.S. stock market 
volatility to three differentstructural oil market shocks basedon a structural Vector Autoregressive model. Their 
results show thatstock market volatility responds significantly to oil price shocks caused byunexpected changes 
in aggregate and oil-specific demand, but it is negligible to supply-side shocks. It has important implications for 
policy makers, investors, risk managers and so on. Kang, Perez de Gracia, and Ratti (2017) analyze the impact 
of oil priceshocks and economic policy uncertainty on the stock returns ofoil and gas companies usinga struc- 
tural vector autoregressive model. The empirical results show that oil demand-side shocks have positive effects 
on the return of oil and gas companies, while policy uncertainty shocks have negative effects on the return. And 
there are heterogeneous effects of structural shocks on upstream, midstream and downstream oil and gascom- 
panies. Shi and Sun (2017) investigate the relationship between the regulatory price distortion and economic 
growth using a two-sector growth model. In contrast to the intuition that the regulatory price distortion helps 
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mitigate the negative impact of price volatility from oil imports and have a positive effect on the economy, the 
empirical results reveal that the regulatory pricedistortion has negative effects on output growth in China both 
in the short term and long term. It suggests a market-oriented energy price regime to improve the economic 
growth. The free cash flow (FCF) hypothesis is very famous in the energy corporate finance and it is first raised 
by Jenson (Jensen 1986). Shi (2019) investigates the sensitivity between free cash flow and over investment in 
China's energy companies using Richardson (Richardson 2006) investment expectation model. Then he checks 
how the corporate governance mechanisms impact the sensitivity between free cash flow and over investment. 
The empirical results show free cash flow will positively impact overall investment. 

From the investors' perspective, it is well known that ETFs facilitate to reduce the non-systematic risk and 
have become an important source of information dissemination in the financial market. Given the growing 
popularity of the energy ETF investment, energy EFTs have attracted scholars' interest in the energy finance 
field in recent years. Chang, McAleer, and Wang (2018a) analyze the spillover effects within and across the U.S. 
energy and financial sectors using generated regressors and a multivariate conditional volatility model. The 
empirical results show a significant relationship between the financial ETF and energy ETF in the spot and 
futures markets. It implies that there is an optimal portfolio to hedge the risks in financial markets. Chang, 
Liu, and McAleer (2019) investigate the interaction and co-volatility spillovers between the energy and agri- 
cultural industries using multivariate conditional volatilitydiagonal BEKK models. The empirical results can be 
used to design hedgingstrategies between the energy and agricultural industries, especially between bio-ethanol 
and bio-ethanol-related agricultural commodities. Alexopoulos (2018) investigates the performance of energy 
ETFs using different investment strategies, under market turmoil and market uptrend periods. The empirical 
results show the portfolio performance of all ETFs in aggregate outperform two disaggregated portfolios with 
dean and conventional ETFs separately. Chang and Ke (2014) investigate the relationships between returns and 
flows of five ETFs in the U.S. energy sector, using a Vector Autoregressive (VAR) model. In the study, they 
test four hypotheses including price pressure hypothesis, information hypothesis, feedback trading hypothesis 
and smoothing hypothesis. The empirical results support the smoothing hypothesis but do not support the price 
pressure hypothesis, information hypothesis or feedback trading hypothesis. Krause and Tse (2013) examine the 
price discovery and volatility spillovers between Canadian and U.S. equity markets through Granger-causality 
tests and bivariate EGARCH models. The empirical results show that there is a significant lead-lag relationship 
in returns from U.S. market to the Canadian market, but no opposite direction. While there is a bi-directional 
volatility spillovers between the U.S. market and the Canadian market. 

 
3. Methodology and data 

In thissection, we first describe a methodology to identify jump events in different markets. Here we focus on 
significant return jump events rather than thecontinuous returnseries. Wethen discussthe multivariate Hawkes 
process model. Our goal is to use Hawkes process model to explain the complex interactions of different types 
of market events. 

 

3.1. Bipower variation jump identificationmethod 

We apply the bipower variation jump identification method (Barndorff-Nielsen and Shephard 2006) to identify 
whether there are jump events in the non-overlapping 5-minute return series of the S&P 500 index, crude oil 
futures and energy ETFs. We define the discretized version of y* as 

 
  (1) 

where 8 is the 5-minute grid size of the time interval; Lx J is the integer part of x.Then we construct 8-returns as 
 

Jj = y*(j8) - y*((j- 1)8), j = 1,2,... , Lt/8J. (2) 
 

where Jj is the valueof log return in this 5-minute interval. 
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We defineY!(t) as log priceof the asset, and 8 is the 5-minute grid size of the time interval. And then lY!]; is 
the realized quadratic variations (QV) process, and it is defined as: 

[yt]i = [r;i](h(i)) - lY!](h(i - 1)), i = 1,2, ... ,T, 
lt/llJ 

=E 
j=l 

 
here h = 1 is the 30-minute time interval, and Tis the total number of30-minute time intervals in the trading 
hours for the entire sample period. We assume 8Lt/8J = t and 

Yi,i = y*(8(j) +h(i - 1)) - y*(8(j - 1) +h(i - 1)). 

Therealized bipower variations process is 

1Jnl1'1l = {yt}[l,I)(h(t)) - {yt}[l,l](h(i - l)), i = l, 2,... ,T, 
Lt/llJ-1 

 
(4) 

=  E IYj,illYj+I,il- (5) 
j=l 

 
Therealized quadpower variations process is 

{y!}p,1,1,1=] {y!}[l,l,l,l](h(l)) _ {y!}[l,1,1,l](h(i _ l)), =i 1,2,...,T, 
Lt/oJ-3 

=r1  EIYj.illYj+1.illYj+2.illYj+3,il- (6) 
j=I 

 

Using the above quantities, we can construct the feasible ratio jump test statistic H0;, which has the asymptotic 
distribution 

rl/2 ( -2{y*}[l,l] ) 
Hs; = ---;:=======  /1-i 15 i -  1 N(0 v) 

MJP·'·l,l]/{{ys)P,ll}2 lY!]; , ' 
 

where the individual test willconverge to N(0, v) as 8 0, and 

µ,1 = Eiul =2/ r(½) =2/rr :::::'. 0.79788 

 
(7) 

 
 
 
 

(8) 

and u ~ N(0,1);  
V = (n2 /4) +7C -  5 :::::'. 0.6090. 

 
 

(9) 

Given the limitation ofthe sample interval and the total samplesize, wehave a limited number ofobservations to 
estimate the feasible ratio jump test statistic for the 30-minute interval. To producebetter finite sample behavior 
for small samples, we follow (Barndortf-Nielsen and Shephard 2006) and introduce the feasible adjusted ratio 
jump test instead of (7): 

 

 
where the individual test will converge to N(0,v) as 8  0. Based on this test statistic from Barndortf-Nielsen 
and Shephard (2006), we would reject the null of a continuous sample path if (10) (J statistic) is significantly 

w 
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negative. In this research, we use Equation (10) to test whether there is jump in the 30-minute interval where i 
is the index of a certain 30-minute interval and j is the index of a certain 5-minute interval in the corresponding 
30-minute interval. 

In empirical tests, we take the method of adjusted ratio jump test by checking the value of 
 

(11) 

 
and its corresponding critical value, computed under the assumption of no jump usingJ statistic. A node which 
is below the critical value will indicate that there is a jump at that time point (note that Jstatistic needs to be 
negative to meet the significance test). 

Ifwe identify a jump according to (10), we find that the biggest 5-minute frequency IYj,il in the ith 30-minute 
frequency interval. We identify positive jump if Yj,i > 0 and negative jump if Yj,i < 0. Then we can get four 
sequences for positive S&P 500 or crude oil futures price jump, negative S&P 500 or crude oil futures price 
jump, positive energy ETF jump and negative energy ETF jump, which we mark 1 for jump and Ootherwise. 

 
3.2. Multivariate Hawkes process 

Hawkes process is a class of multivariate point process that models the relationship of event arrivals where the 
occurrence of an event increases or decreases the probability of the occurrences of future events. Since its intro- 
duction in 1971, the Hawkes processand its variantshave beensuccessfully applied to modelseismicevents (Fox, 
Schoenberg, and Gordon 2016; Molyneux, Gordon, and Schoenberg 2018), community crimes (Mohler, Carter, 
and Raje 2018; Zhuang and Mateu 2019), social network and social media (Zipkin et al. 2016; Kobayashi and 
Lambiotte 2016) and biological neuron (Galves and Locherbach 2015; Ditlevsen and Locherbach 2017). Hawkes 
processes are also becoming more popular in finance literature for its great simplicity and flexibility (Bacry, 
Mastromatteo, and Muzy 2015). In the last decade, several studies have applied multivariate Hawkes processes 
on various types of financial market events. Bowsher (2007) develops a new class of generalized Hawkes models 
and uses it to analyze the interaction mechanism of changes in mid-price quotes and trades arrivals of General 
Motors shares. Large (2007) applies an appropriate parametric model which views orders and cancelations as a 
mutually exciting ten-variate Hawkes process to the electronic limit order book of Barclays stock on LSE. Bacry 
et al. (2013) use a bivariate Hawkes process model to reproduce major high-frequency micro-structural phe- 
nomenons, namely the signature plot and Epps effects. Fulop, Li, and Yu (2015) apply a self-exciting process to 
asset pricing modelin order to captureco-jumps between prices and volatility and self-exciting jump clustering. 
They identifyself-excitingjump clustering sincethe 1987 market crash and the 2008global financial crisis. More 
recently, Yanget al. (2018) apply the multivariate Hawkes process to analyze the interaction mechanism between 
investor sentiment and market return events; Hainaut and Moraux (2019) combine a Hawkes jump-diffusion 
process with hidden Markov switching model to study economic recession and economic growth. 

Market events, such as changes in prices, index valuesor market crashes, can be described as realizations of 
multivariate point process (PP) {T;,Z;};E{I,2,... ), where T; is the occurrence time of the ith event, and Z; indi- 
cates the type of the ith event. We denote the M-vector counting process associated with {T;,Z;} as N(t) := 
(Nm(t)) =l' with Nm(t) counting the numberof type m events that haveoccurred in (0,t]. We denote the natu- 
ral filtration of the PP N(t) as {.Ff"}, which is the information set corresponding to complete observation of N(t) 
in [0, t]. A certain multivariate PP is specified via the vector conditional intensity process >..(t) = (),m(t)) =i' 
which can be interpreted as the conditionally expected number of type m events per unit time as the time inter- 
val tends to zero. We say >..(t) is the (P,.Ft)-intensity of N(t), where Pis the data generating process (DGP) and 
:F1 is the conditional filtration. 

The multivariate Hawkes process is defined by the vector {.F;' }-conditional intensity (>..1(t),>-.2 (t),... , 
AM(t))', as 

 
(12) 
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LL 

M 

 

where m = l, 2, ... ,M, and µ,m(t) is a positive deterministic function. In (12), the second term of right-hand 
side (RHS) generates the self-exciting effect amongevents; the third term ofRHS generates the mutual or cross- 
exciting effect. Both of these two excitation kernel functions have the form of sums of k exponential kernels. 

In this research, we construct two models combining energy ETFs with S&P 500 and crude oil futures price 
separately. To simplify the problem, we focus on the interaction of the two asset price series: the index and an 
ETF asset. Foreach asset, we further categorize observations into two types ofevents: positive jump and negative 
jump. Hence, in each model, we consider four types of event. Following previous similar studies using multi- 
variate Hawkes processes (Large 2007; Bacry et al. 2013; Yang et al. 2018), we choose j = 1 and M = 4, which 
represent a 4-dimensional (4-D) Hawkes process (represented by M) with one exponential kernel (represented 
by j), as 

Am(t) = f,l,+m 

 
4 

anm-eP•.,(t-tj"), 
n=l tJ'<t 

 

(13) 

where µ,m is the rollover effect of the process, assumed to be constant. Furthermore, we impose the constraints 
that µ,m,<Xnm and  f3nm are strictly positive for all m and n. Equation (13) presents a general formof what is known 
as a mutually exciting Hawkes process. It is important to point out that not all entities share the same intensity. 
Hence, we propose a parameter estimation process as follows: 

 
(1) Build a 4-D Hawkes process involving S&P 500 with an energy ETF and calibrate all the parameters. 
(2) Examine the log-likelihood path to evaluate the quality of estimates. 
(3) Change the energy ETF in 4-D Hawkes process and execute step 1-2. 
(4) Replace the index ofS&P 500 by crude oil futures price and execute step 1-3. 

 
We estimate the parameters of the multivariate Hawkes process by the maximum likelihood estimation 

(MLE). The log-likelihood ofa multidimensional Hawkes process can be computed as the sum of the likelihood 
of each coordinate 

lnL(0 I(tf'Jm=l,2,...,M) = L lnLm(0 I (tk}n=l,2,...,M), 
m=I 

where tk is the  observed kth time point of event type n, and following Bowsher (2007) we have: 

lnLm(0 I(tk'.Jn=l,2,...,M) = -1T> - o'(t I w) dt + 1T ln>-e'(tlw) dN"'(t) 

 
(14) 

= -µ,mT -LM L 
amn [1 - e-Pmn(T-tk)] 

n=I f3mn {k:tj<'  Tl 
 
 
 
 

with Rmn(k) is defined recursively as 

(15) 
 
 
 
 

(16) 
 

The initial condition Rmn(0) = 0. 
The MLE process for model calibration is at first weset a = 0 and f3 =  l 06, then optimize µ,. We then apply 

theµ, to the function and fix it, then optimize a and {3. The initial value for a and f3 is 2 and  5, respectively. 
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3.3. Data collection 

In this research, we collect high-frequency data with 5-rninute intervals from Thomson Reuters Tick History 
(TRTH) database for the top 24 energy ETFs with assets under management (AUM)4 greater than $100 million 
(we use this criterion so that we have enough observations to estimate the proposed models). The data range 
from January 1, 2017 to December 31, 2018, with 730 natural days and 502 trading days. The dataset includes 
the S&P500 index (SPX) and crude oilfutures contract on NYMEX (CLCl), and 24 energy ETFs (see Appendix 
Figure Al for a detailed description of these assets). 

To gain further insights, we divide the 24 target ETFs into three groups based on their distinct operations: 
Equity, Master Limited Partnerships (MLPs) and Infrastructure. 

 
(1) Equity: equity shares of energy corporation in oil & gas refining and marketing, and consumable fuels. 
(2) Master Limited Partnerships (MLPs): special tax-advantaged entities that derive income from qualified 

sources such as natural resources. 
(3) Infrastructure: equity shares of energy corporations in oil & gas exploration, production, equipment and 

services. 
 

Figure 1 shows the assets under management (AUM) of the 24 top energy ETF markets in our study. 
Empirically, the equity and MLP groups share similar distributions in the scale of assets under management. 

 
 

4. Experiments and discussions 

4.1. Jumpdetection 

In this section, we take S&P500 (SPX) as an example to show the jump detection process. We divide the daily 
timeseries into 13 intraday intervals and each interval is 5 minutes in duration. We follow the jump detection 
methodology in Section 3.1to identify the jumps in which 8 isset to 6 and Ii = 1 is fora 30-rninute timeinterval. 
After scaling, we expect a time series with 6526 intervals (i.e. 13*502) to detect jumps. 

Figure 2 shows the Q-Q plot of/ statistic (Equation (10)). It visually shows violation of the normal dis- 
tribution. But following Barndorff-Nielsen and Shephard (2004), the asymptotic distributional assumption 
should hold as the sample size increases (in our case, we have 6526 data points), and / statistic can be used 
to detect jumps. Under the null hypothesis that there are no jumps during the time period, / statistic should 
follow a normal distribution with a mean equal to zero. The t-test results for J is: t = 62.783, df = 6525, 
p-value = 2.2e-16. The alternative hypothesis is the true mean is not equal to zero. The 95 percent confidence 
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Figure 2. NormalQ-QPlot. 
 
 

interval is (-0.5802992,-0.5451581).Thesampleestimate mean is -0.5627286. After rejecting the null hypoth- 
esis, we still need to determine what is the reasonable number of jumps per day. It dependson the threshold we 
set, and this threshold is determined based on empirical experience in terms of number of jumps per day in a 
particular market. Thus, we need to choose a negativevalue as the threshold. If the J statistic is smaller than this 
threshold, we say there are jumps in this interval corresponding to the J statistic. weset a critical value regarding 
the J statistic distribution to detect the jumps. For SPX market, we follow the approach used by Yang et al. (2018) 
to determine the numberof jumps per day for SPX. Hence we set the critical value as -1.66, andit gives around 
I jump for the trading days. 

Figure 3 showsthe distribution of the number of jumps in one day. Most days have Oto1 jump. Figure 4 shows 
the distribution of jump probability in each interval of a trading day. There are 13 intervals in each trading day, 
and each one corresponds to a half-hour trading period. For example, I refers to 9:30 to 10:00, 2 refers to 10:00 
to 10:30, etc. We find that most of the jumps take place at the beginning of the trading day, which conforms 
to the theory of information arrival. However, according to volume pattern, there should be an intraday smile 
graph in the jump distribution, which is not obvious in the SPX example. But we did find this phenomenon in 
some other ETFs jump graph like AMLPs. 

We repeat the jump detection process for all energy ETFs. During each process, we record the critical value 
weuse as threshold, the average total jumps per day,as well as the average number of positive jumps to compute 
the positive jump ratio. 
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Figure 5 shows the distribution of critical values we use as threshold for each asset. As we expect a similar 
average daily jump number, so the critical values are varying from asset to asset. Figure 6 shows the distribution 
of average daily jump numbers foreach asset. We can see that most assets have 1 jump per day. We also calculate 
the jump ratios for each ETF. The results show that most assets have a percentage around 0.5, which means that 
the positive jumps versus negative ones are almost half to half. 
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Figure 7. 4DLog-likelihood Convergence.Thex-axis represents the iteration number, and the y-axis representsthe log-likelihood value. (a)SPX- 
CLCl 4DLog-likelihood Value Path.(b) SPX-XLE 4DLog-likelihood Value Path. 

 
 

4.2. Modelestimation 

In thissection, wediscuss the convergence ofour model estimates using maximum likelihood estimation (MLE). 
In general, we find the 4-D multivariate Hawkes processes exhibit consistency in their convergence property. 
Here, wetakeSPX-CLCl and SPX-XLE examples of 4-D Hawkes process model to show the qualityof maximum 
likelihood estimation process. 

Figure 7 shows the log-likelihood value path of the two examples to check the quality of our estimation. 4-D 
SPX-CLCl model converges to a value smaller than 0.000001 after 1200 iterations and 4-D SPX-XLE model 
converges to a value smaller than 0.00000l after 800 iterations. We also check the convergence of the estimated 
parameters. Overall, we can say that the model has a good convergence performance in the estimation process 
as it was approved byBacry et al. (2013). 

 

4.3. Indexmodel parameter results 

In thissection, weanalyze the jump contagion between SPX and CLCl.Table 1 shows the statistics of the param- 
eters for the 4-D Hawkes model ofSPX and CLCl jump events. Through the analysis, we can draw the following 
conclusions: (1) The arrival rateof positive index jumps (µ,1 and µ,3) is greater than that of negative index jumps 
(µ,2 and µ,4). (2) From SPX perspective, onlya21 ando:41 are relatively large, while other O:nm values are very 
small. This means that both negative SPXand negative CLCl jump events lead to positive SPX jumps. (3) From 
CLCl perspective, a23, a24, o:43 and a44 are relatively large, while other O:ij values are very small. This means the 
negativeSPX jump events leadto both CLCl positive and negative jump events; negativeCLCI jump eventslead 
to both CLCl positive and negative jump events. (4) For both of the two indices, the values of fh. and fh rows 
are smaller than the valuesof fh and {34_ rows. Overall, we find negative index jumps lead index pricediscovery 
processes, and their influences disappear faster than the positive index jumps. 

 
 

4.4. Rollover effect 

In Hawkes process, µ represents rollover effect. It denotes the basic intensity, which depends onlyon the event 
itself. This value represents the expected jump times in each interval of the time series. µ,1 and µ,2 represent the 
basic attributes of indices, and we focus on µ3 and µ4 to find the attributes of the target energy ETF. As µ,3 and 
µ,4 represent the basic attributes of a specific ETF, as a result, it should be the same regardless of the indices in 
the model. 
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Ta.hie 1. Parameter estimated for models between SPX and CLCl. 

 

1 (Positive) 2 (Negative) 3 (Positive) 4 (Negative) 

µ, 0.0449 0.0337 0.0431 0.0342 
IX1.  l.676e-5  l.952e-5  4.19e-6  4.23e-5 
IXz.  0.010923  0.104128  0.0408  4.53e-5 
IX3. 4.601e-5 l.230e-5 8.78e-6 8.71e-6 
IX4.   0.052463  0.117473   0.0111  6.90e-5 
/Ji. 4.749442 4.717247 4.7245 4.7207 
lh 4.%5026 4.982888 5.0102 4.9772 
th 4.775073 4.801%5 4.7923 4.8090 
/J4. 5.018251 5.009097 4.9984 4.%93 
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Figure 8. µ,3 and µ,4 for each energy ETF. 
 
 

Table 2. Statistics of µ,3 and µ,4 for each group. 
 

Equity MLP Infrastructure 

 Mean Median Mean Median Mean Median 

µ,3 0.0413 0.0409 0.0399 0.0401 0.0422 0.0429 
µ,4 0.0372 0.0380 0.0403 0.0405 0.0377 0.0370 

 
 

Figure 8 and Table 2 show the results of µ,3 and µ,4. Obviously, ETFs from MLP grouphas a smaller valueof 
µ,3 than the other two groups, which means that these ETFs have less expected positive jumps. ETFs from MLP 
group hasagreatervalueof µ,4 than the other twogroups, which means that these ETFs have moreexpected neg- 
ative jumps. The relative high rollover effect can be interpreted as high persistence or stronger auto-correlation 
than the other energy ETF groups. 

 

4.5. Exciting effect 

In Hawkes process, a represents the exciting effect. Self-exciting effect, which is represented by a33 and a44, 

is the effect within the same type jumps of ETFs. The a33 is the self-exciting effect of the positive jumps, and 
the a44 is the self-exciting effect of the negative jumps. Theoretically, the a33 and a44 are different with respect 
to SPX and CLCl for the reason that the positive and negative jumps of the index influence the likelihood 
estimation of all the parameters. When the positive and negative jumps of the index change from SPX to CLC1, 
the relationship between all the four types ofjump events are entirely changed. The estimation will re-compute 
all the parameters from a different path, instead of keeping the parameters of au and a22, just changing other 
parameters. 

Figure 9 and Table 3 show the results of a33 and a44, which is the self-exciting effect of positive jumps and 
negative jumps of ETF. We find that all the a33 and a44 are positive, which means the happening of a jump 
will increase the occur probability of the next jump of the same type. For the ETFs from Equity group and 
Infrastructure group, to both SPX and CLCl, a44 is obviously larger than a33, which means negative jumps 
will have a greater influence on next negative jump compared with positive ones on next positive jump. We 
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Figure 9. 0<33 and a44 for SPXand CLCl.(a)a-33 foreach energy ETFwith respect to SPX and CLCl. (b)a44 foreach energy ETF with respect to SPX 
and CLCl. 

 
 

Table 3. Statistics ofo33, a,44 for each group. 
 

Equity MLP Infrastructure 

 Mean Median Mean Median Mean Median 

a,33 SPX 0.0211 0.0048 0.0740 0.0482 0.0333 0.0031 
CLCl 0.0103 5.83e-5 0.0235 0.0001 0.0164 l.58e-5 

0<44 SPX 0.1696 0.1105 0.0621 0.0006 0.1338 0.1282 
CLCl 0.0816 0.0159 0.0526 0.0001 0.0635 0.0762 

 
 

also see that MLP group has the greater a33 compared with the Equity group and Infrastructure group, which 
indicates that MLP group has the largest self-exciting jumps for positive returns. The MLP group has the least 
a44 compared with the Equity group and Infrastructure group, which indicates that MLP group has least self- 
exciting jumps for negative returns. In other words, this group of ETFs is relatively stable to negative return 
jumps. 

Cross-exciting effect is the effect from event n to event m. It means how the probability of the event n's 
occurrence will increase the probability of event m. Now, we focus on a13, a14, a23 and a24 to show how the 
market indices would lead ETF jump events. 

Figure 10 shows the results ofa13, a14, a23 anda24 of the 4-D Hawkes process models. In each figure, the left 
one is the model with SPX as the index and the right one is the model with CLCl as the index. Table 4 shows the 
statistics of a13, a14, a23 and a24 for each group. Through the analysis, we can draw the following conclusions: 
(1) All of the <Xnm are positive, which means that the jump of indices will 'lead' the jump of target ETF, no matter 
whether the jumps are positive or negative. (2) Both a13 and a14 of the three ETF groups are very small, which 
means that positive jumpsof the index havevery little influence on the ETF jumps. (3) For a23, to theSPX index, 
the value of the Infrastructure group is the largest; while the value of the Equity group is the smallest. For a23, 

to theCLCl index, the value of the Infrastructure group is the largest; while the value of the MLP group is the 
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Figure 10. cxlj between SPX/CLCl and ETFs. (a) a:13 for baseline SPX and CLCl. (b) cx14 for baseline SPX and CLCl. (c) cx13 for baseline SPX and 
CLCl. (d)cx24 for baseline SPX and CLCl. 

 
 
 

smallest. (4) For a24, to the SPX index, the valueof the MLP group is the smallest. For a24, to the CLCl index, 
the valueof the MLP group is the largest. Overall, the influence of the negative jumps from both SPX and CLCl 
is much stronger than the influence of the positive index jumps. 
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Table 4. Statistics of013,014, 023and024 foreach group. 
 

Equity MLP Infrastructure 

 Mean Median Mean Median Mean Median  

013 SPX 0.0032 6.98e-6 8.26e-5 l.14e-5 l.55e-5 l.33e-5  

 CLCl 0.0004 2.62e-5 l.59e-5 l.Ble-5 7.09e-5 4.28e-5  

014 SPX l.03e-5 9.60e-6 2.54e-5 l.69e-5 8.20e-6 6.62e-6  

 CLCl 7.53e-5 l.91e-5 0.0073 8.32e-6 0.0003 l.18e-5  

023 SPX 0.2438 0.2565 0.2529 0.2871 0.3659 0.3708  

 CLCl 0.2295 0.3105 0.1759 0.1809 0.2700 0.3100  

024 SPX 0.2903 0.3507 0.2668 0.2016 0.2817 0.3637  

 CLCl 0.1930 0.1985 0.2441 0.2491 0.1784 0.1844  
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Figure 11. T33and T44for SPXand CLCl.(a) T33 for each energy ETFwith respect to SPX and CLCl. (b) T44 for each energy ITT with respectto SPX 
and CLCl. 

 
Table 5. Statistics of T33, T44 for each group. 

 

Equity MLP Infrastructure 

 Mean Median Mean Median Mean Median 

Tn SPX 0.0620 0.0622 0.0617 0.0619 0.0621 0.0623 
 CLCl 0.0618 0.0618 0.0613 0.0614 0.0619 0.0620 

T44 SPX 0.0611 0.0611 0.0616 0.0615 0.0608 0.0610 
 CLCl 0.0605 0.0606 0.0613 0.0612 0.0604 0.0605 

 
 

4.6. Time-decaying effect 

In Hawkes process models, f3 represents the time decaying effect. f3mnmeasures the decaying speed of the effect 
from event n to event m. In this research, we introduce the half-life metric to measure the decaying effect and 
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show the jump decaying speed. It is defined as:  

log2 
T1=- 

2 f3 ' 

 
 

(17) 

where the smaller the T, the greater the decaying effect. 
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Table 6. StatisticsofTn, T14, Tn and T24 for eachgroup. 

Equity MLP Infrastructure 

 Mean Median Mean Median Mean Median 

Tn SPX 0.0630 0.0632 0.0633 0.0634 0.0632 0.0633 
 CLCl 0.0620 0.0621 0.0620 0.0619 0.0621 0.0621 

T14 SPX 0.0638 0.0638 0.0635 0.0636 0.0634 0.0635 
 CLCl 0.0620 0.0621 0.0622 0.0622 0.0621 0.0622 

Tn SPX 0.0600 0.0599 0.0601 0.0602 0.0600 0.0600 
 CLCl 0.0599 0.0600 0.0600 0.0600 0.0599 0.0599 

fi4 SPX 0.0601 0.0602 0.0602 0.0601 0.0602 0.0602 
 CLCl 0.0599 0.0599 0.0599 0.0599 0.0600 0.0600 

 
 

Figure 11 shows the distribution ofT for /h3 and {344, which is the time-decaying effectwithin the sametypes 
of jump events or self-excitation (positive jumps of ETF to positive jumps ofETF and negative jumps ofETF to 
negative jumps of ETF). These parameters indicate the inner attribute of ETFs. Table 5 shows the statistics of 
T33 and T44 for each group. From the results, we can draw the following conclusions: (1) The decaying effects 
of both positive jumps and negative jumps are similar among all ETFs, which all are around 0.061.This is about 
1.83 minutes. (2) For the T44, the valueof the MLP group is a little larger than the other two groups. 

Figure 12 shows the results of Tu, T14, T23, T24 for the 4-D Hawkes process model. The left figure is the 
model with SPX as the indices and the right figure is the model with CLCl as the indices. Table 6 shows the 
statistics of Tu, T23, T14 and T24 for each group. Through the analysis, we can draw the following conclusions: 
(1) There is hardly any difference in T13, T14, T23 and T24 values of models, for they share a very similar scale 
around 0.06.This is about 1.8 minutes. (2) For all ETFs in the three groups, the T of SPX model is larger than T 
in the CLCl model. This means that the decaying effect of SPX is slower than CLCI,showing that equity market 
has a longer influence on them, but the differences are not very large. 

 
4.7. Accumulated contagion effect 

As a robustness check, we define Fij(h) to measure the expected jump effect of event i to event j in the future h 
interval. In our case, we set h = 1, which is 30 minutes. For example, if Fu(I) for SPX equals 0.1, then it means 
a positive jump of SPX will cause 0.1 positive ETF jump in the next 30 minutes. The F metric is defined as: 

 
a;j* (ef3,;h - 1) 

Fij(h) = ef3h (18) 
/3i*j I/ 

Figure 13 shows the results of Fu, F14, F23 and F24 for the 4-D Hawkes process model. The left figure is the 
model with SPX as the index and the right figure is the model with CLCl as the index. Through the analysis, 
we can draw the following conclusions: (1) The distribution of Fis very similar to that of as that we discussed 
earlier. This result shows that the jump of indices would positively excite the jumps of ETF assets, no matter the 
jump is positive or negative. (2) Both the Fu and F14 of the three groups are very small. (3) For F23, to the SPX 
index, the value of the Infrastructure group is the largest; while the valueof the Equity group is the smallest. For 
F23, to the CLCl index, the value of the MLP group is the smallest. (4) For F24, to the SPX index, the value of 
the MLP group is the smallest. For F24, to the CLCl index, the valueof the MLP group is the largest. 

 
5. Conclusion 

In thisstudy, we model jump events in S&PSOO, crude oil futures price and 24 energy ETF markets using mul- 
tivariate Hawkes Processes. The multivariate Hawkes Process helps us deciphering the occurrence of an event 
on the occurrence of future events of the same or different types, and yet it does not require stationarity con- 
dition on dataobservations. We consequently construct two multivariate Hawkes process models based on the 
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baseline S&PS00 index and crude oil futures price separately. To gain further insight, we divide the target energy 
ETFs into three groups, i.e. equity group, MLP group, and infrastructure group. Analyzing the estimated model 
parameters, we are able to interpret the complex relationship of various jump events regarding their rollover, 
excitation, time-decaying effect and accumulated contagion effects. 
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First, we examine the jump rollover effect or persistence of jumps. We find that the ETFs from MLP group 

havea smaller value of µ3 than the other two groups, which means that these ETFs have less expected positive 
jumps. ETFs from MLP group have a greater value ofµ4 than the other two groups, which means that these 
ETFs have more expected negative jumps. For self-exciting effect, all the as are positive, which means there 
exists consistent self-exciting effect within all ETF markets. For the ETFs from Equity group and Infrastructure 
group, to both SPX and CLCI, a44 is obviously larger than a33, which means negative jumps will have a greater 
influence on the next negative jump compared with positive ones on next positive jump. We also see that MLP 
group has the greater a33 compared with the Equity group and Infrastructure group, which indicates that MLP 
group has largest self-exciting jumps for positive returns. The MLP group has the least a44 compared with the 
Equitygroup and Infrastructuregroup,which indicates that MLPgroup hasleast self-exciting jumps for negative 
returns. For cross-exciting effect, both a13 anda14 of the three ETF groups are very small, which means that 
positive jumps of the index have very little influence on the ETF jumps. For a23, to the SPX index, the valueof 
the Infrastructure group is the largest; while the value of the Equity group is the smallest. For a23, to the CLCI 
index, the value of the Infrastructuregroup is the largest; while the valueof the MLP group issmallest. For a24, 

totheSPX index, the value of the MLP group is the smallest. For a24, to the CLCI index, the value of the MLP 
group is the largest. For the self contagion time decaying effect, the decaying effects between positive jumps and 
negative jumps are similar among all ETFs, which all are around 0.061. For the T44, thevalue of the MLP group 
is a little larger than the other two groups. For mutual-time-decaying effect, there is hardly any difference in 
T13, T14, T23 and T24 values of models, for they share a very same scale around 0.06. For all ETFs in the three 
groups, the T of SPX model is larger than T in the CLCI model. This means that the decaying effect of SPX is 
slower than CLCI, showing that equity market has a longer influence on ETFs, but the differences are not very 
big. For the accumulated effect factor, the conclusion is consistent with the observation from the a!nmS. For the 
jump contagion between indices, µ3 is greater than µ4 for both SPX and CLCI. In SPX-CLCI model, the a23 
and a43 are relatively large, while other aij values are very small. This means the negative jump of SPX leads 
to the positive jump of CLCI; the negative jump of CLCI leads to the positive jump of CLCI. In CLCI-SPX 
model, a23, a24, a43 anda44 are relatively large, while other aij values are very small. This means the negative 
jump events lead to the other jump events. The values of /Ji and fh rows are smaller than the values of fh and 
{34 rows. Overall, the index pricediscovery process seems to start with negative jumps, while the influence from 
the negative jumps disappear faster than the positive jumps. 

In general, our findings are consistent with the existing literature that the energy ETFs share some com- 
mon attributes with other ETFs that return jumps are highly correlated with equity market as well as the crude 
oil futures. However, our findings reveal a much richer understanding than the previous studies using high- 
frequency market data with multivariate Hawkes processes. We are able to show jump contagion effect or the 
flow of the market jump events. We find that both S&PS00 index and crude oil futures negative jumps lead the 
ETF price discovery process. When we look deeper into the different groups of the ETFs, we find that on aver- 
age, the self contagion in negative jumps is stronger than theself contagion in the positive jumps across all ETF 
groups. However, the ETFs focused on the master limited partnership (MLP) segment showless negative jump 
contagion and are least influenced by the jumps of the market indies than the other energy ETFs. Overall, the 
influence of negative jumps on ETFs from both the equity index and the energy future index is stronger than 
that of the positive jumps. And the influence of the equity index (S&PS00) jump on ETFs lasts longer than that 
of energy future index (CLC1). It sheds light on the advantage of thiskind of partnership organization in energy 
investment. 

 
 

Notes 
1. Energy Equity ETFs invest primarily in stocks of naturalgas,oil,and alternative energy companies which include major energy 

companies such as Exxon-Mobile Corp. (XOM) and Duke Energy Corp. (DUK), as well as smaller, fast-growing companies in 
the energy sector. 

2. An MLP is a publicly traded partnership (PTP); this is the term used in the U.S. tax code. It is a partnership, or a limited 
liability company {LLC) that haschosen partnership taxation, that trades on a public excl1ange such as NYSE, NASDAQ etc., 
or over-the-counter (OTC) market A significant number of MLPs do not operate businesses but are simply investment fw1ds. 
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3. Energy Infrastructure ETFs invest in portfolios of companies that derivea substantial portion of their revenues from operating 

or providing services in support of infrastructureassets such as pipelines, power transmission and petroleum and natural gas 
storage in the petroleum, natural gas and power generation industries. 

4. The data are fromhttp://ETF.com on December I, 2018. 
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Figure A1. Energy ETFs assets list. 
 
 
 

Table Al. Statistics of eachenergy ETFs. 
 

Ticker Group AUM Average volume 3-year standard deviation 3-year totalreturn  

XLE  15100 12,997,846 19.02 5.28%  

VOE  3590 329,696 20.24 4.20%  

IXC  1510 424,330 16.56 7.83%  

IYE  858.62 581,188 19.49 3.86%  

FENY  480.85 218,620 19.96 3.84%  

ERX  341.34 3,208,704 56.9 -0.14%  

FXN  283.22 206,420 25.19 -1.76%  

RYE  205.16 62,272 24.29 3.55%  

FCG 1 112.86 258,045 26.46 -4.26%  

AMLP 2 8570 16,696,098 17.56 4.88%  

AMJ 2 2950 2,052,316 18.42 4.95%  

EMLP 2 2200 579,403 11.58 8.45%  

MLPI 2 1370 632,453 18.12 4.90%  

MLPA 2 819.75 901,180 18.64 4.57%  

MLPX 2 527.49 603,754 18.94 10.14%  

AMZA 2 496.87 752,514 24.06 6.61%  

ATMP 2 408.14 89,443 17.81 10.28%  

AMU 2 246.85 102,811 17.96 5.05%  

TPYP 2 178.02 55,904 15.24 11.90%  

XOP 3 2710 19,697,538 29.33 16.15%  

OIH 3 1080 6,974,125 32.31 22.81%  

IEO 3 384.01 83,406 24.05 5.08%  

XES 3 277.02 1,313,856 37.67 -11.66%  

IEZ 3 195.61 126,162 32.57 -9.17%  

GUSH 3 151.52 6,462,837 87.77 -24.28%  

 


