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ABSTRACT ARTICLE HISTORY
Compared with investing in individual stocks, ETF investment is capable of diversify- Received S March 2020
ing the non-systematic risk or exposure to broad market or industry sectors.The aim of ~ Accepted 3 February 2021
thispaper isto developa jumpcontagion modeling framework to understand the con- KEYWORDS

tagion effect of market jump events of energy sector ETFs using multivariate Hawkes Energy finance; energy ITFs;
process modeling approach.Through analyzing intraday high-frequency market data, crude ol futures; multivariate
wefind that negative index jumps lead index pricediscovery processes, and their influ- Hawkes process; price
encesdisappear faster than the positive index jumpsin both the S&PSOO and the crude discovery

oil futures. And on average, the self contagion in negative jumps is stronger than the

self contagion in the positive jumps across all ETF groups. However, the ETFs focused

on the master limited partnership (MLP) segment show less negative self contagion

and relatively stronger positive self contagion than the other energy ETFs. Overall, the

influence of negative jumps on ETFs from both the equity index and the energy future

index isstronger than that of the positive jumps. And the influence of the equity index

(S&PSOO) jump on ETFs lasts longer than thatofthe crude oil futures index (CLC1).

1. Introduction

Energy economy has attracted attention from researchers for more than a century as our modern life relies on
affordable and adequate supply of energy. In particular, the price movement of crude oil has been attributed
to market recessions, periods of excessive inflation, reduced productivity and lower economic growth. With its
significant impact on the financial market, shocks of price action within the energy market would be of major
concerns for investors and regulators. In this paper, we aim to investigate the shock transmission effect on one
of the most popular energy investment vehicles: Exchange Traded Funds (ETFs).

Empirical studies have suggested a strong linkage between energy crude oil prices and macroeconomic
conditions (Hamilton 2003; Barsky and Kilian 2004; Du, Yanan, and Wei 2010; Acaravci, Ozturk, and Yilmaz
Kandir 2012; Ordu and Soyta 2016). On the one hand, the surge of energy prices contributes to higher input
cost for firms, which leads to declining profits and collectively affects the macroeconomic conditions. On the
other hand, rising energy prices increase cost-push inflationary pressure and lead to an increase in nominal
interest rate (Sadorsky 1999). Subsequently, such an increase in energy prices leads to higher financing cost for
enterprises and negatively affects the financial markets. Macroeconomic conditions also play a significant role
in crude oil prices in different states of the business cycle. During the prosperity phase, the economy is at its
peak of the trade cycle with strong consumption and productivity leading to an increased demand for energy;
during the depression phase, the economy experiences a significant decline in economic activities leading to a
decreased demand for energy.
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In recent years, index ETFs, which track the performance of specific benchmark indices byholding a diversi-
fied setof assets such asstocks, commodities, or bonds, have become attractive investment options for investors.
In contrast to individual stock picking, investing in ETFs diversifies the non-systematic risk and exposure to
market indices and industry sectors. ETFs typically collect lower management fees, exhibit a higher degree of
transparency and flexibility when compared to traditional mutual funds. As a result, ETFs have become an
important source of information dissemination in the financial market. Specifically within the energy sector,
crude oil is one of the world's most important commodities serving as a major energy source for economic
development. The volatility of crude oil futures hasa material impact on the global economy and financial mar-
ketstability (Wang etal. 2016; Amelieand Dame 2017;Gong and Lin 2018).Therefore, it isespecially important
for investors and risk managers to understand the empirical spillover effects of jump events relating to major
energy ETF instruments.

When price interaction among multiple markets is analyzed in the context of returns, testing of spillover
effects is mostly based on the well-known Granger (non-) causality test in a vector autoregressive process (Eun
and Shim 1989; Hamao, Masulis, and Ng1990; Forbes and Rigobon 2002). Forbes and Rigobon (2001) define
contagion as a significant increase in cross-market linkages after a shock to one country (or groupof countries).
Thisdefinition specifically refers to contagion effect if the cross-market comovement increasessignificantly after
the shock. A number of studies have examined the shock transmission mechanism across different markets.
Kaminsky and Reinhart {1998); Baig and Goldfajn (1999); Dornbusch, Chul Park, and Claessens (2000); Ang
and Chen (2002); Bae, Andrew Karolyi, and Stulz (2003); Tang and Xiong (2012). The transmission of
shocks has been measured by either simple cross-market correlation coefficients or probit models. A second
approach to test for contagion is to use an ARCH (Engle 1982) or GARCH (Bollerslev 1986) framework
to estimate the variance-covariance transmission mechanism across countries. Some popular specifications
include the multivariate extension of the model proposed by McAleer, Hoti, and Chan (2009), the matrix-
exponential GARCH (Kawakatsu 2006), or the asymmetric BabaEngleKraftKroner (BEKK) model (Engle
and Kroner 1995; Kroner and Ng 1998). Spillover effects can also be tested in terms of the conditional
volatility. Modelling and testing spillovers between the energy and agricultural markets have typically been
based on estimating multivariate conditional volatility models, specifically the BEKK model of Engle and
Kroner (1995) and the DCC model of Engle (2002). However, Chang, McAleer, and Wang (2018a, 2018b)
conduct an in-depth literature review pointing to the incorrect applications of the full BEKK and DCC
models for testing volatility spillover effects. Nevertheless, we argue that major shocks are rare events, and
the existing methods of testing spillover or contagion tend to adapt to normal and near-normal conditions.
Unusual and extreme market events tend to have much more substantial net impacts despite occurring a
much smaller proportion of the time. One of the major contributions of this study is to offer a different
framework to study the contagion effect of these unusual market events using a multivariate Hawkes process
framework.

This research focuses on 'tail' market events and aims to understand the shock transmission mechanism
between financial market and major typesofenergy ETFs using multivariate Hawkes process approach. Hawkes
process model was first introduced by A.G Hawkes in the 1970s (Hawkes 1971) and more recently it has been
widelyapplied in variousstudies relatedto the financial markets (Bacry,Mastromatteo, and Muzy 2015). Hawkes
process model seeks to explain how the occurrence of an event will increase or decrease the probability of future
occurrences of the same event or other events. In financial applications, it captures the contagion effect of jump
events that can be observed in asset price movements. Risk, especially involving large swings of price move-
ment, is a primary concern for investors and risk managers. As a result, return jump events are of great interest
to researchers and market practitioners. Unlike traditional regression or linear timeseries models, the multivari-
ate Hawkes processes do not require that the underlying time series data arestationary. Instead, it takes account
of the occurrences of large market jump events. In this research, we collect historical time series price data of
the S&P 500 index, crude oil futures and the 24largest energy ETFs byasset under management and build mul-
tivariate Hawkes process models of large shock events. By analyzing the model parameters, we aim to uncover
the directions ofinformation flow and explain the pricediscovery process between financial market and energy
ETFs. From an investment perspective, such knowledge would facilitate the decision-making process on con-
structing optimal portfolios and hedging the volatility of the energy sector. From a regulatory perspective, the
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empirical insights should help understand the potential risk propagation mechanism between the overall finan-
cial market and the energy sector. Specifically, we divide the 24 energy ETFs into three distinct groups on the
basisof their operations i.e. equity!. master limited partnership (MLP)2 and infrastructure®. The main purpose
of the study is to investigate the empirical mechanisms of large jump events in these energy ETFs and financial
market, namely their rollover, cross-excitation, and time-decaying effects.

Overall, we find that energy ETFs share some common attributes with other ETFs that return jumps are
highly correlated with the U.S. equity market. The market index jumps consistently lead ETF jumps in both
positive and negative directions. In other words, major market indices, i.e. S&P500 and crude oil futures, lead
the price discovery process in both positive and negative directions. We find that negative index jumps lead
index price discovery processes, and their influences disappear faster than the positive index jumps. And on
average, the self contagion in negative jumps is stronger than the self contagion in the positive jumps across all
ETF groups. However, the ETFs focused on the master limited partnership (MLP) segment show less negative
self contagion and relatively stronger positive self contagion than the other energy ETFs. Overall, the influence
of negative jumps on ETFs from both the equity index (S&P500) and the energy future index (CLCIl) isstronger
than the influence of the positive jumps. And the influence of the equity index jump on ETFs lasts longer than
that of energy future index. To the best of our knowledge, this research is the first study to focus on analyzing
jump events within the energy sector and document the directional jump transmission from financial market
to energy ETFs.

The rest of the paper is organized as follows. In Section 2, we conduct a literature review on the state of
energy finance and ETFs, along with their empirical relations with the U.Sequity market. In Section 3, we detail
the data collection process and present the methodologies of the bipower variation jump identification and the
multivariate Hawkes process. In Section 4, wediscuss various jump effects along with their implications from the
parameter calibration process. In the last section, we condude the findings of our study with key contributions.

2. Literature review

Economists have long been intrigued by empirical evidence that oil price shocks may be closely related to
macroeconomic performance, but the answer has never been straightforward (Rotemberg and Woodford 1996;
Barsky and Kilian 2004).1t has become widely accepted in recent years that the priceof crude oil since the 1970s
has responded to some of the same economic forces that drive stock prices, making it necessary to control for
reverse causality (Hamilton 2003; Hammes and Wills 2005; Kilian 2008). The instability of regressions based
on oil prices and, in particular, why higher oil prices seem to matter less today than in the 1970s and early
1980s (Kilian 2009). Kilian and Park (2009) document that the demand and supply shocks driving the global
crude oil market jointly account for 22% of the long-run variation in U.S. real stock returns. The responses of
industry-specific U.S. stock returns to demand and supply shocks in the crude oil market are consistent with
accounts of the transmission of oil price shocks that emphasize the reduction in domestic final demand.

More recently, Benkraiem et al. (2018) show the impact of energy price shocks on financial market prices by
analyzing the relationship between S&P 500 Index and energy prices that include WTI, gasoline, heating, diesel
and natural gas prices. Based on the Quantile Autoregressive Distributed Lags (QARDL) model, the empirical
results infer that crude oil and natural gas are key economic variables to explain short-run and long-run stock
market dynamics. In another study, Bastianin and Manera (2018) reveal the response of the U.S. stock market
volatility to three differentstructural oil market shocks basedon a structural Vector Autoregressive model. Their
results show thatstock market volatility responds significantly to oil price shocks caused byunexpected changes
in aggregate and oil-specific demand, but it is negligible to supply-side shocks. It has important implications for
policy makers, investors, risk managers and so on. Kang, Perez de Gracia, and Ratti (2017) analyze the impact
of oil priceshocks and economic policy uncertainty on the stock returns ofoil and gas companies usinga struc-
tural vector autoregressive model. The empirical results show that oil demand-side shocks have positive effects
on the return of oil and gas companies, while policy uncertainty shocks have negative effects on the return. And
there are heterogeneous effects of structural shocks on upstream, midstream and downstream oil and gascom-
panies. Shi and Sun (2017) investigate the relationship between the regulatory price distortion and economic
growth using a two-sector growth model. In contrast to the intuition that the regulatory price distortion helps
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mitigate the negative impact of price volatility from oil imports and have a positive effect on the economy, the
empirical results reveal that the regulatory pricedistortion has negative effects on output growth in China both
in the short term and long term. It suggests a market-oriented energy price regime to improve the economic
growth. The free cash flow (FCF) hypothesis is very famous in the energy corporate finance and it is first raised
by Jenson (Jensen 1986). Shi (2019) investigates the sensitivity between free cash flow and over investment in
China's energy companies using Richardson (Richardson 2006) investment expectation model. Then he checks
how the corporate governance mechanisms impact the sensitivity between free cash flow and over investment.
The empirical results show free cash flow will positively impact overall investment.

From the investors' perspective, it is well known that ETFs facilitate to reduce the non-systematic risk and
have become an important source of information dissemination in the financial market. Given the growing
popularity of the energy ETF investment, energy EFTs have attracted scholars' interest in the energy finance
field in recent years. Chang, McAleer, and Wang (2018a) analyze the spillover effects within and across the U.S.
energy and financial sectors using generated regressors and a multivariate conditional volatility model. The
empirical results show a significant relationship between the financial ETF and energy ETF in the spot and
futures markets. It implies that there is an optimal portfolio to hedge the risks in financial markets. Chang,
Liu, and McAleer (2019) investigate the interaction and co-volatility spillovers between the energy and agri-
cultural industries using multivariate conditional volatilitydiagonal BEKK models. The empirical results can be
used to design hedgingstrategies between the energy and agricultural industries, especially between bio-ethanol
and bio-ethanol-related agricultural commodities. Alexopoulos (2018) investigates the performance of energy
ETFs using different investment strategies, under market turmoil and market uptrend periods. The empirical
results show the portfolio performance of all ETFs in aggregate outperform two disaggregated portfolios with
dean and conventional ETFs separately. Chang and Ke (2014) investigate the relationships between returns and
flows of five ETFs in the U.S. energy sector, using a Vector Autoregressive (VAR) model. In the study, they
test four hypotheses including price pressure hypothesis, information hypothesis, feedback trading hypothesis
and smoothing hypothesis. The empirical results support the smoothing hypothesis but do not support the price
pressure hypothesis, information hypothesis or feedback trading hypothesis. Krause and Tse (2013) examine the
price discovery and volatility spillovers between Canadian and U.S. equity markets through Granger-causality
tests and bivariate EGARCH models. The empirical results show that there is a significant lead-lag relationship
in returns from U.S. market to the Canadian market, but no opposite direction. While there is a bi-directional
volatility spillovers between the U.S. market and the Canadian market.

3. Methodology and data

In thissection, we first describe a methodology to identify jump events in different markets. Here we focus on
significant return jump events rather than thecontinuous returnseries. Wethen discussthe multivariate Hawkes
process model. Our goal is to use Hawkes process model to explain the complex interactions of different types
of market events.

3.1. Bipower variation jump identificationmethod

We apply the bipower variation jump identification method (Barndorff-Nielsen and Shephard 2006) to identify
whether there are jump events in the non-overlapping 5-minute return series of the S&P 500 index, crude oil
futures and energy ETFs. We define the discretized version of y* as

yit) =y*@1s')), t=0o, (1)

where § is the 5-minute grid size of the time interval; Lx J is the integer part of x. Then we construct 8-returns as
Jj=y*G8) - y*((G-1D8), j= 1.2, Lu8lL 2

whereJj is the valueof'log return in this 5-minute interval.
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WedefineY/(t) aslog priceofthe asset, and & is the 5-minute grid size of the time interval. And then 1Y!]; is
the realized quadratic variations (QV) process, and it is defined as:

[ytli = [Gilh@) - IYhG- 1), i= 1.2,....7
1t/11J

=1

here h = 1 is the 30-minute time interval, and Tis the total number of30-minute time intervals in the trading
hours for the entire sample period. We assume 8Lt/8J = ¢ and

Yi,i = y*@8¢G) th(G- 1) - y*@8G- 1)+Fhd- 1)). C))
Therealized bipower variations process is
lJnl 1 '112 {yt}[LD)(h(t)) - {yt}[LI](h(i- 1)), i=L2,...,T,
Lt/11J-1
= E winvjeii- )
j=1
Therealized quadpower variations process is
{yip. LLIS{y B [LLLII(h(D) _ {y}[L1L,LIJ(hG _ 1), & 1,2,....7,
Lt/oJ-3
' I anvieinyie2inyie i ©)

J=l

Using the above quantities, we can construct the feasible ratio jump test statistic Ho:. which has the asymptotic
distribution
rl/2 ( 2{y*}[LI] )
Hs, = ——ji======= |i ¥ -1 NO v) (7
MIP-"“L1)/{{ys)P,11}2 IY!]; , !

where the individual test willconverge to N(0,v) as 8 0, and
i 1/
u,1=Eiul=2/ 2) =2/rr . 0.79788 ®)

and u =~ N(0,1);
v =2/4)Frc. 5 0.6090. ©

Given the limitation ofthe sample interval and the total samplesize, wehave a limited number ofobservations to
estimate the feasible ratio jump test statistic for the 30-minute interval. To producebetter finite sample behavior
for small samples, we follow (Barndortf-Nielsen and Shephard 2006) and introduce the feasible adjusted ratio
jump test instead of (7):

jﬁi =

5-1/2 (#1—2%}1[1,1]
Jmax(L, P ey \ DGl

where the individual test will converge to N(0,v) as § 0. Based on this test statistic from Barndortf-Nielsen
and Shephard (2006), we would reject the null of a continuous sample path if (10) (J statistic) is significantly

= 1) X N, v),
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negative. In this research, we use Equation (10) to test whether there is jump in the 30-minute interval where i
is the index of a certain 30-minute interval and j is the index of a certain 5-minute interval in the corresponding
30-minute interval.

In empirical tests, we take the method of adjusted ratio jump test by checking the value of

st an

_
[,V(s ]i

and its corresponding critical value, computed under the assumption of no jump usinglJ statistic. A node which

is below the critical value will indicate that there is a jump at that time point (note that Jstatistic needs to be

negative to meet the significance test).

Ifwe identify a jump according to (10), we find that the biggest 5-minute frequency |Yj,il in the ith 30-minute
frequency interval. We identify positive jump if Vji > 0 and negative jump if Yji < 0. Then we can get four
sequences for positive S&P 500 or crude oil futures price jump, negative S&P 500 or crude oil futures price
jump, positive energy ETF jump and negative energy ETF jump, which we mark 1 for jump and Ootherwise.

3.2. Multivariate Hawkes process

Hawkes process is a class of multivariate point process that models the relationship of event arrivals where the
occurrence of an event increases or decreases the probability of the occurrences of future events. Since its intro-
duction in 1971, the Hawkes processand its variantshave beensuccessfully applied to modelseismicevents (Fox,
Schoenberg, and Gordon 2016; Molyneux, Gordon, and Schoenberg 2018), community crimes (Mohler, Carter,
and Raje 2018; Zhuang and Mateu 2019), social network and social media (Zipkin et al. 2016; Kobayashi and
Lambiotte 2016) and biological neuron (Galves and Locherbach 2015; Ditlevsen and Locherbach 2017). Hawkes
processes are also becoming more popular in finance literature for its great simplicity and flexibility (Bacry,
Mastromatteo, and Muzy 2015). In the last decade, several studies have applied multivariate Hawkes processes
on various types of financial market events. Bowsher (2007) develops a new class of generalized Hawkes models
and uses it to analyze the interaction mechanism of changes in mid-price quotes and trades arrivals of General
Motors shares. Large (2007) applies an appropriate parametric model which views orders and cancelations as a
mutually exciting ten-variate Hawkes process to the electronic limit order book of Barclays stock on LSE. Bacry
et al. (2013) use a bivariate Hawkes process model to reproduce major high-frequency micro-structural phe-
nomenons, namely the signature plot and Epps effects. Fulop, Li, and Yu (2015) apply a self-exciting process to
asset pricing modelin order to captureco-jumps between prices and volatility and self-exciting jump clustering.
They identifyself-excitingjump clustering sincethe 1987 market crash and the 2008global financial crisis. More
recently, Yanget al. (2018) apply the multivariate Hawkes process to analyze the interaction mechanism between
investor sentiment and market return events; Hainaut and Moraux (2019) combine a Hawkes jump-diffusion
process with hidden Markov switching model to study economic recession and economic growth.

Market events, such as changes in prices, index valuesor market crashes, can be described as realizations of
multivariate point process (PP) {T;,Z;};E{1,2,... ), where T; is the occurrence time of the ith event, and Z; indi-
cates the type of the ith event. We denote the M-vector counting process associated with {T;,Z;} as N(t) :=
(Nm(t)) =1' with Nm(t) counting the numberof type m events that haveoccurred in (0,t]. We denote the natu-
ral filtration of the PP N(t) as {.Ff"}, which is the information set corresponding to complete observation of N(t)
in [0, t]. A certain multivariate PP is specified via the vector conditional intensity process >..(1) = (),m(t)) =i'
which can be interpreted as the conditionally expected number of type m events per unit time as the time inter-
val tends to zero. Wesay >..(t) is the (P,.Ft)-intensity of N(t), where Pis the data generating process (DGP) and
:F; is the conditional filtration.

The multivariate Hawkes process is defined by the vector {.F;' }-conditional intensity (>..i(t),>-.2(t),...,
AM(t))", as

k S T
An® = pm® + Y _Am®+ Y. YA, (12)
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where m =1, 2, ... ,M, and p,m(t) is a positive deterministic function. In (12), the second term of right-hand
side (RHS) generates the self-exciting effect amongevents; the third term ofRHS generates the mutual or cross-
exciting effect. Both of these two excitation kernel functions have the form of sums of k& exponential kernels.
In this research, we construct two models combining energy ETFs with S&P 500 and crude oil futures price
separately. To simplify the problem, we focus on the interaction of the two asset price series: the index and an
ETF asset. Foreach asset, we further categorize observations into two types ofevents: positive jump and negative
jump. Hence, in each model, we consider four types of event. Following previous similar studies using multi-
variate Hawkes processes (Large 2007; Bacry et al. 2013; Yang et al. 2018), we choose j = 1 and M = 4, which
represent a 4-dimensional (4-D) Hawkes process (represented by M) with one exponential kernel (represented

by j), as

Am(t) = fI ;l- LL anm-ePe. ), (13)

n=l tJ'<t
where u,m is the rollover effect of the process, assumed to be constant. Furthermore, we impose the constraints
that u,m,<Xnm and f3nm are strictly positive for all m and n. Equation (13) presents a general formof what is known

as a mutually exciting Hawkes process. It is important to point out that not all entities share the same intensity.
Hence, we propose a parameter estimation process as follows:

(1) Builda 4-D Hawkes process involving S&P 500 with an energy ETF and calibrate all the parameters.
(2) Examine the log-likelihood path to evaluate the quality of estimates.

(3) Changethe energy ETF in 4-D Hawkes process and execute step 1-2.

(4) Replace the index of S&P 500 by crude oil futures price and execute step 1-3.

We estimate the parameters of the multivariate Hawkes process by the maximum likelihood estimation
(MLE). The log-likelihood ofa multidimensional Hawkes process can be computed as the sum of the likelihood
of each coordinate

InL(0 l(tFIm=1,2....M) = LM InLm(0 | (tkyn=12,...M), (14)
m=I

where 7K is the observed kth time point of event type 7, and following Bowsher (2007) we have:

InLm(0 |(tk‘.Jn:l,2,...,M)=_] T -0'(tlw & + ] T1n>_e.(ﬂw)dN".(t)
M
= -umT —L L
amn

n=I f3mn {k:j<T]

M
=+ Z In |:.ru'm " Z amﬁRmn(k)] > 15)
{ n=1

ket <T)

[1- e-Pmn(T-tk)]

with Rmn(k) is defined recursively as

Run(l) = e PmEIR k—1)+ ) g PmilttD, (16)
(et <t <)

The initial condition Rmn(0) = 0.
The MLE process for model calibration is at first weseta = Oand f3 = 108, then optimize u,. We then apply
the, to the function and fix it, then optimize ¢ and {3. The initial value for @ and f3is 2 and 35, respectively.
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3.3. Data collection

In this research, we collect high-frequency data with 5-rninute intervals from Thomson Reuters Tick History
(TRTH) database for the top 24 energy ETFs with assets under management (AUM)* greater than $100 million
(we use this criterion so that we have enough observations to estimate the proposed models). The data range
from January 1, 2017 to December 31, 2018, with 730 natural days and 502 trading days. The dataset includes
the S&P500 index (SPX) and crude oilfutures contract on NYMEX (CLCI), and 24 energy ETFs (see Appendix
Figure Al for a detailed description of these assets).

To gain further insights, we divide the 24 target ETFs into three groups based on their distinct operations:
Equity, Master Limited Partnerships (MLPs) and Infrastructure.

(1) Equity: equity shares of energy corporation in oil & gas refining and marketing, and consumable fuels.

(2) Master Limited Partnerships (MLPs): special tax-advantaged entities that derive income from qualified
sources such as natural resources.

(3) Infrastructure: equity shares of energy corporations in oil & gas exploration, production, equipment and
services.

Figure 1 shows the assets under management (AUM) of the 24 top energy ETF markets in our study.
Empirically, the equity and MLP groups share similar distributions in the scale ofassets under management.

4. Experiments and discussions
4.1. Jumpdetection

In this section, we take S&P500 (SPX) as an example to show the jump detection process. We divide the daily
timeseries into 13 intraday intervals and each interval is 5 minutes in duration. We follow the jump detection
methodology in Section 3.1to identify the jumps in which 8 isset to 6 and /i = 1 is fora 30-rninute timeinterval.
Afterscaling, weexpect a time series with 6526 intervals (i.e. 13*502) to detect jumps.

Figure 2 shows the Q-Q plot of/ statistic (Equation (10)). It visually shows violation of the normal dis-
tribution. But following Barndorff-Nielsen and Shephard (2004), the asymptotic distributional assumption
should hold as the sample size increases (in our case, we have 6526 data points), and / statistic can be used
to detect jumps. Under the null hypothesis that there are no jumps during the time period, / statistic should
follow a normal distribution with a mean equal to zero. The t-test results for Jis: ¢ = 62.783, df = 6525,
p-value = 2.2e-16. The alternative hypothesis is the true mean is not equal to zero. The 95 percent confidence

‘III' I °
ol J & S s god x g o 26 8 T 0 " T
SeRTZEFEOSS2SS8S3E6520E3
= “R*EEIFIECET g
| |

Figure 1. AUM(assets undermanagement- USDin millions).
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Normal Q-QPlot

TheoreocalOuantil s

Figure 2. NormalQ-QPlot.

interval is (-0.5802992,-0.5451581). Thesampleestimate mean is -0.5627286. After rejecting the null hypoth-
esis, we still need to determine what is the reasonable number of jumps per day. It dependson the threshold we
set, and this threshold is determined based on empirical experience in terms of number of jumps per day in a
particular market. Thus, we need to choose a negativevalue as the threshold. If the J statistic is smaller than this
threshold, we say there are jumps in this interval corresponding to the J statistic. weset a critical value regarding
the J statistic distribution to detect the jumps. For SPX market, we follow the approach used by Yang et al. (2018)
to determine the numberof jumps per day for SPX. Hence we set the critical value as -1.66, andit gives around
I jump for the trading days.

Figure 3 showsthe distribution of the number of jumps in one day. Most days have Oto1 jump. Figure 4 shows
the distribution of jump probability in each interval of a trading day. There are 13 intervals in each trading day,
and each one corresponds to a half-hour trading period. For example, I refers to 9:30 to 10:00, 2 refers to 10:00
to 10:30, etc. We find that most of the jumps take place at the beginning of the trading day, which conforms
to the theory of information arrival. However, according to volume pattern, there should be an intraday smile
graph in the jump distribution, which is not obvious in the SPX example. But we did find this phenomenon in
some other ETFs jump graph like AMLPs.

We repeat the jump detection process for all energy ETFs. During each process, we record the critical value
weuse as threshold, the average total jumps per day,as well as the average number of positive jumps to compute
the positive jump ratio.

Number of Jumps per day for SPX

0o - Pos,t,ve SPX
| - Negative SPX
H”
m
b 0
a
wON 0
0
E 0
a
8
a 8 0 0
0 2 4 5

Jumps per dav

Figure 3. Jump times perday.



10 @ S.Y.YANGIT AL

Probability for SPX

= Pos|tJve SPX
m===_NegabveSPX

Figure 4. Jump probability per interval.

Critical Value for J statistics

Average daily jump number

g = i 00 Lo [ R

Figure S. Critical valuefor J statistic.

Figure 6. Average daily jump number.

Figure 5 shows the distribution of critical values we use as threshold for each asset. As we expect a similar
average daily jump number, so the critical values are varying from asset to asset. Figure 6 shows the distribution
of average daily jump numbers foreach asset. We can see that most assets have 1 jump per day. We also calculate
the jump ratios for each ETF. The results show that most assets have a percentage around 0.5, which means that
the positive jumps versus negative ones are almost half to half.
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Figure 7. 4DLog-likelihood Convergence.Thex-axis represents the iteration number, and the y-axis representsthe log-likelihood value. (a)SPX-
CLC14DLog-likelihood Value Path.(b) SPX-XLE 4DLog-likelihood Value Path.

4.2. Modelestimation

In thissection, wediscuss the convergence ofour model estimates using maximum likelihood estimation (MLE).
In general, we find the 4-D multivariate Hawkes processes exhibit consistency in their convergence property.
Here, wetakeSPX-CLCI and SPX-XLE examples of 4-D Hawkes process model to show the qualityof maximum
likelihood estimation process.

Figure 7 shows the log-likelihood value path of the two examples to check the quality of our estimation. 4-D
SPX-CLCI model converges to a value smaller than 0.000001 after 1200 iterations and 4-D SPX-XLE model
converges to a value smaller than 0.000001 after 800 iterations. We also check the convergence of the estimated
parameters. Overall, we can say that the model has a good convergence performance in the estimation process
as it was approved byBacry et al. (2013).

4.3. Indexmodel parameter results

In thissection, weanalyze the jump contagion between SPX and CLCl.Table 1 shows the statistics of the param-
eters for the 4-D Hawkes model of SPX and CLCI jump events. Through the analysis, we can draw the following
conclusions: (1) The arrival rateof positive index jumps (x,1 and p,3) is greater than that of negative index jumps
(p,2 and p,4). (2) From SPX perspective, onlyaz; ando:4; are relatively large, while other O:nm values are very
small. This means that both negative SPXand negative CLCI jump events lead to positive SPX jumps. (3) From
CLCl perspective, a3, ax4, 0:43 and a44 are relatively large, while other O:ij values are very small. This means the
negativeSPX jump events leadto both CLCI positive and negative jump events; negativeCLCI jump eventslead
to both CLCI positive and negative jump events. (4) For both of the two indices, the values of fh. and fh rows
are smaller than the valuesof fA and {34 rows. Overall, we find negative index jumps lead index pricediscovery
processes, and their influences disappear faster than the positive index jumps.

4.4. Rollover effect

In Hawkes process, u represents rollover effect. It denotes the basic intensity, which depends onlyon the event
itself. This value represents the expected jump times in each interval of the time series. 4,1 and u, - represent the
basic attributes of indices, and we focus on u3 and pa to find the attributes of the target energy ETF. As x,3 and
u,4 represent the basic attributes of a specific ETF, as a result, it should be the same regardless of the indices in
the model.
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Ta hie 1. Parameterestimated for models between SPXand CLCI.

1 (Positive) 2 (Negative) 3 (Positive) 4 (Negative)

n 0.0449 0.0337 0.0431 0.0342
X1, 1.676e-5 1.952e-5 4.19¢-6 4.23e-5
IXz. 0.010923 0.104128 0.0408 4.53¢-5
x3.  4.60le-5 1.230e-5 8.78e-6 8.71e-6
IX4.  0.052463 0.117473 0.0111 6.90¢-5
i 4749442 4717247 4.7245 4.7207
h 4.%5026 4.982888 5.0102 4.9772
th 4.775073 4.801%5 4.7923 4.8090
/J4.  5.018251 5.009097 4.9984 4.%93
5!

seHE ZEEE8T5 2 E = 3 Z2 83 goxrz2 2 B5E3

Figure 8. p,3and p,4 foreachenergy ETF.

Table 2. Statistics of u,3and u,4 foreach group.

Equity MLP Infrastructure

Mean Median Mean Median Mean Median

w3 0.0413 0.0409 0.0399 0.0401 0.0422 0.0429
w4 0.0372 0.0380 0.0403 0.0405 0.0377 0.0370

Figure 8 and Table 2 show the results of p,3 and x,4. Obviously, ETFs from MLP grouphas a smaller valueof
M, 3 than the other two groups, which means that these ETFs have less expected positive jumps. ETFs from MLP
group hasagreatervalueof u,4 than the other twogroups, which means that these ETFs have moreexpected neg-
ative jumps. The relative high rollover effect can be interpreted as high persistence or stronger auto-correlation
than the other energy ETF groups.

4.5. Exciting effect

In Hawkes process, a represents the exciting effect. Self-exciting effect, which is represented by a3z and auy
is the effect within the same type jumps of ETFs. The as3 is the self-exciting effect of the positive jumps, and
the a4y is the self-exciting effect of the negative jumps. Theoretically, the a33 and a44 are different with respect
to SPX and CLCI for the reason that the positive and negative jumps of the index influence the likelihood
estimation of all the parameters. When the positive and negative jumps of the index change from SPX to CLC1,
the relationship between all the four types ofjump events are entirely changed. The estimation will re-compute
all the parameters from a different path, instead of keeping the parameters of au and a», just changing other
parameters.

Figure 9 and Table 3 show the results of as3 and a4y which is the self-exciting effect of positive jumps and
negative jumps of ETF. We find that all the as3 and a4, are positive, which means the happening of a jump
will increase the occur probability of the next jump of the same type. For the ETFs from Equity group and
Infrastructure group, to both SPX and CLCI, a4s is obviously larger than as3, which means negative jumps
will have a greater influence on next negative jump compared with positive ones on next positive jump. We
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Figure 9. 0<33and a44 for SPXand CLCl.(a)a-33 foreach energy ETFwith respect to SPX and CLCI. (b)as4 foreach energy ETF with respect to SPX
and CLCL

Table 3. Statistics 0fo33,a,44 for each group.

Equity MLP Infrastructure

Mean Median Mean Median Mean Median

a33 SPX 0.0211 0.0048 0.0740 0.0482 0.0333 0.0031
CLCl 0.0103 5.83e-5 0.0235 0.0001 0.0164 1.58e-5

0<44 SPX 0.1696 0.1105 0.0621 0.0006 0.1338 0.1282
CLCl 0.0816 0.0159 0.0526 0.0001 0.0635 0.0762

also see that MLP group has the greater a3; compared with the Equity group and Infrastructure group, which
indicates that MLP group has the largest self-exciting jumps for positive returns. The MLP group has the least
as4 compared with the Equity group and Infrastructure group, which indicates that MLP group has least self-
exciting jumps for negative returns. In other words, this group of ETFs is relatively stable to negative return
jumps.

Cross-exciting effect is the effect from event n to event m. It means how the probability of the event n's
occurrence will increase the probability of event m. Now, we focus on ay3, ai4, a23 and az4 to show how the
market indices would lead ETF jump events.

Figure 10 shows the results ofays, a4 a2;3 andazs of the 4-D Hawkes process models. In each figure, the left
one is the model with SPX as the index and the right one is the model with CLCI as the index. Table 4 shows the
statistics of @;3, ai4, @23 and ax4 for each group. Through the analysis, we can draw the following conclusions:
(1) All of the <xnm are positive, which means that the jump of indices will 'lead' the jump of target ETF, no matter
whether the jumps are positive or negative. (2) Both a;3 and a4 of the three ETF groups are very small, which
means that positive jumpsof the index havevery little influence on the ETF jumps. (3) For a3, to theSPX index,
the value of the Infrastructure group is the largest; while the value of the Equity group is the smallest. For azs,
to theCLCl index, the value of the Infrastructure group is the largest; while the value of the MLP group is the
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Figure 10. cx/j between SPX/CLCI and ETFs. (a) a:13 for baseline SPX and CLCIL. (b)cx14 for baseline SPX and  CLCL. (c) cx13 for baseline SPX and
CLCIL. (d)cx24 for baseline SPXand CLCL

smallest. (4) For a2, to the SPX index, the valueof the MLP group is the smallest. For az4 to the CLCI index,
the valueof the MLP group is the largest. Overall, the influence of the negative jumps from both SPX and CLCI
is much stronger than the influence of the positive index jumps.
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Table 4. Statistics 0f013,014, 023and024 foreach group.

Equity MLP Infrastructure

Mean Median Mean Median Mean Median
013 SPX 0.0032 6.98e-6 8.26e-5 l.14e-5 1.55e-5 1.33e-5
CLCl 0.0004 2.62e-5 1.59e-5 1.Ble-5 7.09e-5 4.28e-5
014 SPX 1.03e-5 9.60e-6 2.54e-5 1.69¢-5 8.20e-6 6.62e-6
CLCl1 7.53e-5 1.91e-5 0.0073 8.32¢-6 0.0003 1.18e-5

023 SPX 0.2438 0.2565 0.2529 0.2871 0.3659 0.3708

CLCl1 0.2295 0.3105 0.1759 0.1809 0.2700 0.3100

024 SPX 0.2903 0.3507 0.2668 0.2016 0.2817 0.3637

CLCl1 0.1930 0.1985 0.2441 0.2491 0.1784 0.1844

T33 with SPX T33withe.LC

(a) 733 for each energy ETF with respect to SPX and CLCIL.

T44 with SPX T44withCLC1

yxHgsEzy - S2EEL O8NS

(b) 744 for each energy ETF with respect to SPX and CLCI.

Figure 11. T33and 744for SPXand CLCl.(a) T33 for eachenergy ETFwithrespect to SPX and CLCL. (b) 744 for eachenergy ITT with respectto SPX
and CLCI.

Table 5. Statistics of T33, 744 for each group.

Equity MLP Infrastructure

Mean Median Mean Median Mean Median

Tn SPX 0.0620 0.0622 0.0617 0.0619 0.0621 0.0623
CLCl 0.0618 0.0618 0.0613 0.0614 0.0619 0.0620

T4 SPX 0.0611 0.0611 0.0616 0.0615 0.0608 0.0610
CLCl1 0.0605 0.0606 0.0613 0.0612 0.0604 0.0605

4.6. Time-decaying effect

In Hawkes process models, f3 represents the time decaying effect. F3MNmeasures the decaying speed of the effect
from event 7 to event m. In this research, we introduce the half-life metric to measure the decaying effect and
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show the jump decaying speed. It is defined as:

log?2
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where the smaller the T, the greater the decaying effect.
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Table 6. StatisticsofTn, T14, Trnand T24for eachgroup.

Equity MLP Infrastructure

Mean Median Mean Median Mean Median

Tn  SPX 0.0630 0.0632 0.0633 0.0634 0.0632 0.0633
CLCI 0.0620 0.0621 0.0620 0.0619 0.0621 0.0621

Ti4 SPX 0.0638 0.0638 0.0635 0.0636 0.0634 0.0635
CLCI 0.0620 0.0621 0.0622 0.0622 0.0621 0.0622

Tn SPX 0.0600 0.0599 0.0601 0.0602 0.0600 0.0600
CLCI 0.0599 0.0600 0.0600 0.0600 0.0599 0.0599

fi4 SPX 0.0601 0.0602 0.0602 0.0601 0.0602 0.0602
CLCI 0.0599 0.0599 0.0599 0.0599 0.0600 0.0600

Figure 11 shows the distribution ofT for /h3 and {344 which is the time-decaying effectwithin the sametypes
of jump events or self-excitation (positive jumps of ETF to positive jumps of ETF and negative jumps of ETF to
negative jumps of ETF). These parameters indicate the inner attribute of ETFs. Table 5 shows the statistics of
Ts3 and T4 for each group. From the results, we can draw the following conclusions: (1) The decaying effects
of both positive jumps and negative jumps are similar among all ETFs, which all are around 0.061.This is about
1.83 minutes. (2) For the 744, the valueofthe MLP group is a little larger than the other two groups.

Figure 12 shows the results of Tu, Ti4, Tas, To4 for the 4-D Hawkes process model. The left figure is the
model with SPX as the indices and the right figure is the model with CLCI as the indices. Table 6 shows the
statistics of Tu, Ta2s, T4 and T4 for each group. Through the analysis, wecan draw the following conclusions:
(1) There is hardly any difference in T3, T4, T23 and 724 values of models, for they share a very similar scale
around 0.06.This is about 1.8 minutes. (2) For all ETFs in the three groups, the T of SPX model is larger than T
in the CLCI1 model. This means that the decaying effect of SPX is slower than CLCI,showing that equity market
has alonger influence on them, but the differences are not very large.

4.7. Accumulated contagion effect

As a robustness check, we define Fij(h) to measure the expected jump effect of event i to event j in the future h

interval. In our case, we set # = 1, which is 30 minutes. For example, if Fu(I) for SPX equals 0.1, then it means
a positive jump of SPX will cause 0.1 positive ETF jump in the next 30 minutes. The F metric is defined as:

Fity = = 4 Y (18)
BT

Figure 13 shows the results of Fu, F;4 F23 and F»4 for the 4-D Hawkes process model. The left figure is the
model with SPX as the index and the right figure is the model with CLCI1 as the index. Through the analysis,
we can draw the following conclusions: (1) The distribution of Fis very similar to that of as that we discussed
earlier. This result shows that the jump of indices would positively excite the jumps of ETF assets, no matter the
jump is positive or negative. (2) Both the Fu and F14 of the three groups are very small. (3) For Fa3, to the SPX
index, the value of the Infrastructure group is the largest; while the valueof the Equity group is the smallest. For
F23,to the CLCl index, the value of the MLP group is the smallest. (4) For F24 to the SPX index, the value of
the MLP group is the smallest. For F,,, to the CLCl index, the valueof the MLP group is the largest.

5. Conclusion

In thisstudy, we model jump events in S&PSOO, crude oil futures price and 24 energy ETF markets using mul-
tivariate Hawkes Processes. The multivariate Hawkes Process helps us deciphering the occurrence of an event
on the occurrence of future events of the same or different types, and yet it does not require stationarity con-
dition on dataobservations. We consequently construct two multivariate Hawkes process models based on the
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Figure 13. FqforSPX and CLCl.(a) Fn for SPXand CLCI. (bl F14forSPXand CLCI. (cI F23 forSPXand CLCI.(dl F24forSPXand CLCI.

baseline S&PS00 index and crude oil futures price separately. To gain further insight, we divide the target energy
ETFs into three groups, i.e. equity group, MLP group, and infrastructure group. Analyzing the estimated model
parameters, we are able to interpret the complex relationship of various jump events regarding their rollover,

excitation, time-decaying effect and accumulated contagion effects.
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First, we examine the jump rollover effect or persistence of jumps. We find that the ETFs from MLP group
havea smaller value of ps than the other two groups, which means that these ETFs have less expected positive
jumps. ETFs from MLP group have a greater value ofua than the other two groups, which means that these
ETFs have more expected negative jumps. For self-exciting effect, all the as are positive, which means there
exists consistent self-exciting effect within all ETF markets. For the ETFs from Equity group and Infrastructure
group, to both SPX and CLCI, a4 is obviously larger than a33, which means negative jumps will have a greater
influence on the next negative jump compared with positive ones on next positive jump. We also see that MLP
group has the greater as3 compared with the Equity group and Infrastructure group, which indicates that MLP
group has largest self-exciting jumps for positive returns. The MLP group has the least a44 compared with the
Equitygroup and Infrastructuregroup,which indicates that MLPgroup hasleast self-exciting jumps for negative
returns. For cross-exciting effect, both a;3 anda,s of the three ETF groups are very small, which means that
positive jumps of the index have very little influence on the ETF jumps. For a»;, to the SPX index, the valueof
the Infrastructure group is the largest; while the value of the Equity group is the smallest. For a»3 to the CLCI
index, the value of the Infrastructuregroup is the largest; while the valueof the MLP group issmallest. For a2,
totheSPX index, the value of the MLP group is the smallest. For az4, to the CLCI index, the value of the MLP
group is the largest. For the self contagion time decaying effect, the decaying effects between positive jumps and
negative jumps are similar among all ETFs, which all are around 0.061. For the T4, thevalue of the MLP group
is a little larger than the other two groups. For mutual-time-decaying effect, there is hardly any difference in
Tis, Ti4 T3 and Tas values of models, for they share a very same scale around 0.06. For all ETFs in the three
groups, the T of SPX model is larger than T in the CLCI model. This means that the decaying effect of SPX is
slower than CLCI, showing that equity market has a longer influence on ETFs, but the differences are not very
big. For the accumulated effect factor, the conclusion is consistent with the observation from the amms. For the
jump contagion between indices, ps is greater than x4 for both SPX and CLCI. In SPX-CLCI model, the a»;3
and as3 are relatively large, while other ajj values are very small. This means the negative jump of SPX leads
to the positive jump of CLCI; the negative jump of CLCI leads to the positive jump of CLCI. In CLCI-SPX
model, a3 ay4 as3 anday, are relatively large, while other ajj values are very small. This means the negative
jump events lead to the other jump events. The values of /Jiand fh rows are smaller than the values of fh and
{34rows. Overall, the index pricediscovery process seems to start with negative jumps, while the influence from
the negative jumps disappear faster than the positive jumps.

In general, our findings are consistent with the existing literature that the energy ETFs share some com-
mon attributes with other ETFs that return jumps are highly correlated with equity market as well as the crude
oil futures. However, our findings reveal a much richer understanding than the previous studies using high-
frequency market data with multivariate Hawkes processes. We are able to show jump contagion effect or the
flow of the market jump events. We find that both S&PS00 index and crude oil futures negative jumps lead the
ETF price discovery process. When we look deeper into the different groups of the ETFs, we find that on aver-
age, the self contagion in negative jumps is stronger than theself contagion in the positive jumps across all ETF
groups. However, the ETFs focused on the master limited partnership (MLP) segment showless negative jump
contagion and are least influenced by the jumps of the market indies than the other energy ETFs. Overall, the
influence of negative jumps on ETFs from both the equity index and the energy future index is stronger than
that of the positive jumps. And the influence of the equity index (S&PS00) jump on ETFs lasts longer than that
of energy future index (CLC1). It sheds light on the advantage of thiskind of partnership organization in energy
investment.

Notes

1. Energy Equity ETFs invest primarily in stocks of naturalgas,oil,and alternative energy companies which include major energy
companies such as Exxon-Mobile Corp. (XOM) and Duke Energy Corp. (DUK), as well as smaller, fast-growing companies in
the energy sector.

2. An MLP is a publicly traded partnership (PTP); this is the term used in the U.S. tax code. It is a partnership, or a limited
liability company {LLC) that haschosen partnership taxation, that trades on a public excllange such as NYSE, NASDAQ etc.,
or over-the-counter (OTC) market A significant number of MLPs do not operate businesses but are simply investment fw1ds.
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3. Energy Infrastructure ETFs invest in portfolios of companies that derivea substantial portion of their revenues from operating
or providing services in support of infrastructureassets such as pipelines, power transmission and petroleum and natural gas
storage in the petroleum, natural gas and power generation industries.

4. The dataare fromhttp://ETF.com on December I, 2018.
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Figure A1. Energy ETFsassetslist.

Table Al. Statistics of eachenergy ETFs.

Ticker Group AUM Average volume 3-year standard deviation 3-year totalreturn
XLE 15100 12,997,846 19.02 5.28%
VOE 3590 329,696 20.24 4.20%
IXC 1510 424,330 16.56 7.83%
IYE 858.62 581,188 19.49 3.86%
FENY 480.85 218,620 19.96 3.84%
ERX 341.34 3,208,704 56.9 -0.14%
FXN 283.22 206,420 25.19 -1.76%
RYE 205.16 62,272 24.29 3.55%
FCG 1 112.86 258,045 26.46 -4.26%
AMLP 2 8570 16,696,098 17.56 4.88%
AMJ 2 2950 2,052,316 18.42 4.95%
EMLP 2 2200 579,403 11.58 8.45%
MLPI 2 1370 632,453 18.12 4.90%
MLPA 2 819.75 901,180 18.64 4.57%
MLPX 2 527.49 603,754 18.94 10.14%
AMZA 2 496.87 752,514 24.06 6.61%
ATMP 2 408.14 89,443 17.81 10.28%
AMU 2 246.85 102,811 17.96 5.05%
TPYP 2 178.02 55,904 15.24 11.90%
XOP 3 2710 19,697,538 29.33 16.15%
OIH 3 1080 6,974,125 32.31 22.81%
IEO 3 384.01 83,406 24.05 5.08%
XES 3 277.02 1,313,856 37.67 -11.66%
IEZ 3 195.61 126,162 32.57 -9.17%
GUSH 3 151.52 6,462,837 87.77 -24.28%




