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Time-Varying Optimization of LTI Systems via
Projected Primal-Dual Gradient Flows

Gianluca Bianchin, Jorge Cortés, Jorge I. Poveda, and Emiliano Dall’Anese

Abstract— This paper investigates the problem of reg-
ulating, at every time, a linear dynamical system to the
solution trajectory of a time-varying constrained convex
optimization problem. The proposed feedback controller
is based on an adaptation of the saddle-flow dynamics,
modified to take into account projections on constraint sets
and output-feedback from the plant. We derive sufficient
conditions on the tunable parameters of the controller (in-
herently related to the time-scale separation between plant
and controller dynamics) to guarantee exponential input-
to-state stability of the closed-loop system. The analysis is
tailored to the case of time-varying strongly convex cost
functions and polytopic output constraints. The theoretical
results are further validated in a ramp metering control
problem in a network of traffic highways.

I. INTRODUCTION

THIS paper investigates the problem of online optimization
of linear time-invariant (LTI) systems. The objective is

to design an output feedback controller to steer the inputs
and outputs of the system towards the solution trajectory of a
time-varying optimization problem (see Fig. 1). Such problems
correspond to scenarios where cost and constraints may change
over time to reflect dynamic performance objectives or simply
to take into account time-varying unknown disturbances en-
tering the system. This setting emerges in many engineering
applications, including power systems [1], [2], transportation
networks [3], [4], and communication systems [5].

The design of feedback controllers inspired from optimiza-
tion algorithms has received significant attention during the
last decade [1], [2], [6]–[13]. While most of the existing works
focus on the design of optimization-based controllers for static
problems [2], [6]–[9], [11], [12], or consider unconstrained
time-varying problems [10], [13], an open research question
is whether controllers can be synthesized to track solutions
trajectories of time-varying problems with input and output
constraints. Towards this direction, in this paper we consider
optimization problems with a time-varying strongly convex
cost, time-varying linear constraints on the output, and convex
constraints on the input. We leverage online saddle-point
dynamics for controller synthesis, and we establish the input-
to-state stability [14] property for the system resulting from
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Fig. 1. Online saddle-flow optimizer used as an output feedback
controller for LTI systems subject to unknown time-varying disturbances.
x denotes the system state, u is the control input, w denotes an
unknown and unmeasurable disturbance, and y is the system output.

interconnecting the controller with the dynamical system.
In particular, we leverage tools from singular perturbation
theory [15] to provide sufficient conditions on the tunable con-
troller parameters to guarantee tracking of the optimal solution
trajectory. We remark that, while [16]–[20] show that primal-
dual dynamics for have an exponential rate of convergence,
the main challenges here are to derive exponential stability
results for problems that are time-varying and where primal-
dual dynamics are interconnected with a dynamical system
subject to unknown disturbances (as in Fig. 1).

Related work. In the case of static plants (i.e., where
the dynamics of the system are infinitely fast), controllers
conceptually-inspired from continuous-time saddle-point dy-
namics (or flows) are studied in [6] for optimization problems
with time-invariant costs and constraints on the system outputs,
whereas more general saddle-point flows are studied in [7],
[12], [21], and [22, Sec. 3]. While the above works focus
on optimization problems with static plants, the authors in
[2], [8], [9], [11] prove that gradient-flow dynamics can be
used as feedback controllers for dynamical systems in the case
of unconstrained optimization problems with time-invariant
costs. The work [11] also extends these results to the case of
constraints on the system inputs by using projected gradient
flows. Constraints on the system outputs are considered in [1],
together with a controller inspired from primal-dual dynamics
based on the Moreau envelope. For time-varying unconstrained
optimization problems, prediction-correction algorithms are
used in [10]. Exponential rates of convergence were proved
for the first time in [13] for dynamic controllers based on
gradient flows and accelerated hybrid dynamics.

In terms of classes of plants, stable LTI systems are consid-
ered in [1], [2], [13], stable nonlinear systems in [11], input-
linearizable systems in [10], and input-affine nonlinear system
in [7]. Finally, [23], [24] consider online implementations of
optimization problems arising in model predictive control.
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Contributions. This work features three main contributions.
C1) We design an output feedback controller, inspired from
primal-dual dynamics, to regulate a dynamical system to the
solution trajectory of a time-varying constrained optimization
problem without requiring information or measurements of
the external disturbances entering the state equation. For
problems with equality constraints, the controller is designed
based on the classical Lagrangian function. Instead, for prob-
lems with inequality constraints, we employ a regularized
Lagrangian [25] to guarantee exponential convergence to an
approximate KKT trajectory. C2) We consider constraints on
the system input and we propose a novel projected primal-
dual feedback controller that guarantees constraint satisfaction.
Differently from using the classical projection on the tangent
cone, the proposed controller yields trajectories that are contin-
uously differentiable, which allows us to simplify the analysis
and to establish strong robustness guarantees. As a minor
contribution, we demonstrate that the proposed framework is
applicable to more-general LTI systems, including switched
systems with common quadratic Lyapunov functions. C3)
We apply the proposed controllers to solve a ramp metering
problem in traffic systems. We compare our results with
state-of-the-art controllers, including ALINEA [26] and model
predictive control, illustrating the advantages of our method.

We emphasize that, relative to [1]: (i) our sufficient condi-
tions for convergence are easier to check as they do not require
to numerically solve a linear matrix inequality, and (ii) our
framework does not require to compute the Moreau envelope.
Relative to [6], [7], [11], [12], we account for time variability
in the cost functions and in the disturbances, and we prove
exponential convergence. Relative to [20], [27], we investigate
saddle-point dynamics when coupled with a dynamical system.

Organization. We present in Section II our problem for-
mulation. Section III develops a projected primal-dual output
feedback controller for problems with input constraints and
output inequality constraints. Section IV considers problems
with output equality constraints. Section V presents numerical
results by focusing on a ramp metering problem in traffic
systems. Finally, Section VI summarizes our conclusions.

Notation. Given vectors x ∈ Rn and u ∈ Rm, we let
(x, u) ∈ Rn+m denote their concatenation. We use λ̄(M) and
λ(M) to denote the largest and smallest eigenvalues of the
symmetric matrix M , respectively. Finally, PΩ : Rσ → Rσ
denotes the Euclidean projection of z onto a closed convex
set Ω ⊆ Rσ , namely PΩ(z) := arg minv∈Ω ‖z − v‖.

II. PROBLEM FORMULATION

We consider LTI dynamical systems described by:

ẋ = Ax+Bu+ Ewt,

y = Cx+Dwt,
(1)

where x : R≥0 → Rn is the state, u : R≥0 → Rm is the
input, y : R≥0 → Rp is the output, and wt : R≥0 → Rq is
an unknown and time-varying exogenous input or disturbance
(the notation wt emphasizes the dependence on time). We
make the following stability assumption on the plant.

Assumption 1: The matrix A is Hurwitz stable, namely, for
any Qx ∈ Rn×n, Qx � 0, there exists Px ∈ Rn×n, P � 0,
such that ATPx + PxA = −Qx. �

Under Assumption 1, for fixed vectors ueq ∈ Rm, weq ∈ Rq ,
(1) has a unique stable equilibrium point xeq = −A−1(Bueq +
Eweq). Moreover, at equilibrium, the relationship between sys-
tem inputs and outputs is given by the algebraic relationship:

yeq = −CA−1B︸ ︷︷ ︸
:=G

ueq + (D − CA−1E)︸ ︷︷ ︸
:=H

weq. (2)

Given any time-varying and unknown exogenous input wt to
(1), we focus on the problem of regulating the plant to the
solutions of the following time-varying optimization problem:

(u∗t , y
∗
t ) ∈ arg min

ū∈U, ȳ∈Rp
φt(ū) + ψt(ȳ) (3a)

s.t. ȳ = Gū+Hwt (3b)
Kt ȳ ≤ et, (3c)

where for all t ∈ R≥0, φt : Rm → R, ψt : Rp → R.
Moreover, the maps t 7→ Kt ∈ Rr×p and t 7→ et ∈ Rr
describe a time-varying output constraint, while U ⊆ Rm
denotes a closed and convex set describing constraints on the
input. Problem (3) formalizes a regulation problem, where the
objective is to select an optimal input-output pair (u∗t , y

∗
t ) that

minimizes the cost specified by the loss functions φt and ψt.
We note that, because cost functions and constraints are time-
varying, the solutions of (3) are also time-varying, and thus
they characterize optimal trajectories. We impose the following
regularity assumptions on the temporal evolution of (3).

Assumption 2: The following properties hold.
(a) The functions u 7→ φt(u) and y 7→ ψt(y) are continu-

ously differentiable, uniformly in t ∈ R≥0.
(b) The function u 7→ φt(u) is µu-strongly convex, uni-

formly in t ∈ R≥0.
(c) There exist `u, `y > 0 such that for every u, u′ ∈ Rm

and y, y′ ∈ Rp, ‖∇φt(u) − ∇φt(u′)‖ ≤ `u‖u − u′‖,
‖∇ψt(y)−∇ψt(y′)‖≤ `y‖y−y′‖, uniformly in t ∈ R≥0.

(d) For all u ∈ Rm, y ∈ Rp, t 7→ ∇φt(u) and t 7→ ∇ψt(y)
are locally Lipschitz. �

Assumption 3: Problem (3) is feasible, and Slater’s condi-
tion [25, Assumption 1] holds for each t ∈ R≥0. �

Assumption 4: The following regularity properties hold.
(a) t 7→ wt is locally absolutely continuous.
(b) The functions t 7→ [Kt]ij and t 7→ [et]i i = 1, . . . , r,

j = 1, . . . , p, are locally Lipschitz, and there exists K ∈
R≥0, ē ∈ R≥0, such that ‖Kt‖ < K̄ and ‖et‖ < ē. �

Under Assumptions 2–3, the minimizer (u∗t , y
∗
t ) of (3) is

unique for every t ∈ R≥0 [25, Page 2], while Assumption 4
guarantees that inputs and constraints of (3) vary continuously
in time. The problem focus of this work is formalized next.

Problem 1: Design a dynamic output-feedback controller
for (1) such that the inputs and outputs of (1) converge
exponentially to the time-varying optimizer of (3), up to an
asymptotic error that accounts for the temporal variability of
both the optimizer and of the unknown disturbance. �
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III. CLOSED-LOOP PROJECTED SADDLE-POINT FLOWS

In this section, we present our controller synthesis method
and we establish explicit convergence error bounds.

A. Controller Synthesis
For controller synthesis, we employ a regularized La-

grangian function and we use a controller structure that relies
on a modification of the saddle-point flow dynamics [6].
Consider the following Lagrangian function for (3):

Lt(u, λ) := φt(u) + ψt(Gu+Hwt)

+ λT(Kt(Gu+Hwt)− et),

where λ ∈ Rr≥0 denotes the vector of dual variables. We define
the regularized Lagrangian function as follows:

Lν,t(u, λ) :=Lt(u, λ)− ν

2
‖λ‖2, (4)

where ν ∈ R>0. The regularization term −ν2‖λ‖
2 has the

effect of making the function Lν,t(u, λ) strongly concave in
λ, for any u ∈ Rm (see [25]). As a result, the regularization
term induces a saddle-point map that is strongly monotone,
uniformly in time [25]. On the other hand, the us of a
regularization term comes at the cost of perturbing the saddle
points. To this aim, we let

z∗t := (u∗t , λ
∗
t ), z∗ν,t : = (u∗ν,t, λ

∗
ν,t), (5)

denote any saddle-point of Lt(u, λ) and the saddle point of
Lν,t(u, λ), respectively. We quantify the error due to regular-
ization in the following result (adapted from [25, Prop. 3.1]).

Lemma 3.1: Let Assumptions 2-3 hold. For each t ∈ R≥0,
the following bound holds:

µu‖u∗ν,t − u∗t ‖2 +
ν

2
‖λ∗ν,t‖2 ≤

ν

2
‖λ∗t ‖2, (6)

where (u∗t , λ
∗
t ) and (u∗ν,t, λ

∗
ν,t) are as in (5). In particular,

inequality (6) implies that ‖u∗ν,t − u∗t ‖ ≤
√

ν
2µu
‖λ∗t ‖.

Remark 1: Lemma 3.1 shows that the error induced by the
regularization term is bounded by the norm of the optimal mul-
tipliers of the non-regularized problem. Consequently, when
the optimal solution is strictly inside the feasible set, then
λ∗t = 0 and the solution u∗ν,t coincides with u∗t . �

For controller synthesis we define the following functions,
which can be interpreted as modified gradients of (4):

Lu,t(u, y, λ) := ∇φt(u) +GT∇ψt(y) +GTKT
t λ, (7a)

Lλ,t(y, λ) := Kty − et − νλ, (7b)

where we note that, with respect to the gradients of Lν,t,
in Lu,t and Lλ,t the map Gu + Hwt has been replaced
by variable y. Using (7), we propose the following online
projected primal-dual controller applied to (1) (see Fig. 1):

εẋ = Ax+Bu+ Ewt, y = Cx+Dwt, (8a)

u̇ = PU
(
u− ηLu,t(u, y, λ)

)
− u, (8b)

λ̇ = PC
(
λ+ ηLλ,t(y, λ)

)
− λ, (8c)

where ε, η > 0 are plant and controller gains that induce
a time-scale separation between the plant and the controller,

Fig. 2. Comparison between trajectories of (9) and of the smooth
projection (8) for a 2-D vector field. Black arrows show the vector field.

v 7→ PΩ(v) denotes the Euclidean projection onto the closed
and convex set Ω, and C := Rr≥0. Three important observations
on (8b)-(8c) are in order. First, the structure of the controller
is inspired by first-order optimization methods, where the
algebraic map Gu+Hwt has been replaced by measurements
of the output y (thus making the algorithm “online”). Second,
the controller does not require any knowledge regarding the
exogenous disturbance wt. Third, even when the LTI system
and the saddle-flow dynamics are stable (in open-loop), the
interconnection (8) is not guaranteed to be stable without
further conditions on the controller parameters [15].

Remark 2: The choice of dualizing the constraint Kt(Gu+
Hwt) ≤ et allows us to naturally enforce constraints that are
time-varying and parametrized by the unknown vector wt. This
is because the steady-state relationship Gu+Hwt is replaced
by instantaneous feedback yt in (7b). The alternative route
of combining the constraint Kt(Gu + Hwt) ≤ et with the
convex constraint u ∈ U and recast both of them as a convex
constraint of the form u ∈ U ∩ {u : Kt(Gu + Hwt) ≤ et}
would result in an unknown constraint set, thus making the
computation of the projection not possible. �

Remark 3: Given a closed convex set Ω ⊆ Rσ and a vector
field F : Ω → Rσ , the standard projected dynamical system
[28] associated with F (v) is given by:

v̇ = lim
δ→0+

PΩ(v + δF (v))− v
δ

. (9)

We note that, in general, (9) is a discontinuous dynamical
system. On the contrary, the vector field in (8b)-(8c) is
Lipschitz continuous. For static optimization problems, similar
dynamics have been studied in e.g. [29], [30]. However, to the
best of our knowledge, (8b)-(8c) is the first projected output
feedback controller with Lipschitz-continuous vector fields. �

Fig. 2 provides a representative example of the trajecto-
ries produced by the considered projected output feedback
controllers, and compares them with those generated by a
controller with a discontinuous projection of the form (9).

B. Stability and Tracking Analysis
In this section we characterize the transient behavior of (8).

To this aim, in what follows we use the notation:

z := (u, λ), z̃ν := z − z∗ν,t, (10)

to denote the joint controller state and the controller tracking
error, where z∗ν,t is as in (5). Similarly, we use

ξ := (x, z), ξ∗ν,t := (x∗ν,t, z
∗
ν,t), ξ̃ν := ξ − ξ∗ν,t, (11)
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to denote the joint state of (8), the saddle-point of (4), with
x∗ν,t = −A−1(Bu∗ν,t + Hwt), and the tracking error, respec-
tively. We begin by characterizing the existence of solutions.

Lemma 3.2: Let Assumptions 2–4 hold. For each ξ0 =
(x0, u0, λ0) ∈ Rn+m+r, there exists a unique solution ξ(t) of
(8) with ξ(0) = ξ0. Moreover, ξ is continuously differentiable
and it is maximal, i.e., it is defined for all t ∈ R≥0.

Proof: This claim follows from the following facts: (i)
the projection mapping is globally Lipschitz [29], [30], (ii)
under Assumptions 2–4, the maps Lu,t(u, y, λ) and Lλ,t(y, λ)
are globally Lipschitz in (u, y, λ) uniformly in t, and locally
Lipschitz with respect to t, (iii) the composition of globally
Lipschitz functions is globally Lipschitz, and (iv) under As-
sumption 4(a) the plant dynamics are locally Lipschitz in t.
Lemma 3.2 guarantees that the trajectories of (8) are contin-
uously differentiable (see Fig. 2). Moreover, since trajectories
are maximal, Lemma 3.2 guarantees that trajectories have no
finite escape time. The latter property is leveraged to prove
the following result, which establishes attractivity and forward
invariance of the feasible set (see [30, Thm 3.2]).

Lemma 3.3: Let Assumptions 2–4 hold. If u(t0) 6∈ U (resp.
λ(t0) 6∈ C) for some t0 ∈ R≥0, then the trajectory u(t) (resp.
λ(t)) approaches exponentially the set U (resp. the set C) for
t > t0. If u(t0) ∈ U (resp. λ(t0) ∈ C) for some t0 ∈ R≥0,
then u(t) ∈ U (resp. λ(t) ∈ C) for all t ≥ t0.

Remark 4: Lemma 3.3 guarantees that, if u(t0) ∈ U , then
the constraint u(t) ∈ U is satisfied for all t ≥ t0. In contrast,
because the constraint (3c) is dualized in (4), the inequality
Kty(t) ≤ et is guaranteed to hold only asymptotically, even
when Kty(t0) ≤ et for some t0 ∈ R≥0. �

The following lemma establishes a relationship between
the saddle-point of the regularized Lagrangian (4) and the
equilibria of (8). The proof is omitted due to space limitations.

Lemma 3.4: For any t ∈ R≥0 and for any fixed wt ∈ Rq ,
let ξeq := (xeq, ueq, λeq) denote an equilibrium of (8). If
Assumptions 1-4 hold, then ξeq is unique and it coincides with
the unique saddle-point of (4), as defined by (11).

To characterize the transient behavior of (8), we first show
that, when the dynamics of the plant (1) are infinitely fast,
the controller (8b)-(8c) converges exponentially to the saddle-
point of the regularized Lagrangian, modulo an asymptotic
error that depends on the time-variability of the optimizer z∗t .

Proposition 3.5: Let Assumptions 1-4 hold, let µ :=
min{µu, ν}, ` =:

√
2(K + max{`u + ‖G‖2`y, ν}). If ε = 0

and the controller gain satisfies η < 4µ
`2 , then for any t0 ∈ R≥0:

‖z̃ν(t)‖ ≤ e− 1
2ρz(t−t0)‖z̃ν(t0)‖+

2

ρz
ess sup

τ≥t0
‖ż∗ν,τ‖, (12)

for all t ≥ t0, where ρz = η(µ − η`2

4 ), and z̃ν denotes the
controller tracking error as in (10).

The proof of this result is postponed to Appendix A.
Proposition 3.5 guarantees that (8) is input-to-state stable [14]
with respect to the time derivative of the optimizer (here, ż∗ν,τ
denotes the distributional derivative [31] of z∗ν,τ , see Remark
5). Notice that the rate of convergence ρz can be tuned by
properly tuning the controller gain η.

Remark 5: We note that, under Assumptions 1–4, the
saddle-point trajectory t 7→ z∗ν,t is locally Lipschitz and hence
absolutely continuous on compact sets. Thus, the essential
supremum of ‖ż∗ν,τ‖ is well defined. To see this, notice that,
z∗ν,τ solves the following Variational Inequality:

(u− u∗ν,t)(∇ψt(u∗ν,t) +GT∇φt(Gu∗ν,t +Hwt) +GTKT
t λ
∗
ν,t) ≥ 0,

(λ− λ∗ν,t)(Kt(Gu∗ν,t +Hwt)− et − νλ∗ν,t) ≥ 0,

which holds for all u ∈ U , λ ∈ C, and for all t ∈ R≥0.
It follows from Assumptions 1-4 and from our regularization
method (4) that the mapping defining the above variational
inequality is locally Lipschitz in (u, λ), and thus [32, Cor.
2B.3] guarantees that z∗ν,τ is locally Lipschitz. Hence, by
Rademacher’s theorem [33, Thm. 23.2], t 7→ z∗ν,τ is differ-
entiable almost everywhere (a.e.). �

Next, we provide a sufficient condition on the time-scale
separation between the plant (8a) and the feedback controller
(8b)-(8c) to ensure convergence to the optimal trajectory.

Theorem 3.6: Let Assumptions 1-4 hold, let ` =:
√

2(K +
max{`u + ‖G‖2`y, ν}) and µ := min{µu, ν}. If

η <
4µ

`2
and ε <

ρzλ(Qx)

4η‖PxA−1B‖Ψ
, (13)

where ρz = η(µ− η`2

4 ), Ψ = ρz`y‖C‖‖G‖+
√

2‖C‖(`y‖G‖+
K̄)k0, k0 = max{2 + η(`u + `y‖G‖2), ‖G‖K̄}, and Px, Qx
are as in Assumption 1, then for any t0 ∈ R≥0:

‖ξ̃ν(t)‖ ≤
√
κ‖ξ̃ν(t0)‖e− 1

2ρξ(t−t0) +
2

ρz
ess sup

τ≥t0
‖ż∗ν,τ‖

+
4ε‖PA−1E‖

λ(Qx)
ess sup

τ≥t0
‖ẇτ‖, (14)

for all t ≥ t0, where ρξ = 1
2 min

{
2ρz,

1
4ε
λ(Qx)

λ̄(Px)

}
, κ =

max{ 1
2 , λ̄(Px)}/min{ 1

2 , λ(Px)}, and ξ̃ν is as in (11).
The proof of this result is presented in Appendix A. Theo-
rem 3.6 shows that, under a sufficient separation between the
time scales of the plant and of the controller, the trajectories of
(8) globally exponentially converge to ξ∗ν,t (which we recall is
the trajectory of the unique saddle-point of the regularized
Lagrangian), modulo an asymptotic error that depends on
the time-variability of the optimizer and of the exogenous
disturbance. Precisely, Theorem 3.6 guarantees that (8) is
input-to-state stable [14] with respect to ż∗ν,τ and ẇτ , where
ẇτ denotes the distributional derivative [31] of wτ (notice that,
under Assumption 4(a), τ 7→ wτ is differentiable a.e.).

Two important observations are in order. First, the upper
bound for ε is an increasing function of λ(Qx) and ρz , that are
interpreted as the convergence rate of the open-loop plant and
of the controller with ε = 0, respectively. Moreover, the bound
is a decreasing function of ‖PxA−1B‖. Since ‖A−1‖ → 0
when the eigenvalues of A are approaching the open right
complex plane, the latter term takes into account the margin
of stability of the open-loop plant. Second, we note that the
rate of convergence ρξ is governed by the quantities ρz and ε
(as well as matrices Px and Qx), which are interpreted as the
rate of convergence of the controller with ε = 0 and the rate
of convergence of the open-loop plant, respectively.



BIANCHIN et. al.: TIME-VARYING OPTIMIZATION OF LTI SYSTEMS VIA PROJECTED PRIMAL-DUAL GRADIENT FLOWS 5

Remark 6: The bound (14) depends on two main quantities:
ess supτ≥t0 ‖ż

∗
ν,τ‖, which captures the time-variability of z∗ν,t,

and ess supτ≥t0 ‖ẇτ‖, which captures the shift in the equilib-
rium of (1) induced by the time-varying exogenous input wt.
Notably, when the optimization problem (3) is time-invariant
and wt is constant, (14) simplifies to an exponential stability
result, of the form ‖ξ̃ν(t)‖ ≤

√
κ‖ξ̃ν(t0)‖e− 1

2ρξ(t−t0). �

C. Extensions
Our analysis suggests that the results can be extended in

different directions. Here, we discuss two possible extensions.
1) Switched LTI Plants with Common Quadratic Lyapunov

Functions: Theorem 3.6 can be extended to consider switched
LTI plants of the form:

ẋ = Aσx+Bσu+ Eσwt,

y = Cσx+Dσwt,
(15)

where σ : R≥0 → Q is a switching signal taking values in
the finite set Q. When all modes of (15) have a common
equilibrium point x∗eq = A−1

σ Bσu + A−1
σ Eσwt for all values

of σ and admit a common quadratic Lyapunov function V , the
same construction for the Lyapunov function (42) can be used
to establish exponential ISS of the closed-loop system. Since
in this case G and H in (2) are also common across the modes,
the bounds in Theorem 3.6 still hold unchanged. This scenario
emerges in applications where mode-dependent inner feedback
controllers are implemented to stabilize each mode of the plant
(so that all modes share a common equilibrium point [34]),
but different controllers lead to different closed-loop transient
performance. Note, however, that having a stable autonomous
switched LTI system does not necessarily imply the exis-
tence of a common quadratic Lyapunov function. Instead, it
implies the existence of a common Lyapunov function that
is homogeneous of degree 2, e.g., piece-wise quadratic [35].
When matrices Cσ and Dσ are mode-dependent, Theorem 3.6
can also be extended, provided that the pair (G,H) remains
common across modes and that (13) and (14) are modified to
account for the worse-case bound among all modes.

2) Switched Plants with Average Dwell-Time Constraints:
When the switched system (15) does not admit a common
Lyapunov function, it is still possible to obtain a result of the
form (14), provided the switching is slow “on the average”. In
particular, if the switching signal σ satisfies an average dwell-
time constrain of the form

Nσ(t, τ) ≤ η0(t− τ) +N0, (16)

where Nσ(t, τ) denotes the number of discontinuities of σ in
the open interval (τ, t), η0 ∈ R>0 denotes the switching signal
dwell-time, and N0 ≥ 0 is a chatter bound that guarantees that
the number of consecutive switches is finite at every time.
In this case, it is possible to choose the controller gain η
sufficiently small such that the exponential stability property
of the switched system is preserved, and the same construction
(42) carries over. This observation follows directly from the
Lyapunov construction presented in [13], which permits the
derivation of a result similar to Proposition 3.8 using quadratic
Lyapunov functions. Characterizations of the conditions that

emerge between η and the time-scale separation parameters
(ε, η) can also be explicitly derived as in [13]. However, unlike
the results of [13], the results of this paper allow to consider
online optimization problems with constraints. To the best
our knowledge, similar results for online optimization with
constraints of switched systems have not been studied before.

IV. ONLINE PRIMAL-DUAL GRADIENT FLOW

In this section, we consider the problem of regulating (1)
to the solution of the following optimization problem:

(u∗t , y
∗
t ) := arg min

ū∈Rm, ȳ∈Rp
φt(ū) + ψt(ȳ), (17a)

s.t. ȳ = Gū+Hwt, Ktȳ = et, (17b)

which contains only equality constraints on the system out-
puts. In contrast with the method proposed in Section III,
which guarantees tracking of an approximate optimizer, in
this section we will show that, when the optimization problem
includes only equality constraints, we can guarantee tracking
of the exact optimizer (this behavior is achieved without
resorting to a regularized Lagrangian).

A. Controller Synthesis
We begin by imposing the following assumption.
Assumption 5: The columns of KtG are linearly inde-

pendent and there exists k, k̄ ∈ R>0 such that kI �
KtGG

TKT
t � k̄I for all t. �

Since problem (17) contains only equality constraints, As-
sumption 5 is sufficient to guarantee uniqueness of the optimal
multipliers [16]. In what follows, for notation simplicity we
will state the results by considering a time-invariant constraint
matrix K. The stated results directly extend to the case of
time-varying matrices, as noted in pertinent remarks.

We consider the following Lagrangian function for (17):

Lt(u, λ) = φt(u) + ψt(Gu+Hwt) + λT(K(Gu+Hwt)− et),

where λ ∈ Rr≥0 is the vector of dual variables. Under
Assumptions 2 and 5, the unique minimizer (u∗t , y

∗
t ) of (17)

solves the following Karush–Kuhn–Tucker (KKT) conditions:

0 = ∇φt(u∗t ) +GT∇ψt(Gu∗t +Hwt) +GTKTλ∗t ,

0 = K(Gu∗t +Hwt)− et. (18)

To synthesize a controller, we define the following functions,
which can be interpreted as modified gradients of the La-
grangian function:

Lu,t(u, y, λ) := ∇φ(u) +GT∇ψ(y) +GTKTλ, (19a)
Lλ,t(y) := Ky − e, (19b)

where (similarly to (7)) with respect to the gradients of
Lt(u, λ), the steady-state map Gu+Hwt has been replaced by
the variable y. We then consider the following online primal-
dual gradient controller applied to the plant (1):

εẋ = Ax+Bu+ Ewt, y = Cx+Dwt, (20a)
u̇ = −ηuLu,t(u, y, λ), (20b)

λ̇ = ηλLλ,t(y), (20c)
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where ε, ηu, ηλ ∈ R>0 are plant and controller gains. Similarly
to the projected controller in Section III, the controller (20b)–
(20c) uses output-feedback from the plant, and does not
require any knowledge on wt. In the following lemma, we
relate the time-varying equilibria of (20) with the solution of
(17). To this aim, in what follows we use the notation:

z := (u, λ), z∗t := (u∗t , λ
∗
t ), z̃ := z − z∗t , (21)

to denote the controller state, the saddle-point of Lt(u, λ), and
the controller tracking error, respectively. Similarly, we use

ξ := (x, z), ξ∗t := (x∗t , z
∗
t ), ξ̃ = ξ − ξ∗ν,t, (22)

to denote the joint state of (20), the saddle-point of Lt(u, λ),
with x∗t = −A−1(Bu∗ν,t + Hwt), and the joint plant and
controller tracking error, respectively.

Lemma 4.1: For any fixed wt ∈ Rq , let ξeq :=
(xeq, ueq, λeq) denote an equilibrium of (20). If Assumptions
1–5 hold, then ξeq is unique and it coincides with the unique
solution of (18).

The proof of this claim is omitted due to space limita-
tions. Differently from Lemma 3.4 that guarantees equivalence
between the equilibrium point of the controlled system and
an approximate optimizer (defined as the saddle point of
the augmented Lagrangian), Lemma 4.1 establishes that the
equilibrium point of (20) coincides with the exact optimizer
(namely, the saddle point of the (non-augmented) Lagrangian).

B. Stability and Tracking Analysis
We now investigate the transient behavior of the controlled

system (20). We begin by showing that, when (1) is infinitely
fast, (20) converges exponentially to the solution of (3).

Proposition 4.2: Let Assumptions 1–5 hold, let

Pz :=

[
`I GTKT

KG `ηuηλ I

]
, (23)

where ` := `u+‖G‖2`y . If ε = 0 and the controller parameters
are such that ηu > 4k̄

`µηλ, then for any t0 ∈ R≥0:

‖z̃(t)‖ ≤
√
κ‖z̃(t0)‖e− 1

2ρz(t−t0) +
4‖Pz‖

√
κ

λ(Pz)
ess sup

τ≥t0
‖ż∗τ‖,

(24)

for all t ≥ t0, ρz := 1
2 min{ηλk/`, ηu µ2 }, κ = λ̄(Pz)/λ(Pz),

where z̃ denotes the controller tracking error as in (21).
The proof of this result is presented in Appendix B. Propo-

sition 4.2 guarantees that (8) is input-to-state stable [14] with
respect to ż∗τ . Two comments are in order. First, differently
from [16, Theorem 1], Proposition 4.2 shows that ρz can be
made arbitrarily large by properly tuning the parameters ηu
and ηλ. Second, we note that the tracking result (24) is in
the spirit of [20, Section 6]; however, in [20] the primal-dual
dynamics are assumed to be differentiable with respect to t (in
contrast, we require milder conditions of absolute continuity).

Remark 7: When the matrix K is time-varying, then Pz
in (23) and the coefficient κ in (24) are also time-varying. In
this case, the result (24) extends by replacing κ with supτ κτ
and the coefficient 4‖Pz‖

√
κ

λ(Pz) with supτ
4‖Pz,τ‖

√
κτ

λ(Pz,τ ) . �

(a) (b)

Fig. 3. (a) Portion of highway system in Los Angeles, CA, USA. (b)
Network schematic. The network models |L| = 64 traffic highways and
links colored in green represent controllable on-ramps.

We now present sufficient conditions on the time-scale
separation between the plant and controller dynamics that
result in exponential stability properties of the system (20).

Theorem 4.3: (Stability and Tracking of (20)) Let Assump-
tions 1–5 hold and let Px, Qx be as in Assumption 1. Suppose
that ε satisfies

ε <
ρzλ(Px)λ(Pz)

16σ1σ2 + 4ρzλ(Pz)σ3
, (25)

where Pz , ρz are as in Proposition 4.2, and

σ1 := 2ηu`y‖C‖‖G‖(`+ ‖KG‖) + 2ηλ‖GTKTKC‖+ 2`ηu‖KC‖,
σ2 := 2ηu`‖PxA−1B‖+ 2ηu‖PxA−1GGTKT‖,
σ3 := 2ηu`y‖C‖‖PxA−1BGT‖.

Then, for any t0 ∈ R≥0, the tracking error (22) satisfies:

‖ξ̃(t)‖ ≤
√
κ‖ξ̃(t0)‖e− 1

2ρξ(t−t0) +
4‖Pz‖

√
κ

ρzλ(Pz)
ess sup

τ≥t0
‖ż∗τ‖

+
4‖PxA−1E‖

√
κ

λ(Qx)
ess sup

τ≥t0
‖ẇτ‖, (26)

for all t ≥ t0, κ = max{λ̄(Px), λ̄(Pz)}/min{λ(Px), λ(Pz)},

ρξ =
1

4
min

{
ρz
λ(Pz)

λ̄(Pz)
, ε−1λ(Qx)

λ̄(Px)

}
. (27)

The proof of this result is postponed to Appendix B. Precisely,
Theorem 4.3 guarantees that (8) is input-to-state stable [14]
with respect to ż∗ν,τ and ẇτ . The bound on ε is an increasing
function of λ(Px) and ρzλ(Pz), which are the convergence
rates of the open-loop plant and of the controller with ε = 0,
respectively. Moreover, we note that the rate of convergence ρξ
is governed by the quantities ρz and ε (as well as matrices Px,
Qx, and Pz), which are interpreted as the rates of convergence
of the controller with ε = 0 and the rate of convergence of
the open-loop plant. Finally, we note that the bound (26) can
be readily extended to account for time-varying matrices Kt

by adopting a reasoning similar to that in Remark 7.

V. APPLICATION TO RAMP METERING CONTROL

In this section, we apply the proposed framework to the
control of on-ramps in a network of traffic highways1.

1The code used in our simulations is publicly available at https://
github.com/gianlucaBi/onlinePrimalDual_rampMetering.
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xi

xjam
ixcrt,d

i xcrt,s
i

dmax
i

smax
i

si(xi)

di(xi)

(a)

Variable Description Value Unit
ϕi free-flow speed 4 km/min
βi back propag. speed 4 km/min
dmax
i demand saturation 120 veh/min
smax
i supply saturation 120 veh/h
x

jam
i jam density 60 veh/km

xcrt,d
i critical density of di 30 veh/km
xcrt,s
i critical density of si 30 veh/km
– avg. numb. of lanes 4 none

(b)

Fig. 4. (a) Demand and supply functions. (b) Parameters description.

To describe the traffic evolution, we adopt a continuous-
time version of the Cell-Transmission Model (CTM) [36]. We
model a traffic network as a directed graph G = (V,L), where
V models the set of traffic junctions (nodes) and L ⊆ V × V
models the set of highways (links). We partition the set of
links into three disjoint sets: L = Lon ∪ Loff ∪ Lin, where
Lon denotes the set of on-ramps where vehicles can enter the
network, Loff denotes the set of off-ramps where vehicles can
exit the network, and Lin denotes the set of internal links.

For i ∈ L, we denote by i+ the set of downstream links,
and by i− the set of upstream links. For all i ∈ L, we let
xi : R≥0 → R≥0 be the density of vehicle in the link. We
model the dynamics of all links i ∈ Lin according to the CTM
with first-in-first-out (FIFO) allocation policy [36]:

ẋi = −f out
i (x) + f in

i (x),

f out
i (x) = min{di(xi), {sj(xj)/rij}j∈i+},
di(xi) = min{ϕixi, dmax

i }, si(xi) = min{βi(xjam
i − xi), s

max
i },

f in
i (x) =

∑
j∈i−

f out
j (x), (28)

where di : R≥0 → R≥0 and si : R≥0 → R≥0 are the link
demand and supply functions, respectively, rij ∈ [0, 1] is the
routing ratio from i to j, with

∑
j rij = 1, ϕi > 0. In our

simulations, we used identical and uniform routing ratios at
each junction. We refer to Fig. 3 for an illustration of the
network topology used in our simulations, and to Fig. 4 for
a description of the parameters that characterize demand and
supply. For simplicity, all links are assumed to be identical.
The dynamics of on-ramps and off-ramps coincide with those
of (28), where inflow and outflow functions are replaced by:

f in
i (x) := ui, if i ∈ Lon,

f out
i (x) := di(xi), if i ∈ Loff, (29)

We assume the availability of measurements that provide a
noisy estimate of the traffic densities in the highways: yi =
xi + wi, for all i ∈ L, where wi : R≥0 → R. Finally, we
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Fig. 5. Plant without noise. (a) Network throughput Φ(x). (b) Constraint
violation computed as ‖y −min{xcrt,d, xcrt,s}‖.

define the network throughput as the sum of all exit flows from
the off-ramps Φ(x) :=

∑
i∈Loff

f out
i (x). The on-ramp metering

problem is formalized as follows.
Problem 2: (Ramp Metering) Given a vector of on-ramp

flow demands uref ∈ Rm, select the set of metered flows on
the on-ramps (u1, . . . , um) such that u and x minimize the cost
(u−uref)TQu(u−uref)−Φ(x), subject to the constraints (28)-
(29), where Qu ∈ Rn×n is symmetric and positive definite. �

We compare three control strategies, described next.
1) Online Primal-Dual Controller: To solve Problem 2, we

assume that for all i ∈ L, the inequality dmax
i ≤ smax

j holds for
all j ∈ i+. Under this assumption, if the network is operated
in a regime in which xi ≤ min{xcrt,d

i , xcrt,s
i } for all i ∈ L

(i.e., all highways operate in the free-flow regime), then the
dynamics (28) simplify to the following linear model:

ẋi = −f out
i (x) + f in

i (x),

f out
i (x) = ϕixi, f in

i (x) =
∑
j∈i−

f out
j (x). (30)

In vector form, (30) can be written as ẋ = (RT− I)Fx+Bu,
and y = x+w, where R := [rij ], and F := diag(ϕ1, . . . , ϕn).
Notice that matrix (RT−I)F is Hurwitz (see e.g. [3, Theorem
1]). Building on this, we propose the following problem:

min
u,y

(u− uref)TQu(u− uref)− Φ(y),

s.t. y = −((RT − I)F )−1Bu+ w,

ui ≥ 0, yi ≤ min{xcrt,d
i , xcrt,s

i },∀i ∈ L. (31)

The optimization problem (31) formalizes the objectives of the
ramp metering problem, while guaranteeing that all highways
are operated in the free-flow regime.

2) Distributed Reactive Metering using ALINEA: ALINEA
[26] is a distributed metering strategy that has received con-
siderable interest thanks to its simplicity of implementation
and to its effectiveness. Given a controllable on-ramp i ∈ Lin,
ALINEA is a reactive controller that takes the form u̇i =∑
j∈i+ Kj(x̂j − xj), where x̂i ∈ R≥0 is a desired setpoint

and Kj are tunable controller gains. In our simulations, we
let the setpoint be x̂i = min{xcrt,d

i , xcrt,s
i }.

3) Model Predictive Control (MPC): MPC is a receding-
horizon control algorithm that computes an optimal control
input based on a prediction of the system’s future trajectory
according to the system’s dynamics. We consider a formulation
of MPC where the optimization problem is solved every
Ts ∈ R>0 time instants with prediction horizon Tp ∈ R>0,
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(a) (b)

Fig. 6. Plant subject to random noise (green line shows noise mean). (a)
Throughput Φ(x). (b) Constraint violation: ‖y −min{xcrt,d, xcrt,s}‖.

with Tp > Ts. In our simulations, we discretized the dynamics
with Tp = 200 min, Ts = 50 min, and we used the cost
function

∑Tp
k=0(u(k)− uref)TQu(u(k)− uref)− Φ(x(k)).

Discussion: Fig. 5 compares the performance of the three
controllers in the noiseless case (i.e., where wi = 0 at all
times for all i ∈ L). The simulation demonstrates that our
method and MPC achieve the largest network throughput,
outperforming ALINEA. Moreover, the constraint violation
plot (right figure) shows that both our method and MPC are
able to maintain the network in a regime near the free-flow
conditions. Notice that, while for MPC this regime is precisely
modeled through the prediction equations, the primal-dual
controller maintains the system in such regime thanks to
the constraints in (31). Finally, although ALINEA largely
outperforms absence of on-ramp metering control, it critically
suffers from its distributed architecture, making it suboptimal.

Fig. 6 compares the performance of our controller with
that of MPC in a scenario with time-varying output distur-
bance (depicted in green). The simulation suggests that there
are two main benefits in adopting primal-dual controllers as
compared to MPC: (i) because the primal-dual controller uses
instantaneous feedback from the system, it can react faster to
unmodeled dynamics or time-varying disturbances, and (ii) in
contrast with MPC where an optimization problem must be
solved to convergence at the beginning of every time-window
[0, Ts], the primal-dual controller performs only one gradient-
like step at every time.

VI. CONCLUSIONS

We have leveraged online primal-dual dynamics to develop
an output controller that regulates an LTI plant to the solution
of a time-varying optimization problem. For optimization
problems with input constraints and output inequality con-
straints, we leveraged an augmented Lagrangian function and
established exponential convergence to an approximate solu-
tion of the optimization problem. For optimization problems
with output equality constraints, we established exponential
convergence to an interval around the exact optimal solution
trajectory. Our convergence bounds capture the time-variability
of the optimal solution due to time-varying costs and con-
straints as well as the variation of the exogenous input.

APPENDIX A
ANALYSIS OF PROJECTED SADDLE-POINT CONTROLLER

In this section, we present the proof of Proposition 3.5 and
Theorem 3.6. For the subsequent analysis, it is convenient to
define the following time-varying map:

Ft(z) :=

[
∇φt(u) +GT∇ψt(Gu+Hwt) +GTKT

t λ
− (Kt(Gu+Hwt)− e− νλ)

]
. (32)

1) Proof of Proposition 3.5: We consider only the case where
the ess-sup in (12) is bounded since otherwise the bound holds
trivially. Recall that z := (u, λ). We note that, when ε = 0,
the dynamics (8) can be rewritten as:

ż = PΩ

(
z − ηFt(z)

)
− z, (33)

where Ω := U × C. Proposition 3.5 leverages this structure as
well as four auxiliary lemmas. The following lemma follows
directly from [37, Lemma 6] and [18].

Lemma A.1: Let Assumption 2 hold. Then, for any t ≥ 0,
u, u′ ∈ Rm and y, y′ ∈ Rp, there exist symmetric matrices
Tu,t ∈ Rm×m and Ty,t ∈ Rp×p, which satisfy µuI � Tu,t �
`uI and 0 � Ty,t � `yI , such that ∇φt(u) − ∇φt(u′) =
Tu,t(u− u′) and ∇ψt(y)−∇ψt(y′) = Ty,t(y − y′).

Although the time-varying matrices Tu,t and Ty,t are func-
tions of u, u′ and y, y′, respectively, this result allows us to
leverage the relationships µuI � Tu,t � `uI and 0 � Ty,t �
`yI . Next, we show that Ft(z) is strongly monotone and
globally Lipschitz continuous, uniformly in t.

Lemma A.2: Let Assumption 2 hold. Then, (32) satisfies:

(z − z′)T(Ft(z)− Ft(z′)) ≥ min{µu, ν}‖z − z′‖2, (34)

for all z, z′ ∈ Rm+r, and all t ∈ R≥0.
Proof: By expanding the left-hand side of (34), and by

using Lemma A.1:

(z − z′)T(Ft(z)− Ft(z′)) = (u− u′)T
(
∇φt(u)−∇φt(u′)

)
+ (u− u′)TGT(∇ψt(Gu+Hwt)−∇ψt(Gu′ +Hwt))

+ ν‖λ− λ′‖2

= (u− u′)T(Tu,t +GTTy,tG)(u− u′) + ν‖λ− λ′‖2

≥ µu‖u− u′‖2 + ν‖λ− λ′‖2 ≥ min{µu, ν}‖z − z′‖2,

which proves the claim.
Lemma A.3: Let Assumptions 2 and 3 hold. Then, the

mapping (32) satisfies:

‖Ft(z)− Ft(z′)‖ ≤ `‖z − z′‖, (35)

for all z, z′ ∈ Rm+r, and all t ∈ R≥0, where ` =:√
2 max{`u + `y‖G‖2 + ‖G‖K, ν +K‖G‖}).

Proof: Using (7), we directly obtain the bounds:

‖Lu,t(u,Gu+Hw, λ)− Lu,t(u′, Gu′ +Hw, λ′)‖
≤ (`u + `y‖G‖2)‖u− u′‖+K‖G‖‖λ− λ′‖,

‖Lλ,t(Gu+Hw, λ)− Lλ,t(Gu′ +Hw, λ′)‖
≤ K‖G‖‖u− u′‖+ ν‖λ− λ′‖.

Finally, the claim follows by using the relationship: ‖u−u′‖+
‖λ− λ′‖ ≤

√
2‖z − z′‖.
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The following result establishes that the existence of an ISS-
Lyapunov function with a particular structure guarantees input-
to-state stability with exponential convergence rate, and it is
a particular case of [15, Ch. 4] (see also [27]).

Lemma A.4: Consider the system ẋ = f(t, x, u), where f :
R≥0 × Rn × Rm → Rn is locally Lipschitz in t, x, and u,
and t 7→ u(t) is measurable and essentially bounded. If there
exists a smooth V : R≥0 × Rn → R s.t.:

a‖x‖2 ≤ V (t, x) ≤ ā‖x‖2, (36a)
d

dt
V (t, x) ≤ −bV (t, x), ∀‖x‖ ≥ b0 > 0, (36b)

hold a.e., then, for all t0 ∈ R≥0 and x(t0) ∈ Rn:

‖x(t)‖ ≤
√
ā/a(‖x(t0)‖e− 1

2 b(t−t0) + b0), ∀t ≥ t0. (37)

Using the results above, we now present the proof of
Proposition 3.5. In particular, we show that the function
V (z̃ν) = 1

2‖z̃ν‖
2 satisfies the assumptions of Lemma A.4,

where we recall that z̃ν is as in (10). In what follows, we let
ẑ := PΩ(z − ηFt(z)). By expanding the time-derivative:

d

dt
V (z̃ν) = −z̃Tν (z − ẑ)− z̃Tν ż∗ν,t, (38)

where we recall that ż∗ν,t exists a.e. (see Remark 5). Next, we
recall that the projection operator is the unique vector PΩ(z)
that satisfies:

(v′ − PΩ(v))T(PΩ(v)− v) ≥ 0, for all v′ ∈ Ω. (39)

By using (39) with v′ = z∗ν,t and v = z − ηFt(z), we obtain
the relationship (z̃ν + ηFt(z))

T(z − ẑ) ≥ ‖z − ẑ‖2 + η(z −
z∗ν,t)

TFt(z). Moreover, by recalling that ηFt(z)T(z− z∗) ≥ 0
(see Remark 5), the first term in (38) satisfies:

−z̃Tν (z − ẑ) ≤ −‖z − ẑ‖2 − η(ẑ − z∗ν,t)TFt(z)
= −‖z − ẑ‖2 − η(ẑ − z∗ν,t)T(Ft(z)− Ft(z∗ν,t))
− η(ẑ − z∗ν,t)TFt(z∗ν,t)

= −‖z − ẑ‖2 − ηz̃Tν (Ft(z)− Ft(z∗ν,t))
+ η(z − ẑ)T(Ft(z)− Ft(z∗ν,t))

≤ −‖z − ẑ‖2 + η`‖z − ẑ‖‖z̃ν‖ − ηµ‖z̃ν‖2

≤ −η
(
µ− η`2/4

)
‖z̃ν‖2, (40)

where the first equality follows by adding and subtracting
η(ẑ − z∗ν,t)

TFt(z
∗
ν,t), the second equality follows by using

ẑ−z∗ν,t = (z−z∗ν,t)−(z−ẑ) and by using (ẑν−z∗ν,t)TFt(z) ≥
0, the fourth inequality follows from Lemmas A.2 and A.3,
and the last inequality follows by using the relationship 2ab ≤
a2 + b2 with a = ‖z − ẑ‖ and b = 1

2η`‖z̃ν‖. By substituting
into (38) we obtain:

d

dt
V (z̃ν) ≤ −η(µ− η`2

4
)‖z̃ν‖2 + ‖z̃ν‖‖ż∗ν,t‖

≤ −η
2

(µ− η`2

4
)‖z̃ν‖2,

where the last inequality holds if ‖z̃ν‖ ≥
2

η(µ−η`2/4) ess supτ≥t0 ‖ż
∗
ν,τ‖. Finally, the claim follows by

application of Lemma A.4 with ā = a = 1
2 , b = (µ− η`2/4),

and b0 = 2
η(µ−η`2/4) ess supτ≥t0 ‖ż

∗
ν,τ‖. �

2) Proof of Theorem 3.6: We consider only cases where
the ess-sup in (14) are bounded, otherwise the bound holds
trivially. Our proof leverages singular perturbation arguments
inspired by [15, Ch. 11]. We first perform a change of variables
for (8). Let z := (u, λ), x̃ := x+A−1Bu+A−1Ewt, and

Ft(z, x̃) :=

[
Lu,t(u,Cx̃+Gu+Hwt, λ)
Lλ,t(Cx̃+Gu+Hwt, λ)

]
.

Then, the dynamics (8) can be rewritten as:

ε ˙̃x = Ax̃+ εA−1BSż +A−1Eẇt,

ż = PΩ(z − ηFt(z, x̃))− z, (41)

where S = [Im, 0], and Ω = U × C. Moreover, let b :=
η‖C‖(`y‖G‖+ K̄), and g := 2

√
2‖PA−1B‖k0. To prove the

theorem’s statement, we will show that

U(z̃ν , x̃) := (1− θ)V (z̃ν) + θW (z), (42)

where V (z̃ν) = 1
2‖z(t) − z

∗
ν,t‖2, W (z) = x̃TPxx̃, and θ =

b/(b+ g) satisfies the assumptions of Lemma A.4. We recall
that z̃ν := z − z∗ν,t and ẑ := PΩ(z − ηFt(z, x̃)). The time-
derivative of V (t, z) along the trajectory of (41) reads:

d

dt
V (z̃ν) = z̃Tν (ẑ − z)− z̃Tν ż∗ν,t (43)

almost everywhere. The first term satisfies:

z̃Tν (ẑ − z) = z̃Tν (PΩ(z − ηFt(z, 0))− z)
+ z̃Tν (PΩ(z − ηFt(z, x̃))− PΩ(z − ηFt(z, 0)))

≤ z̃Tν (PΩ(z − ηFt(z, 0))− z)
+ η‖z̃ν‖‖Ft(z, x̃)− Ft(z, 0)‖

≤ −η(µ− η`2

4
)‖z̃ν‖2 + η‖z̃ν‖‖Ft(z, x̃)− Ft(z, 0))‖,

where the first inequality follows from the non-expansiveness
of the projection operator, namely:

z̃Tν (PΩ(z − ηFt(z, x̃))− PΩ(z − ηFt(z, 0)))

≤ ‖z̃ν‖‖PΩ(z − ηFt(z, x̃))− PΩ(z − ηFt(z, 0))‖
≤ ‖z̃ν‖‖(z − ηFt(z, x̃))− (z − ηFt(z, 0))‖,

and the second inequality follows from (40). By expanding:

‖Ft(z, x̃)− Ft(z, 0)‖

≤
∥∥∥∥[GT(∇fy(Cx̃+Gu+Hwt)−∇fy(Gu+Hwt))

−KtCx̃

]∥∥∥∥
≤ ‖C‖(`y‖G‖+ K̄)‖x̃‖.

Hence, by recalling the definition of b and ρz , (43) satisfies:
d

dt
V (z̃ν) ≤ −ρz‖z̃ν‖2 + b‖x̃‖‖z̃ν‖+ ‖z̃ν‖‖ż∗ν,t‖

≤ −ρz
2
‖z̃ν‖2 + b‖x̃‖‖z̃ν‖, (44)

where the last inequality holds if ‖z̃ν‖ ≥ 2
ρz

ess sup ‖ż∗ν,t‖.
The time-derivative of W (x̃) along the trajectories of (41):

d

dt
W (z) = ε−1x̃T(ATPx + PxA)x̃

+ 2x̃TPxA
−1BSż + 2x̃TPxA

−1Eẇt

≤ −ε−1λ(Qx)‖x̃‖2 + 2‖PxA−1B‖‖x̃‖‖Sż‖
+ 2‖PxA−1B‖‖x̃‖‖ẇt‖. (45)
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By expanding the terms:

‖Sż‖ = ‖S(PΩ(z − ηFt(z, x̃))− z)‖
= ‖S(PΩ(z − ηFt(z, x̃))− z − PΩ(z − ηFt(z∗ν,t, 0)) + z∗ν,t)‖
≤ η‖Lu,t(u,Cx̃+Gu+Hwt, λ)

− Lu,t(u∗, Gu∗ +Hwt, λ
∗)‖+ 2‖u− u∗‖

≤
√

2 max{2 + η(`u + `y‖G‖2), ‖KtG‖}‖z̃ν‖
+ η`y‖C‖‖G‖‖x̃‖,

where the first inequality follows from the non-expansiveness
of the projection operator and the second inequality follows
from Assumption 2. By recalling the definition of g, by letting
d = 2η`y‖PA−1B‖‖C‖‖G‖, and by substituting into (45):

d

dt
W (x̃) ≤ −ε−1λ(Qx)‖x̃‖2 + d‖x̃‖2

+ g‖x̃‖‖z̃ν‖+ 2‖PxA−1B‖‖x̃‖‖ẇt‖

≤ −λ(Qx)

2ε
‖x̃‖2 + d‖x̃‖2 + g‖x̃‖‖z̃ν‖, (46)

where the last inequality is satisfied if ‖x̃‖ ≥
4ε‖PxA−1E‖

λ(Qx) ess sup ‖ẇt‖. By combining (44)-(46):

d

dt
U(x̃, z̃ν) ≤ −ξ̂TΛξ̂ − 1

2
min{2ρz,

λ(Qx)

2ελ̄(Px)
},

where

Λ :=

[
(1− θ)ρz4 − 1

2 ((1− θ)b+ θg)
1
2 ((1− θ)b+ θg) θ(λ(Qx)

4ε − d)

]
.

Λ is positive definite when θ(1 − θ)ρz4 (λ(Qx)
4ε − d) >

1
4 ((1 − θ)b + θg)2, which holds when (13) is
satisfied. Finally, the claim follows by application
of Lemma A.4 with ā = max{ 1

2 , λ̄(Px)}, a =

min{ 1
2 , λ(Px)}, c3 = 1

2 min{2ρz, λ(Qx)

4ελ̄(Px)
}, and

b0 = max{ 2
ρz

ess sup ‖ż∗ν,t‖,
4ε‖PA−1E‖

λ(Qx) ess sup ‖ẇt‖}. �

APPENDIX B
ANALYSIS OF PRIMAL-DUAL CONTROLLER

In this section, we prove Proposition 4.2 and Theorem 4.3.
We introduce the following change of variables for (20):

x̃ := x− h(u,wt), h(u,wt) := −A−1Bu−A−1Ewt.

The dynamics (20) are re-written in the new variables next.
Lemma B.1: Let Assumption 1-5 be satisfied, and for any

t ∈ R≥0, let (u∗t , λ
∗
t ) be the saddle-point of (17). The

dynamics (20) have the following equivalent representation:

ε ˙̃x = F11x̃+ F12(u− u∗t ) + F13(λ− λ∗t ) + F14ẇt,

u̇ = F21x̃+ F22(u− u∗t ) + F23(λ− λ∗t ),
λ̇ = F31x̃+ F32(u− u∗t ), (47)

where F14 = εA−1E,

F11 = A− εηuA−1BGTTy,tC, F21 = −ηuGTTy,tC,

F12 = −εηuA−1B(Tu,t +GTTy,tG), F23 = −ηuGTKT,

F13 = −εηuA−1BGTKT, F31 = ηλKC,

F22 = −ηu(Tu,t +GTTy,tG), F32 = ηλKG,

and Tu,t, Ty,t are symmetric matrices that satisfy µuI �
Tu,t � `uI , 0 � Ty,t � `yI uniformly in t.

Proof: By application of Lemma A.1:

u̇ = −ηuLu,t(u, y, λ) + ηuLu,t(u
∗
t , Gu

∗
t +Hwt, λ

∗
t )︸ ︷︷ ︸

=0

= −ηu((Tu,t +GTTy,tG)(u− u∗t )
+GTTy,tCx̃+GTKT(λ− λ∗t )),

λ̇ = ηλLλ,t(u, y, λ)− ηλ∇λLλ,t(u∗, Gu∗t +Hwt, λ
∗
t )︸ ︷︷ ︸

=0

= ηλ(KCx̃+KG(u− u∗t )).

Finally, by using the relationships ε ˙̃x = ẋ − ε∂h∂u u̇ − ε
∂h
∂w ẇt,

and by substituting the expression for u̇:

ε ˙̃x = Ax̃+ εA−1Bu̇+ εA−1Eẇt

= (A− εηuA−1BGTTy,tC)x̃− εηuA−1BGTKT(λ− λ∗t )
− εηuA−1B(Tu,t +GTTy,tG)(u− u∗t ) + εA−1Eẇt,

which proves the claim.
1) Proof of Proposition 4.2: The proof follows similar ideas

as [16, Lemma 2]. By letting ε = 0 in (47) we obtain Ax̃ = 0,
which, by Assumption 1 implies x̃ = 0. Hence, we let z :=
(u, λ) and z̃ := z − z∗t , and we rewrite the dynamics (47) as
ż = Fz(z − z∗t ) = Fz z̃, where

Fz =

[
F22 F23

F32 0

]
. (48)

We will prove that V (z) = z̃TPz z̃ satisfies the assumptions
of Lemma A.4. By the Schur Complement, Pz is positive
definite if and only if `2 ηuηλ I − G

TKTKG � 0. Using ηu >
4k̄
`µηλ, ` ≥ µ and Assumption 5 one gets `2 ηuηλ I−G

TKTKG �
((4`k̄)/µu)I − k̄I � 3k̄ � 0, which shows that Pz is positive
definite. By expanding the time-derivative:

d

dt
V (z̃) = (ż − ż∗t )TPz(z − z∗t ) + (z − z∗t )TPz(ż − ż∗t )

= z̃T(FT
z Pz + PzFz)z̃ − 2z̃TPz ż

∗
t . (49)

Next, we show that z̃T(FT
z Pz +PzFz)z̃+ ρ̄zV (z̃) ≤ 0, where

ρ̄z = min{ηλ k` , ηu
µ
2 }. Let M := FT

z Pz + PzFz + ρ̄zPz . By
expanding the product, M = [Mij ] is a 2×2 block symmetric
matrix with blocks:

M11 = 2ηu`(Tu,t +GTTy,tG)− 2ηλG
TKTKG− ρ̄z`I,

M12 = ηu(Tu,t +GTTy,tG)TGTKT − ρ̄zGTKT,

M22 = 2ηuKGG
TKT − ρ̄z`(ηu/ηλ)I, (50)

and M21 = MT
12. By application of the Schur Complement, M

is positive definite when M22 � 0 and M11−M12M
−1
22 M

T
12 �

0. The first condition can be rewritten as: M22 � (2ηuk −
ρ̄z`

ηu
ηλ

)I � ηukI � 0, where we used Assumption 5 and the
expression of ρz . For the second condition, we have:

M12M
−1
22 M

T
12 �M12(ηuKGG

TKT)−1MT
12

= ηu(Tu,t +GTTy,tG)T(Tu,t +GTTy,tG) +
ρ̄2
z

ηu
I

− ρ̄z((Tu,t +GTTy,tG)T + (Tu,t +GTTy,tG))

� ηu`(Tu,t +GTTy,tG) +
ρ̄2
z

ηu
I − 2ρ̄z(Tu,t +GTTy,tG),
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where the first bound follows from Assumption 5 and
the definition of ρ̄z , the second identity follows from
GTKT(KGGTKT)−1KG = I , and the last bound follows
from GTTy,tG � 0. Thus:

M11 −M12M
−1
22 M

T
12 � 2ηu`(Tu,t +GTTy,tG)− 2ηλG

TKTKG

− ρ̄z`I − ηu`(Tu,t +GTTy,tG)− ρ̄2
z

ηu
I + 2ρ̄z(Tu,t +GTTy,tG),

and, by using

1

2
ηu`(Tu,t +GTTy,tG)− 2ηλG

TKTKG

� (
1

2
ηu`µu − 2ηλk̄)I � 0

1

2
ηu`(Tu,t +GTTy,tG)− ρ`I � (

1

2
ηu`µ− ρ`)I � 0

ηu`(Tu,t +GTTy,tG)− ηu`(Tu,t +GTTy,tG) = 0,

we conclude M11−M12M
−1
22 M

T
12 � 0, which shows M � 0.

As a result, (49) satisfies:

d

dt
V (z̃) ≤ −ρ̄zV (z̃) + 2‖z̃‖‖Pz‖‖ż∗t ‖

= − ρ̄z
2
V (z̃)− ρz

2
λ(Pz)‖z̃‖2 + 2‖z̃‖‖Pz‖‖ż∗t ‖

≤ − ρ̄z
2
V (z̃), (51)

where the last inequality holds when 2‖z̃‖‖Pz‖‖ż∗t ‖ −
ρz
2 λ(Pz)‖z̃‖2 ≤ 0, or ‖z̃‖ ≥ 4‖Pz‖

ρzλ(Pz) ess supτ ‖ż∗τ‖. Finally,
the claim follows by application of Lemma A.4 with ā =
λ̄(Pz), a = λ(Pz), b = ρ̄z

2 , and b0 = 4‖Pz‖
ρzλ(Pz) ess supτ ‖ż∗τ‖. �

2) Proof of Theorem 4.3: Our proof technique leverages
singular perturbation arguments inspired by [15, Ch. 11]. Let
z := (u, λ), z̃ := z − z∗t and rewrite the dynamics (47) as:

˙̃x = F11x̃+ Fxz z̃ + F14ẇt, ˙̃z = Fzxx̃+ Fz z̃, (52)

where Fz is as defined by (48), Fxz = [F12, F13], and Fzx =
[FT

21, F
T
31]T. To show this claim, we will prove that the function

U(x̃, z̃) = (1 − θ)V (z̃) + θW (x̃), where θ = ‖σ1‖/(‖σ2‖ +
‖σ1‖) satisfies the assumptions of Lemma A.4. By substituting
(52) and by using FT

z Pz+PzFz � −ρ̄zPz (see (49) and (51)):

V̇ (z̃) = z̃T(FT
z Pz + PzFz)z̃ + 2x̃TFzxPz z̃ − 2z̃TPz ż

∗

≤ −ρz z̃TPz z̃ + z̃Tσ1x̃− 2z̃TPz ż
∗

≤ −ρz
2
λ(Pz)‖z̃‖2 + ‖σ1‖‖z̃‖‖x̃‖,

the last inequality holds when ‖z̃‖ ≥ 4‖Pz‖
ρzλ(Pz) supτ ‖ż∗τ‖. Next,

by expanding the time-derivative of W (x̃):

εẆ (x̃) = x̃T(FT
11Px + PxF11)x̃+ 2x̃TPxFxz z̃ + 2x̃TPxF14ẇt.

Using F11 = A− εηuA−1BGTTy,tC, ATPx + PxA = −Qx:

x̃T(FT
11Px + PxF11)x̃ = −x̃TQxx̃
− ηuεx̃T(CTTy,tGB

TA−TPx + PxA
−1BGTTy,tC)x̃.

Let Σ1 := 2Pz[F
T
21, F

T
31]T, Σ2 := 2ε−1Px[F12, F13], Σ3 =

ηu(CTTy,tGB
TA−TPx + PxA

−1BGTTy,tC), and Σ4 =

PxA
−1E. Then,

εẆ (x̃) ≤ −λ(Qx)‖x̃‖2 + ε‖σ2‖‖x̃‖‖z̃‖ (53)

+ ε‖Σ3‖‖x̃‖2 + 2‖Σ4‖‖x̃‖‖ẇt‖

≤ −λ(Qx)

2
‖x̃‖2 + ε‖Σ2‖‖x̃‖‖z̃‖+ ε‖Σ3‖‖x̃‖2,

where the last inequality holds if −λ(Qx)
2 ‖x̃‖2 +

2‖Σ4‖‖x̃‖‖ẇt‖ ≤ 0, or ‖x̃‖ ≥ 4‖Σ4‖
λ(Qx) ess supτ≥0 ‖ẇτ‖.

By using V (z) ≤ λ̄(Pz)‖z̃‖2, W (z) ≤ λ̄(Px)‖x̃‖2, by
letting ξ̂ := (‖z̃‖, ‖x̃‖), and by combining (51)-(53) we get
U̇(x̃, z̃) ≤ −ξ̂TΛξ̂ − ρξU(x̃, z̃), where:

Λ=

[
(1− θ)ρzλ(Pz)

4 − 1
2 ((1− θ)‖Σ1‖+ θ‖Σ2‖)

− 1
2 ((1− θ)‖Σ1‖+ θ‖Σ2‖) θ(λ(Qx)

4ε − ‖Σ3‖)

]
.

Matrix Λ is positive definite when

θ(1− θ)ρzλ(Pz)

4
(
λ(Qx)

4ε
−‖Σ3‖) >

1

4
((1− θ)‖Σ1‖+θ‖Σ2‖)2,

which holds when the following is satisfied:

ε <
ρzλ(Px)λ(Pz)

16‖Σ1‖‖Σ2‖+ 4ρzλ(Pz)‖Σ3‖
.

The bound (25) is then obtained using standard ma-
nipulations. Finally, the claim follows by application of
Lemma A.4 with ā = max{λ̄(Px), λ̄(Pz)}, a =

min{λ(Px), λ(Pz)}, b = 1
4 min

{
ρz

λ(Pz)

λ̄(Pz)
, ε−1 λ(Qx)

λ̄(Px)

}
, and

b0 = max{ 4‖Pz‖
ρzλ(Pz) ess supτ ‖ż∗τ‖,

4‖Σ4‖
λ(Qx) ess supτ ‖ẇτ‖}. �
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