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Abstract— This paper introduces a new class of non-smooth
extremum seeking controllers (ESCs) with convergence bounds
given by class-KL functions that have a uniformly bounded settling
time. These ESCs are characterized by nominal average systems
that render uniformly globally fixed-time stable (UGFxTS) the set of
minimizers of the response map of a stable nonlinear plant. Given
that, under suitable tuning of the parameters of the controllers,
the ESCs inherit the convergence properties of their average
systems, the proposed dynamics can achieve a better transient
performance compared to the traditional ESCs based on gradient
descent or Newton flows. Moreover, for the case when the plant
is a static map, the convergence time of the proposed algorithms
can be prescribed a priori by the users for all initial conditions
without the need of re-tuning the gain of the learning dynamics of
the ESC. Since autonomous feedback controllers with fixed-time
convergence properties are necessarily non-Lipschitz continuous,
standard averaging and singular perturbation tools, traditionally
used in ESC, are not applicable anymore. We address this issue
by using averaging and singular perturbation tools for non-smooth
and set-valued systems, which further allows us to consider ESCs
modeled by discontinuous vector fields that are typical in fixed-
time and finite-time optimization problems.

Index Terms— Extremum seeking, Adaptive Control, Op-
timization.

I. INTRODUCTION

Extremum seeking control (ESC) has shown to be a powerful
technique for the solution of model-free optimization problems in
dynamical systems [1]–[4]. Stability, convergence, and robustness
guarantees for different types of constrained and unconstrained
smooth ESCs have been extensively studied in the literature [5]–
[8]. Recently, ESC has also been extended to non-smooth and hybrid
settings that are able to overcome some of the intrinsic limitations of
smooth feedback controllers [9], [10]. An early use of non-smooth
ESC can also be found in [11, Sec. 5].

In this paper, we extend and generalize some of these results
by introducing a new class of non-smooth ESCs that have stability
properties characterized by class-KL functions1 β with the “fixed-
time convergence property”, namely, there exists a continuous settling
time function r 7→ T (r) and a positive number T ∗ > 0 such
that lims→T (r) β(r, s) = 0 and T (r) < T ∗, for all r ≥ 0.
Functions with this attribute are also said to be of class-KLT [12],
and they characterize the convergence properties of systems whose
solutions converge to a particular set in a finite time T (r) that
can be upper bounded by a constant T ∗ that is independent of
the distance r of the initial conditions to the set. This powerful
property has motivated the development of new algorithms in the
context of regulation, optimization, and estimation problems, see
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1A function β : R≥0×R≥0 → R≥0 is of class KL if it is nondecreasing in
its first argument, nonincreasing in its second argument, limr→0+ β(r, s) =
0 for each s ∈ R≥0, and lims→∞ β(r, s) = 0 for each r ∈ R≥0.

[13]–[16] and [17]. Nevertheless, ESCs with fixed-time convergence
properties remain completely unexplored in the literature, and, as
we will show in this paper, they have the potential of inducing
dramatical improvements in the transient performance of the closed-
loop system for certain classes of plants having response maps with
strong monotonicity properties.

In order to design ESCs with KLT convergence bounds, which
we call Fixed-Time Extremum Seeking Controllers (FxTESCs), our
starting point is the averaging-based paradigm considered in [3], [5],
[18], [19], which, due to its modular approach, can accommodate
different types of optimization algorithms, making a direct connec-
tion between the bounds that characterize the convergence of the
trajectories of the nominal average system and the actual control
signal generated by the ESCs. However, since most of the existing
results in the literature rely on averaging and singular perturbation
tools for Lipschitz continuous systems, they are not suitable for the
design and analysis of ESCs with KLT convergence bounds. Instead,
in this paper we use averaging and singular perturbation tools for
non-smooth and set-valued systems [9], [20]–[22], which allows us
to additionally consider ESCs based on differential inclusions that
may be related to discontinuous optimization algorithms. Moreover,
we also develop Newton-like Fixed-Time ESCs that remove from the
convergence bound T ∗ the dependence on the unknown parameters of
the Hessian matrix of the response map. To the best of our knowledge,
the ESCs for dynamical systems presented in this paper are the first
that have convergence bounds characterized by class-KLT functions.
For static maps and specific continuous ESC algorithms, preliminary
results with sketches of the proofs were presented in the conference
papers [1] and [2]. In contrast to these works, this paper addresses the
general ESC problem in dynamic plants, considers a general family
of possibly discontinuous ESCs (which subsume those considered in
[1] and [2]), derives tighter convergence bounds for the algorithms,
new auxiliary averaging results for non-smooth systems, and also
presents the complete stability analysis. Moreover, in contrast to [1]
and [2], the results of this paper are also applicable to ESC algorithms
with nominal average systems having only finite-time convergence
properties, thus addressing another existing gap in the literature of
ESC.

The rest of this paper is organized as follows: Section II introduces
the notation and preliminaries. Section III presents the problem
statement. Section IV presents the main results for gradient-based
ESCs, Section V studies Newton-like algorithms, and finally Section
VI end with some conclusions.

II. NOTATION AND PRELIMINARIES

Given a compact set A ⊂ Rn and x ∈ Rn, we define |x|A :=
mins∈A ‖x − s‖2. We use S1 := {x ∈ R2 : x2

1 + x2
2 = 1}, and

rB to denote a closed ball of radius r > 0 in the Euclidean space
of appropriate dimension, and centered at the origin. We define D ∈
Rn×2n as the matrix that maps a vector x = [x1, x2, . . . , x2n]> ∈
R2n to a vector x̃ := [x1, x3, . . . , x2n−1]> that has only the odd
components of x. A set-valued mapping M : Rn ⇒ Rp is: (a)
outer semi-continuous (OSC) at x, if for each sequence {xi, yi} →
(x, y) ∈ Rn × Rp satisfying yi ∈ M(xi) for all i ∈ Z≥0, we have
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y ∈ M(x); (b) locally bounded (LB) at x, if there exists an open
neighborhood Nx ⊂ Rn of x such that M(Nx) is bounded.

In this paper, we consider systems of the form

x ∈ C, ẋ ∈ F (x), (1)

where x ∈ Rn is the state, C ⊂ Rn is a closed set (called the flow
set), and F : Rn ⇒ Rn is a set-valued mapping that is said to satisfy
the Basic Conditions if it is OSC, LB, and convex-valued with respect
to C. A solution to system (1) is an absolutely continuous function
x : dom(x) → Rn that satisfies: a) x(0) ∈ C; b) x(t) ∈ C for
all t ∈ dom(x); and c) ẋ(t) ∈ F (x(t)) for almost all t ∈ dom(x).
A solution x is said to be complete if dom(x) = [0,∞). System
(1) is said to render a compact set A ⊂ C uniformly globally
asymptotically stable (UGAS) if there exists a class KL function
β such that every solution of (1) satisfies |x(t)|A ≤ β(|x(0)|A, t),
for all t ∈ dom(x). If, additionally, the function β is of class
KLT , we say that system (1) renders the set A UGFxTS. We also
consider ε-parameterized systems, given by x ∈ C, ẋ ∈ Fε(x),
where C is compact. In this case, a compact set A ⊂ C is said
to be globally practically asymptotically stable (GPAS) as ε → 0+

if there exists a class KL function β such that for each ν > 0
there exists ε∗ > 0 such that for all ε ∈ (0, ε∗) every solution
xε satisfies |xε(t)|A ≤ β(|xε(0)|A, t) + ν, for all t ∈ dom(xε).
The notion of GPAS can be extended to systems that depend on
multiple parameters ε = [ε1, ε2, . . . , ε`]

>. In this case, and with
some abuse of notation, we say that the system renders the set A
GPAS as (ε`, . . . , ε2, ε1)→ 0+, where in general the parameter εk
depends on εk−1, for each k ∈ Z≥1.

The algorithms considered in this paper make use of sinusoidal
excitation signals that we model as solutions of n uncoupled linear
oscillators evolving on the n-torus Tn := S1× . . .×S1 ⊂ R2n. The
state of the oscillators is µ ∈ R2n, and their dynamics are given by

µ ∈ Tn, ε1µ̇ = −2πRθµ, ε1 > 0, (2)

where the matrixRθ ∈ R2n×2n is defined as a block diagonal matrix
parametrized by a vector of gains θ = [θ1, θ2, . . . , θn]>. In particu-
lar, the ith diagonal block of Rθ is defined as the skew symmetric
matrix Ri := [0,−θi; θi, 0] ∈ R2×2, where θi is a positive rational
number that satisfies θi 6= θj and θi 6= 2θj , for all i 6= j. The
odd entries µi of the solutions µ of system (2) can be explicitly
computed as µi(t) = µi(0) cos( 2π

ε1
θit) + µi+1(0) sin( 2π

ε1
θit), with

µi(0)2+µi+1(0)2 = 1, for all i ∈ {1, 3, 5, . . . , n−1}. The following
lemma, corresponding to [23, Lemma 2], will also be instrumental
for our results.

Lemma 1: Consider the dynamics (1) with C = Rn and F
being singled-valued with unique equilibrium point at the origin, and
suppose ∃ a, b > 0 and γ1 = 1− 1

2α , γ2 = 1+ 1
2α , with α > 1, and a

positive definite, radially unbounded and smooth Lyapunov function
V satisfying V̇ (x) ≤ −aV (x)γ1 − bV (x)γ2 , for all x ∈ Rn . Then,
the origin x∗ = 0 is UGFxTS for (1) with T ∗ = απ√

ab
. �

III. PROBLEM STATEMENT AND MOTIVATION

Consider a nonlinear dynamic plant with input u ∈ Rn, output
y ∈ R, and state x ∈ Ξ ⊂ Rp, modeled by the equations

ẋ = f(x, u), y = h(x, u), (3)

where f is locally Lipschitz, and h is continuously differentiable. In
this paper, we assume that the operational space Ξ for the states of the
plant (3) is closed and bounded. In practice, boundedness of Ξ can
be related to the physical limitations of the plant, or to operational
sets that are rendered forward invariant by using internal feedback
controllers that implement mechanisms such as Lipschitz projections

or barrier functions. Compactness of Ξ is also guaranteed when the
dynamics (3) have the bounded-input bounded-state property and u
is uniformly bounded (as will be the case in our results).

In order to have a well-defined ESC problem, we also make the
following standard stability assumption on system (3).

Assumption 1: There exists a continuous function `x : Rn → Rp,
such that for each compact set Ku ⊂ Rn the dynamical system
(x, u) ∈ Ξ×Ku, ẋ = f(x, u), u̇ = 0, renders UGAS the compact
set MKu := {(x, u) ∈ Ξ×Ku : x = `x(u)}. �

The existence of a UGAS quasi-steady state manifold `x for the
plant (3) is a standard assumption in ESC, see [3], [5], [6].

The response map of the plant (3) is defined as φ(u) :=
h(`x(u), u), which is assumed to satisfy the following:

Assumption 2: The function u 7→ φ(u) is twice continuously
differentiable, and the set Aφ := arg minu∈Rnφ(u) is non-empty
and compact. �

Based on these assumptions, the ESC problem that we study in
this paper consists on regulating the input u of system (3) towards
the set Aφ, by using only output measurements of y, without any
knowledge of the mathematical form of f , h, or φ.

A. Transient Limitations of Gradient-Descent-Based ES
To motivate the FxTESCs considered in this paper, we first review

the convergence properties of the standard gradient descent-based
extremum seeking controller (GDESC) studied in [3], [5], [6]. This
controller is characterized by the feedback law and the dynamics

u := û+ aDµ, ˙̂u = −k1ξ, (4)

where k1 := ε0k and (k, ε0, a) are positive tunable parameters. The
auxiliary states (ξ, µ) of (4) have dynamics

ξ̇ = −k2
(
ξ − FG(y, µ)

)
, µ̇ = −k3Rθµ, µ ∈ Tn, (5)

where k2 := ε0/ε2, k3 := 2πε0/ε1, and

0 < ε0 � ε1 � ε2 � 1/k. (6)

The mapping FG in (5) is defined as FG(y, µ) := yM(µ), with
M(µ) := 2

aDµ. We study the transient performance of this controller
under the following additional assumption on the response map φ.

Assumption 3: There exists κ > 0 such that |∇φ(u)|2 ≥
2κ(φ(u) − φ(u∗)) for all u ∈ Rn. Moreover, ∇φ is L-globally
Lipschitz, and Aφ = {u∗}. �

Typical examples of response maps that satisfy the inequality of
Assumption 3 include strongly convex functions, such as quadratic
functions, which are ubiquitous in the literature of ESC, e.g., [3],
[8], [24]. However, Assumptions 1-3 do not necessarily ask for
convexity of h or linearity of (3). Indeed, response maps φ satisfying
Assumptions 2 and 3 can be generated by different classes of plants
(3) having linear/nonlinear dynamics f and nonlinear/linear outputs
h. Nevertheless, it is important to note that in the context of ESC the
goal is to achieve model-free optimization, thus, the mathematical
forms of the functions (f, h) are generally unknown.

To guarantee convergence toAφ, a time-scale separation is induced
between the dynamics of the plant (3) and the dynamics of the
controller (4)-(5). In particular, by introducing the new time scale
τ := tε0, and by using the definition of D, the dynamics of the
closed-loop system can be written as:

dû
dτ

= −kFu(û, ξ),
dξ
dτ

= − 1

ε2
(ξ − FG(y, µ)) , (7a)

dµ
dτ

= −2π

ε1
Rθµ, ε0

dx
dτ

= f(x, û+ aDµ), (7b)

where, according to (4), the learning dynamics of the GDESC are
characterized by the mapping Fu(û, ξ) = ξ. When ε0 is sufficiently
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small, system (7) is a singularly perturbed system with fast “boundary
layer dynamics” corresponding to the dynamics of the plant, and
slow “reduced dynamics” corresponding to the dynamics of the states
(û, ξ, µ). By Assumption 1, the plant has a well-defined quasi-steady
state manifold `x(·). Thus, the reduced dynamics are:

dû
dτ

= −kFu(û, ξ),
dξ
dτ

= − 1

ε2
(ξ − FG(φ(û+ aDµ), µ)) ,

ε1
dµ
dτ

= −2πRθµ, µ ∈ Tn,

where we used the definitions of φ and FG. For small values of a,
we can perform a Taylor expansion of φ(û + aµ̃) around the point
û, leading to φ(û + aµ̃) = φ(û) + aµ̃>∇φ(û) + O(a2). By using
the definitions of M(·), the fact that the solutions of the oscillator
are given by sinusoids with unitary amplitude, and [2, Lemma 6], we
can average the dynamics of the states (û, ξ) along the trajectories
µ. Since Fu is independent of µ, the resulting average system is

dûA

dτ
= −kFu(ûA, ξA), ε2

dξA

dτ
= −ξA + F̃G(ûA, a), (8)

where the function F̃G is given by

F̃G(ûA, a) := ∇φ(ûA) +O(a). (9)

For each ε2 > 0, system (8) is a O(a)-perturbed version of a nominal
average system. In turn, since ε2 � 1/k, this nominal average
system is also a singularly perturbed system with exponentially stable
boundary layer ξA-dynamics with equilibrium point ξA∗ = ∇φ(ûA),
and reduced nominal average dynamics with state ûr , given by

dûr
dτ

= −kFu(ûr,∇φ(ûr)) = −k∇φ(ûr), (10)

which is a gradient descent (GD) flow with gain k > 0. Therefore,
by using the Lyapunov function V (ûr) = φ(ûr)− φ(u∗), it can be
shown that under Assumption 3, all solutions of the GD flow (10)

satisfy the bound |ûr(τ)|Aφ ≤
√
L
κ |ûr(0)|Aφe

−kκτ , for all τ ≥ 0.
This establishes a UGAS result for system (10) with an exponential

class-KL function β(r, s) =
√
L
κ re
−kκs. We can now repeatedly

apply singular perturbation and averaging theory [18, Thm. 1], as well
as structural robustness results for smooth ODEs [25, Lem. 7.20], to
conclude that for each pair ∆ > ν > 0 there exists ε∗2 > 0 such
that for each ε2 ∈ (0, ε2) there exists a∗ > 0 such that for each
a ∈ (0, a∗) there exists ε∗1 > 0 such that for each ε1 ∈ (0, ε∗1) there
exists ε∗0 > 0 such that for each ε0 ∈ (0, ε∗0) all the input trajectories
u generated by the GDESC in (7) satisfy:

|u(τ)|Aφ ≤ β(|û(0)|Aφ , τ) + 0.5ν, (11)

for all τ ≥ 0, provided |û(0)|Aφ ≤ ∆ and |ξ(0)| ≤ ∆, where β is
the same KL function of system (10), see [5], [6], [19] for similar
results under different notation and/or definitions of the gains ki,
i ∈ {1, 2, 3}, which might scale the time argument of (11). This fact
highlights an important property of system (7): as (ε0, ε1, a, ε2) →
0+, the transient performance of the control signal is approximately
characterized by the transient performance of the reduced nominal
average dynamics. Since for the GD flow (10) we know the form of
β, for any ν > 0 we can compute an approximate lower bound τ∗v
for the amount of time τ needed in (11) to have |u(τ)|Aφ ≤ ν for
all τ ≥ τ∗v . By direct computation we obtain

kτ∗v =
1

κ
log

(
2

√
L

κ

|û(0)|Aφ
ν

)
, (12)

which shows that for constant values of (k, ν) (resp. (τ∗v , ν)), the
value of τ∗v (resp. k) grows logarithmically with |û(0)|Aφ . Since
(11) holds only when |û(0)|Aφ ≤ ∆, the maximum value of kτ∗v
over all initial conditions satisfying |û(0)|Aφ ≤ ∆ also grows

ẋ = f (x, u)

µ̇ = −k3Rθµ

+ ×

aDµ

−k1
s +

ξ
|ξ|α2

ξ
|ξ|α1 k2

s+k2

M(µ)

y = h(x, u)
u

û

y

Fig. 1. Example of closed-loop system with a Fixed-Time Gradient-
based Extremum Seeking Controller with α1 ∈ (0, 1) and α2 < 0.

logarithmically with ∆, for any parameters (ε0, ε1, a, ε2) in the
GDESC that guarantee the satisfaction of the bound (11).

B. ES Controllers with Fixed-Time Convergence Bounds
In order to improve the convergence properties of the GDESC, we

can consider a new class of ESCs that generate bounds of the form
(11) with the additional property that β ∈ KLT . To achieve this
property, let us assume first that ξ and û are scalars, and consider
the dynamics (7) with the following map:

Fu(û, ξ) = sign(ξ)|ξ|1−α1 + sign(ξ)|ξ|1−α2 ,

with α1 ∈ (0, 1) and α2 < 0. Since ξ ∈ R, we can write sign(ξ) =
ξ/|ξ|, which leads to

Fu(û, ξ) = −k
(

ξ

|ξ|α1
+

ξ

|ξ|α2

)
, (13)

which is defined to be zero whenever ξ = 0. Figure 1 shows a
scheme of the closed-loop system (7) with an ESC implementing
learning dynamics characterized by the function (13). In general, the
mapping Fu is not Lipschitz continuous without further conditions
on (α1, α2). However, even in cases when Fu is discontinuous at the
point ξ = 0, the existence of generalized solutions in the sense of
Krasovskii can always be guaranteed [25, Lem. 5.26]. Functions of
this form have been extensively studied in the literature of fixed-time
stabilization by using the notion of homogeneity (in the bi-limit), see
for instance [26, Sec. 5.1], [14, Sec. 1], [23, Sec. 4-A], [27, Ex. 1],
or [28, Lem. 2.1]. However, in the context of ESC, they remained
unexplored.

The closed-loop system of Figure 1 can be studied by following
similar steps as in the previous section. In this case, instead of (10),
the reduced nominal average dynamics are given by

dûr
dτ

= −k
(
∇φ(ûr)

|∇φ(ûr)|α1
+
∇φ(ûr)

|∇φ(ûr)|α2

)
, (14)

which can be analyzed by using the smooth Lyapunov function
VG(ûr) = 1

2 (φ(ûr) − φ(u∗))2, which, under Assumption 3 is
radially unbounded and positive definite with respect to u∗. The
time derivative of VG along the solutions of system (14) satisfies
dVG(ûr(τ))

dτ ≤ −k (c1VG(ûr)
γ1 + c2VG(ûr)

γ2) for all ûr 6= u∗,

where α̃1 = 2−α1 > 0, α̃2 = 2−α2 > 0, c1 := 2
2+3α̃1

4 κ
α̃1
2 > 0,

c2 := 2
2+3α̃2

4 κ
α̃2
2 > 0, γ1 := 2+α̃1

4 ∈ (0, 1), and γ2 := 2+α̃2
4 >

1. It follows by [26, Thm. 5.8] and the smoothness of VG, that the
point u∗ is UGFxTS for system (14). Moreover, if we set α2 = −α1,
the assumptions of Lemma 1 hold with α = 2/α1 and

√
ab = 4kκ,

and we obtain the following estimate on the bound for the settling
time Tk(·) of (14):

T ∗G :=
π

2kα1κ
. (15)

Finally, note that all the previous computations hold when ξ and
ûr are vectors in Rn, and an explicit function βG,k ∈ KLT for
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Fig. 2. Left: Approximate reachable set of the GDESC and the FxTESC with û(0) ∈ K = [−100, 100]× [−100, 100]. The insets illustrate the
convergence of all solutions of the FxTESC to the optimal point; Right: Time history of one solution of the GDESC and the FxTESC with identical
initialization, in logarithmic scale (up) and linear scale (bottom). The dashed lines show the trajectories of the GD and FxTG flows.

system (14) can be computed by using Lemma 3 in the Appendix.
Therefore, for the ESC of Fig. 1 the dynamics (14) can be seen as
general Fixed-Time Gradient (FxTG) flows in Rn with the UGFxTS
property.

Remark 1: FxTG flows have been recently studied in the context
of model-based optimization and fixed-time stabilization in [28,
Lemma 2.1], [15], and [16]. Continuity of the function (13) can be
guaranteed as in [15] and [1]. �

The key implication of the fixed-time bound (15), which is
independent of the initial conditions of system (14), is that for
positive values of (k, κ) and p = (ν, α1), with α1 ∈ (0, 1), the
value of τ∗ν obtained from (12) will be larger than T ∗G whenever
ûr(0) ∈ ΩG,p := {ur0 ∈ Rn : |ur0|Aφ > 0.5ν exp( π

2α1
)}.

Therefore, if for any pair ∆ > ν > 0, the parameters (ε0, ε1, a, ε2)
of the FxTESC shown in Figure 1 can be selected such that the
bound (11) holds with the KLT function βG,k (a result that we
will establish in the next section), then the convergence time of the
FxTESC will outperform the convergence time of the GDESC for
all initial conditions ûr(0) in the set ΩG,p ∩ (Aφ + ∆B), which is
non-empty when ∆ is sufficiently large or ν is sufficiently small.

Remark 2: Since equation (15) is independent of the initial con-
ditions of the system, a universal gain k can now be used to
induce a desired convergence time T ∗G via the class KLT function
βG,k. This property is fundamentally different from the asymptotic
or exponential (semi-global practical) convergence properties of the
smooth ESCs considered in [3], [5], [18], [19]. Note, however, that
the parameters (ε0, ε1, a, ε2) will still depend on ν and ∆, since
their role is to guarantee that the ESC approximates the behavior (on
compact sets) of its reduced nominal average dynamics (14). �

Example 1: In order to illustrate the previous discussion, let us
consider a simple plant in R2 with f(x, u) = 10×[−x1 +u1,−x2 +
u2]> and output y = (x1 − 1)2 + (x2 − 5)2. Since f(x, u)
describes a stable linear system that generates bounded states under
bounded inputs, Assumption 1 holds. We set ∆ = 100, and we
simulate the closed-loop system (7) using the following parameters:
a = 0.01, ε0 = 4 × 10−5, ε1 = 1 × 10−4, ε2 = 5 × 10−1, and
k = 0.02, which satisfy the relations of (6). For the oscillator (2),
we used 2πθ1 = 3.5, 2πθ2 = 4 and µ(0) = [0, 1, 0, 1]>. For the
FxTESC with learning dynamics (13), we used α1 = 0.5 = −α2.
Since in this case φ(u) = (u1 − 1)2 + (u2 − 5)2, it follows
that Assumption 3 holds with κ = L = 2. Using (15) we obtain
T ∗G = 78.53. Figure 2 compares the behavior of the trajectories of
the GDESC and the FxTESC. We emphasize that both algorithms
used the same parameters (a, k, ε0, ε1, ε2). In the left figures, we
have numerically approximated the reachable set of both algorithms
from initial conditions with û(0) ∈ [−100, 100]× [−100, 100], and

x(0) = ξ(0) = [1, 1]> by running 1× 103 simulations with random
initializations on this set. The insets show that all solutions generated
by the FxTESC converge to a ν-neighborhood (with ν = 1× 10−7)
of the optimal point u∗ = [1, 5]> before the time T ∗G. On the
other hand, the right plots show the time history of one solution of
the GDESC and FxTESC, respectively, with identical initialization.
As expected, and as shown by the dashed lines, the trajectories
generated by both ESCs are almost identical to the trajectories of
their reduced nominal average dynamics (10) and (14). In particular,
as highlighted in the upper logarithmic plot, the trajectory generated
by the FxTESC approximately inherits the “fixed-time convergence
property” of system (14). �

Remark 3 (Finite-Time vs Fixed-Time Stability in ESC): In con-
trast to the property of UGFxTS, the property of finite-time
stability is characterized by a class-KL function that satisfies
lims→T (r) β(r, s) = 0, but where T (·) is not necessarily uniformly
bounded, see [29]. The ESC shown in Figure 1 can induce this
weaker property by using α1 = α2 = 1, which generates reduced
nominal average dynamics given by the discontinuous flow dû

dτ =

−2k
∇φ(û)
|∇φ(û)| , studied in [30] using generalized solutions in the

context of differential inclusions. Under κ-strong convexity of φ and
L-globally Lipschitz of ∇φ, the lower bound τ∗v on the convergence
time of this system satisfies kτ∗v ≤ (2κ)−1L|ûr(0)|Aφ , which
grows linearly with |ûr(0)|Aφ . Thus, in the ESC case, the bound on
kτ∗v would also grow linearly with ∆, which is a weaker property
compared to the constant bound (15). Other optimization flows with
finite-time convergence properties are presented in [30], [17]. Note
that when α1 = α2 = 0 in (13), the FxTESC of Figure 1 reduces to
the standard GDESC. �

Next, we formalize and generalize the previous discussion by
characterizing an entire family of FxTESCs.

IV. GRADIENT-BASED FIXED-TIME ES CONTROLLERS

Consider the closed-loop system (7) with general learning dynam-
ics now modeled as

˙̂u ∈ −k1Fu(û, ξ), (16)

where Fu : Rn × Rn ⇒ Rn is a set-valued map, and k1 = ε0k.
Assumption 4: The set-valued mappings Fu(·, ·) and F̂G(·) :=

Fu (·,∇φ(·)) satisfy the Basic Conditions. �
The regularity properties of Assumption 4 are standard in the

analysis of non-smooth systems, and they also hold when Fu and
F̂G are singled-valued continuous functions. However, by working
with differential inclusions we will be able to consider ESCs with
learning dynamics that are not necessarily continuous. In this case,
solutions must be understood in a generalized sense by considering
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the set-valued map F̂KG (û) :=
⋂
δ>0 con F̂G(û+ δB), where con(·)

stands for the closed convex hull, see [9, Sec. 6.1] for examples in the
context of ESC. When F̂G is LB, the set-valued map F̂KG satisfies
the Basic Conditions [25, Lem. 5.16].

The following stability assumption characterizes the ESCs consid-
ered in this paper.

Assumption 5: For each k > 0, system ˙̂u ∈ −kF̂G(û) renders the
set Aφ UGFxTS with some βG,k ∈ KLT , with continuous settling
time function satisfying Tk(r) ≤ T ∗k for all r ≥ 0. �

Remark 4: Assumption 5 can be certified via Lyapunov functions
(c.f. Lemma 1 or [26, Thm. 5.8] for differential inclusions), or by
studying the homogeneity properties in the bi-limit of the mapping
F̂G, see [14], [26], [31], and [15], [16] for different examples of
gradient-based optimization dynamics ˙̂u ∈ −kF̂G(û) that satisfy
Assumption 5. �

We are now ready to state the first main result of this paper.
Theorem 1: Suppose that Assumptions 1, 2, 4, and 5 hold. Then,
∀ k > 0 and ∀ ∆ > ν > 0, ∃ ε∗2 > 0 such that ∀ ε2 ∈ (0, ε∗2), ∃
a∗ > 0 such that ∀ a ∈ (0, a∗), ∃ ε∗1 > 0 such that ∀ ε1 ∈ (0, ε∗1),
∃ ε∗0 > 0 such that ∀ ε0 ∈ (0, ε∗0), all solutions of (7) with learning
dynamics (16), and |û(0)|Aφ ≤ ∆, |ξ(0)| ≤ ∆, induce the bound

|u(τ)|Aφ ≤ βG,k(|û(0)|Aφ , τ) + ν, ∀ τ ≥ 0,

and βG,k(|û(0)|Aφ , τ) = 0 for all τ ≥ T ∗k . �

Proof: Let k, ∆ and ν be given. Without loss of generality
we assume ν ∈ (0, 1). Let Assumption 5 generate the function
βG,k ∈ KLT . We define the set K̃ := {u ∈ Rn : |u|Aφ ≤
βG,k(maxy∈Aφ+∆B |y|, 0)+1}. By construction, this set is compact
since without loss of generality βG,k can be taken to be continuous
or to be upper bounded by a continuous class KL function [25, pp.
69]. Thus, there exists M > 0 such that K̃ ⊂ MB. By continuity
of ∇φ, there exists M̃ > ∆ such that |F̃G(u, a)| + ν ≤ M̃ for all
|u| ≤ M and all a ∈ (0, 1), where F̃G is defined in (9). Using this
construction, we divide the proof in two main steps.

Step 1: Stability. The closed-loop system (7) is in standard form
for the application of singular perturbation theory for non-smooth
systems, see [20], [22]. The boundary layer dynamics are ẋ =
f(x, û + aµ̃), ˙̂u = 0, ξ̇ = 0, µ̇ = 0. By Assumption 1, the
plant dynamics (3) have a well-defined quasi-steady state manifold
x∗ = `x(û + aµ̃). Therefore, the closed-loop system has a well-
defined reduced system, given by

dû
dτ
∈ −kFu(û, ξ), ε1

dµ
dτ

= −2πRθµ, (17a)

dξ
dτ

= − 1

ε2

(
ξ − FG(φ(û+ aµ̃), µ̃)

)
, (17b)

where we used φ(û + aµ̃) = h(`x(û + aµ̃), û + aµ̃). Since the
dynamics of µ render forward invariant (and UGAS) the set Tn,
we focus on the properties of the states (û, ξ). Indeed, note that
since 0 < ε1 � ε2, system (17) is also in standard form for
the application of singular perturbation theory. The fast dynamics
correspond to the linear oscillator that generates sinusoidal functions
τ 7→ µ̃(τ). The reduced dynamics are obtained by using [2, Lemma
6] and by averaging the dynamics of (û, ξ) along the trajectories
µ̃. The resulting average system has state ζA = [ûA>, ξA>]> and
dynamics

dûA

dτ
∈ −kFu(ûA, ξA), ε2

dξA

dτ
= −ξA + F̃G(ûA, a), (18)

with F̃G given by (9). When a = 0, this system is also in standard
form for the application of singular perturbation theory, with ε2 acting
as small parameter. Using the definition of F̃G and the exponential

stability properties of the low-pass filter in (17), we obtain the
reduced nominal average dynamics dûr

dτ ∈ −kFu(ûr,∇φ(ûr)) =

−kF̂G(ûr). By Assumption 5, this system renders the set Aφ
UGFxTS with pair (βG,k, T

∗
k ).

Now, for the purpose of analysis, let us restrict the dynamics (18) to
evolve in the compact flow set C = K̃ × M̄B, where M̄ := M̃ + 1;
and the dynamics (17) and (7) to evolve in the compact flow set
C = K̃×M̄B×Tn×Ξ. Applying [21, Thm. 2] and [25, Thm. 7.21]
to the restricted system (18), we immediately obtain that the compact
set Aζ := Aφ × M̄B is GPAS as (a, ε2)→ 0+ with βG,k ∈ KLT .
Since by the definition of solutions we have that |ξA(τ)|M̄B = 0

for all τ ∈ dom(ζA), we also have that |ζA(τ)|Aζ = |ûA(τ)|Aφ .
Thus, for each ν′ ∈ (0, 0.5ν) there exists ε∗2 > 0 such that for all
ε2 ∈ (0, ε∗2) there exists a∗ > 0 such that for each a ∈ (0, a∗) every
solution of the restricted system (18) satisfies the bound

|ζA(τ)|Aζ ≤ βG,k(|ζA(0)|Aζ , τ) + 0.5ν′. (19)

Next, since the fast oscillator dynamics of (17) render UGAS the set
Tn, and also generate a well-defined average system corresponding
to (18), by Lemma 2 in the Appendix we can directly establish
that the restricted system (17) renders the set Aζ × Tn GPAS as
(ε1, a, ε2) → 0+ with class KLT function βG,k. This implies
that for each ν′ ∈ (0, 0.5ν) there exists ε∗2 > 0 such that for
each ε2 ∈ (0, ε∗2) there exists a∗ ∈ (0, ν′/2) such that for each
a ∈ (0, a∗) there exists ε∗1 > 0 such that for each ε1 ∈ (0, ε∗1) each
solution of the restricted system (17) satisfies the bound |ζ(τ)|Aζ ≤
βG,k(|ζ(0)|Aζ , τ)+ ν′

2 , for all τ ∈ dom(ζ, µ), with ζ = (û, ξ). Since
|µ(τ)|Tn = 0 for all τ ≥ 0, it follows that |ζ̂(τ)|Ã = |ζ(τ)|Aζ for
all τ ∈ dom(ζ̂), where ζ̂ = [û>, ξ>, µ>]> and Ã = Aζ × Tn.
Thus, the overall state ζ̂ of the restricted system (17) satisfies
|ζ̂(τ)|Aφ ≤ βG,k(|ζ̂(0)|Aφ , τ) + ν′

2 , for all τ ∈ dom(ζ̂). Finally,
since by Assumption 1 the plant dynamics have a well-defined UGAS
quasi-steady state manifold `x(·), we can apply again Lemma 2 in
the Appendix to establish that the restricted system (7) renders the
set Ã × Ξ GPAS as (ε0, ε1, a, ε2)→ 0+ with βG,k ∈ KLT . Since
|(û, ξ, µ)(τ)|Ã = |û(τ)|Aφ for all τ ∈ dom(x, û, ξ, µ), by using the
definition of u in (4), and the facts that a ∈ (0, ν′/2) and |µ| = 1,
we obtain the KLT bound of the theorem.

Step 2: Completeness of Solutions. We now show completeness of
solutions for the unrestricted system (7) with learning dynamics (16),
flow set C = Rn × Rn × Tn × Ξ, and initial conditions satisfying
|û(0)|Aφ ≤ ∆, and |ξ(0)| ≤ ∆. Let the parameters (ε0, ε1, a, ε2)
be generated as in Step 1 such that the KLT bound holds for
u. Due to this bound, the construction of K̃, and Assumption
1, any solution of system (7) with learning dynamics (16), and
lenght(dom(û, ξ, µ, x)) < ∞, must stop due to ξ leaving the set
M̄B. To show that this cannot occur, note that by the stability
result of Step 1 and the uniform bound on ûA, every solution of
system (18) satisfies ∇φ(ûA(τ)) + O(a) ∈ M̃B for all τ ≥ 0. By
[32, Lemma 5], the low-pass filter dynamics in (18) render forward
invariant the set M̃B. It follows that every solution ζA of system
(18) with ζA(0) ∈

(
Aφ + ∆B

)
× ∆B is complete. Since ∇φ is

locally Lipschitz, and ∇φ(Aφ) = 0 due to the optimality of the
set Aφ, it follows that since |ûA(τ)|Aφ ≤ 0.5ν′ for all τ ≥ T ∗k ,
there exists ϕ > 0 such that |∇φ(uA(τ)) + O(a)| ≤ ϕν′ for all
τ ≥ T ∗k . Thus, by linearity and exponential stability of the low pass
filter, there exists T ′ > 0 such that the trajectories ξA of (18) with
|ξA(0)| ≤ ∆ also satisfy |ξA(τ)| ≤ 2ϕν′, for all τ ≥ T ′. Since
the trajectories of system (18) converge to a 2ϕν′-neighborhood of
the set Aφ × {0}, by [25, Corollary 7.7] for the restricted system
(18) there exists a UGAS set Ωa,ε2 ⊂ (Aφ × {0}) + 2ϕν′B.
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ẋ = f (x, u)

µ̇ = −k3Rθµ

+

×

aDµ

−k1
s

+
ξ2

|ξ2|
α2

ξ2
|ξ2|

α1 k2
s+k2

M(µ)

N(µ)

×

ξ̇1 = k2(ξ1 − ξ1Ĥξ1)×
Ĝ

Ĥ

ξ2

û

u

µµ

y = h(x, u)

y

Fig. 3. Example of closed-loop system with a Fixed-Time Newton-
based Extremum Seeking Controller with α1 ∈ (0, 1) and α2 < 0.

By [21, Thm. 1 & 2], there exists ε∗∗1 > 0 such that for each
ε′1 ∈ (0,min{ε1, ε∗∗1 }) the trajectories ζ = (û, ξ) generated by
system (17) restricted to K̃ × M̃B × Tn satisfy: (a) ∃ T ′′ > 0
such that ζ(τ) ∈ Ωa,ε2 + ϕν′B ⊂

(
Aφ × {0}

)
+ 3ϕν′B for

all τ ≥ T ′′ such that τ ∈ dom(ζ); and (b) the trajectories ζ
and ζA are (τ, ε)-close [25, Def. 5.23] with τ = T ′′ + 1 and
ε = 0.5ν′. Thus, it follows that the trajectories (û, ξ, µ) generated
by system (17) with |û(0)|Aφ ≤ ∆ and |ξ(0)| ≤ ∆ belong to the set
K̃× (M̃ +0.5ν′)B×Tn for all τ ≥ 0. Completness of solutions for
the closed-loop system (7) follows now by applying again the exact
same procedure, using Assumption 1, [25, Corollary 7.7], [21, Thm. 1
& 2], and (τ, ε)-closeness of solutions between the trajectories (û, ξ)
of system (7) and (17), and the fact that M̃ + ν′ < M̄ . �

Remark 5: The result of Theorem 1 also holds for ESCs that have
only finite-time convergence properties (c.f. Remark 3). In this case,
Theorem 1 holds with Tk(∆) instead of T ∗k . Whereas ESC with
finite-time convergence properties has been numerically studied in
[11], [9], [33], to our knowledge, a general convergence result, such
as Theorem 1, was absent in the literature. �

V. NEWTON-LIKE FIXED-TIME ES CONTROLLERS

We now extend the previous results to Newton-like ESCs with
“fixed-time” convergence properties. In this case, we make the
following additional assumption, which is also standard, see [4],
[17], [24].

Assumption 6: There exists κ̃ > 0 such that the Hessian of φ
satisfies ∇2φ(u) � κ̃I for all u ∈ Rn. �

To further motivate the results of this section, we recall that the
reduced average nominal system associated to the standard Newton-
like ESC (NESC) of [24] is given by the Newton Flow (NF):

dûr
dτ

= −k∇2φ(ûr)
−1∇φ(ûr). (20)

Using the Lyapunov function VN (ûr) = 1
2 |∇φ(ûr)|2, it follows

that V̇N = −2kVN (ûr), and by using the Comparison Lemma and
Assumptions 3 and 6, we obtain that the solutions of (20) satisfy
|ûr(τ)|Aφ ≤

L
κ e
−kτ |û(0)|Aφ for all τ ≥ 0. Now, consider the

Fixed-Time Newton-like ESC (FxTNESC) of Figure 3, that generates
the following closed-loop system in the τ -time scale.

dû
dτ
dξ1
dτ
dξ2
dτ
dµ
dτ
dx
dτ


=



−kFu(û, ξ)

− 1

ε2

(
ξ1FH(y, µ̃)ξ1 − ξ1

)
,

− 1

ε2

(
ξ2 − FG(y, µ̃)

)
−2π

ε1
Rθµ̃

1

ε0
f(x, û+ aµ̃)


, (21)

where the learning dynamics Fu are now defined as follows:

Fu(û, ξ) := ξ1

(
ξ2
|ξ2|α1

+
ξ2
|ξ2|α2

)
, (22)

with Fu := 0 whenever ξ2 = 0. As shown in [2], the parameters
(α1, α2) can be selected again as in Remark 1 to guarantee continuity
of Fu. The input u, the dynamic oscillator, the mappings (FG,M),
and the constants (k1, k2, k3, a) are defined again as in Section III.
However, system (21) has an extra state ξ1 with dynamics depending
on the mapping FH , defined as FH(y, µ̃) := yN(µ̃), where N :
Rn → Rn×n is matrix-valued function with entries Nij satisfying
Nij = Nji, Nij = 16

a2

(
µ̃2
i − 1

2

)
∀ i = j, and Nij = 4

a2
µ̃iµ̃j ∀

i 6= j, where µ̃i is the ith entry of the vector µ̃.
Remark 6: In equation (21), the state ξ1 is a matrix of dimension

n×n. Therefore, the dynamics of ξ1 must be understood as a matrix
differential equation. This notation, which is used to simplify our
presentation, is consistent with the notation used in the Newton-based
ESCs of [24]. �

By using [2, Lemma 6], we can analyze system (21) via singu-
lar perturbation and averaging theory for non-smooth systems. In
particular, for the reduced dynamics of (21) we can carry out a
Taylor expansion of φ(û+ aµ̃) around the point û for small values
of a, where we now retain the second order terms: φ(û + aµ̃) =

φ(û)+aµ̃>∇φ(û)+ a2

2 µ̃
>∇2φ(û)µ̃+O(a3). Using this expansion,

the definitions of the mappings M , N , FG, and FH , and [2, Lemma
6], we obtain an average system with state ζA = (ûA, ξA) and
dynamics

dûA

dτ
= Fu(ûA, ξA), ε2

dξA2
dτ

= −ξA2 + F̃G(ûA, a), (23a)

ε2
dξA1
dτ

= −ξA1 ∇2φ(ûA)ξA1 + ξA1 +O(a), (23b)

which is also a singularly perturbed system. When a = 0, and
for fixed-values of ûA, these dynamics render locally exponentially
stable [24, pp. 1761] the quasi-steady state manifold ξ∗(ûA) =(
∇2φ(ûA)−1,∇φ(ûA)

)
. Therefore, the reduced nominal average

dynamics of (23) correspond to

˙̂ur = −k∇2φ(ûr)
−1
(
∇φ(ûr)

|∇φ(ûr)|α1
+
∇φ(ûr)

|∇φ(ûr)|α2

)
. (24)

Using again VN , we obtain that V̇N (ûr) = −kρ1VN (ûr)
χ1 −

kρ2VN (ûr)
χ2 < 0, for all ûr 6= u∗, where ρ1 = 2χ1 > 0,

ρ2 = 2χ2 > 0, χ1 = 2−α1
2 ∈ (0.5, 1), χ2 = 2−α2

2 > 1. By [26,
Thm. 5.8] and the smoothness of VN , system (24) renders the point
Aφ = {u∗} UGFxTS. Moreover, using α2 = −α1 the assumptions
of Lemma 1 hold with α = 1/α1 and

√
ab = 2k, and we obtain the

following estimate of the fixed-time convergence bound:

T ∗N :=
π

2kα1
. (25)

Note that in contrast to T ∗G in (15), the expression for T ∗N is now
also independent of the unknown parameters of Assumptions 3 and
6, and an explicit function βN,u ∈ KLT can be obtained for system
(24) via Lemma 3 in the Appendix. Therefore, system (24) can be
seen as a Fixed-Time Newton-flow (FxTN), and by averaging and
singular perturbation theory we can expect that the FxTNESC will
inherit (locally) the same KL bound of (24).

The following theorem corresponds to the second main result of
this paper.

Theorem 2: Consider the closed-loop system (21) with learning
dynamics (16), and suppose that Assumptions 1, 2 and 6 hold, as
well as Assumptions 4 and 5 with F̂G substituted by F̂N (·) :=
Fu(·, (∇2φ(·)−1,∇φ(·))), and βG,k substituted by βN,k. Then, ∀
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Fig. 4. Left: Approximate reachable set of the NESC and the FxTNESC, with û(0) ∈ Aφ + 10B. The insets illustrate the convergence of all
solutions of the FxTNESC; Right: Time history of one solution of the NESC and the FxTNESC with identical initialization, in logarithmic scale (up)
and linear scale (bottom). The dashed lines show the trajectories of the NF and FxTN flows (20) and (24) with identical initialization.

k > 0 ∃ ∆ > 0, such that ∀ ν ∈ (0,∆), ∃ ε∗2 > 0 such that ∀
ε2 ∈ (0, ε∗2), ∃ a∗ > 0 such that ∀a ∈ (0, a∗), ∃ ε∗1 > 0 such that
∀ ε1 ∈ (0, ε∗1), ∃ ε∗0 > 0 such that ∀ ε0 ∈ (0, ε∗0), all solutions
of system (21) with |û(0)|Aφ ≤ ∆, |ξ1(0)|∇2φ(Aφ)−1 ≤ ∆, and
|ξ2(0)| ≤ ∆, induce the bound

|u(τ)|Aφ ≤ βN,u(|û(0)|Aφ , τ) + ν, ∀ τ > 0,

and βN,u(|û(0)|Aφ , τ) = 0 for all τ ≥ T ∗k . �

Proof: The proof is almost identical to the proof of Theorem 1,
with the difference that the results hold only locally due to the local
stability properties of the boundary layer dynamics of system (23). In
particular, define Aξ := {∇2φ(Aφ)−1}× {0}, and note that by the
stability properties of the boundary layer dynamics of (23), and by
the smoothness properties of φ, there exists δ > 0 and a∗∗ > 0 such
that for all ξ(0) ∈ ({∇2φ(Aφ)−1}×{0})+δB, a ∈ (0, a∗∗) and all
|ûA|Aφ ≤ δ, every solution ξA of the boundary layer dynamics of
system (23) is complete and satisfies |ξA(τ)|Aξ ≤ δ

′′B for all time
τ ≥ 0, and δ′′ > 0. In turn, since βN,k is a class KLT function, there
exists ∆ > 0 sufficiently small such that βN,k(∆, 0) + 0.5δ < δ,
which implies that for ∆ sufficiently small the set K̃ used in the
proof of Theorem 1 can be constructed such that K̃ ⊂ Aφ + δB.
From here we can repeat the same Steps 1 and 2 of the proof of
Theorem 1. �

Remark 7: In the above discussion, the parameter ε2 was the same
for the dynamic of ξ1 and ξ2. However, this was done only to
simplify the presentation, and in practice they can be different in
order to simplify the tuning of the algorithm. As in Theorem 1, the
convergence result of Theorem 2 covers a variety of Newton-based
ESCs that go beyond the one presented in Figure 3, having fixed-time
or finite-time (in this case T ∗k = Tk(∆)) convergence properties,
including ESCs with discontinuous vector fields. �

For constant values of k > 0, α ∈ (0, 1), p = (ν, α1), and by
using the structure of the exponential KL bound of (20), the value
of T ∗N in (25) will be smaller than the convergence time τ∗v of the
NESC whenever the initial conditions û(0) of the controllers are in
the set ΩNp := {ur,0 ∈ Rn : ∆ ≥ |ur,0|Aφ >

κν
2L exp(π/2α1)}.

Since Theorem 2 is a local result, in this case ∆ cannot be selected
arbitrarily large. However, this does not necessarily imply that the
set ΩNp is empty, specially as ν → 0+.

Example 2: We consider the same plant and cost function of
Example 1, but this time we simulate the closed-loop system using
the FxTNESC of Figure 3. We set α1 = 0.5 = −α2, and k = π/100,
which assigns T ∗N = 100 via equation (25). To guarantee that
the ESC behaves as its average system in the slowest time scale,
we use again a = 0.01, ε0 = 5 × 10−5, ε1 = 1 × 10−4,
ε2,ξ1 = 1 × 101, ε2,ξ2 = 2 × 10−1. For the oscillator we used

2πθ1 = 5, 2πθ2 = 3.5 and µ(0) = [0, 1, 0, 1]>. We further used
a low-pass filter to smooth the Hessian estimation. This filter is
not necessary for the simulation but it can simplify the tuning of
the Newton-based ESCs, see [24]. We computed again a numerical
approximation of the reachable set (for the state û) of the NESC
and the FxTNES from initial conditions satisfying û ∈ Aφ + 10B,
ξ2(0) = 1, ξ1(0) = [0.25,−0.1,−0.1, 0.25], via 1×103 simulations
with random initialization in this set. The result is shown in the
left plots of Figure 4. The fixed-time convergence property of the
proposed FxTNES is further illustrated in the logarithmic scale of the
upper right plot, shown in Figure 4, which also show the trajectories
of the reduced average nominal dynamics (20) and (24) using the
same gains k and with identical initialization. As shown in the lower
right plot of Figure 4, the trajectories of the ESCs remain close to the
trajectories of their respective reduced average nominal dynamics. �

Remark 8: When the plant (3) is a static map, i.e., y = h(u), one
can take φ(u) = h(u) and ε0 = 1. In this case, Theorems 1 and
2 recover the results of [1] and [2], which are specialized for the
learning dynamics (13) and (22), now with sharper bounds T ∗G and
T ∗N given by (15) and (25), respectively. In this case, the convergence
time T ∗N can be completely prescribed a priori by the user, without
the need of re-tuning the gain k for different initial conditions. A
similar observation holds for T ∗G if a lower bound on κ is known
a priori. When the plant is dynamic, the bounds hold in the t-time
scale with T ∗G/ε0 and T ∗N/ε0. �

VI. CONCLUSIONS

In this paper, we introduced a novel class of non-smooth extremum
seeking controllers with convergence bounds characterized by class-
KLT functions that confer suitable transient performance in terms of
fixed-time convergence bounds. Our main results can be used for the
design and analysis of different averaging-based ESCs that go beyond
those considered in this paper, and which are not necessarily Lipschitz
continuous, or even continuous. In the latter case, the ESCs must be
analyzed using the framework of differential inclusions. When the
plant is a static map, the convergence time of the algorithms can
be prescribed a priori by the users without re-tuning the gain of
the learning dynamics for different initial conditions. Two numerical
examples were presented to illustrate our theoretical results. Future
research directions will focus on FxTESCs for multi-agent systems.

APPENDIX

The following Lemma is a minor extension of [21, Thm. 2], for the
case when the average dynamics have a compact set that is SGPAS
instead of UGAS. The proof follows directly by using [21, Thm. 1],
and the same steps of the proof of [22, Thm. 7], and therefore it is
omitted due to space limitations.
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Lemma 2: Consider the singularly perturbed system with state
(x1, x2, y) ∈ Rn × X2 × Xy and dynamics

ẋ1 ∈ Fδ(x), ẋ2 = Gδ(x, y), εẏ = H(x, y), (26)

where X2 ⊂ Rn and Xy ⊂ Rp are compact sets, x = [x>1 , x
>
2 ]>,

and for each δ > 0 the set-valued mapping Fδ : R2n ⇒ Rn satisfies
the Basic Conditions, and the mappings Gδ : R2n × Rp → Rn
and H : R2n × Rp → Rp are Lipschitz continuous. Suppose the
following holds:

1) Existence of Average: There exists δ∗ > 0 such that for each
δ ∈ (0, δ∗) there exists a continuous function GAδ : R2n → Rn
such that for each compact set K ⊂ Rn there exists a class-
L function σK,δ such that for each L > 0, δ ∈ (0, δ∗) and
each solution ybl : [0, L] → Xy of the system: (x, ybl) ∈
K × X2 × Xy , ẋ = 0, ẏbl = H(x, ybl), the following holds
| 1L
∫ L
0 GAδ (x)−Gδ(x, ybl(s))ds| ≤ σK(L).

2) SGPAS of Average System: There exists a compact set Ax ⊂
Rn such that the system ẋA1 ∈ Fδ(x

A), ẋA2 = GAδ (xA)
renders the set Ax × X2 SGPAS as δ → 0+ with β ∈ KL.

Then, system (26) renders the compact set Ax × X2 × Xy SGPAS
as (ε, δ)→ 0+ with β ∈ KL. �

Lemma 3: Suppose that V : R≥0 → R≥0 satisfies the Assump-
tions of Lemma 1, and there exist λ1, λ2 > 0 such that λ1|x|2 ≤
V (x) ≤ λ2|x|2. Then, every solution of (1) satisfies:

|x(t)| ≤ c1 tan
(

max
{

0,−c2t+ arctan
(
c3|x(0)|

1
α

)})α
=: β(|x(0)|, t), ∀ t ≥ 0, and β ∈ KLT , (27)

where c1 := a
b

α
2

√
1
λ1

, c2 :=
√
ab

2α , and c3 :=
√

b
aλ

1
2α
2 . �

Proof : Let ẏ = −ayγ1 − byγ2 , with γ1, γ2 as in Lemma
1. Using steps as in the proof of [23, Lemma 2], and the
fact that y∗ = 0 is an equilibrium point, it follows that ev-

ery solution y satisfies 2α√
ab

arctan(
√

b
ay

1
2α (t)) = max{0,−t +

2α√
ab

arctan(
√

b
ay(0)

1
2α )} for all t ≥ 0. Solving for y

and using the generalized Comparison Lemma of [34, Lemma
1] we obtain V (x(t)) ≤ (a/b)α tan(max{0,−

√
ab/(2α)t +

arctan(
√
b/aV (x(0))1/2α)})2α for all t ≥ 0. The result now

follows by using the quadratic upper and lower bounds of V , and
the continuity and monotonicity properties of the functions arctan :
R≥0 → [0, π/2) and tan : [0, π/2)→ R. �
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[21] W. Wang, A. R. Teel, and D. Nešić, “Averaging in singularly perturbed
hybrid systems with hybrid boundary layer systems,” 51st IEEE Con-
ference on Decision and Control, vol. 6855-6860, 2012.

[22] J. I. Poveda and N. Li, “Robust hybrid zero-order optimization algo-
rithms with acceleration via averaging in continuous time,” Automatica,
vol. 123, 2021.

[23] S. Parsegov, A. Polyakov, and P. Shcherbakov, “Nonlinear fixed-time
control protocol for uniform allocation of agents on a segment,” 51st
IEEE Conference on Decision and Control, pp. 7732–7737, 2012.
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