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Fixed-Time Nash Equilibrium Seeking in
Time-Varying Networks
Jorge I. Poveda, Miroslav Krstić, and Tamer Başar

Abstract— In this paper we introduce first-order and
zeroth-order Nash equilibrium seeking dynamics with fixed-
time and practical fixed-time convergence certificates for
non-cooperative games having finitely many players. The
first-order algorithms achieve exact convergence to the
Nash equilibrium of the game in a finite time that can be ad-
ditionally upper bounded by a constant that is independent
of the initial conditions of the actions of the players. More-
over, these fixed-time bounds can be prescribed a priori
by the system designer under an appropriate tuning of the
parameters of the algorithms. When players have access
only to measurements of their cost functions, we consider
a class of distributed multi-time scale zeroth-order model-
free adaptive dynamics that achieve semi-global practical
fixed-time stability, qualitatively preserving the fixed-time
bounds of the first-order dynamics as the time scale sepa-
ration increases. Moreover, by leveraging the property of
fixed-time input-to-state stability, further results are ob-
tained for mixed games where some of the players imple-
ment different seeking dynamics. Fast and slow switching
communication graphs are also incorporated using tools
from hybrid systems. We consider potential games as well
as general non-potential strongly monotone games. Numer-
ical examples illustrate our results.

Index Terms— Learning in Games, Nash equilibria, Non-
cooperative games, Extremum Seeking.

I. INTRODUCTION

S INCE the concept of Nash equilibrium (NE) was generally
introduced in [2], different iterative Nash equilibrium

seeking (NES) algorithms have been extensively studied in the
literature of economics, computer science, and engineering;
see for instance [3]–[6] and references therein.

In the control’s literature, Nash seeking algorithms are gen-
erally studied from a dynamical systems perspective, either by
using discrete-time models [5]–[8], or continuous-time mod-
els; see [9]–[12]. Some works have also used hybrid dynamics
to model game-theoretic settings that involve continuous-
time and discrete-time dynamics [13], [14]. Irrespective of
the nature of the algorithms, a characteristic feature in this
domain is the satisfaction of suitable stability, convergence
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and robustness properties that are critical for practical ap-
plications that use feedback mechanisms. Nevertheless, the
design of high-performance NES dynamics that not only
possess suitable stability and robustness properties, but that
also converge rapidly to the NE of the game, with a graceful
transient performance, has proven to be a persistent challenge.
As a matter of fact, most of the algorithms in the litera-
ture have established either asymptotic convergence results
[6], [8], [10], [15]–[17], or exponential convergence under
strong monotonicity properties, e.g., [18], [7], [12]. However,
even exponential convergence may not be suitable for high-
performance engineering applications where certificates in
terms of convergence times are required. Indeed, standard
asymptotic, exponential, and even finite-time stability results
encode an intrinsic dependence of the convergence time on the
distance between the NE of the game and the initial conditions
of the actions of the players. For learning dynamics with
exponential convergence rates, the convergence time to the
NE grows logarithmically with the distance between the NE
and the initial conditions of the algorithm. In the finite-time
case, the convergence time usually grows in a linear manner.
These properties preclude the existence of convergence time
certificates in settings where the actions of the players are
not constrained a priori to compact sets. Moreover, even if
the system designer can restrict the actions of the players
to compact sets, standard asymptotic bounds usually rely on
worst-case convergence times established from the largest
compact set of possible initial conditions, which have limited
practical use in engineering applications.

Contributions: In this paper, we introduce new classes of
model-based and model-free NES dynamics with fixed-time
convergence properties. These Fixed-time Nash Equilibrium
Seeking (FXNES) dynamics guarantee that the actions of the
players converge to the NE of the game before a fixed time
that is independent of their initial conditions, and which can
be prescribed a priori by the system designer. Moreover, the
NES dynamics can be implemented in games where players
have access only to real-time measurements of their costs.
Specifically, the contributions of this paper are:

1) We present a new class of FXNES dynamics with uniform
global fixed-time stability (UGFXS) properties. To our best
knowledge, such type of stability property, introduced in [19],
has not been established before in the context of Nash equilib-
rium seeking. The FXNES dynamics make use of local Oracles
that provide real-time measurements of the gradients of the
cost functions. Depending on the level of information available
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to the players, the dynamics can be implemented either as
fully decoupled update rules, or as coupled dynamics that
make use of the complete pseudo-gradient of the game. We
characterize their convergence properties in pseudo-gradient
dominated potential games, as well as in strongly monotone
games that are not necessarily potential games.

2) Motivated by realistic competitive settings where players
implement the fastest algorithm at their disposal, we study
the stability and convergence properties of games with mixed
dynamics. In this setting, a subset of the players implement
the FXNES dynamics, while other players implement standard
gradient play dynamics [9], [15], [18], and/or rescaled gradient
play update rules. We establish uniform global asymptotic
and exponential stability properties for potential games, and
also fixed-time input-to-state (ISS) stability properties for the
FXNES dynamics with respect to the reaction curves of the
players. In the presence of stubborn players, the fixed-time ISS
result reduces to exact fixed-time convergence to the reaction
curve of the players that implement the FXNES dynamics.

3) In Section V we present the main results of the paper:
We introduce novel model-free adaptive versions of all the
FXNES dynamics. The adaptive dynamics are based on novel
tools recently developed for non-smooth and hybrid extremum
seeking systems [20]–[22], which extend the traditional results
in smooth extremum seeking control [23]–[25] that have been
instrumental for the design of model-free NES dynamics with
asymptotic and exponential convergence rates; see [26], [15],
[18], [17]. In the model-free setting, the coupled NES dynam-
ics implement a distributed consensus mechanism operating on
a faster time scale, which permits a distributed implementation
of the algorithm. The resulting closed-loop system is then
analyzed using tools from singular perturbation theory for non-
smooth and hybrid systems in order to show that the actions
of the players converge to (a neighborhood) of the NE via the
same generalized class KLT function obtained in the Oracle-
based scenario, provided the parameters of the algorithm are
appropriately tuned to induce enough time scale separation in
the system. To the best of our knowledge, these results are
the first in the literature on model-free fixed-time NES.

4) An additional novelty of this paper is the introduction
of time-varying graphs in the model-free dynamics. Whereas
switching graphs are now fairly standard in the multi-agent
control literature (see e.g., [27]), they have not been systemat-
ically used in the context of averaging-based adaptive NES due
to the challenges that emerge when the singularly perturbed
system becomes a switched system with slow or arbitrarily fast
switching graphs. We overcome these issues by using tools
from set-valued hybrid systems theory [28].

Additional Contributions with Respect to [1] : Earlier, partial
results of this paper appeared in the Proceedings of the IEEE
CDC 2020 [1]. The results of [1] involved only dynamics with
homogeneous exponents and gains, which led to significant
simplifications in the proofs; further, [1] only considered
dynamics with coupled normalization terms. Additionally, [1]
only studied homogeneous dynamics and static graphs. On the
other hand, the results of this paper substantially extend those
of [1] by introducing new decoupled NES dynamics, novel

convergence results for non-potential games and algorithms
with heterogeneous gains and exponents (requiring different
proof techniques), stability results for model-based and model-
free mixed dynamics, results for slow and fast switching
graphs, as well as new numerical illustrative examples for
static and dynamic players. This paper also presents the
complete stability analysis of the algorithms.

The paper is organized as follows. In Section II, we intro-
duce some preliminaries. Section III defines the NES problem.
In Section IV, we present the FXNES dynamics, and we
also provide stability and convergence guarantees. Section V
presents the model-free algorithms along with their respective
analyses, and Section VI ends with the conclusions.

II. PRELIMINARIES
Given a compact set A ⊂ Rn and a vector z ∈ Rn, we use

|z|A := mins∈A ‖z − s‖2. When A = {a}, we simply use
|z − a|. We use S1 := {z ∈ R2 : z2

1 + z2
2 = 1} to denote

the unit circle in R2, and rB to denote a closed ball in the
Euclidean space, of radius r > 0, and centered at the origin.
The set of positive rational numbers is denoted by Q>0. We
use In ∈ Rn×n to denote the identity matrix, and C1 to denote
the class of continuously differentiable functions. A function
β : R≥0 × R≥0 → R≥0 is of class KL if it is nondecreasing
in its first argument, nonincreasing in its second argument,
limr→0+ β(r, s) = 0 for each s ∈ R≥0, and lims→∞ β(r, s) =
0 for each r ∈ R≥0. A function β̃ is of class KLT if β̃ ∈ KL,
and additionally, there exists a continuous function T : R →
R≥0, called the settling time function, such that β̃(r, s) = 0
for all s > T (r) and all r > 0. When there exists T ∗ > 0 such
that T (r) ≤ T ∗ for all r > 0, we say that β̃ has the fixed-
time convergence property. A directed graph G = {V, E} is
characterized by the set of nodes V = {1, 2, . . . , N}, and the
set of edges E ⊂ V × V . For a given node i ∈ V , we denote
its set of neighbors as Ni = {j ∈ V : (i, j) ∈ E}. A graph
is said to be balanced if

∑p
j=1 aij =

∑p
j=1 aji, where [aij ]

is the entry (i, j) of the adjacency matrix of the graph. Given
smooth functions Ji : Rn → R, for i ∈ V , the pseudogradient
G := [G1, . . . , GN ]> is defined as (see [9, Eq. (3.9)]):

G(x) :=
[
∇1J1(x)>,∇2J2(x)>, . . . ,∇NJN (x)>

]>
, (1)

where each element ∇iJi : Rn → Rmi is defined as
∇iJi(x) := [∂Ji(x)

∂xi,1
, ∂Ji(x)
∂xi,2

, . . . , ∂Ji(x)
∂xi,mi

]>, for all i ∈ V . In this
paper, we will model our algorithms as constrained set-valued
dynamical systems [28], with state x ∈ Rn, and dynamics

x ∈ C, ẋ ∈ F (x), (2)

where F : Rn ⇒ Rn is a set-valued mapping that is
outer-semicontinuous, locally bounded, and convex-valued,
and where C ⊂ Rn is a closed set. Solutions to system (2)
are absolutely continuous functions x : dom(x) → Rn that
satisfy: a) x(0) ∈ C; b) x(t) ∈ C for all t ∈ dom(x); and
c) ẋ(t) ∈ F (x(t)) for almost all t ∈ dom(x). A solution is
said to be complete if dom(x) = [0,∞). When C = Rn and
F is a single-valued Lipschitz continuous function, system
(2) becomes a standard ODE with unique solutions. To study
system (2) we will use the following stability notions.
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Definition 1: A compact set A ⊂ C is said to be uniformly
globally asymptotically stable (UGAS) for system (2) if there
exists a class KL function β such that every solution x satisfies
the bound |x(t)|A ≤ β(|x(0)|A, t), ∀ t ∈ dom(x). When
β(r, s) = c1r exp(−c2s) for some c1, c2 > 0, the set A is
said to be uniformly globally exponentially stable (UGES). If
β ∈ KLT , the set A is said to be uniformly globally finite-time
stable (UGFTS). If, additionally, the settling time function of
β is uniformly bounded by some T ∗ > 0, then the set A is
said to be uniformly globally fixed-time stable (UGFXS). �

We will also consider ε-parameterized systems of the form

x ∈ C, ẋ ∈ Fε(x), (3)

where ε > 0 is a tunable parameter. For these systems, we
will study semi-global practical stability properties.

Definition 2: A compact set A ⊂ C is said to be β-Semi-
Globally Practically Asymptotically Stable (SGP-AS) as ε→
0+, if there exists β ∈ KL such that for each pair ∆ > ν > 0
there exists ε∗ > 0 such that for all ε ∈ (0, ε∗) every solution
of (3) with |x(0)|A ≤ ∆ satisfies |x(t)|A ≤ β(|x(0)|A, t) +ν,
∀ t ∈ dom(x). When β has an exponential form, we say that
A is semi-globally practically exponentially stable (SGP-ES).
If β ∈ KLT , the set A is said to be semi-globally practically
finite-time stable (SGP-FTS). If, additionally, β has the fixed-
time convergence property, we say that A is semi-globally
practically fixed-time stable (SGP-FXS). �

The notions of SGP-AS (-ES, -FTX, -FXS) can be ex-
tended to systems that depend on multiple parameters ε =
[ε1, ε2, . . . , ε`]

>. In this case, we say that system (3) renders
the set A β-SGP-AS as (ε`, . . . , ε2, ε1) → 0+, where the
parameters are tuned in order starting from ε1.

Remark 1: Semi-global practical asymptotic stability is al-
ways a “finite-time” convergence property. Namely, for all
complete solutions, SGP-AS immediately guarantees that the
condition |x(t)|A ≤ 2ν holds after some finite T ν,∆. However,
the structure of β will determine the transient behavior of the
solutions x, and also how T ν,∆ depends on x(0). �

We will also use the following auxiliary lemma, correspond-
ing to [29, Lemma 1] and [30, Lemma 2].

Lemma 1: Consider the dynamics (2) with C = Rn and F
being singled-valued with a unique equilibrium point at the
origin, and suppose ∃ ρ1, ρ2 > 0, β1 ∈ (0, 1), β2 > 1, and
a positive definite, radially unbounded and smooth Lyapunov
function V satisfying D∗V (x) ≤ −ρ1V (x)β1−ρ2V (x)β2 , for
all x ∈ Rn, where D∗V is the Dini derivative of V [29]. Then,
the origin is UGFXS for (2) with T ∗ = 1

ρ1(1−β1) + 1
ρ2(β2−1) .

If β1 = 1 − 1
2α , β2 = 1 + 1

2α , and α > 1, then the origin is
UGFXS for (2) with T ∗ = απ√

ρ1ρ2
. �

III. PROBLEM STATEMENT AND MOTIVATION

In a wide variety of applications, a group of agents compete
to minimize their own individual cost functions by controlling
their respective actions. When the cost functions of the agents
also depend on each other’s actions, the strategic interactions
between the agents can be modeled as a non-cooperative game.
In particular, a non-cooperative game is described by three
elements. The first element is the set of players, which we

will conveniently denote as V = {1, 2, . . . , N}. The second
element is the joint action set, denoted as S = S1 × S2 ×
. . . × SN , which represents all the possible actions that the
players can take. Finally, the third element is the vector of
cost functions J = [J1, J2, . . . , JN ]>, where the real-valued
C1 function Ji : S → R represents the cost function of the
ith player. In this paper, we study games in which the number
of alternatives available to each player is a continuum. More
precisely, the action of each player is represented by a vector
xi in the set Si = Rmi , where mi is an integer. We define n :=∑N
i=1mi, such that S = Rn, and we use x−i ∈ Rn−mi to

denote the vector of actions of the players other than player i.
We also use Ji(xi, x−i) to explicitly denote the dependence of
Ji on the actions x, and we consider the following smoothness
assumption which is standard in the literature [7], [12]:

Assumption 1: There exists L > 0 such that |G(x) −
G(y)| ≤ L|x− y| for all x, y ∈ Rn. �

Our main goal is to design an update rule for the actions of
the players to converge to a point x∗ ∈ Rn that satisfies

Ji(x
∗
i , x
∗
−i) = inf

xi∈R
Ji(xi, x

∗
−i), ∀ i ∈ {1, 2, . . . , N}. (4)

Such actions describe a Nash equilibrium (NE) [2], which
is a desirable state where every player of the game has no
individual incentive to deviate to another action. While a
plethora of Nash equilibrium seeking (NES) algorithms exist
in the literature, see e.g., [5] and references therein, in this
paper we are interested in continuous-time dynamic strategies
that can be implemented by the players in order to exactly
converge to x∗ in finite time, and regardless of the initial
choices for the actions, i.e., in a fixed time. Any continuous-
time algorithm with this property cannot be modeled by a Lip-
schitz continuous autonomous ordinary differential equation
due to the lack of uniqueness of solutions backward in time.
Yet, by achieving fixed-time convergence, these algorithms can
achieve dramatic improvements in terms of transient behavior
for high-performance applications. As an illustrative example,
for a duopoly game with costs1 Ji(x) = 0.5(x2

i − xixj),
i ∈ {1, 2}, j 6= i, Figure 1 compares the reachable sets in the
time domain [0, 80] of one of the fixed-time Nash equilibrium
seeking (FXNES) dynamics introduced in this paper (c.f. (8)),
compared to the well-known gradient-play (GP) dynamics [9]:

ẋi = −ki∇iJi(x), ki > 0, ∀ i ∈ V. (5)

As seen in Figure 1, the trajectories of the FXNES dynamics
converge exactly to the NE of the game before a fixed time
T ∗1 > 0. Indeed, we will show that the FXNES dynamics
induce uniform global fixed-time convergence to x∗ via a
generalized KLT function β1 of the form

|x̃(t)| ≤ c1 tan (max {0,−c2t+ arctan (c3|x̃(0)|c4)})c5 ,
(6)

where x̃ := x − x∗, ci > 0 for i ∈ {1, 2, . . . , 5}. This bound
will guarantee that |x̃(t)| = 0 before the time

T ∗1 =
πN

a
4

2akκ
, (7)

1Note that this 2-player game admits the unique NE (x∗
1 = x∗

2 = 0).
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Fig. 1: A duopoly game with Oracles. Left: Comparison between reachable sets of the GP dynamics (5) and the decoupled FXNES dynamics
(8) with a = b = 0.5 for all t ∈ [0, 80]. Right: One trajectory of each algorithm, initialized at xi(0) = 5× 104, illustrating the exponential
and the fixed-time convergence property, respectively. Simulations used κ = 0.5, ki = 0.1, ai = 0.5 = b for all i ∈ {1, 2}.

where k is the smallest gain used by the dynamics of the
players, κ > 0 is a constant that characterizes the strong
monotonicity properties of the game, and a ∈ (0, 1) is
a tunable parameter of the controller. Since the bound (7)
is independent of the initial conditions of the dynamics, it
provides a convergence certificate for the algorithm.

In settings where players have access to measurements of
Ji instead of the gradients ∇Ji, dynamics of the form (5) or
(8) cannot be directly implemented. In this case, each player
needs to use zeroth-order or model-free adaptive algorithms,
and we are interested in algorithms that additionally retain the
qualitative properties of the FXNES dynamics. Figure 2 shows
the results of implementing one of the model-free FXNES
dynamics studied in this paper, in the same duopoly example
considered in Figure 1, and compared to the standard model-
free NES algorithm of [18] using the same tunable parameters.
On the right plot, it can be seen that the adaptive dynamics ap-
proximately recover the fixed-time convergence of the model-
based dynamics. In particular, as we will show in Section V,
for arbitrarily large compact sets of initial conditions, and for
arbitrarily small values of ν > 0, the parameters of the model-
free dynamics can be tuned to guarantee that the actions of the
players satisfy the bound |x̃(t)| ≤ β1(|x̃(0)|, t) + ν, ∀ t ≥ 0,
with β1 given by (6). This type of bound can induce a drastic
improvement in the transient performance of the algorithms.

IV. FIXED TIME NES WITH GRADIENT ORACLES

We start by considering a class of model-based FXNES
dynamics suitable for games where players have access to local
Oracles that provide real-time measurements of the values
of the gradients ∇iJi. The results of this section will be
instrumental for the model-free games considered in the next
section, where players do not have access to the mathematical
forms of Ji or ∇Ji, thus ruling out strategies that require
explicit evaluations of these functions.

A. Decoupled FXNES Dynamics

To achieve fixed-time NES, we first consider the following
dynamics implemented by each player i of the game:

ẋi = −∇iJi(x)

(
ki

|∇iJi(x)|a
+

ki

|∇iJi(x)|−b

)
, (8)

where ki > 0 is a tunable gain, a ∈ (0, 1) and b > 0
are tunable parameters that are homogeneous for all players,
and where the right-hand side of (8) is defined to be zero
whenever ∇iJi(x) = 0. Note that the dynamics (8) are fully
decoupled and continuous, but not Lipschitz continuous. To
characterize the stability and convergence properties, we first
focus on a class of games that we term pseudogradient-
dominated potential games, which satisfy the following.

Assumption 2: There exists a C2 radially unbounded func-
tion P : RN → R, called the potential function, such that:
(a) The gradient of P satisfies ∇iP (x) = ∇iJi(x), for all

i ∈ V , and for all x ∈ Rn.
(b) The NE exists, satisfies x∗ = arg minx∈Rn P (x), and it is

unique.
(c) There exists κ > 0 such that P (x)−P (x∗) ≤ 1

2κ |G(x)|2,
for all x ∈ RN . �

Potential games are ubiquitous in the literature [5]. They
arise in applications such as congestion control, resource
allocation problems, and oligopoly games with quadratic costs
[5], [18]. Pseudo-gradient dominated potential games are
standard potential games that also satisfy the inequality of
item (c). Note that any potential game with a strongly convex
potential function satisfies this inequality. In this particular
case, existence and uniqueness of x∗ follows from [9, Thm.
2]. However, in general, the inequality in (c) does not imply
convexity of P , but rather the property of invexity. Invex games
have only recently been explored in the literature [31], [32].

Proposition 1: Suppose that Assumptions 1-2 hold. Then,
the NES dynamics (8) render UGFXS the NE x∗ ∈ Rn, with
a settling time function bounded by:

T ∗1 =
1

kκ

(
2

3a
4 κ

a
2

a
+

N
b
2

2
3b
4 κ

b
2 b

)
, (9)

where k = mini ki. �
Proof: Consider the Lyapunov function

V (x) =
1

2
(P (x)− P (x∗))2, (10)

which, under Assumption 2, is positive definite with respect
to x∗, and also radially unbounded due to items (b)-(c) of
Assumption 2, which imply a quadratic growth on V [33,
Thm. 2]. Note that if x(t0) is such that ∇iJi(x(t0)) = 0, for
all i ∈ V , then ẋ = 0, and, by Assumption 2 we must have
x(t) = x∗ for all t ≥ 0. Moreover, the time derivative of V
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Fig. 2: A duopoly game with no gradient Oracles. Left: Scheme of model-free adaptive FXNES dynamics. Right: Comparison between
trajectories generated by the model-free dynamics of [18] and the model-free adaptive FXNES dynamics, using the same tunable parameters.

satisfies V̇ (x) =
√

2V (x)
1
2∇P (x)>ẋ, and using property (a)

of Assumption 2, we obtain:

V̇ (x) ≤ −V (x)
1
2

N∑
i=1

|∇iJi(x)|2
(

k
√
2

|∇iJi(x)|a
+

k
√
2

|∇iJi(x)|−b

)

= −k
√
2V (x)

1
2

N∑
i=1

(
ξ
2−a
2

i + ξ
2+b
2

i

)
, ξi := |∇iJi(x)|2,

= −k
√
2V (x)

1
2

N∑
i=1

ξ
1−a

2
i − k

√
2V (x)

1
2

N∑
i=1

ξ
1+ b

2
i ,

where k := mini ki. Note that if x is such that x 6= x∗ but
∇iJi(x) = 0 for some i ∈ V , the above inequalities still hold
with ξi = 0 for such i. Using Lemma 7 in the Appendix:

V̇ (x) ≤ −k
√
2V (x)

1
2

( N∑
i=1

ξi

)1−a
2

+N−
b
2

(
N∑
i=1

ξi

)1+ b
2


= −k

√
2V (x)

1
2

(
|G(x)|2−a +N−

b
2 |G(x)|2+b

)
. (11)

and using Lemma 9 in the Appendix, we can further upper
bound the time derivative of V in (11) as follows

V̇ (x) ≤ −4kκ
(

2−
3a
4 (κ)−

a
2 V (x)

4−a
4 +N−

b
2 2

3b
4 (κ)

b
2V (x)

4+b
4

)
.

≤ −4kκ
(
c1V (x)1− a

4 + c2V (x)1+ b
4

)
. (12)

By Lemma 1, the last inequality implies UGFXS, with bound
for the settling time function given by T ∗1 = 1

4kκ

(
4
c1a

+ 4
c2b

)
.

The result follows by direct substitution of c1 and c2. �
Unlike existing results in the literature of Nash seeking,

Proposition 1 not only establishes global asymptotic or expo-
nential stability but also fixed-time convergence to the NE.
Moreover, equation (9) provides an explicit bound for the
convergence time. Note that equation (9) depends only on the
exponents (a, b), the constant κ, the number of players N ,
and the minimum gain ki. Thus, if the constants (κ,N, a, b)
are known, any time T ∗1 > 0 can be prescribed a priori by
the system designer via the assignment of the gains ki. Note
that unlike existing fixed-time optimization algorithms [34],
the normalizing term in (8) is the partial derivative of the cost
of each player with respect to its own action. Thus, system
(8) can be seen as a fixed-time pseudo-gradient flow.

Remark 2: When a = b in (8), a sharper bound can be
obtained for T ∗1 by using the second part of Lemma 1. In this
case, Proposition 1 holds with T ∗1 = π

2akk
√
c1c2

, where the

constants c1, c2 are given in (12). By direct substitution of c1
and c2 we obtain precisely the bound (7). The KLT bound
(6) follows by applying [20, Lemma 3]. �

B. Heterogeneous FXNES Dynamics
The decoupled dynamics (8) implement homogeneous ex-

ponents (a, b). To relax this condition, we now consider
the following coupled FXNES dynamics with heterogeneous
exponents ai ∈ (0, 1), bi > 0, implemented by each player i:

ẋi = −∇iJi(x)

(
ki

|G(x)|ai
+

ki

|G(x)|−bi

)
, (13)

where G is the pseudogradient of the game, and the right-hand
side of (13) is defined to be zero when G(x) = 0.

The following result establishes that the learning dynamics
(13) induce global fixed-time stability in any game satisfying
Assumptions 1-2, with a convergence bound independent of
the number of players.

Proposition 2: Suppose that Assumptions 1-2 hold. Then,
the learning dynamics (13) render UGFXS the NE x∗ ∈ Rn,
with a settling time function bounded by:

T ∗2 =
1

kκmin{1/ᾱa, γb}

(
1

mini ai
+

1

mini bi

)
, (14)

where k = mini ki, ᾱa = maxi

(
2

3
4 L√
κ

)ai
, and γ

b
=

mini(2
3
4
√
κ)bi . �

Proof: To prove Proposition 2, we first establish the follow-
ing auxiliary Lemma.

Lemma 2: Suppose that Assumptions 1 and 2 hold, and let
V be given by (10). Then, the time derivative of V along the
trajectories of (13) satisfies

V̇ (x) ≤

{
−ρ̃V (x)1− a

4 , if V (x) ≤ 1,

−ρ̃V (x)1+ b
4 , if V (x) ≥ 1,

(15)

where ρ̃ := 4κkmin{1/ᾱa, γb}, with a = mini ai, and b =
mini bi.

Proof of Lemma 2: For each player i ∈ V , we define the
function ψi : Rn\{x∗} → R>0 given by

ψi(x) :=
1

|G(x)|ai
+

1

|G(x)|−bi
. (16)

The time derivative of V can be written as V̇ (x) =
−
√

2V (x)
1
2

∑N
i=1 kiψi(x)∇iJi(x)>∇iJi(x), which satisfies
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V̇ (x) ≤ −k
√

2V (x)
1
2

∑N
i=1 |∇iJi(x)|2 ψi(x), for all x 6= x∗,

where k := mini ki. Using Lemmas 8 and 9 in the Appendix
we can further upper bound V̇ as follows:

V̇ ≤ −V (x)
1
2

N∑
i=1

|∇iJi(x)|2
(

k
√

2

αaiV (x)
ai
4

+
k
√

2γbi

V (x)−
bi
4

)

≤ −V (x)
1
2

N∑
i=1

|∇iJi(x)|2
(

k
√

2

ᾱaV (x)
ai
4

+
k
√

2γ
b

V (x)−
bi
4

)
,

where ᾱa := maxi αai and γ
b

:= mini γbi . We now consider
two possible cases when x 6= x∗:

1) If V (x) ≤ 1, by Lemma 5 in the Appendix we obtain:

V̇ ≤ −V (x)
1
2

N∑
i=1

|∇iJi(x)|2
(

k
√

2

ᾱaV (x)
a
4

+
k
√

2γ
b

V (x)−
b
4

)

= −V (x)
1
2

(
k
√

2

ᾱaV (x)
a
4

+
k
√

2γ
b

V (x)−
b
4

)
N∑
i=1

|∇iJi(x)|2

= −k
√

2

(
V (x)

1
2

ᾱaV (x)
a
4

+
V (x)

1
2 γ

b

V (x)−
b
4

)
|G(x)|2,

≤ −kγ2

√
2

(
V (x)1− a

4

ᾱa
+ γ

b
V (x)1+ b

4

)
,

which implies V̇ (x) ≤ −ρsV (x)1− a
4 with ρs := 4kκ

ᾱa
.

2) If V (x) ≥ 1, by Lemma 6 in the Appendix, and the same
steps as above, we obtain

V̇ ≤ −V (x)
1
2

(
k
√

2

ᾱaV (x)
ā
4

+
k
√

2γ
b

V (x)−
b
4

)
N∑
i=1

|∇iJi(x)|2 ,

≤ −kγ2

√
2

(
V (x)1− ā

4

ᾱa
+ γ

b
V (x)1+ b

4

)
,

which implies V̇ ≤ −ρ`V (x)1+ b
4 with ρ` := 4kκγ

b
.

The above inequalities of items 1) and 2) imply (15). �
Finally, using Lemma 2, it now follows that if V (x(0)) > 1,

then V (x(t)) ≤ 1 for all t ≥ T ′, with T ′ = 4
ρ̃b . Similarly, for

any x(t0) such that V (x(t0)) ≤ 1, we have that V (x(t)) = 0
for all t ≥ t0 + T ′′, with T ′′ = 4

ρ̃a . Thus, global fixed-time
convergence occurs for all t ≥ T ∗2 := T ′ + T ′′. If x(t0) is
such that G(x(t0)) = 0, then by definition we have ẋ = 0,
but under Assumption 2 and the fact that V̇ < 0 for all x 6= x∗,
we must also have x(t) = x∗ for all t ≥ t0. �

Remark 3: The fixed-time characterization given by equa-
tion (14) shows the dependence of the bound T ∗2 on the
minimum values of the exponents (ai, bi) among all players of
the game, and also on the minimum gain ki, and the parameter
κ. Note that, unlike T ∗1 in (9), the bound (14) does not depend
on the number of players in the game. �

Remark 4: The learning dynamics (13) implement a nor-
malizing term that is a function of the overall pseudo-gradient
G. Therefore, these dynamics are not suitable for fully de-
centralized implementations. Nevertheless, as we will show
in Section V, the term |G(x)| can be computed by each
player in a distributed way via multi-time scale techniques,
approximately preserving the convergence bounds as the time
scale separation increases. �

An important class of games in the context of fast NES
algorithms are the so-called strongly monotone games [7],
[12], [35], characterized by the following assumption.

Assumption 3: There exists κ > 0 such that the mapping
x 7→ G(x) satisfies (x1 − x2)> (G(x1)−G(x2)) ≥ κ|x1 −
x2|2, for all x1, x2 ∈ Rn. �

For general (not necessarily potential) strongly monotone
games, the existence of a unique NE is guaranteed [9, Thm.
2]. However, the analysis of fast NES dynamics is more
challenging. Indeed, even for settings where exponential con-
vergence is desired, standard convergence results generally
require additional joint strong-convexity/Lipschitz conditions
on the cost functions of the players. In our case, the following
proposition establishes that the learning dynamics (13) render
UGFXS the NE of any strongly monotone game when the ex-
ponents of the normalizing term are homogeneous. However,
we impose neither homogeneity conditions on the gains ki,
nor the existence of a potential function.

Proposition 3: Suppose that Assumptions 1 and 3 hold. Let
the players implement the NES dynamics (13) with ai = a ∈
(0, 1) and bi = b > 0, for all i ∈ V . Then, the NE x∗ is
UGFXS, with a settling time function bounded by

T ∗3 =
1

kκ

(
(2k̄L2)

a
2

a
+

1

(2kκ2)
b
2 b

)
. (17)

where k̄ = maxi ki, and k = mini ki. �
Proof: Let K := diag(k), where k =

[k11
>
m1
, k21

>
m2
, . . . , kN1>mN

]>. We consider the quadratic
Lyapunov function

V (x) =
1

2
(x− x∗)>K−1(x− x∗), (18)

which satisfies 1
2k̄
|x − x∗|2 ≤ V (x) ≤ 1

2k |x − x∗|2 due
to the fact that ki > 0 for all i ∈ V . Define the function
ψ : Rn\{x∗} → R > 0 as ψ(x) :=

(
1

|G(x)|a + 1
|G(x)|−b

)
. It

follows that for all x 6= x∗ the time-derivative of V along the
trajectories of the dynamics (13) satisfies

V̇ = −(x− x∗)>K−1KG(x)ψ(x) = −(x− x∗)>G(x)ψ(x)

≤ −κ|x− x∗|2ψ(x) ≤ −2kκV (x)ψ(x), (19)

and using Lemma 10 in the Appendix we obtain:

V̇ (x) ≤ −2kκV (x)

(
1

γ
a
2
1 V (x)

a
2

+
γ

b
2
2

V (x)−
b
2

)

≤ −2kκ

(
1

γ
a
2
1

V (x)1− a
2 + γ

b
2
2 V (x)1+ b

2

)
,

for all x ∈ Rn. The result follows by Lemma 1. �
Remark 5: For strongly monotone games (non necessarily

potential), the condition a = b and the alternative Lyapunov
function V2(x) = 0.5V (x)2, with V given by (18), can lead to

the sharper convergence bound T ∗∗3 = π
2kκa

(
L2k̄
κ2k

) a
4

, which
shows the role of the condition number (L/κ) of G, as well as
the ratio (k̄/k). When the strongly monotone game is also a
potential game, and the gains are also homogeneous, then the
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Fig. 3: Left: Comparison of reachable sets of the GP dynamics (5) and the FXNES dynamics (13). Right: Time history of one solution
generated by the dynamics (5) (dashed line) and (13) (solid line), with identical initialization and gains.

result of Proposition 3 recovers the results of [34] established
for standard optimization problems. �

Example 1: To illustrate the result of Proposition 3 in non-
potential games, consider a game with three players, having
cost functions of the form

Ji(x) =
1

2

N∑
j=1

N∑
k=1

Di
jkxjxk +

N∑
j=1

dijxj + ci, (20)

where Di
j,k, d

i
j , c

i ∈ R are parameters associated with the
cost of the ith player, for all j, k ∈ V = {1, 2, 3}.
Let D1 = [27,−12, 6;−12,−7.11,−5.33; 6,−5.33,−16],
D2 = [−13.5,−24,−6;−24, 32,−21.33;−6,−21.33,−24],
D3 = [−9, 12, 3; 12, 3.55,−5.33; 3,−5.33, 24], d1 =
[−15,−6.66,−30], d2 = [−22.5,−26.66,−50], d3 =
[−30,−13.33,−60], and ci = 0 for all i. This game is not
a potential game, and therefore it does not satisfy Assumption
2. However, the game satisfies Assumptions 1 and 3 with
L = 55, κ = 8.70, and x∗ = [1.74, 4.30, 3.23]. We implement
the FXNES dynamics (13) with a = b = 0.5, and also
the gradient play dynamics (5). In both cases we use the
same gains ki = 0.1 for all i ∈ V . The left plot of
Figure 3 compares the reachable sets of both algorithms in
the time interval [0, 5] for initial conditions u(0) in the set
[−100, 100]× [−100, 100]× [−100, 100]. The right plot shows
one solution of both dynamics with identical initialization, as
well as the estimate T ∗∗3 from Remark 5. �

C. Mixed Gradient Dynamics

In the previous subsections, we established different fixed-
time convergence results for non-cooperative games when all
players agree to implement the learning dynamics (8) or (13).
We now take a departure from this setting by studying a
more realistic and challenging scenario, where players having
different NES dynamics at their disposal aim to learn the NE
x∗. In particular, we consider a mixed-game characterized by
a partition of the set of players V , given by V = F ∪R ∪G,
where F denotes the players who implement the FXNES
dynamics (8) (who we call F-players), G denotes the players
who implement the gradient play dynamics (5) (who we call
G-players), which are a particular case of (8) with ai = bi = 0;
and R corresponds to the R-players, who implement the
rescaled gradient dynamics ẋi = −ki∇iJi(x)|∇iJi(x)|−ai ,
with ai ∈ (0, 1), which correspond to (8) with bi = ∞.

These dynamics are also common in the literature of NES
and optimization, see [18], [9].

Proposition 4: Suppose that Assumptions 1-2 hold and
consider the mixed-game V = F ∪R ∪G, where ai ∈ (0, 1)
and bi = ai in (8). Then, the NE x∗ is UGAS, and if
R = {∅}, the actions of the players satisfy the exponential
bound |x̃(t)| ≤ L

κ |x̃(0)|e−kκt, for all t ≥ 0, where x̃ = x−x∗,
and k = mini ki. �

Proof: Without loss of generality, let F := {1, 2, , . . . , NF },
R = {NF + 1, NF + 2, . . . , NF + NR}, and G := {NF +
NR+1, NF +NR+2, . . . , N} be the set of players who imple-
ment the FXNES dynamics, the rescaled gradient dynamics,
and the gradient dynamics, respectively. Define the functions
ψi(x) :=

(
1

|∇iJi(x)|ai + 1
|∇iJi(x)|−ai

)
. Using the Lyapunov

function (10), we can compute the time derivative of V , which
satisfies

V̇ (x) ≤ −kV (x)
1
2

√
2

[
NF∑
i=1

|∇iJi(x)|2ψi(x)

+

NF +NR∑
i=NF +1

|∇iJi(x)|2−ai +

N∑
i=NF +NR+1

|∇iJi(x)|2
]
,

which implies V̇ (x) ≤ −k
√

2V (x)
1
2 η(x) < 0, for all ∀ x 6=

x∗, because η(x) > 0 for all x 6= x∗. This establishes
UGAS of x∗. When R = {∅}, and since |∇iJi(x)|2ψi(x) ≥
|∇iJi(x)|2 due to Lemma 4, for all x ∈ Rn, and all i ∈ V ,
we have that V̇ can be bounded as

V̇ (x) ≤ −kV (x)
1
2

√
2

(
N∑

i=n+1

|∇iJi(x)|2 +

n∑
i=1

|∇iJi(x)|2
)
,

≤ −kV (x)
1
2

√
2|G(x)|2 ≤ −4kκV (x),

where the last inequality used the fact that |G(x)|2 ≥√
8κ2V (x). By a standard Comparison Lemma, and due to

Assumptions 1-2, we obtain κ2

8 |x(t) − x∗|4 ≤ V (x(t)) ≤
V (x(0))e−4kκt and V (x(0))e−4kκt ≤ 1

8κ2L
4|x(0) −

x∗|4e−4kκt, which leads to the desired bound. �
The result of Proposition 4 implies that, for each compact

set of initial conditions, all actions of the players are uniformly
bounded, and converge to x∗ in the limit. We now leverage this
uniform boundedness property to assert a stronger result for
the F-players. In particular, when R = {∅}, we will establish
that the players who implement the FXNES dynamics con-
verge in a fixed-time -with respect to their initial conditions-
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to a neighborhood of their reaction curves `i, which are
the F-players’ best response strategies given the actions of
the G-players, see [16, Def. 4.3]. We also quantify the F-
player’s convergence certificates, thus providing the means for
influencing success in the transient phase of mixed games.

To achieve this goal, and to avoid set-valued reaction curves,
we focus our attention on quadratic games with cost functions
of the form (20), and scalar actions xi. To compute the reaction
curves of the F-players, we use xg ∈ R|G| to denote the vector
of actions of the G-players, and xf ∈ R|F| to denote the
vector of actions of the F-players. By writing the overall vector
of actions of the game as x := [x>f , x

>
g ]>, the re-organized

pseudogradient of the game takes the form

G̃(x) =

[
Da Db

Dc Dd

] [
xf
xg

]
+

[
df
dg

]
, (21)

where Da ∈ R|F|×|F|, Dd ∈ R|F|×|G|, Dd ∈ R|G|×|F|. Under
Assumption 3, the NE of the game is given by the pair (x∗f , x

∗
g)

that satisfies [16, Prop. 4.6]:[
x∗f
x∗g

]
=

[
Da Db

Dc Dd

]−1 [
df
dg

]
.

Moreover, under Assumption 1 we have that Db = D>c , Da >
0, and the inverse of the Schur complement, S−1 := (Dd −
DcD

−1
a Db)

−1, also exists [36, pp. 123-124]. Using (21), the
best response function xrf : R|G| → R|F| for the F-players can
be computed as:

xrf (xg) = −D−1
a (Dbxg + df ). (22)

Using (22), the next proposition establishes a global fixed-
time input-to-state stability result [37] that bounds the error
with respect to the reaction curve of the F -players, i.e., x̃f =
xf − xrf , taking as input the error x̃g := xg − x∗g of the G-
players, where x∗ = [x∗f , x

∗
g] is the NE of the game.

Proposition 5: Suppose that Assumptions 1-3 hold. Then,
there exists β ∈ KLT such that

|x̃f (t)| ≤ β(|x̃f (0)|, t) + γ5‖x̃g‖[0,∞], (23)

for all t ≥ 0, and the settling time function of β is bounded
by T ∗5 > 0, with

T ∗5 :=
2

kfλmin(Da)

(
(2λmin(Da))

a
2

a
+

N
b
2

(2λmin(Da))
b
2 b

)
,

γ5:= 2
λmax(Da)

λmin(Da)3
· k̄g
kf
· |Db||S|,

where k̄g is the largest gain used by the G-Players, and kf is
the smallest gain used by the F -Players. �

Remark 6: Since the asymptotic gain γ5 is proportional to
k̄g|Db||S|, it follows that whenever the G-players are stubborn
(i.e., k̄g = 0) or there is no coupling between G-players and
F -players (i.e., Db = 0), the F-players render UGFXS the
point xrf (xg(0)) in their best response curve. �

Before presenting the proof of Proposition 5, we consider a
numerical example that illustrates the fixed-time ISS behavior
that arises in mixed games with F-players.

Example 2 (Market with Mixed Dynamics): Consider the
duopoly market example of [18, Sec. II], where two firms

that produce the same good compete for profit by controlling
their prices x1 and x2. Since in (4) we consider minimization,
the negative of the profits of the companies i ∈ {1, 2} have
the form Ji = −si(xi−mi), where si is the number of sales,
and mi is the marginal cost. The sales of the firms have the
forms s1 = Sd − s2 and s2 = 1

p (x1 − x2), where Sd is the
total consumer demand, which is assumed to be constant, and
p > 0 is the preference of the consumer for the product of
firm 1. Substitution into Ji leads to the quadratic costs given
by J1 = (x2

1 − x1x2 − (m1 + Sdp)x1 + m1x2 + pSdm1)/p
and J2 = (x2

2 − x1x2 + m2x1 − m2x2)/p. For the purpose
of simulation, we use the same parameters considered in
[18], i.e., Sd = 100, p = 0.2, m1 = m2 = 30. With these
parameters, the duopoly becomes a strongly monotone market
that also satisfies Assumption 1. To attain Nash seeking, both
firms implement the fastest algorithm at their disposal: firm
1 implements the GP dynamics (5), while firm 2 implements
the FXNES dynamics (8) with a = b = 0.5. The gain k2

of the second firm is tuned to guarantee fixed-time ISS
to the reaction curve xr2 in at most 1 second. The results
are presented in Figure 4. The reaction curves are shown
with dotted lines. The inset shows that the convergence is
approximately linear for both firms after the price of the
second firm has quickly converged to the reaction curve xr2.
Figure 4 shows that |x2 − xr2| converges to the worst-case
theoretical ultimate bound γ5|x̃g(0)| in approximately 1 s. �

Proof of Proposition 5: Using (21), the dynamics of the F-
players can be written as ẋf = −KfΨ(x)(Daxf+Dbxg+df ),
where Kf is a diagonal matrix with diagonal components
given by the gains kf,i > 0, and Ψ(x) ∈ R|F|×|F| is a
diagonal matrix with diagonal components given by ψi(x) :=
|∇iJi(x)|−a + |∇iJi(x)|b, which in this case satisfy:

ψi(x) = |Da,ixf +Db,ixg + df,i|−a + |Da,ixf +Db,ixg + df,i|b.

The dynamics of the G-players can be written as ẋg =
−Kg(Dcxf + Ddxg + dg). To study the convergence of xf
to xrf , we define the error coordinates x̃f := xf − xrf and
x̃g = xg − x∗g . Then, the dynamics of the G-players are

ẋg = −Kg

(
Dc(x̃f −D−1

a (Db(x̃g + x∗g) + df ))

+Dd(x̃g + x∗g) + dg
)
,

= −KgDcx̃f +Kg(DcD
−1
a Db −Dd)x̃g −Kgdg

+KgDcD
−1
a df +Kg(DcD

−1
a Db −Dd)x

∗
g.

The NE satisfies x∗g = −S−1(dg − DcD
−1
a df ), thus the

dynamics of the G-players can be written as ẋg = −KgDcx̃f−
KgSx̃g , and ψi can be written in the x̃f -coordinates as

ψi(x̃f ) =
1

|Da,ix̃f |a
+

1

|Da,ix̃f |b
. (24)

Similarly, the error dynamics of the F-players are given by
˙̃xf = ẋf − ẋrf , which can be written as:

˙̃xf = −KfΨ(x) (Daxf +Dbxg + df )−D−1
a [Db(KgDcx̃f

+KgSx̃g)],

= −KfΨ(x)(Da(x̃f + xrf ) +Dbxg + df )

−D−1
a [Db(KgDcx̃f +KgSx̃g)],
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and using the definition of xrf :

˙̃xf = −KfΨ(x)
(
Da(x̃f −D−1

a [Dbxg + df ]) +Dbxg + df
)

−D−1
a [Db(KgDcx̃f +KgSx̃g)],

= −KfΨ(x)Dax̃f −D−1
a Mx̃f −D−1

a Bx̃g, (25)

where M := DbKgDc = DbKgD
>
b and B := DbKgS.

We now consider the quadratic Lyapunov function V (x̃f ) =
1
2 x̃
>
f Dax̃f , which is positive definite and has time derivative

V̇ (x̃f ) = −x̃>f D>a KfΨ(x̃f )Dax̃f − x̃>fMx̃f − x̃>f Bx̃g.

Expanding the first term, and using the diagonal structure of
KfΨ(x̃f ), we obtain

V̇ ≤ −
|F|∑
i=1

kf,i

(
(Da,ix̃f )>Da,ix̃f
|Da,ix̃f |a

+
(Da,ix̃f )>Da,ix̃f
|Da,ix̃f |−b

)
− x̃>fMx̃f + k̄g|Db||S|x̃g||x̃f |,

where k̄g := max kgi . Since M � 0, we have that

V̇ (x̃f ) ≤ −kf
|F|∑
i=1

(
|Da,ix̃f |2−a + |Da,ix̃f |2+b

)
+ k̄g|Db||S||x̃g||x̃f |.

where kf := min kfi . Using the fact that |Da,ix̃f |2−a +
|Da,ix̃f |2+b ≥ |Da,ix̃f |2 for all x̃f and i ∈ F, we can write:

V̇ (x̃f ) ≤ −
kf
2

|F|∑
i=1

(
|Da,ix̃f |2−a + |Da,ix̃f |2+b

)
−
kf
2

|F|∑
i=1

|Da,ix̃f |2 + k̄g|Db||S||x̃g||x̃f |.

Let ã := 1 − 0.5a and b̃ = 1 + 0.5b. Using Lemma 7 in the
Appendix, we can further upper bound V̇ as follows:

V̇ (x̃f ) ≤ −
kf
2

 |F|∑
i=1

|Da,ix̃f |2
ã

−
kf

N
b
2

 |F|∑
i=1

|Da,ix̃f |2
b̃

−
kf
2

|F|∑
i=1

|Da,ix̃f |2 + k̄g|Db||S||x̃f ||x̃g|,

≤ −
kf
2

(
|Dax̃f |2

)ã − kfN− b
2

(
|Dax̃f |2

)b̃
−
kf
2
|Dax̃f |2 + k̄g|Db||S||x̃f ||x̃g|.

Using the inequality |Dax̃f |2 ≥ 2λmin(Da)V (x̃f ), we obtain

V̇ (x̃f ) ≤ −
kf
2

(2λmin(Da)V (x̃f ))ã −
kf

2N
b
2

(2λmin(Da)V (x̃f ))b̃

−
kf
2
λmin(Da)2|x̃f |2 + k̄g|Db||S||x̃f ||x̃g|,

which implies that V̇ can be upper bounded as: V̇ (x̃f ) ≤
−c1V (x̃f )ã − c2V (x̃f )b̃, for all |x̃f | ≥ 2k̄g|Db||S|

kfλmin(Da)2 |x̃g|. By
[37, Thm. 4], this implies uniform global fixed-time input-to-
state stability for system (25) with input |x̃g|. �
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Fig. 4: Actions of players in Example 2. The centered inset shows
in logarithmic scale the evolution in time of the distance |x2 − xr2|.
The black dashed line corresponds to the theoretical worst case ISS-
bound, and the green dashed line indicates the time T ∗5 .

Remark 7: In quadratic games with stubborn players (i.e,
kg,i = 0), it is well-known that system (5) guarantees
exponential convergence to a neighborhood of the reaction
curves of the active players [18, Theorem 2]. Proposition 5
generalizes this result for mixed games with F -players. �

The FXNES dynamics considered in this section make use
of Oracles that provide real-time measurements or evaluations
of the partial gradients ∇iJi. Examples of applications where
gradients (or signals proportional to the gradients) are available
(or can be constructed) from measurements include multi-
zone lighting control systems [38, pp. 79-92], where the zones
can be modeled as players having access to measurements
of each zone’s illuminance, and formation-based games in
mobile robots, where the distance between robots is usually
proportional to the gradient of a potential function [39].
On the other hand, individual Oracles that perform gradient
evaluations of ∇iJi(·) might require access to the actions of
the other players, complicating a distributed implementation.
To prevent this, in the next section we introduce a class of
adaptive distributed model-free FXNES dynamics for games
where players have access only to measurements of their cost
or payoff functions, e.g., the profit of firms in an market [18,
Sec. II], the power generated by wind turbines in a wind farm
[40], etc. These model-free dynamics will be distributed and
will leverage the results established in Propositions 1-5.

V. FIXED-TIME NES WITHOUT ORACLES
We now consider model-free adaptive FXNES dynamics

suitable for non-cooperative games with no gradient Oracles.
To implement the adaptive dynamics, players need to have
access only to real-time measurements of their costs functions
Ji. Thus, the algorithms can be seen as payoff-based dynamics
[5] or zeroth-order algorithms [15], [18], [22], which have not
been studied before in the context of fixed-time NES.

To implement the model-free dynamics, each player i now
updates its own action using the following equation:

xi(t) = ui(t)+αiµ̂i(t), µ̂i(t) := sin

(
2π

ωi
ε2,i

t+ ϕi

)
, (26)

for all t ≥ 0, where ϕi ∈ (−π, π), αi := αρ0,i ∈ (0, 1), ωi >
0, and ε2,i := ε2ρ2,i > 0, ε2 > 0, α > 0, ρ0,i, ρ2,i > 0, and
where ui is an auxiliary state that we call the nominal action.
To simplify our presentation and computations, we will focus
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on scalar actions xi ∈ R, for all i ∈ V . However, all our results
can also be applied to vector-valued actions by using (26) with
multiple sinusoids with different frequencies ωi,j assigned to
the components xi,j of xi, where j ∈ {1, 2, . . . ,mi}.

To update their nominal actions ui, each player needs to
sense its own cost function to generate the following signal:

Fi(x, t) :=
2

αi
Ji(x)µ̂i(t). (27)

Note that Fi encodes global information of the game via
the measured signal Ji(x). Using Fi, we will construct fully
decoupled and also distributed model-free FXNES dynamics.
We will work with the following assumption, which is standard
in the literature of averaging-based equilibrium seeking [15],
[18].

Assumption 4: Let ω̃i := ωi/ρ2,i. Then, ω̃i ∈ Q>0 , ω̃i 6=
ω̃j , ω̃i 6= 2ω̃j , and ω̃i 6= 3ω̃j for all i 6= j. �

A. Decoupled Model-Free FXNES
The first model-free dynamics that we consider are fully

decoupled, and given by the differential equations:

u̇i = −ζi
(

ki
|ζi|a

+
ki
|ζi|−b

)
, ζ̇i = − 1

ε1,i

(
ζi − Fi(x, t)

)
,

(28)

where a ∈ (0, 1), b > 0, ζi ∈ R is an individual auxiliary
state used by each player, ε1,i := ε1ρ1,i, ρ1,i > 0, ε1 > 0, Fi
is given by (27), and the right-hand side of u̇i is defined to
be zero whenever ζi = 0. These dynamics are continuous but
not Lipschitz continuous. Figure 2 shows a scheme where two
players implement the model-free FXNES dynamics (26)-(28)
in a strongly monotone market (c.f. Example 1). As shown in
the right plot of the figure, the nominal action ui converges
to the NE of the market in approximately the same amount of
time as in the model-based FXNES dynamics. Note that, due
to the presence of the probing signal in (26), the actual prices
xi will now converge to an O(α)-neighborhood of NE of the
game.

The following Theorem is the first main result of this paper.
The proof, presented in Section V-C, exploits the fixed-time
convergence bounds established in Section IV.

Theorem 1: Suppose that Assumptions 1, 2 and 4 hold, and
let T ∗1 be given by (9). Then, ∀ ∆ > ν > 0, ∃ ε∗1 > 0, s.t.
∀ ε1 ∈ (0, ε∗1) ∃ α∗ > 0, s.t. ∀ α ∈ (0, α∗) ∃ ε∗2 > 0, s.t.
∀ ε2 ∈ (0, ε∗2) all actions of the players with |u(t0)−x∗| ≤ ∆,
|ζ(t0)| ≤ ∆, and dynamics (26)-(28), satisfy:

|x(t)−x∗| ≤ β(|u(t0)−x∗|, t− t0)+ν, ∀ t ≥ t0 ≥ 0, (29)

where β ∈ KLT , and β(r, s) = 0, ∀ s > T ∗1 and ∀ r ≥ 0. �
The result of Theorem 1 establishes a semi-global practical

fixed-time convergence bound for the actions of the players
using the model-free FXNES dynamics (28), with sufficiently
small parameters (ε2, α, ε1). In this bound, the function β has
the fixed-time convergence property and the residual error ν
can be made arbitrarily small.

As in Section IV-C, for quadratic games with cost functions
of the form (20), we can also consider model-free mixed

dynamics, where the F -players implement the dynamics (28),
and the G-players use a = b = 0, which recovers the model-
free NES algorithms of [15], [18].

Corollary 1: Consider the mixed game under the definitions
and assumptions of Proposition 5. Then, if Assumption 4
holds, ∀ ∆ > ν > 0, ∃ ε∗1 > 0, s.t. ∀ ε1 ∈ (0, ε∗1), ∃ α∗ > 0,
s.t. ∀ α ∈ (0, α∗), ∃ ε∗2 > 0, s.t. ∀ ε2 ∈ (0, ε∗2) all actions of
the players with |u(t0)−x∗| ≤ ∆, |ζ(t0)| ≤ ∆, and dynamics
(26)-(28), satisfy:

|x̃f (t)| ≤ β(|ũf (t0)|, t− t0) + γ5‖x̃g‖[0,∞] + ν, (30)

for all t ≥ t0 ≥ 0, where β ∈ KLT and β(r, s) = 0 for all
s > T ∗5 and all r ≥ 0. �

The results of Theorem 1 and Corollary 1 differ from
previous results in the literature, e.g., [15], [18], which estab-
lished only (semi-global practical) asymptotic or exponential
results using standard averaging tools for Lipschitz contin-
uous differential equations, which are not applicable in our
setting. As shown in Figure 2, the fixed-time convergence
property of β induces a dramatic improvement in the transient
performance of the controller. When a lower bound for κ is
known a priori, a minimum universal gain k can be selected
to prescribe the convergence time. Note, however, that the
parameters (ε2,i, αi, ε1,i) are always dependent on the set of
initial conditions of the actions of the players (i.e., ∆), as
well as the desired residual error (i.e., ν). In general, this
dependence is unavoidable in averaging-based dynamics.

B. Distributed Model-Free FXNES with Dynamic Graphs
We now consider model-free FXNES dynamics with het-

erogeneous exponents for games for which there does not
necessarily exist a potential function. In this case, players
are allowed to share information with neighbors who are
characterized by a time-varying communication graph G.
Specifically, each player i is endowed with an auxiliary vector
state ξi := [ξi1, ξi2, . . . , ξi,N ]> ∈ RN , which has as many
components as there are players in the game. In this case, the
nominal action ui is updated as

u̇i = −ξii

 ki(
ξ>i ξi

) ai
2

+
ki(

ξ>i ξi
)− bi

2

 , (31a)

ξ̇ij =
1

ε1

( ∑
k∈Ni(t)

(
ξkj − ξij

)
+ υij (Fi(u, t)− ξij)

)
,

(31b)

where Fi is defined as in (27), υij = 1 for i = j, υij = 0
for all i 6= j, and u̇i := 0 whenever ξ>i ξi = 0. We make the
following assumption on the time-varying graph t 7→ G(t).

Assumption 5: The time-varying communication graph t 7→
G(t) is strongly connected for all t ≥ 0, and any two
consecutive switching times (ti, ti+1) of the graph satisfy
ti+1 − ti ≥ η1, for some η1 > 0. �

The dynamic communication scenario considered in As-
sumption 5 departs from the traditional time-invariant setting
considered in the literature of averaging-based NES dynamics,
e.g., [15], [18], [17], [26]. In particular, under Assumption 5,
the model-free learning dynamics become a switching system.
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Fig. 5: Trajectories of the actions of the players in Example 3. The left plot compares the reachable sets of the model-free FXNES dynamics
with the reachable sets generated by the dynamics of [18]. The graph switches between three configurations, shown in the centered plot.

The following Theorem is the second main result of
this paper. The proof, presented in Section V-C, exploits the
fixed-time convergence bounds established in Proposition 2
(for potential games) and Proposition 3 (for general strongly
monotone games), as well as recent averaging results for set-
valued systems [41], [21], [22].

Theorem 2: Suppose that Assumptions 1, 4, and 5 hold. Let
G(t) be balanced for all t ≥ 0. Then, if either Assumption 2
or Assumption 3 also hold, it follows that ∀ ∆ > ν > 0,
and ∀ η1 > 0, ∃ ε∗1 > 0, s.t. ∀ ε1 ∈ (0, ε∗1), ∃ α∗ > 0, s.t.
∀ α ∈ (0, α∗), ∃ ε∗2 > 0, s.t. ∀ ε2 ∈ (0, ε∗2) all actions of the
players with |u(t0) − x∗| ≤ ∆, |ξ(t0)| ≤ ∆, and dynamics
(26) and (31) satisfy:

|x(t)−x∗| ≤ β(|u(t0)−x∗|, t− t0)+ν, ∀ t ≥ t0 ≥ 0, (32)

where β ∈ KLT , β(r, s) = 0, ∀ s > T ∗S and ∀ r ≥ 0, and:
T ∗S is given by (14) for games that satisfy Assumption 2; T ∗S
is given by (17) for games that satisfy Assumption 3. �

In essence, the result of Theorem 2 establishes a (semi-
global practical) fixed-time convergence result to the NE
x∗, for any balanced graph that is strongly connected and
switching arbitrarily fast.

Next, we present a Corollary that covers the case when
the communication graph is not necessarily balanced. Here,
the (semi-global practical) fixed-time convergence result holds
when η1 is sufficiently large, i.e., under “slow” switching.

Corollary 2: Suppose that Assumptions 1, 4, and 5 hold.
Then, if either Assumption 2 or Assumption 3 also hold, it
follows that ∀ ∆ > ν > 0, ∃ ε∗1 > 0 s.t. ∀ ε1 ∈ (0, ε∗1),
∃ α∗ > 0 s.t. ∀ α ∈ (0, α∗), ∃ ε∗2 > 0 s.t. ∀ ε2 ∈ (0, ε∗2)
s.t. ∃ η∗1 > 0 s.t. ∀ η1 > η∗1 all actions of the players with
|u(t0) − x∗| ≤ ∆, |ξ(t0)| ≤ ∆, and dynamics (26) and (31)
satisfy the bound (32). �

The results of Theorem 2 and Corollary 2 permit the
incorporation of time-varying graphs (slow and arbitrarily fast)
into the fast dynamics of the averaging-based NES algorithms.
For standard multi-agent model-free optimization problems,
related techniques with asymptotic convergence bounds were
presented in [14] and [42].

Remark 8: While Assumption 5 considers graphs that are
strongly connected for all times, it is possible to consider
graphs that are sporadically disconnected. Indeed, this case
can be modeled as a switching system with stable modes

(i.e., with strongly connected graphs) and unstable modes (i.e.,
with disconnected graphs). Using this framework, the stability
properties of the model-free dynamics can be studied using
the tools from [21, Sec. 5] imposing a minimum dwell-time
and a time activation constraint in the unstable modes.

We conclude this section with a numerical example that il-
lustrates the performance of the model-free FXNES dynamics
(26)-(31) in settings where the cost functions of the players are
now generated by dynamical systems that have well-defined
input-to-output steady state cost functions.

Example 3: Consider a non-cooperative game with three
players, where each player i is represented by a scalar dy-
namical system with state θi and output yi, with dynamics

ε0θ̇i = −Aiθi + Bixi, yi = −0.5θ>Diθ−θ>di, (33)

with A = [2, 1.5, 1.5], B = [3, 2, 3], 1� ε0 > 0, and (Di, di)
are taken from [43, Section VI]. Since each dynamical system
(33) has an exponentially stable equilibrium given by θ∗1 =
3/2u1, θ∗2 = 4/3u2, θ∗3 = 2u3, the steady state input-to-output
maps obtained by substituting θ∗ for θ in the outputs yi are
also quadratic functions Ji as a function of u. Indeed, they
are precisely the same cost functions considered in Example
1. However, in this case, each player implements the dynamics
(31) in feedback loop with the dynamics (33) using in equation
(27) the signal yi instead of Ji. The graph switches every 0.1
seconds. Figure 5 shows the emerging behavior for values of
ε0 = 4 × 10−6 and the same control parameters considered
in Example 1. The left plot compares the reachable set of the
dynamics in the time interval [0, 10], versus the model-free
dynamics of [18]. The right plot shows the time history of the
actions of the players. Note that, whereas the stability results
of Theorems 1-2 did not cover this scenario, a bound of the
form (32) can be readily established via singular perturbation
theory in the appropriate time scale [20]. �

C. Proof of Theorems 1-2

We carry out the proofs of Theorems 1-2 simultaneously.
We organize the proof in six main steps.
Step 1: Setting up the model. We start by writing the dynamics
(28) and (31) as a time-invariant system of the form (2).
To do this, we can use trigonometric identities to write
the probing sinusoid signal µ̂i of each player as µ̂i(t) =

cos(ϕi) sin(2π
ωi
ε2,i

t) + sin(ϕi) cos(2π
ωi
ε2,i

t). Since for any ϕi ∈
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(−π, π), the vector [cos(ϕi), sin(ϕi)]
> describes the Cartesian

coordinates of a point on the unit circle, we can generate each
dither signal µ̂i by using a linear dynamic oscillator with state
µ̄i := [µ̂i, µ̃i]

> ∈ R2, restricted to evolve in S1, given by[
˙̂µi
˙̃µi

]
=

2π

ε2,i
Rωi

[
µ̂i
µ̃i

]
, Rωi

:=

[
0 −ωi
ωi 0

]
, (34)

for all i ∈ V . Indeed, since µ̄i is restricted to S1, it
follows that µ̂i(0)2 + µ̃i(0)2 = 1, and each trajectory
t 7→ µ̂i(t) generated by (34) coincides with the
dither signal of (26) with ϕi = arctan(µ̂i(0)/µ̃i(0)).
After defining (34), we proceed to define the vector
of actions of the game u := [u1, u2, . . . , uN ]>,
the matrix K := diag([k1, k2, . . . , kN ]), the vectors
µ := [µ̂1, µ̃1, µ̂2, µ̃2, . . . , µ̂N , µ̃N ]>, ζ := [ζ1, ζ2, . . . , ζN ]>,
J(x, µ̂) := [J1(x)µ̂1, J2(x)µ̂2, . . . , JN (x)µ̂N ]> and
Ψ(ζ) := [ψ(ζ1), ψ(ζ2), . . . , ψ(ζN )]

>, the matrix A :=
diag([α1, α2, α3, . . . , αN ]>), and E(x, µ̂) := 2(A−1J(x, µ̂)),
where the real valued mapping z 7→ ψ(z) is defined as
ψ(z) := (z>z)−a+(z>z)b, for all z ∈ RN . Next, we define a
block diagonal matrix Rω̃ ∈ R2N×2N , which is parametrized
by a vector of gains ω̃ = [ω̃1, ω̃2, . . . , ω̃N ]> (c.f. Assumption
4), with the ith diagonal block of Rω̃ defined as (34). Using
this construction, the overall dynamics can be written as

(u, ζ, µ) ∈ RN ×MB× TN ,


u̇ = −Kdiag(ζ)Ψ(ζ),

ε1ζ̇ = −Λ
(
ζ − E(x, µ̂)

)
,

ε2µ̇ = 2πRω̃µ,
(35)

where TN := S1 × S1 × . . .× S1, and Λ is a diagonal matrix
with entries given by 1/ρ1,i, for i ∈ V . The constant M > 0 is
introduced only for the purpose of analysis to restrict the state
ζ to evolve in a compact set. This constant can be selected
arbitrarily large to capture every solution of interest, and in the
next steps we will establish a lower bound on M to guarantee
that every solution of (35) with |u(0)−u∗| ≤ ∆ and |ζ(0)| ≤
∆ is complete under appropriate tuning of the parameters.

Similarly, in order to write the overall dynamics (31)
in vectorial form, we first define the following additional
vectors and matrices: ξD := [ξ11, ξ22, . . . , ξNN ]>, ξi :=
[ξi1, ξi2, . . . , ξiN ]>, ξ := [ξ>1 , ξ

>
2 , . . . , ξ

>
N ]>, Ψ̃(ξ) :=

[ψ̃1(ξ1), ψ̃2(ξ2), . . . , ψ̃N (ξN )]>, bi := [υi1, υi2, . . . , υiN ]>,
b := [b>1 ,b

>
2 , . . . ,b

>
N ]>, Ẽ := E(x, µ̂)⊗ 1N, where for each

player i the real valued mapping z 7→ ψ̃i(z) is defined as
ψ̃i(z) := (z>z)−ai + (z>z)bi , for all z ∈ RN . We also define
the matrices B := diag(b) and Lσ = Lσ ⊗ IN×N , where Lσ
is the Laplacian matrix of the graph G, and σ : R≥0 → G is
a switching signal mapping to the finite collection of possible
digraphs G. By using these definitions, the overall dynamics
can be written in compact form as (2), with states (u, ξ, µ) ∈
RN ×MB× TN , and dynamics:

u̇ = −Kdiag(ξD)Ψ̃(ξ), (36a)

ε1ξ̇ = −(Lσ + B)ξ + BẼ, (36b)
ε2µ̇ = 2πRω̃µ. (36c)

To analyze the dynamics (36) under arbitrarily fast switch-
ing of the graph, let us consider the set-valued mapping

T : RNN ⇒ RNN , defined at each point ξ as T (ξ) :=
con

⋃
σ∈G(Lσ+B)ξ. Using T , we write the switching system

(36) as a dynamical system of the form (2) with states
(u, ξ, µ) ∈ RN ×MB× TN , and dynamics

u̇ = −Kdiag(ξD)Ψ̃(ξ), (37a)

ε1ξ̇ ∈ −T (ξ) + BE(x, µ̂), (37b)
ε2µ̇ = 2πRω̃µ. (37c)

In particular, by the Relaxation Theorem, the set of solutions
of (37) is dense in the set of solutions of (36), and every
solution of (36) is also a solution of (37), [28, Cor. 4.24].
Step 2: First Application of Averaging Theory: We now pro-
ceed to analyze the dynamics (35) and (37) via averaging
theory for non-smooth systems, [21], [22], [41], [44]. To do
this, we use the following lemma from [22, Appendix A].

Lemma 3: Suppose that Assumption 4 holds. Then, there
exists θ > 0 such that every solution µ of the linear oscillators
of (34) with ε2 = 1 and µ̄(0) ∈ Tn satisfies:

1

`θ

∫ `θ

0

µ̂(t)µ̂(t)>dt =
1

2
In,

∫ `θ

0

µ̂(t)dt = 0, (38)

for all ` ∈ Z≥1, where µ̂ := [µ̂1, µ̂2, . . . , µ̂N ]>. �
By using the properties (38), we can proceed to average

the dynamics of (u, ζ) in (35), and (u, ξ) in (36), along the
trajectories t 7→ µ̂(t). To compute the average, let ᾱ :=
maxi αi, and consider a Taylor expansion of each cost function
Ji(u + Aµ̂) around u, given by Ji(u + Aµ̂) = Ji(u) +∑N
k=1 αkµ̂k

∂Ji(u)
∂uk

+Oi(ᾱ2), where Oi(ᾱ2) represents higher
order terms that are bounded on compact sets, and which can
be made arbitrarily small by decreasing ᾱ. Using properties
(38), it then follows that 1

`θ

∫ `θ
0
µ̂i(s)Ji(u + Aµ̂(s))ds =

αi

2
∂Ji(u)
∂ui

+ Oi(ᾱ2), for each i ∈ V . Therefore, we have
1
`θ

∫ `θ
0
E (u+ µ̂(s), µ̂(s)) ds = G(u)+Oi(ᾱ), where G is the

pseudo-gradient of the game. We then obtain the following
average dynamics of system (35) with states (uA, ζA) ∈
RN ×MB:

u̇ = −Kdiag(ζ)Ψ(ζ), ε1ζ̇ = −Λ
(
ζ −G(û)

)
+O(ᾱ), (39)

as well as the average dynamics of system (37), with states
(uA, ξA) ∈ RN ×MB and dynamics

u̇ = −Kdiag(ξD)Ψ̃(ξ) (40a)

ε1ξ̇ ∈ −T (ξ) + B (G(u)⊗ 1N) +O(ᾱ). (40b)

We analyze systems (39) and (40) as O(ᾱ)-perturbed versions
of nominal average systems with dynamics

u̇ = −Kdiag(ζ)Ψ(ζ), ε1ζ̇ = −Λ
(
ζ −G(û)

)
, (41)

and

u̇ = −Kdiag(ξD)Ψ̃(ξ), ε1ξ̇ ∈ −T (ξ) + B (G(u)⊗ 1N) ,
(42)

respectively.
Step 3: Second Application of Averaging Theory: For ε1

sufficiently small, the nominal average dynamics (41) and
(42) are also in standard singular perturbation form; see [44],
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[41], [21], [22]. To find the boundary layer dynamics, let
τ = t/ε1, and consider system (41) in the τ -time scale with
state (uA, ζA) ∈ RN ×MB, and dynamics given by

∂u

∂τ

A

= −ε1Kdiag(ζA)Ψ(ζA),
∂ζA

∂τ
= −Λ

(
ζA −G(uA)

)
.

(43)

Similarly, (42) with state (uA, ξA) ∈ RN ×MB becomes:

∂u

dτ

A

= −ε1Kdiag(ξAD)Ψ̃(ξA), (44)

dξA

dτ
∈ −T (ξA) + B

(
G(uA)⊗ 1N

)
. (45)

Setting ε1 = 0, we obtain the boundary layer dynamics

∂ζbl
∂τ

= −Λ
(
ζbl −G(ubl)

)
, and (46a)

dξbl
dτ
∈ −T (ξbl) + B (G(ubl)⊗ 1N) , (46b)

respectively, with ubl acting as a constant. Since Λ is diagonal
and positive definite, the linear boundary layer dynamics (46a)
render the equilibrium ζ∗bl = G(ubl) globally exponentially
stable. Similarly, since υii = 1 for all i ∈ V , for each σ ∈ G
the matrix −(Lσ ⊗ IN×N +B) is Hurwitz [27, Lemma 1.6].
Moreover, by Assumption 5 and [45, Lemma 5], if the graph G
is also balanced, the matrixMσ := (Lσ⊗IN×N+B)+(Lσ⊗
IN×N +B)> is positive definite for each σ ∈ G. Since the set
of possible graphs satisfying Assumption 5 with N players is
compact, there exists λ∗ > 0 such that min{eig(Mσ)} > λ∗

for all σ ∈ G. Using this property, we can study the stability
properties of system (46b) via the change of coordinates ξ̃bl =
ξbl − 1N ⊗G(ubl), which leads to:

dξ̃bl
dτ
∈ −T (ξ̃bl + 1N ⊗G(ubl)) + B (G(ubl)⊗ 1N) . (47)

Recall that the mapping T (·) describes a convex combination
of linear systems with matrices Lσ + B, where σ ∈ G. If we
substitute T (·) by one of these systems, (46b) becomes

−(Lσ + B)(ξ̃bl + 1N ⊗G(ubl)) + B (G(ubl)⊗ 1N)

= − (Lσ + B) ξ̃bl, (48)

where we used the definition of Lσ and the facts that
(Lσ ⊗ IN×N )(1N ⊗ G(ubl)) = 0, and B(1N ⊗ G(ubl)) =
B (G(ubl)⊗ 1N). Let V (ξ̃bl) = 0.5ξ̃>bl ξ̃bl. Since for each
σ ∈ G the matrix Lσ + B is Hurwitz, it follows that
∇V (ξ̃bl)

>(− (Lσ + B) ξ̃bl) ≤ −λ∗|ξ̃bl|2. Using the fact that a
common Lyapunov function for a finite collection of continu-
ous vector fields is also a Lyapunov function for their convex
combination [46, Cor. 2.3], and the quadratic form of V (ξ̃bl),
we obtain that system (46b) renders the origin exponentially
stable, and every solution converges to ξ∗bl = 1N ⊗ G(ubl),
which satisfies ξ∗>bl,iξ

∗
bl,i = G(ubl)

>G(ubl), for all i ∈ V .
Therefore, it follows that the singularly perturbed systems

(41) and (42) have well-defined reduced systems, which corre-
spond to the right hand side of u̇ in (41) and (42), with ζ and
ξ substituted by ζ∗bl and ξ∗bl, respectively. Thus, their respective
reduced systems, with state z ∈ RN , are:

ż = Kdiag(G(z))Υ(z), and ż = Kdiag(G(z))Υ̃(z), (49)

respectively, where Υ is given by Υ(z) :=
[ψ(G1(z)), ψ(G2(z)), . . . , ψ(GN (z))]

> ∈ RN , and
Υ̃(z) := [ψ̃1(G(z)), ψ̃2(G(z)), . . . , ψ̃N (G(z))]> ∈ RN .
Note that systems (49) are precisely the FXNES dynamics (8)
and (13), whose stability properties were already established
in Propositions 1-5.
Step 4: β-SGPAS for Second Singularly Perturbed System:
Using the result of Step 3, we proceed to apply averaging
results for non-smooth systems in order to establish suitable
stability properties for the singularly perturbed dynamics (41)
and (42). In particular, by [21, Lemma 6], systems (41) and
(42) render the compact set A := {x∗} ×MB β-SGPAS as
ε1 → 0+, with the same KL bound β obtained in Propositions
1-5, i.e., (41) and (42) are actually β-SGPFXS. In particular,
∀ δ > ν > 0, ∃ ε∗1 > 0 such that ∀ ε1 ∈ (0, ε∗1) every solution
of systems (41) and (42) with u(0) ∈ {x∗}+ δB satisfies the
following bound:

|ηa(t)|A ≤ β(|ηa(0)|A, t) + ν, (50)

for all t ∈ dom(ηA), where ηA := (uA, ξA) for (41), and
ηA := (uA, ζA) for (42), and where β ∈ KLT comes from
Propositions 1-5. Since the right-hand side of (42) is outer-
semicontinuous, locally bounded, and convex-valued [28, Ch.
5], we obtain via [28, Thm. 7.21] and [22, Prop. 6] that the
O(ᾱ)-perturbed systems (39) and (40) render β-SGPAS as
(α, ε1) → 0+ the same compact set A, with the same β ∈
KLT , i.e., ∀ ∆ > ν > 0 ∃ ε∗1 > 0, such that ∀ ε1 ∈ (0, ε∗1)
∃ α∗ > 0 such that ∀ α ∈ (0, α∗) every solution of (39) and
(40) with |xA(0)−x∗| ≤ ∆ satisfies a bound of the form (50).
Step 5: β-SGPAS for First Singularly Perturbed System: Hav-
ing established stability properties for the average dynamics
(39) and (40), we can now use averaging theory to directly es-
tablish stability properties for the singularly perturbed system
(37). Indeed, given that the oscillator dynamics in (35) and (37)
evolve in (and render UGAS) the set Tn, by averaging results
for non-smooth systems [41, Thm. 2] we obtain that systems
(35) and (37) render the compact set A × TN β-SGPAS as
(ε2, a, ε1) → 0+ with the same KLT bound β of Step 4.
This establishes that for each feasible tuple of parameters
(ki, αi, bi) of player i, and ∀ ∆ > ν > 0 ∃ ε∗1 > 0 such
that ∀ ε1 ∈ (0, ε∗1) ∃ α∗ ∈ (0, ν/2), such that ∀ α ∈ (0, α∗)
∃ ε∗2 > 0 such that ∀ ε2 ∈ (0, ε∗2) each solution satisfies

|y(t)|A×TN ≤ β(|y(0)|A×TN , t) +
ν

2
, (51)

for all t ∈ dom(y), where y := (û, ζ, µ) for system (35),
and y := (û, ξ, µ) for system (37). Given that by definition of
solutions we have that |ζ, µ|MB×TN = 0 and |ξ, µ|MB×TN =
0, and therefore |y|A×TN = |u− x∗|, it then follows that the
vector of actions of the players satisfies the bound |u(t) −
x∗| ≤ β(|u(0) − x∗|, t) + ν

2 , for all t ∈ dom(y). Using ᾱ =
maxi∈V αi, the previous KLT bound, ᾱ ∈ (0,min{ν/2, α∗}),
the triangle inequality, and the fact that x = u+Aµ̂, we obtain
the convergence bounds (29) and (32).
Step 6: Existence of Complete Solutions: Finally, we exploit
the linear structure of the dynamics of the states ζ and ξ to
show that, provided M is sufficiently large, the restriction of
the states ζ and ξ to the compact set MB is inconsequential to
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establish the existence of complete solutions for the model-free
FXNES dynamics from initial conditions satisfying |ζ(0)| ≤
∆ and |ξ(0)| ≤ ∆. Without loss of generality, we assume that
ν < 1. Due to the bound (51), the fact that for any M > 0
the set MB is compact, and the forward invariance of the
compact set Tn, for sufficiently small parameters (ε2, a, ε1)
(see Step 5) the model-free FXNES dynamics have no finite
escape times from any given arbitrarily large compact set of
initial conditions. Thus, any maximal solution of the restricted
dynamics (35) and (37) with a bounded time domain must stop
due to ζ or ξ leaving the set MB. To show that this cannot
occur when M is sufficiently large, let ∆ > ν be given. Define
the set K0 := {u ∈ Rn : |u − x∗| ≤ β(∆, 0) + 1}. This
set is compact due to the continuity of β. Therefore, there
exists m1 > 0 such that K0 ⊂ {x∗} + m1B. By continuity
of the pseudogradient G(·), there exits m2 > 0 such that
|G(u)| ≤ m2 for all u such that |u− x∗| ≤ m1. Let g(u) :=
(G(u)⊗ 1N). By exponential stability and linearity of the ξ-
dynamics in (42), for each bounded signal t 7→ g(u(t)), the
trajectories of ξ in (42) satisfy the bound

|ξ(t)| ≤ c exp

(
− λ
ε1
t

)
|ξ(0)|+ c‖B‖ sup

0≤τ≤t
|g(u(τ))|, (52)

for some c > 0 and λ > 0. Thus, by setting M :=
c(∆ + ‖B‖Nm2) + 1, and using the result of Step 4, there
exists ε∗1 > 0 such that for all ε1 ∈ (0, ε∗1) every solution
of system (42) with |ûA(0) − x∗| ≤ ∆ and |ξA(0)| ≤ ∆ is
complete and satisfies inequality (50) with ν = ν̃/(2Lc‖B‖),
and ∆ > ν > ν̃ > 0. Moreover, since β ∈ KLT , there exists
a T ∗ > 0 such that |ûA(t) − x∗| ≤ 2ν for all t ≥ T ∗. By
Lipschitz continuity of the pseudogradient, this implies that
|G(uA(t))| ≤ ν̃/(c‖B‖) for all t ≥ T ∗. Therefore, by using
(52), the trajectories ξ satisfy |ξ(t)| ≤ ν̃, for all t ≥ T ∗. By
[28, Cor. 7.7], it follows that there exists an Ω-limit set Ωε1,∆
satisfying Ωε1 ⊂ (x∗+νB)× ν̃B, that is asymptotically stable
for system (42) with basin of attraction containing the compact
set (u∗ + ∆B) × ∆B. Now, since system (40) is an O(ᾱ)-
perturbed version of (42), by closeness of solutions between
nominal and perturbed well-posed systems [28, Prop. 6.34],
for any ε1 ∈ (0, ε∗1) and any ε > 0 there exists α∗ > 0 such
that for all α ∈ (0, α∗) the trajectories of (40) will remain
ε-close to the trajectories of (42) on arbitrarily large compact
time domains, and will also satisfy a bound of the form (50).
Moreover, by closeness of solutions between the trajectories
of the average dynamics (40) and the (u, ξ)-components of the
original dynamics (37), for any ε1 ∈ (0, ε∗1) and α ∈ (0, α∗ε1),
and ε > 0, there exits ε∗2 > 0 such that for all ε2 ∈ (0, ε∗2)
the trajectories of the FxTNES dynamics and the average
dynamics (40) will also be ε-close on arbitrarily large compact
time domains [41, Thm. 1], and will also satisfy a bound of
the form (51). Thus, using ε ∈ (0, 1/2) and the definition of
M , there exist parameters (ε2, α, ε1) such that every trajectory
ξ of system (37) with |ξ(0)| ≤ ∆ and |u(0) − x∗| ≤ ∆ will
necessarily remain in the interior of MB, which contradicts
the assumption that ξ and ζ leave the set MB. An essentially
identical argument holds for ζ in (35). This establishes the
result for Theorems 1 and 2. Corollary 1 follows exactly the
same steps, with the only difference that instead of using

averaging results for systems having a UGAS compact set,
we use averaging results for non-smooth systems having a
well-defined average system with ISS properties [47, Thm. 2].

�
D. Proof of Corollary 2

To prove Corollary 2, we first assign a bijection between the
set of possible graphs G satisfying Assumption 5 and the set
Q := {1, 2, 3, . . . , q̄}, where q̄ ∈ Z>0. In this way, the learning
dynamics (36) with switching graphs can be modeled as a
switching system with states (u, ξ, µ, q) ∈ RN ×RN ×TN ×
Q, where each value of q represents a different configuration
of the graph. We proceed to induce an average dwell-time
constraint on how frequently the signal q switches. To do this,
we interconnect the dynamics (36) with the following hybrid
automaton that we use to generate the switching signal q:

(q, τ) ∈ Q× [0, N1],

{
q̇ = 0
τ̇ ∈ [0, η1]

, (53a)

(q, τ) ∈ Q× [1, N1],

{
q+ ∈ Q\{q}
τ+ = τ − 1

, (53b)

where N1 > 1 is called the chatter bound, and 1/η1 is
called the dwell-time. Every trajectory q generated by system
(53) satisfies an average-dwell time constraint with dwell-
time 1/η1, and every signal satisfying an average dwell-time
constraint with dwell-time 1/η1 can be generated by the au-
tomaton (53) under an appropriate choice of initial conditions
[28, Ch. 2]. Therefore, the closed-loop system is now a hybrid
dynamical system with continuous-time dynamics evolving on
the set RN ×MB× TN ×Q× [0, N1], given by

u̇ = −Kdiag(ξD)Ψ̃(ξ), ε2µ̇ = 2πRκµ (54a)

ε1ξ̇ = −(Lσ + B)ξ + BẼ, q̇ = 0, τ̇ ∈ [0, η1], (54b)

and discrete-time dynamics evolving on the set RN ×MB×
TN ×Q× [1, N1], and given by

u+ = u, ξ+ = ξ, µ+ = µ, q+ ∈ Q\{q}, τ+ = τ − 1 (55)

Note that when η1 = 0, the state τ is constant, and the system
behaves as having a constant logic mode q for all time, i.e.,
with a static graph. In this case, since each graph is strongly
connected and υii = 1, for each fixed q the singled-valued
boundary layer dynamics (46b) render the equilibria exponen-
tially stable. Thus, all the steps from the proof of Theorem 2
can be applied to conclude the bound (51) for each fixed graph,
i.e, when η1 = 0, the set {u∗} ×MB× TN ×Q× [0, N1] is
SGPAS as (ε2, α, ε1)→ 0+ with β ∈ KLT . By [28, Cor. 7.28]
it follows that the model-free FXNES dynamics render the set
{u∗}×MB×TN×Q×[0, N1] SGPAS as (η1, ε2, α, ε1)→ 0+,
that is, SGPAS with β ∈ KLT is preserved under sufficiently
slow switching (i.e., sufficiently small η1).

VI. CONCLUSIONS
We introduced a novel class of Nash equilibrium seeking

dynamics for non-cooperative games. The novelty of the
dynamics lies in their ability to achieve Nash seeking in a
fixed time, which is independent of the initial conditions of the
actions of the players. In the model-free scenario, the dynam-
ics achieve semi-global practical fixed-time stability, and the
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actions of the players converge to a neighborhood of the NE
via a class KLT function with a settling time function having a
uniform bound. Future research directions will consider fixed-
time seeking and tracking results for generalized time-varying
NES problems over graphs, as well as the effect of saturation
mechanisms in fixed-time seeking dynamics.
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APPENDIX
We present some auxiliary lemmas:
Lemma 4: ξa + 1

ξa ≥ 2 for all a > 0 and ξ > 0. �
Lemma 5: Let v : Rn → R>0 and ai, bi > 0 for all i ∈ V .

Then, for all x ∈ Rn such that v(x) ≤ 1, the following holds:(
1

v(x)ā
+

1

v(x)−b

)
≥

(
1

v(x)ãi
+

1

v(x)−b̃i

)
, (56a)(

1

v(x)ãi
+

1

v(x)−b̃i

)
≥

(
1

v(x)a
+

1

v(x)−b

)
, (56b)

with a := mini ãi, b̄ := maxi b̃i, ā := maxi ãi, b :=
mini b̃i. �

Proof : For any v(x) ∈ (0, 1], the function f(s) = v(x)s

is monotonically decreasing in s ≥ 0. Therefore, since ā ≥
ãi ≥ a > 0 for all i, we have v(x)a ≥ v(x)ãi ≥ v(x)ā,
which is equivalent to 1

v(x)ā ≥
1

v(x)ãi
≥ 1

v(x)a . Similarly, since

b ≥ b̃i ≥ b > 0 for all i, we obtain v(x)b ≥ v(x)b̃i ≥ v(x)b,
which is equivalent to 1

v(x)−b ≥ 1

v(x)−b̃i
≥ 1

v(x)−b
. �

Lemma 6: Let v : Rn → R>0 and ai, bi > 0 for all i ∈ V .
Then, for all x ∈ Rn such that v(x) ≥ 1, the following holds:(

1

v(x)a
+

1

v(x)−b̄

)
≥

(
1

v(x)ãi
+

1

v(x)−b̃i

)
, (57a)(

1

v(x)ãi
+

1

v(x)−b̃i

)
≥
(

1

v(x)ā
+

1

v(x)−b

)
, (57b)

with a := mini ãi, b̄ := maxi b̃i, ā := maxi ãi, b =
mini b̃i. �

Proof : For any v(x) > 1, the function f(s) = v(x)s is
monotonically increasing in s ≥ 0. Therefore, since ā ≥ ãi >
a > 0 for all i, we have v(x)ā ≥ v(x)ãi ≥ v(x)a, which
is equivalent to 1

v(x)a ≥
1

v(x)ãi
≥ 1

v(x)ā . Similarly, since b̄ ≥
b̃i ≥ b > 0 for all i, we obtain v(x)b̄ ≥ v(x)b̃i ≥ v(x)b, which
is equivalent to 1

v(x)−b̄ ≥ 1

v(x)−b̃i
≥ 1

v(x)−b . �
Lemma 7: [48, Lem. 3.1 & 3.2] Let ξi ≥ 0 for all i ∈ V .

If p ∈ (0, 1], then
∑N
i=1 ξ

p
i ≥

(∑N
i=1 ξi

)p
. If p ≥ 1, then∑N

i=1 ξ
p
i ≥ N1−p

(∑N
i=1 ξi

)p
. �

Lemma 8: Suppose that Assumptions 1-2 hold, and let V be
given by (10). Then, ∀ p ∈ (0, 1) and ∀ x ∈ Rn the following

inequality holds: |G(x)|p ≤ αpV (x)
p
4 , with αp :=

(
8L4

κ2

) p
4

.
Proof: Item (c) of Assumption 2 implies that V also satisfies

[33, Thm. 2]:

κ2|x− x∗|4 ≤ 8V (x), ∀ x ∈ RN . (58)

Using (58), the Lipschitz property of G, and the fact that
G(x∗) = 0, we obtain that |G(x)|4 ≤ L4|x − x∗|4, which
implies κ2

8L4 |G(x)|4 ≤ V (x). Since the function f(z) = zp is
monotone increasing for z > 0 and p > 0, the above inequality

implies that |G(x)|p ≤
(

8L4

κ2 V (x)
) p

4

. �
Lemma 9: Suppose that Assumption 2 holds, and let V be

given by (10). Then, for all p > 0 and for all x ∈ Rn:
γpV (x)

p
4 ≤ |G(x)|p, where γp := 2

3p
4 κ

p
2 .

Proof : Directly from item (c) of Assumption 2, and the defi-
nition of a potential game, we obtain: V (x) ≤ 1

8κ2 |∇P (x)|4 =
1

8κ2 |G(x)|4, which implies the bound because p > 0. �
Lemma 10: Suppose that Assumptions 1 and 3 hold. Let V

be given by (18). Then, for all p > 0, the following inequalities
hold: 1

γ
p
2
2 V (x)

p
2

≥ 1
|G(x)|p ≥

1

γ
p
2
1 V (x)

p
2

, and 1

γ
− p

2
1 V (x)−

p
2

≥
1

|G(x)|−p ≥ 1

γ
− p

2
2 V (x)−

p
2

for all x 6= x∗, where γ1 = 2L2k̄ and

γ2 = 2κ2k.
Proof: The strong monotonicity property of G implies the

bound |G(x)|2 ≥ κ2|x−x∗|2 for all x ∈ Rn. Using this bound,
as well as (18), we obtain: |G(x)|p ≥

(
2κ2k

) p
2 V (x)

p
2 =

γ
p
2
2 V (x)

p
2 . Similarly, using the Lipschitz property on G, we

have |G(x)|2 ≤ L2|x − x∗|2, which implies |G(x)|p ≤
(2L2k̄)

p
2 V (x)

p
2 = γ

p
2
1 V (x)

p
2 . The above inequalities establish

the result. �
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