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Abstract— Motivated by the shallow concavity properties that
emerge in certain response maps in the context of optimization
problems in transportation systems, we study the stability
properties of a class of hybrid accelerated extremum seeking
(HAES) dynamics interconnected with dynamic plants in the
loop. In particular, we establish suitable semi-global practical
asymptotic stability properties for different classes of cost
functions, as well as tuning conditions for the hybrid extremum
seeking algorithm. Additionally, we implement the HAES to
optimize the performance of a self-organizing traffic light
system (SOTL) in a class of smart transportation systems. We
show that the dynamic momentum mechanism incorporated
by the HAES can significantly reduce the convergence time in
the optimization process compared to the traditional extremum
seeking algorithms based on gradient descent flows.

I. INTRODUCTION

Technological advances in sensing, computation, and com-
munication have enabled the deployment of novel automation
technologies in networked transportation systems. As a prime
example, traffic light control has emerged as a fundamental
technology for the efficient operation of urban cities [1]. In
these systems, the feedback control mechanism must be able
to leverage data to bypass the lack of traffic models, and also
to rapidly cope with changes in traffic conditions. Moreover,
the controllers should be adaptive and robust with respect to
unexpected disturbances, such as demand fluctuations, traffic
accidents, etc [2].

On the other hand, practitioners may have access only
to real-time measurements from sensing units and recorded
data. These streams of data can be used to develop feedback-
based data-driven algorithmic frameworks that can “learn
to optimize” the traffic behavior in real-time. This prac-
tical setting motivates this paper, which studies the real-
time optimization of traffic systems using efficient extremum
seeking control (ESC) [3]-[6], a type of adaptive control
suitable for the solution of self-optimization problems in
dynamical systems. Along with the advantages of ESC,
it has been observed in several applications -particularly
those with cost functions having shallow convexity/concavity
properties- that the method might exhibit slow rates of
convergence. Such limitations are structural and induced by
the type of optimization algorithm that is most commonly
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used in the literature of ESC: gradient descent flows. Indeed,
as shown in [7], the rate of convergence of gradient flows
can be of order O(1/t) in the family of smooth convex cost
functions. In the optimization literature, this limitation has
motivated several works on “accelerated” methods able to
achieve rates of convergence of order O(1/t?) for convex
functions, and of order O(e~V*') for r-strongly convex
functions with k > 0 [8], [9]. However, as shown in [10],
such dynamics are incompatible with ESC due to their lack
of uniformity in the convergence properties. To solve the
incompatibility issue, a class of hybrid accelerated extremum
seeking (HAES) dynamics was introduced in [11] for the op-
timization of static maps with unknown mathematical forms.
These algorithms can achieve full acceleration properties in
strongly convex functions and semi-acceleration properties in
any smooth radially unbounded convex function. However, it
has remained an open question whether these ES dynamics
can also be used to optimize dynamical systems in the loop
instead of static maps.

In this paper, we provide a positive answer to this question
by showing that the HAES, interconnected with a stable plant
generating a well-defined quasi-steady state cost function,
has suitable semi-global practical asymptotic stability prop-
erties and preserves the acceleration bounds as the time-scale
separation in the closed-loop system increases. Moreover,
we show that the qualitative tuning guidelines developed for
static optimization problems, and related to the frequency of
the resets of the hybrid controller, are also extendable to the
dynamic case.

After establishing suitable stability properties for the ac-
celerated ESC with plants in the loop, we proceed to apply
the method to solve an optimization problem in transporta-
tion systems, where the goal is to optimize in real-time the
performance of self-organizing traffic light systems (SOTL).
SOTL is a control strategy at the intersection level that
utilizes a set of threshold-based rules. As discussed in [12],
the performance of SOTL depends upon the controller thresh-
olds, which impact the mean travel time in the transportation
network. However, the mathematical form of the mapping
between controller thresholds and travel time is not available,
and therefore cannot be optimized offline. Nevertheless, in
the case of SOTL, the work [2] showed that the concavity of
the Macroscopic Fundamental Diagram (MFD) is inherited
by the parameter-to-average speed map, and that it exhibits
regions with shallow concavity, i.e., almost “flat” regions.
Therefore, even if the controller has access to real-time
streams of data for the purpose of online optimization,
standard ESC algorithms based on gradient descent flows



are expected to be slow due to the shape of the response
map of the system. We address this issue by implementing
the HAES to optimize the performance of the SOTL.

II. PRELIMINARIES

A. Notation

The set of (non-negative) real numbers is denoted as (R>()
R. The set of (non-negative) integers is denoted as (Zxg) Z.
Given a compact set A C R™, and a column vector z € R,
we define |z|4 = mingeq |z — y|. We use B to denote
a closed unit ball of appropriate dimension, pB to denote
a closed ball of radius p > 0, and X + pB to denote the
union of all sets obtained by taking a closed ball of radius
p around each point in the set X'. In this paper, we use R,
to denote a class of 2n x 2n block matrices, with individual
block component R; = [0, k;; —k;4, 0], where x; > 0, for
i€{1,2,...,n}. We also use T" :=S! x St x ... xS to
model the n'" Cartesian product of unit circles.

B. Hybrid Dynamical Systems

We model our algorithms as hybrid dynamical systems
(HDS) [13]. In particular, we consider HDS with state ( €
R™, evolving according to:

¢=F(),
(" =G(),

Ced,
¢eD,

(1a)
(1b)

where ( stands for the derivative of ( with respect to time,
and ¢ corresponds to the value of ¢ after an instantaneous
change. The mappings F' : R* — R” and G : R* — R"
are called the flow map and the jump map, respectively, and
they describe the evolution of the system when ( belongs to
the flow set C, or/and the jump set D, respectively. System
(1) is represented by the notation H := {C, F, D, G}, where
C, F, D and G comprise the data of H'.

For a HDS parametrized by a constant € € R+, denoted
as H. := {C., F., D.,G.}, a compact set A C R" is said to
be semi-globally practically asymptotically stable (SGPAS)
as € — 01 if there exists a function 3 € JCL? such that the
following holds: For each pair K > v > 0 there exists an
€* € Rs¢ such that for each € € (0,e*) each solution ¢ of
H. that satisfies [((0,0)|4 < K also satisfies [((t,7)]4 <
B(|€(0,0)|a,t + j) + v, for all (¢,5) € dom((). If 8 has
exponential form, we use the acronym SGPES. If instead of
K we consider R", and make v = 0, the set A is said to be
uniformly globally asymptotically stable (UGAS).

Note that HDS of the form (1) are a generalization of purely continuous-
time systems and purely discrete-time systems. Namely, continuous-time
dynamical systems can be seen as a HDS of the form (1) with D = 0,
while discrete-time dynamical systems can be seen as a HDS of the form
(1) with C = (. For a complete definition of solutions to systems of the
form (1) we refer the reader to [13, Ch. 2].

2For a definition of functions of class £ we refer the reader to [13, Ch.
3.5].

III. ACCELERATING EXTREMUM SEEKING USING
DYNAMIC MOMENTUM

ESC describes a family of adaptive controllers developed

to solve model-free optimization problems in dynamic sys-
tems. In particular, ESC considers plants of the form

0=f(0,u), y=nh(0u), )

where, traditionally, it is assumed that f and & are sufficiently
smooth, § € RP, v € R™, y € R and that the following
standard assumption holds.

Assumption 1: There exists a continuous function ¢ :
R™ — RP, such that for each compact set K,, C R", the
dynamical system

Q:f(ﬂ,u), u=0, (Q,U)ERPXKU 3)
renders UGAS the set Mg, := {(0*,u*) e RP x R™: §* =
Uu),u € Ky} O

Under Assumption 1, the cost function in ESC is defined
as the following steady state input-to-output map, also called,
the response map of (2):

d)(u) = h(é(u),u), “4)

which is assumed to satisfy the following:

Assumption 2: The function ¢ satisfies min,cg» ¢ > —o0
as well as the following properties: 1) ¢(-) is continuously
differentiable. 2) ¢ is radially unbounded. 3) ¢ is convex.[]

Under Assumption 2, the set of minimizers of ¢, denoted
A, is non-empty and compact. We define ¢* = ¢(A).
To achieve exponential rates of convergence, the following
assumption is usually made:

Assumption 3: The function ¢ continuously differentiable
and strongly convex, i.e., there exist x > 0, such that

Our) = Bluz) + Vo (us) (w2 — 1) > Thuz —wif, (5)

for all uy, up € R™. Moreover, V¢ is globally Lipschitz with
constant L > 0. ]

Under Assumption (3), the function ¢ is radially un-
bounded, and the minimizer of ¢ is unique, i.e., A4 := {u*}.

A. Gradient Descent-Based ESC

To minimize the cost function (4), the traditional gradient
descent-based ESC, introduced in [3], and further studied in
[14], takes the form

. 2 <27rsomf> (2775(,/%)
T =—gk—p Y, u=2x+eqp )
€a

€ €

P P ©)
which is interconnected in feedback with system (2). In
(6), the constant £ > 0 acts as a gain of the controller,
the function p : Ryo — R"™ is a vector of element-
wise sinusoidal signals with frequencies parameterized by
the constants K = [K1,H2,..., k], Which satisfy the
following:

Assumption 4: The parameters k; are positive rational
numbers, and they satisfy x; # k; and K; # 2k;, for all

i # ] 0



In (6), parameters (e,,cq,¢p) are selected sufficiently
small to induce three time scales in the closed-loop system:
the fastest time scale is related to the dynamics of the plant
(2), the medium-time scale corresponds to the oscillations of
u, and the slowest time scale corresponds to the variations
of x. This intuitive behavior can be formalized using tools
from averaging and singular perturbation theory; see [3]. In
particular, using the change of time variable s = ¢,t, the
closed-loop system can be written in the s-time scale as

do 2
€o:f(97l’+5aﬂ< TrKIS))a
ds €p

d 2 2 2
dr —kﬂ< 7TI<.',S> b (9’$+€au( ﬂ'K)S)) .
ds €a Ep Ep

(7b)

(7a)

System (7) is a singularly perturbed system, with ¢, acting
as small parameter. As g9 — 0T, the behavior of z is
mainly predicted by the so-called reduced dynamics, which
assume that the plant dynamics (7a) is at equilibrium, i.e.,
0 =1 (x +5au( )) Using the definition of (4), we
obtain:

dzx 2 2TKS - 2TKS
i () (sren (B22))- 0

For small values of €, system (8) can be analyzed via av-
eraging theory. Under Assumption 4, standard computations
based on Taylor expansions (see [5]) reveal that the average
system of (8) is given by

dz

i —kV(z) + Olea). €))

Since O(g,) is a small bounded disturbance (on compact

sets), it can be treated as structural additive perturbation.

Thus, the nominal dynamics of (9) is just a gradient flow
dz

o = —kVo(2).

Under Assumption 2, gradient flows of the form (10) render
the set A UGAS. Therefore, solutions of (10) satisfy

|2(8)‘A Sﬁoptqé(o)‘fl?s)» (11)

for some B, € KL. Moreover, in the class of cost functions
satisfying Assumption 2, gradient flows of the form (10)
minimize ¢ at a worst-case rate of O(1/s) [9]. If we further
assume that ¢ satisfies condition (5) with a L-globally
Lipschitz gradient, it can be shown that (11) holds with
Bopt(r,8) = \/L/ke™"**r, i.e., the convergence is of order
O(ek%s). Standard robustness results for dynamical systems
(e.g., [13, Prop. 6.34]) predict that, as £, — 0T, the solutions
of (10) will be €/3-close (on compact time domains) to the
solutions of the perturbed system (9). Moreover, standard
results in averaging theory predict that as £, — 07 the trajec-
tories of (9) will be €/3-close (on compact time domains) to
the solutions of system (8). Additionally, by standard results
in singular perturbation theory, the trajectories = of (8) will
be €/3-close (on compact time domains) to the trajectories x
of system (7). By combining these closeness properties with

2TKS
€p

(10)

the KCL bound (11), one can establish that for any KX > v > 0
there exist ¢} > 0 such that for any €, € (0,€}) there exists
g5, > 0 such that for any ¢, € (0, 5) there exists ¢, € (0,¢})
such that the trajectories of the original closed-loop system
with [6(0)[¢4) < K and |2(0)[4 < K satisfy

[2()] 4 < Bopt(|2(0)] 4, €0t) + v,

for all ¢ > 0.

The above discussion highlights an important property in
ESC: as the time-scale separation increases in the closed-
loop system (7), the transient performance of the input is
characterized by the nominal average system (10). Given
that gradient flows can be extremely slow when kr < 1,
it is natural to ask how to improve the convergence rate of
the algorithm without destroying the stability properties of
the system. Naturally, increasing the gain k is not a feasible
approach when there is a plant in the loop, as in (7), since
this would destroy the time-scale separation in the system.
Similarly, Newton-like ESC [15] requires the computation
and inversion -on average- of the Hessian matrix of ¢, which
must be positive definite, i.e., ¢ must satisfy (5). A similar
limitation applies to finite-time or fixed-time ESCs [16].
On the other hand, a different approach is to consider an
ESC algorithm with an average system that generates more
“efficient” optimization directions compared to the standard
gradient flow (10). Algorithms with this geometric property
are term “accelerated”, and they are the subject of the next
section.

12)

B. ESC with Dynamic Momentum: Instability

Motivated by Nesterov’s accelerated optimization algo-
rithm [17], momentum techniques have recently received
significant attention in the literature of optimization and
dynamical systems. In particular, in [8] and [9], the authors
showed that the continuous-time version of Nesterov’s algo-
rithm is given by a second-order ODE of the form

i+ gx L kV(z) =0, >3, (13)
which, under Assumption 2, minimizes ¢ at a rate of O(1/t?)
in the family of smooth convex functions. Thus, it is natural
to consider system (13) as a candidate to substitute the dy-

namics (6) by the following ESC with dynamic momentum:

. CEoq 1 2 2mwet
q= / €o 5aﬂ< & )y
Unfortunately, in general, this system can become unstable
under the slightest disturbance (e.g., noise) on the cost y,
no matter how small are the parameters (¢,,¢€p,€,). This
instability is a consequence of structural properties of the
dynamics (13), studied in [10, Ex. 1] and [18]. Namely,
in general, for these dynamics there does not exist a class
KCL function B, that satisfies (11). This issue can be
addressed by incorporating into (14) mechanisms that prevent
the damping from vanishing to zero, while further enhancing
the transient performance of the dynamics. Such mechanisms
can be designed using the framework of hybrid dynamical
systems.

T = €04, (14)



C. Robust Accelerated Hybrid ESC for Static Maps

To endow the dynamics (14) with suitable stability and
robustness properties, we consider the incorporation of resets
into the ESC. In particular, we introduce a new variable 7
to model the evolution in time of the damping coefficient
of (13), and a state yu, evolving on the tori T”, to model
a vector of probing sinusoidal signals generated by a time-
invariant dynamic oscillator. Using these additional auxiliary
states, we consider a class of hybrid accelerated extremum
seeking (HAES) dynamics for static maps (i.e., with ¢, = 1)
with overall state z = (z, p, T, 1), continuous-time dynamics
given by

2 . 47k

. - - .1

&=—(p—2), p=———pd(x+ep), 7=5 (15
1

fr=—Rep, peT", (15b)
€p

and discrete-time dynamics given by:

$+ =, p+ =Tox + (1 - To)p, 7-+ = 57 ,LL+ =M, (16)
where 7, € {0,1} is a parameter that defines the reser
policy of the controller, and § > 0 is a tunable parameter. In
(15), we used ji := [ji1, i3, - -, Han—1] to denote the odd
components of the state p, which, by direct computation are

2me Kt

wi(t) = pi(0) cos( =2 ) + pi1+1(0) sin( ) , with
1i(0)? 4+ p14+1(0)? = 1. The continuous-time dynamics (15)
are implemented whenever the states satisfy

2mE K4t
€p

(‘TvvavM) € Ch X Tn; Cy = R™ x R™ x [57 A]a (17)

where A > 6 > 0. On the other hand, the discrete-time
dynamics (16) are implemented whenever the states satisfy

(z,p,7,p) € Dy x T", Dy :=R" x R" x {A}. (18)

Therefore, it follows that the HAES implements periodic
resets of the form (16) after intervals of flow of length
2(A =9).

Lemma 1: [11, Lemma 7.2] Suppose that Assumption 4
holds. Then, the HAES has a well-defined average hybrid
dynamical system with dynamics

b= 20—, p=—27V0(0) + O(ea), F = 5. (19%)

vt =2, pT=rgx+ (1 —7ro)p, TF =6, (19b)

with flow set given by R™ x R™ x [§, A], and jump set given
by R” x R™ x {A}. O

Remark 1: When 6 = 0 and A = oo, the average
continuous-time dynamics (19) can be seen as perturbed
version of (13) via the change of variables 7 = ¢, p =
T+ %ch. Thus, it preserves the acceleration properties of
(13) in each interval of flow. Moreover, note that the reset
policy 79 = 1 sets p™ = z, which is equivalent to resetting
the momentum & to zero. Similar resetting techniques, usu-
ally called restarting mechanisms, have been studied in the
literature of optimization and machine learning; see [8]. [

The stability properties of the HAES (15)-(18) are studied

with respect to the compact set

As ={(z,p) :x € A, p=2x} x[§,A] x T". (20)
In particular, the following results were established in [11,
Thm. 1-2] for the solution of model-free optimization prob-
lems of static maps.

Proposition 1: Suppose that Assumption 2 and 4 hold.
Then, if 7 = 0, the HAES renders the set A, SGPAS as
(€py€a) — 0T. Moreover, for each compact set Ko C R?"
such that A C int(Ky), and each v > 0, 3 € > 0 such
that V e, € (0,¢;), 3 &5 > 0 such that V ¢, € (0,¢5), all
solutions with [x(0,0),p(0,0)] € Ky induce the bound:

p(x(t,j)) —¢" < K=t +v, 1)

for all (¢,j) € dom(z) such that ¢ > ¢, where t; =
min{¢ (t,j) € dom(z)}, and V(-) is a Lyapunov
function for the average hybrid system (19) that satisfies

limsup,;_, o, V(2(;,7)) < v. -

Remark 2: Property (21) describes a “semi-acceleration”
property. Namely, after each reset j, the error in the cost
function is minimized at a rate of O;(1/(t —t;)?) in each
interval of flow>. However, the numerator in the bound (21)
changes every time there is a jump. (|

Proposition 2: Suppose that Assumptions 2, 3 and 4 hold.
Let the parameters (k, 0, A) satisfy the inequality:

(22)

Then, the set A; is SGPES as (¢,,£,) — 0T, and for each
compact set Ky C R?" such that A C int(Ky), and each
v > 0,3 e; > 0suchthat Ve, € (0,¢}), 3 & > 0 such
that V g, € (0,¢j), all solutions with [z(0,0), p(0,0)] € Ko,
7(0,0) = 4, and x(0,0) = p(0, 0), satisfy the bound

o(x(t,§)) — ¢* < apy (4(x(0,0)) — ¢*) +v,  (23)

for all (t,j) € dom(z) where 7 := %z (55 + k0?) and
Qp = A2/62. O

Remark 3: The bound (23) establishes an exponential de-
crease of the error in the cost function during jumps. The key
observation is that the constant 7 can be adjusted by tuning

the resetting frequency of the algorithm via the parameters

. ~ . _ 1
(6,A). In particular, when ¢ = 0, the choice A = e,/ Shr

guarantees convergence of order O(1/v/kxlog(1/€)), where
€ > 0 is the precision [11, Sec. 3.2.1]. In fact, it can be shown
that this choice is actually optimal in periodic restarting
mechanisms that reset the momentum state [19]. However,
since the constant x is unknown, the tuning of the reset
parameters in the HAES must be carried out by trial and
error. (Il

3Note that Ej = 0 when j = 0, i.e., during the first interval of flow.



D. Main Results: HAES for Dynamic Plants

We now present the main theoretical result of this paper,
which establishes the stability and convergence properties
of the interconnection between the HAES and the dynamic
plant (2). Additionally, we incorporate linear dynamic fil-
ters with state £ and matrices (A4, B,C), which have been
shown to be instrumental for the implementation of ESC in
practical applications [3]. The proof is omitted due to space
limitations.

Theorem 1: Suppose that Assumptions 1,2, and 4 hold.
Consider the closed-loop HDS dynamics with state ¥ =
0,¢,2), z= (z,p, 7, 1), and dynamics

do

EOE = f(07 T+ 5&&“)7 (243)
d& 2 o\~
ef— = A&+ —Bh(0,z + e 1)1, (24b)
ds €q
d
epd—g —Rop, peTw, (24¢)
de 2 dp ~ dr 1
—=—(p—x), —=-2k —=—, (24d
ds T(p z) ds e, ds 2’ 249
evolving in the flow set
C:=RP xT" x R" x Cy, (25)
and discrete-time dynamics:
0 =0, pt=pu ¢ =¢ at=g (262)
pt =roz+(1—1r9)p, 7" =39, (26b)
evolving in the jump set
D :=RP xT" xR" x Dg. 27

Then, if A is Hurwitz, and —CA~1B = I, we have:

1) If r, = 0, the set £(A;) x {0} x A, is SGPAS as
(€0+€p,€a,€f) — 07, and the bound (21) holds in the
(s,j) time scale.

2) If r, = 1, Assumption 3 holds, and condition (22) is
satisfied, then the set £(Ay) x {0} x A, is SGPAS as
(€0, €ps€as€p) — 07, and the bound (23) holds in the
(s,7j) time scale. O

Remark 4: Theorem 1 is analogous to the SGPAS results
established in the literature for gradient descent-based ESC
[20, Thm. 1], for Newton-like ESC [15, Thm. 1], and for
Fixed-Time ESC [16, Thm. 1]. O

Remark 5: Note that the bounds (21)- (23) only hold in
the limit as (o, €p, €4, ) — 07, and in the (s, j) time scale.
Therefore, the transient performance of the ESC is naturally
limited by the transient performance of the plant. (]

IV. TRAFFIC LIGHT CONTROL VIA HYBRID
ACCELERATED EXTREMUM SEEKING

In this section, we apply the HAES to optimize self-
organizing traffic lights (SOLT) systems for signalized urban
intersections, a class of systems explained in detail in [12].
At each intersection, the possible traffic flows are sorted
into phases. Then, the flows in the same phase receive a
green light simultaneously and are not interrupted until they

)/
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Fig. 1: Response maps for different demands, ranging from
light traffic (¢, = 0.11) to heavy congestion (¢, = 0.19) [2].

receive a red light. All the phases at the intersection are hence
coordinated in a cycle. SOTL receives measurements in real-
time and sets a control decision based on the value of a
threshold function u of each phase of the intersection. When
the value of this function exceeds a threshold value, the
phase becomes a candidate to be the next active phase. This
threshold function quantifies how congested the phase is, and
therefore it affects the performance of the controller. Fig. 1
illustrates the impact of the threshold on the performance of
the network. Here, the parameter-average speed map exhibits
“almost flat” regions where the convergence of standard
gradient descent-based algorithms can be prohibitively slow.
To address this issue, we implement the HAES, as shown
in Fig. 2, which corresponds to (15) with p(0,0) = [0, 1],
a = g, and w = 2%% The disturbance models small

Ep€o

. P . . . . .
measurement noise, unavoidable in practical applications.

I Plant,
Traffic
NeT:tW(Irk

Local
controller

Hybrid
Accelerated
Optimizer

Gradient
estimator

ESC Scheme!

Fig. 2: Scheme of Hybrid Accelerated Extremum Seeking
Control applied to a traffic network.

To simulate the traffic network we used a cellular automata
model as in [12]. The traffic network that we study is
a square grid with 16 intersections, as shown in Fig. 3.
The simulation setup of the network is the same as the
one used in [2]. At each time step, a vehicle enters the
network with probability «; and leaves it with probability
Bi, thus simulating perimeter or boundary conditions of the
local network. Furthermore, there are four phases at each
intersection: an east/west phase, an east/west turning phase,
a north/south phase, and a north/south turning phase. Each
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Fig. 3: The traffic network considered in the simulation.
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Fig. 4: Comparison between convergence of HAES and
GDES in SOLT.

vehicle makes a turning decision based on a predetermined
probability. The state of this traffic network model is the
queue length on the road, the dynamics of this state are
modeled by the conservation of vehicles, and flow equations
which consider a nonlinear flow rate that captures different
events, like intersection queuing, lane changing, turning,
among others [2]. Moreover, the traffic flows from/to outside
the network is considered as disturbances. The traffic light
setting is controlled by SOTL. The ESC receives the network
average speed y as an input, and generates the threshold
value u as an output. Fig. 4 shows the simulation results
with a; = 0.15 and 5; = 0.9 (which corresponds to the
purple line in Fig. 1 indicated by the label 0.15). It shows
the convergence of x by using both HAES and the gradient
descent-based ES (GDES). The comparison was done by
using equivalent parameters for both schemes. The common
parameters are: £, = 1, w = 1072 rad/s, a gain of 0.35, and
a band-pass filter with cut-off frequencies at 9 x 10~5 rad/s
and 3 x 1073 rad/s. Additionally for the HAES, § = 0.1 and
A = 2.5. We also added a phase lag of 60° into the controller
to compensate for the dynamics of the plant. This phase lag
was shown to reduce the steady state oscillations. As it can
be observed, given an equivalent set of parameters, the HAES
is able to converge to a neighborhood of the optimal point
significantly faster compared to the traditional GDES.

V. CONCLUSIONS

We presented two main results. First, we showed that
the hybrid accelerated extremum seeking (HAES) dynamics

interconnected with a stable dynamic plant in the loop
preserves the semi-global practical asymptotic stability prop-
erties, and also preserves the acceleration bounds as the
time-scale separation increases. Second, we implemented the
HAES to optimize a self-organizing traffic system (SOTL),
and we showed via simulation that the HAES can sub-
stantially decrease the convergence time. This application
provides a suitable example of the importance of dynamic
momentum in ESC to improve transient performance in real-
time model-free optimization problems.
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