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Abstract— Motivated by the shallow concavity properties that
emerge in certain response maps in the context of optimization
problems in transportation systems, we study the stability
properties of a class of hybrid accelerated extremum seeking
(HAES) dynamics interconnected with dynamic plants in the
loop. In particular, we establish suitable semi-global practical
asymptotic stability properties for different classes of cost
functions, as well as tuning conditions for the hybrid extremum
seeking algorithm. Additionally, we implement the HAES to
optimize the performance of a self-organizing traffic light
system (SOTL) in a class of smart transportation systems. We
show that the dynamic momentum mechanism incorporated
by the HAES can significantly reduce the convergence time in
the optimization process compared to the traditional extremum
seeking algorithms based on gradient descent flows.

I. INTRODUCTION

Technological advances in sensing, computation, and com-

munication have enabled the deployment of novel automation

technologies in networked transportation systems. As a prime

example, traffic light control has emerged as a fundamental

technology for the efficient operation of urban cities [1]. In

these systems, the feedback control mechanism must be able

to leverage data to bypass the lack of traffic models, and also

to rapidly cope with changes in traffic conditions. Moreover,

the controllers should be adaptive and robust with respect to

unexpected disturbances, such as demand fluctuations, traffic

accidents, etc [2].

On the other hand, practitioners may have access only

to real-time measurements from sensing units and recorded

data. These streams of data can be used to develop feedback-

based data-driven algorithmic frameworks that can “learn

to optimize” the traffic behavior in real-time. This prac-

tical setting motivates this paper, which studies the real-

time optimization of traffic systems using efficient extremum

seeking control (ESC) [3]–[6], a type of adaptive control

suitable for the solution of self-optimization problems in

dynamical systems. Along with the advantages of ESC,

it has been observed in several applications -particularly

those with cost functions having shallow convexity/concavity

properties- that the method might exhibit slow rates of

convergence. Such limitations are structural and induced by

the type of optimization algorithm that is most commonly
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used in the literature of ESC: gradient descent flows. Indeed,

as shown in [7], the rate of convergence of gradient flows

can be of order O(1/t) in the family of smooth convex cost

functions. In the optimization literature, this limitation has

motivated several works on “accelerated” methods able to

achieve rates of convergence of order O(1/t2) for convex

functions, and of order O(e−
√
κt) for κ-strongly convex

functions with κ > 0 [8], [9]. However, as shown in [10],

such dynamics are incompatible with ESC due to their lack

of uniformity in the convergence properties. To solve the

incompatibility issue, a class of hybrid accelerated extremum

seeking (HAES) dynamics was introduced in [11] for the op-

timization of static maps with unknown mathematical forms.

These algorithms can achieve full acceleration properties in

strongly convex functions and semi-acceleration properties in

any smooth radially unbounded convex function. However, it

has remained an open question whether these ES dynamics

can also be used to optimize dynamical systems in the loop

instead of static maps.

In this paper, we provide a positive answer to this question

by showing that the HAES, interconnected with a stable plant

generating a well-defined quasi-steady state cost function,

has suitable semi-global practical asymptotic stability prop-

erties and preserves the acceleration bounds as the time-scale

separation in the closed-loop system increases. Moreover,

we show that the qualitative tuning guidelines developed for

static optimization problems, and related to the frequency of

the resets of the hybrid controller, are also extendable to the

dynamic case.

After establishing suitable stability properties for the ac-

celerated ESC with plants in the loop, we proceed to apply

the method to solve an optimization problem in transporta-

tion systems, where the goal is to optimize in real-time the

performance of self-organizing traffic light systems (SOTL).

SOTL is a control strategy at the intersection level that

utilizes a set of threshold-based rules. As discussed in [12],

the performance of SOTL depends upon the controller thresh-

olds, which impact the mean travel time in the transportation

network. However, the mathematical form of the mapping

between controller thresholds and travel time is not available,

and therefore cannot be optimized offline. Nevertheless, in

the case of SOTL, the work [2] showed that the concavity of

the Macroscopic Fundamental Diagram (MFD) is inherited

by the parameter-to-average speed map, and that it exhibits

regions with shallow concavity, i.e., almost “flat” regions.

Therefore, even if the controller has access to real-time

streams of data for the purpose of online optimization,

standard ESC algorithms based on gradient descent flows



are expected to be slow due to the shape of the response

map of the system. We address this issue by implementing

the HAES to optimize the performance of the SOTL.

II. PRELIMINARIES

A. Notation

The set of (non-negative) real numbers is denoted as (R≥0)

R. The set of (non-negative) integers is denoted as (Z≥0) Z.

Given a compact set A ⊂ R
n, and a column vector x ∈ R

n,

we define |x|A := miny∈A |x − y|. We use B to denote

a closed unit ball of appropriate dimension, ρB to denote

a closed ball of radius ρ > 0, and X + ρB to denote the

union of all sets obtained by taking a closed ball of radius

ρ around each point in the set X . In this paper, we use Rκ

to denote a class of 2n× 2n block matrices, with individual

block component Ri = [0, κi;−κi, 0], where κi > 0, for

i ∈ {1, 2, . . . , n}. We also use T
n := S

1 × S
1 × . . .× S

1 to

model the nth Cartesian product of unit circles.

B. Hybrid Dynamical Systems

We model our algorithms as hybrid dynamical systems

(HDS) [13]. In particular, we consider HDS with state ζ ∈
R

n, evolving according to:

ζ̇ = F (ζ), ζ ∈ C, (1a)

ζ+ = G(ζ), ζ ∈ D, (1b)

where ζ̇ stands for the derivative of ζ with respect to time,

and ζ+ corresponds to the value of ζ after an instantaneous

change. The mappings F : Rn → R
n and G : Rn → R

n

are called the flow map and the jump map, respectively, and

they describe the evolution of the system when ζ belongs to

the flow set C, or/and the jump set D, respectively. System

(1) is represented by the notation H := {C,F,D,G}, where

C, F , D and G comprise the data of H1.

For a HDS parametrized by a constant ε ∈ R>0, denoted

as Hε := {Cε, Fε, Dε, Gε}, a compact set A ⊂ R
n is said to

be semi-globally practically asymptotically stable (SGPAS)

as ε → 0+ if there exists a function β ∈ KL2 such that the

following holds: For each pair K > ν > 0 there exists an

ε∗ ∈ R>0 such that for each ε ∈ (0, ε∗) each solution ζ of

Hε that satisfies |ζ(0, 0)|A ≤ K also satisfies |ζ(t, j)|A ≤
β(|ζ(0, 0)|A, t + j) + ν, for all (t, j) ∈ dom(ζ). If β has

exponential form, we use the acronym SGPES. If instead of

K we consider Rn, and make ν = 0, the set A is said to be

uniformly globally asymptotically stable (UGAS).

1Note that HDS of the form (1) are a generalization of purely continuous-
time systems and purely discrete-time systems. Namely, continuous-time
dynamical systems can be seen as a HDS of the form (1) with D = ∅,
while discrete-time dynamical systems can be seen as a HDS of the form
(1) with C = ∅. For a complete definition of solutions to systems of the
form (1) we refer the reader to [13, Ch. 2].

2For a definition of functions of class KL we refer the reader to [13, Ch.
3.5].

III. ACCELERATING EXTREMUM SEEKING USING

DYNAMIC MOMENTUM

ESC describes a family of adaptive controllers developed

to solve model-free optimization problems in dynamic sys-

tems. In particular, ESC considers plants of the form

θ̇ = f(θ, u), y = h(θ, u), (2)

where, traditionally, it is assumed that f and h are sufficiently

smooth, θ ∈ R
p, u ∈ R

n, y ∈ R and that the following

standard assumption holds.

Assumption 1: There exists a continuous function ` :
R

n → R
p, such that for each compact set Ku ⊂ R

n, the

dynamical system

θ̇ = f(θ, u), u̇ = 0, (θ, u) ∈ R
p ×Ku (3)

renders UGAS the set MKu
:= {(θ∗, u∗) ∈ R

p ×R
n : θ∗ =

`(u), u ∈ Ku}. �

Under Assumption 1, the cost function in ESC is defined

as the following steady state input-to-output map, also called,

the response map of (2):

φ(u) := h(`(u), u), (4)

which is assumed to satisfy the following:

Assumption 2: The function φ satisfies minu∈Rn φ > −∞
as well as the following properties: 1) φ(·) is continuously

differentiable. 2) φ is radially unbounded. 3) φ is convex.�

Under Assumption 2, the set of minimizers of φ, denoted

A, is non-empty and compact. We define φ∗ := φ(A).
To achieve exponential rates of convergence, the following

assumption is usually made:

Assumption 3: The function φ continuously differentiable

and strongly convex, i.e., there exist κ > 0, such that

φ(u1)− φ(u2) +∇φ(u2)
>(u2 − u1) ≥

κ

2
|u2 − u1|2, (5)

for all u1, u2 ∈ R
n. Moreover, ∇φ is globally Lipschitz with

constant L > 0. �

Under Assumption (3), the function φ is radially un-

bounded, and the minimizer of φ is unique, i.e., A := {u∗}.

A. Gradient Descent-Based ESC

To minimize the cost function (4), the traditional gradient

descent-based ESC, introduced in [3], and further studied in

[14], takes the form

ẋ = −εok
2

εa
µ

(

2πεoκt

εp

)

y, u = x+ εaµ

(

2πεoκt

εp

)

,

(6)

which is interconnected in feedback with system (2). In

(6), the constant k > 0 acts as a gain of the controller,

the function µ : R≥0 → R
n is a vector of element-

wise sinusoidal signals with frequencies parameterized by

the constants κ = [κ1, κ2, . . . , κn]
>, which satisfy the

following:

Assumption 4: The parameters κi are positive rational

numbers, and they satisfy κi 6= κj and κi 6= 2κj , for all

i 6= j. �



In (6), parameters (εo, εa, εp) are selected sufficiently

small to induce three time scales in the closed-loop system:

the fastest time scale is related to the dynamics of the plant

(2), the medium-time scale corresponds to the oscillations of

µ, and the slowest time scale corresponds to the variations

of x. This intuitive behavior can be formalized using tools

from averaging and singular perturbation theory; see [3]. In

particular, using the change of time variable s = εot, the

closed-loop system can be written in the s-time scale as

εo
dθ

ds
= f

(

θ, x+ εaµ

(

2πκs

εp

))

, (7a)

dx

ds
= −k

2

εa
µ

(

2πκs

εp

)

h

(

θ, x+ εaµ

(

2πκs

εp

))

.

(7b)

System (7) is a singularly perturbed system, with εo acting

as small parameter. As ε0 → 0+, the behavior of x is

mainly predicted by the so-called reduced dynamics, which

assume that the plant dynamics (7a) is at equilibrium, i.e.,

θ = `
(

x+ εaµ
(

2πκs
εp

))

. Using the definition of (4), we

obtain:

dx̃

ds
= −k

2

εa
µ

(

2πκs

εp

)

φ

(

x̃+ εaµ

(

2πκs

εp

))

. (8)

For small values of εp system (8) can be analyzed via av-

eraging theory. Under Assumption 4, standard computations

based on Taylor expansions (see [5]) reveal that the average

system of (8) is given by

dz

ds
= −k∇φ(z) +O(εa). (9)

Since O(εa) is a small bounded disturbance (on compact

sets), it can be treated as structural additive perturbation.

Thus, the nominal dynamics of (9) is just a gradient flow

dz̃

ds
= −k∇φ(z̃). (10)

Under Assumption 2, gradient flows of the form (10) render

the set A UGAS. Therefore, solutions of (10) satisfy

|z̃(s)|A ≤ βopt(|z̃(0)|A, s), (11)

for some βopt ∈ KL. Moreover, in the class of cost functions

satisfying Assumption 2, gradient flows of the form (10)

minimize φ at a worst-case rate of O(1/s) [9]. If we further

assume that φ satisfies condition (5) with a L-globally

Lipschitz gradient, it can be shown that (11) holds with

βopt(r, s) =
√

L/κe−κksr, i.e., the convergence is of order

O(e−kκs). Standard robustness results for dynamical systems

(e.g., [13, Prop. 6.34]) predict that, as εa → 0+, the solutions

of (10) will be ε/3-close (on compact time domains) to the

solutions of the perturbed system (9). Moreover, standard

results in averaging theory predict that as εp → 0+ the trajec-

tories of (9) will be ε/3-close (on compact time domains) to

the solutions of system (8). Additionally, by standard results

in singular perturbation theory, the trajectories x̃ of (8) will

be ε/3-close (on compact time domains) to the trajectories x
of system (7). By combining these closeness properties with

the KL bound (11), one can establish that for any K > v > 0
there exist ε∗a > 0 such that for any εa ∈ (0, ε∗a) there exists

ε∗p > 0 such that for any εp ∈ (0, ε∗p) there exists εo ∈ (0, ε∗o)
such that the trajectories of the original closed-loop system

with |θ(0)|`(A) ≤ K and |x(0)|A ≤ K satisfy

|x(t)|A ≤ βopt(|x(0)|A, εot) + ν, (12)

for all t ≥ 0.

The above discussion highlights an important property in

ESC: as the time-scale separation increases in the closed-

loop system (7), the transient performance of the input is

characterized by the nominal average system (10). Given

that gradient flows can be extremely slow when κ � 1,

it is natural to ask how to improve the convergence rate of

the algorithm without destroying the stability properties of

the system. Naturally, increasing the gain k is not a feasible

approach when there is a plant in the loop, as in (7), since

this would destroy the time-scale separation in the system.

Similarly, Newton-like ESC [15] requires the computation

and inversion -on average- of the Hessian matrix of φ, which

must be positive definite, i.e., φ must satisfy (5). A similar

limitation applies to finite-time or fixed-time ESCs [16].

On the other hand, a different approach is to consider an

ESC algorithm with an average system that generates more

“efficient” optimization directions compared to the standard

gradient flow (10). Algorithms with this geometric property

are term “accelerated”, and they are the subject of the next

section.

B. ESC with Dynamic Momentum: Instability

Motivated by Nesterov’s accelerated optimization algo-

rithm [17], momentum techniques have recently received

significant attention in the literature of optimization and

dynamical systems. In particular, in [8] and [9], the authors

showed that the continuous-time version of Nesterov’s algo-

rithm is given by a second-order ODE of the form

ẍ+
c

t
ẋ+ k∇φ(x) = 0, c ≥ 3, (13)

which, under Assumption 2, minimizes φ at a rate of O(1/t2)
in the family of smooth convex functions. Thus, it is natural

to consider system (13) as a candidate to substitute the dy-

namics (6) by the following ESC with dynamic momentum:

ẋ = εoq, q̇ = −cεoq

t
− εok

2

εa
µ

(

2πεot

εp

)

y. (14)

Unfortunately, in general, this system can become unstable

under the slightest disturbance (e.g., noise) on the cost y,

no matter how small are the parameters (εo, εp, εa). This

instability is a consequence of structural properties of the

dynamics (13), studied in [10, Ex. 1] and [18]. Namely,

in general, for these dynamics there does not exist a class

KL function βopt that satisfies (11). This issue can be

addressed by incorporating into (14) mechanisms that prevent

the damping from vanishing to zero, while further enhancing

the transient performance of the dynamics. Such mechanisms

can be designed using the framework of hybrid dynamical

systems.



C. Robust Accelerated Hybrid ESC for Static Maps

To endow the dynamics (14) with suitable stability and

robustness properties, we consider the incorporation of resets

into the ESC. In particular, we introduce a new variable τ
to model the evolution in time of the damping coefficient

of (13), and a state µ, evolving on the tori T
n, to model

a vector of probing sinusoidal signals generated by a time-

invariant dynamic oscillator. Using these additional auxiliary

states, we consider a class of hybrid accelerated extremum

seeking (HAES) dynamics for static maps (i.e., with εo = 1)

with overall state z = (x, p, τ, µ), continuous-time dynamics

given by

ẋ =
2

τ
(p− x), ṗ = −4τk

εa
µ̃φ(x+ εaµ̃), τ̇ =

1

2
(15a)

µ̇ =
1

εp
Rκµ, µ ∈ T

n, (15b)

and discrete-time dynamics given by:

x+ = x, p+ = r0x+ (1− r0)p, τ+ = δ, µ+ = µ, (16)

where ro ∈ {0, 1} is a parameter that defines the reset

policy of the controller, and δ > 0 is a tunable parameter. In

(15), we used µ̃ := [µ1, µ3, . . . , µ2n−1]
> to denote the odd

components of the state µ, which, by direct computation are

µi(t) = µi(0) cos
(

2πεoκit
εp

)

+ µi+1(0) sin
(

2πεoκit
εp

)

, with

µi(0)
2 + µi+1(0)

2 = 1. The continuous-time dynamics (15)

are implemented whenever the states satisfy

(x, p, τ, µ) ∈ CH × T
n, CH := R

n × R
n × [δ,∆], (17)

where ∆ > δ > 0. On the other hand, the discrete-time

dynamics (16) are implemented whenever the states satisfy

(x, p, τ, µ) ∈ DH × T
n, DH := R

n × R
n × {∆}. (18)

Therefore, it follows that the HAES implements periodic

resets of the form (16) after intervals of flow of length

2(∆− δ).

Lemma 1: [11, Lemma 7.2] Suppose that Assumption 4

holds. Then, the HAES has a well-defined average hybrid

dynamical system with dynamics

ẋ =
2

τ
(p− x), ṗ = −2kτ∇φ(x) +O(εa), τ̇ =

1

2
, (19a)

x+ = x, p+ = r0x+ (1− r0)p, τ+ = δ, (19b)

with flow set given by R
n×R

n× [δ,∆], and jump set given

by R
n × R

n × {∆}. �

Remark 1: When δ = 0 and ∆ = ∞, the average

continuous-time dynamics (19) can be seen as perturbed

version of (13) via the change of variables τ = t, p =
x + 1

2τ ẋ. Thus, it preserves the acceleration properties of

(13) in each interval of flow. Moreover, note that the reset

policy r0 = 1 sets p+ = x, which is equivalent to resetting

the momentum ẋ to zero. Similar resetting techniques, usu-

ally called restarting mechanisms, have been studied in the

literature of optimization and machine learning; see [8]. �

The stability properties of the HAES (15)-(18) are studied

with respect to the compact set

As = {(x, p) : x ∈ A, p = x} × [δ,∆]× T
n. (20)

In particular, the following results were established in [11,

Thm. 1-2] for the solution of model-free optimization prob-

lems of static maps.

Proposition 1: Suppose that Assumption 2 and 4 hold.

Then, if r0 = 0, the HAES renders the set As SGPAS as

(εp, εa) → 0+. Moreover, for each compact set K0 ⊂ R
2n

such that A ⊂ int(K0), and each ν > 0, ∃ ε∗a > 0 such

that ∀ εa ∈ (0, ε∗a), ∃ ε∗p > 0 such that ∀ εp ∈ (0, ε∗p), all

solutions with [x(0, 0), p(0, 0)] ∈ K0 induce the bound:

φ(x(t, j))− φ∗ ≤
4V (z(tj , j))

k(t− tj)
2

+ ν, (21)

for all (t, j) ∈ dom(z) such that t > tj , where tj =
min{t : (t, j) ∈ dom(z)}, and V (·) is a Lyapunov

function for the average hybrid system (19) that satisfies

lim supj→∞ V (z(tj , j)) ≤ ν. �

Remark 2: Property (21) describes a “semi-acceleration”

property. Namely, after each reset j, the error in the cost

function is minimized at a rate of Oj(1/(t − tj)
2) in each

interval of flow3. However, the numerator in the bound (21)

changes every time there is a jump. �

Proposition 2: Suppose that Assumptions 2, 3 and 4 hold.

Let the parameters (k, δ,∆) satisfy the inequality:

∆2 − δ2 ≥ 1

2κk
. (22)

Then, the set As is SGPES as (εp, εa) → 0+, and for each

compact set K0 ⊂ R
2n such that A ⊂ int(K0), and each

ν > 0, ∃ ε∗a > 0 such that ∀ εa ∈ (0, ε∗a), ∃ ε∗p > 0 such

that ∀ εp ∈ (0, ε∗p), all solutions with [x(0, 0), p(0, 0)] ∈ K0,

τ(0, 0) = δ, and x(0, 0) = p(0, 0), satisfy the bound

φ(x(t, j))− φ∗ ≤ α0γ̃
j
(

φ(x(0, 0))− φ∗)+ ν, (23)

for all (t, j) ∈ dom(z) where γ̃ := 1
k∆2

(

1
2δ + kδ2

)

and

α0 := ∆2/δ2. �

Remark 3: The bound (23) establishes an exponential de-

crease of the error in the cost function during jumps. The key

observation is that the constant γ̃ can be adjusted by tuning

the resetting frequency of the algorithm via the parameters

(δ,∆). In particular, when δ ≈ 0, the choice ∆ = e
√

1
2kκ ,

guarantees convergence of order O(1/
√
kκ log(1/ε)), where

ε > 0 is the precision [11, Sec. 3.2.1]. In fact, it can be shown

that this choice is actually optimal in periodic restarting

mechanisms that reset the momentum state [19]. However,

since the constant κ is unknown, the tuning of the reset

parameters in the HAES must be carried out by trial and

error. �

3Note that tj = 0 when j = 0, i.e., during the first interval of flow.
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