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Abstract— To maintain voltage security with limited system
model information, we develop a model-free optimal voltage
control algorithm based on projected primal-dual gradient
dynamics and continuous-time zeroth-order method (extremum
seeking control). This proposed algorithm i) operates purely
based on voltage measurements and does not require any other
model information (model-free), ii) drives the voltage magni-
tudes back to the acceptable range while satisfying the power
capacity constraints all the time (safety), and iii) minimizes the
total operating cost (optimality). Moreover, this algorithm is
implemented in a decentralized fashion where the privacy of
controllable devices is preserved and plug-and-play operation is
enabled. We prove that the proposed algorithm is semi-globally
practically asymptotically stable and is structurally robust to
small measurement noises. Lastly, the performance of this
algorithm is further demonstrated via numerical simulations.

I. INTRODUCTION

Due to the rapidly increasing penetration of distributed
energy resources (DERs), voltage control in distribution
systems is confronted with new operational challenges, such
as frequent over-voltage issues caused by reverse power
flow, and growing uncertainty and volatility introduced by
renewable generation. Many existing methods on voltage
control [1], [2] are based on power flow models and assume
good knowledge of distribution systems. In practice, high-
accuracy network models and on-site identified parameters
are unavailable for many distribution systems. Moreover,
network reconfiguration, line faults, and other operational
factors also change the system from time to time. Hence, it
is desirable for voltage control to operate in the absence of
system models and adapt fast to time-varying environments.

The deployment of smart meters and upgraded communi-
cation infrastructures offers an opportunity to overcome these
challenges through real-time monitoring and control, which
motivates the data-driven voltage control techniques. A type
of such data-driven schemes [3]-[5] is to approximate the
nonlinear power flow relation with a linear sensitivity model
(e.g., the LinDistflow model [2]), and then to estimate the
model online using measurement and regression methods.
These schemes generally require a control center to store
a large amount of metering data and solve high-dimensional
regression problems in real-time. In contrast, model-free con-
trol, such as reinforcement learning (RL), does not explicitly
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estimate the system model but makes decisions directly
based on measurements. A number of recent works [6], [7]
propose to learn voltage control policies using various RL
techniques. However, applying RL to the control of physical
systems is still under development and has many limitations,
such as safety issues, unstable training processes, limited
or no theoretical guarantees, etc. See review article [8] and
references therein for a more comprehensive view.

An alternative type of model-free control is based on
zeroth-order (or gradient-free) methods [9]. In particular,
extremum seeking (ES) control [10], [11] is a classic
continuous-time zeroth-order method developed to solve
real-time optimization problems, which operates by using
only the output measurements. ES control attracts surg-
ing recent attention and has been applied in broad power
system applications, including energy consumption control
[12], voltage phasor regulation [13], maximum power point
tracking [14], etc. Moreover, [15], [16] propose ES control
algorithms to modulate the power injections of DERs for
voltage regulation. In [17], hardware-in-the-loop experiments
are conducted to verify the viability of a ES-based voltage
control scheme. Despite these progresses, one major limi-
tation of existing ES algorithms is that constraints are not
well addressed. Most ES methods consider unconstrained
optimization for simplicity or penalize the constraint vio-
lation in the objective. However, there are various physical
constraints, e.g., the power capacity limits, that need to be
enforced for safe operation.

Contributions. In this paper, we study the real-time volt-
age control through modulating the active and reactive power
outputs of fast time-scale controllable devices. To overcome
the challenges described above, we develop a model-free
optimal voltage control algorithm based on projected primal-
dual gradient dynamics (P-PDGD) and ES control. Specifi-
cally, by leveraging the structure of P-PDGD, the proposed
algorithm can steer the system to an optimal operating point
while satisfying the physical constraints. Then, ES control
is adopted to make this algorithm “model-free” in the sense
that the distribution system model is circumvented. The main
merits of the proposed algorithm are explained as below:

o (Safety and Optimality). The proposed algorithm drives
the voltage magnitudes back to the acceptable range
while always satisfying the power capacity constraints,
and minimizes the total operating cost.

e (Model-Free). The proposed algorithm is an end-to-end
model-free control method that operates purely based
on the voltage measurements from the monitored buses.
The model information of distribution networks and



other power injections is not needed.

e (Adaptive). By exploiting real-time measurement, this
algorithm is a feedback mechanism that can adapt fast
to changes in the dynamical system environment.

o (Decentralized). This algorithm is implemented in a
decentralized manner, where the privacy of each device
can be preserved. Moreover, it allows plug-and-play op-
eration and thus is robust to single/multi-point failures.

e (Guaranteed Performance). We mathematically prove
the semi-global practical asymptotical stability and the
structural robustness (to small measurement noise) of
the proposed algorithm, and numerically verify its ef-
fectiveness, optimality and robustness via simulations.

To the best of our knowledge, this is the first work on
voltage control that unifies all the above features. We also
emphasize that the proposed ES-P-PDGD algorithm is a
generic model-free method that can be applied to many other
multi-agent optimization and control problems.

Lastly, we mention a closely-related work [18]. It proposes
a model-free primal-dual projected gradient algorithm for
real-time optimal power flow based on discrete-time zeroth-
order methods, but it makes strong assumptions on the
problem setting and lacks explicit convergence results. In
contrast, this paper uses and studies the continuous-time
ES control dynamics, and provides clear stability guarantee.
Besides, distinguished from the projection method used in
[18], our algorithm employs the global projection and it leads
to a Lipschitz continuous projected dynamical system (see
Remark 2), which facilitates the theoretical analysis.

Notations. We use unbolded lower-case letters for scalars,
and bolded lower-case letters for column vectors. |-| denotes
the cardinality of a set. ||-|| denotes the L2-norm of a vector.
[€;y] := [£7,y"]" denotes the column merge of vectors
x,y. Ry :=[0,+00) is the set of non-negative real values.

II. OPTIMAL VOLTAGE CONTROL PROBLEM

Consider a distribution network with the monitored bus
set M and the controllable device set C. Each bus j € M
has real-time voltage measurement, and the power injection
of each device ¢ € C can be adjusted for voltage regula-
tion. Depending on the practical system configuration, the
controllable devices are flexible to locate at any buses of
the distribution network. The optimal voltage control (OVC)
problem is formulated as model (1) and explained below:

Obj. min » _ c;(;) (1)
* ieC

s.t. x; € A, ie€C (1b)

v; <wvj(x) < vy, jeM. (1c)

1) Decision Variable and Feasible Set: The decision vari-
able x; is the power injection of controllable device i € C,
and its power capacity constraints are described with the
feasible set X; in (1b). Define = := (x;)icc, X := [[;cc -
Specifically, we consider the following two types of devices
for real-time voltage control with C = Cgyc U Cqg:

i) Static Var Compensator (SVC) with the reactive power
injection x; := ¢; and the power capacity constraint (2):

Xi = {mz|gl < q; < (71}7 1€ Csvc (2)

where g; and g, are the upper and lower limits, respectively.
i1) Distributed Generation (DG) with the active and reac-
tive power injection x; := [p;, ¢;] " and constraint (3):

X = A{milp, <pi <pisp} +4; <5}, i€Cay ()

where p; and p, are the upper and lower limits of active
power, and 5; denotes the apparent power capacity.

2) Network and Voltage Constraints: v; in (1c) denotes
the voltage magnitude at bus j € M, and v; and v; are
the lower and upper voltage limits, respectively. We use the
functional form v;(x) to describe the input-output map from
the controllable power injection x to the voltage magnitude
v;. Essentially, v(x):=(v;(x)),;em captures the nonconvex
power flow equations, distribution network model, and other
uncontrollable power injections; see [1], [5] for details.

3) Objective Function: The objective (1a) aims to mini-
mize the total operating cost with the cost function ¢;(-) for
each device ¢ € C. For instance, the quadratic cost function
ci(x;) = =, Z;x; is a widely used objective [1], [5], where
33, is the diagonal matrix of cost coefficients.

We summarize the known and unknown information in
our problem setting with the following assumption.

Assumption 1. The gradient of the individual cost function,
i.e., Vci(+), exists and is known to each device i € C itself, as
well as the feasible set X;. The system model, i.e., function
v(x), is unknown but the real-time voltage measurement of
v is available.

Remark 1. In this work, we consider a general convex cost
function ¢;(«;), while the quadratic cost function is only
adopted for simulations. Besides, we assume that the gradient
Ve¢i(;) is known to each device for simplicity. Nevertheless,
the proposed voltage control algorithm is applicable to the
case when V¢;(x;) and ¢;(x;) are unknown but the cost
value ¢; can be measured in real time. Similarly, if the real-
time measurement of network loss is available, the cost of
network loss ¢(x) can be also included in objective (1a).

III. ALGORITHM DESIGN

In this paper, we aim to design a real-time voltage control

algorithm that satisfies the following four requirements:

1) Asymptotic voltage limits. Once a disturbance occurs,
the controller can drive the monitored voltage magni-
tudes (v;)jem back to the acceptable interval [v;, v;].

2) Hard capacity constraints. The power injection x; of
the controllable device ¢ € C should satisfy the physical
power capacity constraints X; at all times.

3) Optimality. The controllable devices should be regu-
lated in an economically efficient way that minimizes
the total operating cost.

4) Model-free. Information of the power network (topol-
ogy and line parameters), loads and other power injec-
tions is not required.



To this end, we firstly solve the OVC model (1) with the
projected primal-dual gradient dynamics, so that the solution
dynamics can be interpreted as the voltage controller which
meets the first three requirements above. Then we take the
fourth requirement into account and develop a model-free
voltage control algorithm based on ES control.

A. Projected Primal-Dual Gradient Dynamics

We make the following two standard assumptions on the
OVC model (1) to render it a convex optimization problem
with strong duality. We emphasize that these assumptions
are mainly for theoretical analysis, and the proposed control
algorithm can be applied to power systems with a nonlinear
power flow model, which is validated by our simulations.

Assumption 2. For all i € C, the function c;(-) is convex
and has locally Lipschitz gradients, and the set X; is closed
and convex. Also, the function v;(-) is affine for all j € M.

Assumption 3. The OVC problem (1) has a finite optimum,
and the Slater’s conditions hold for the problem (1).

We employ the projected primal-dual gradient dynamics
(P-PDGD) method to solve the OVC model (1). With dual
variables A :=(A])jerm, A7 := (A} )jem the saddle point
problem of the OVC model (1) is formulated as

ieC

max min L(x, )
A>0 zeX

EDINHOIE
JjEM
where A := [AT;A7] and L(x,\) denotes the Lagrangian
function. Then we solve problem (4) with P-PDGD (5):

“)
5) + 7 () = v(@))],

aici:km[Proni(a:i faz%)fwi], 1 €C (5a)
AF =k [Projg, (AT + aa(vj(z)— 0;)) = AT ], j €M (5b)
A7 =k [Projg, (A; + ax(y;— vj(®))) = A; ], j€M (S¢)

where k., k), a;,a) are positive parameters, the Lipschitz

projection operator Proj,(-) is defined as Proj,(x) :=

argmin ||y
YEX

OL(x, )
8a:i

— Veilz)+ 3 (M - A;>@1g;?>. ©)
JEM v

Denote z := [x;A] and define Z := X X Ri_lMl

feasible set of z in (5).

as the

Remark 2. (Projection of Dynamical System) The projection
method used in (5) is referred as global projection [19]. B
[19, Lemma 3], it ensures that z(t) € Z for all time ¢ > ¢
when the initial condition z(¢y) € Z. Note that the P-PDGD
(5) is Lipschitz continuous; it differs from other types of
discontinuous projections considered in literature, e.g., [18],
[20], [21], which project the dynamics onto the tangent cone
of the feasible set, and thus they need the analytical tools
for discontinuous dynamical systems.

The stability of the P-PDGD (5) is stated as Theorem 1.

Theorem 1. (Global Asymptotical Stability.) Under Assump-
tion 2 and 3, with initial condition z(ty) € Z, the trajectory
z(t) of the P-PDGD (5) will stay within Z for all t > t,
and globally asymptotically converge to an optimal solution
z* := [x*; X\*] of the saddle point problem (4), where x* is
an optimal solution of the OVC problem (1).

The proof of Theorem 1 mainly follows the asymptotical
stability of globally projected (primal-dual) dynamical sys-
tems [22, Lemma 2.4] [19]. A detailed proof is provided in
the online version of this paper [23].

B. Model-Free Voltage Control Algorithm

The P-PDGD (5) cannot be implemented without knowl-
edge of the system model v(x), since there are two occasions
in the P-PDGD (5) where this model is needed:

1) The gradients ‘%J(m) in (6) fori € C,j € M;

2) The functions v]( ) in (5b) (5¢) for j € M.
To develop a model-free controller, accordingly, we propose
two strategies. Strategy 1): use ES control to estimate the
gradients aUJ( ) fori € C,j € M. Strategy 2): replace v;(-)
by its real- tlme voltage measurement v3**(¢) for j € M.

To implement Strategy 1), we adopt the ES control method
[10] and add a small sinusoidal probing signal to each power
injection with

Z;(t) = x;(t) + asin(w;t), i€C 7
where a is the small amplitude' and the sinusoidal signal is

1€ Csvc
[sin(w!t), sin(wft)] T, i € Caq.

sin(w;t),

sin(w;t) := { (8)
Let N = |Csve|+2|Cqg| be the dimensionality of the decision
variable x. Define sin(wt) := (sin(w;t))iec € RY as the
column vector that collects all the sinusoidal signals. The
frequencies w := (w;);ec are selected as

2

Wp = —Kn,
w

Vn e [N]:={1,--- ,N} (9

where ¢, is a small positive parameter and «; # «; for all
i # j are rational numbers. In this way, each element x,, in
x is assigned with a particular frequency w,.

Based on the above description, the P-PDGD (5) is mod-
ified as the ES-P-PDGD (10):

=k, {Proj)ei (a:ifazhi(wi,)\,ﬁg))f:ci}, ieC (10a)
A=k [ProjR+(Aj +ax (i — ;) —/\j], jEM (10b)
5=k {Projﬂh(/\j_ +an(v; — p1y)) —A;}, jeM (10¢)
&= %{— ¢+ Zvj(:f:(t)) sin(wit)}7 jeM,ieC (10d)

1
iy = 2|~ + @), JEM (10¢)

!For notational simplicity, we adopt an identical amplitude a for all power
injections here. In practice, different amplitude parameters can be used.



where € is a small positive parameter, and
&(t) = x(t) + asin(wt)
hi(ai, A, &]) = Veg(mi) + > (A = A€l
JEM
The key difference between P-PDGD (5) and ES-P-PDGD
(10) is the introduction of new variables & := (&7)jenm.icc
and p:=(pj)jem. We explain the rationale and benefits of
this modification with Remark 3. To ensure the actual power

injection &; € A;, we replace X; with the shrunken feasible
set X in (10a). As a — 0™, X recovers to X.

(11a)
(11b)

V. +a<Qi<qi_a Z.Ecsvc
e, ra<pi < pi—a, piq < (5i—v/2a)?,

Remark 3. (Fast Dynamics of £ and p.) In essence, £J and
; are the real-time approximations of the gradlent ~ and
the value vj, respectively. The intuition behind is that by
setting e sufficiently small, the dynamics of f’ and pj, ie.,
(10d) (10e), operate in a faster time scale compared to the
dynamics of (x, A). The advantages of introducing these fast
dynamics of £ and p include:

1€ Cdg'

1) It facilitates the analysis of the algorithm via averaging
theory, since the time-variant sinusoidal signals do not
appear inside the projection operators. Moreover, the
fast dynamics are linear, which can be easily handled
by singular perturbation theory.

2) The fast dynamics (10d) (10e) can be seen as low-pass
filters, which can diminish the oscillations and improve
the transient performance of the closed-loop system.

Since #(t) is the actual power injection to the physical
system at time ¢, we can substitute v; (&) with the voltage
measurement v;nea( ) in (10), i.e., Strategy 2). Consequently,
we develop the model-free optimal voltage control (MF-
OVC) algorithm as Algorithm 1, which is indeed the ES-
P-PDGD (10) with the measurement substitution.

Algorithm 1 Model-Free Optimal Voltage Control Alg.
At every time t, perform the following steps:
¢ Each monitored bus j € M measures the local voltage
magnitude v3**(t), updates ()\;r, Aj s i) according to

Equations (10b) (10c)

1 .,
I Zg{—uj +vj ed(t)}

(12a)
(12b)

and broadcasts (v} (¢ ),)\j'(t),)\j_ (t)) to every control-
lable device i € C.
e Each controllable device i € C updates (x;,£’) by

Equation (10a) (13a)

& = % . %v;“ea(t) sin(wit)}, jEM  (13b)

and executes power injection @;(t) = x;(t) + asin(w;t).

The implementation of the proposed MF-OVC algorithm is
illustrated in Figure 1. Each monitored bus j € M measures

Commummt\on( m“(t) /\+(T) A7 (1)

- - -
Cyber System o

measurement v;"**(t) ; action! wl(t)

_ / | ] /

Joe /
Schematic of the proposed MF-OVC mechanism.

Power Network

@ : controllable device @ : monitored bus

Fig. 1.

its local voltage magnitude v;"** from the physical layer,
then updates (1, )\j, A; ) and communicates (v}, /\j', A7)
in the cyber layer. Each controllable device i € C updates
(¢/,a;) based on the received information, and the power
1nJect10n command &; is executed in the physical layer. Then
the power network responses to the power injection & and
presents the corresponding voltage profiles v(&). This forms
a closed-loop feedback control system. Although the MF-
OVC algorithm is developed based on a static OVC problem
(1), it can adapt fast to dynamical system environments and
handle voltage violation under time-varying power distur-
bances, due to the feedback mechanism and exploitation of
real-time measurements. As a result, the proposed algorithm
unifies all the merits described in the introduction section.

IV. PERFORMANCE ANALYSIS

This section presents the stability properties and the ro-
bustness to measurement noises of the MF-OVC algorithm.

A. Stability Analysis of ES-P-PDGD

Denote z := [x; A] and X := [Lice Xi. Let Z := X x
Ri‘M‘ be the feasible set of z in the ES-P-PDGD (10), and
K := (2|Cag|+|Csvc[+1)| M| be the dimensionality of [£; .
Denote A as the saddle point set for the saddle point problem
(4) with X, i.e. , any point z* € A is an optimal solution of
(4) with X. Denote the distance between z and A as

z|| ;= inf ||z — &|].
||]] 4 QGAH I

Definition 1. A continuous function S(r,t) : Ry x Ry —
R is said to be of class-ICL if it is zero at zero and strictly
increasing in the first argument r, and non-increasing in the
second argument ¢ and converging to zero as t — +oo.

Theorem 2. (Semi-Global Practical Asymptotical Stability.)
Suppose that the saddle point set A s compact. Under
Assumption 2 and 3, there exists a class-IKCL function 3 such
that for any compact set D C ZxRE of initial condition, any
desired precision v > 0, there exists €* > 0 such that for any

€ (0,€), there exists a* > 0 such that for any a € (0, a*),
there exists €, > 0 such that for any €, € (0,€}), the
trajectory z(t) of the ES-P-PDGD (10) satisfies

lz@®)l4 < BUIz(to)ll 4> t —to) + v, VE=1t0.  (14)



The proof of Theorem 2 is provided in Appendix I.

Remark 4. We explain the key observations as below:

e Due to the small probing sinusoidal signals a sin(wt) in
the ES-P-PDGD (10), the state z will not converge to a fixed
point anymore, but rather to a small v-neighborhood of A.
This property is described by the bound (14). By setting the
parameters (e, a,¢,,) sufficiently small, one can make this
precision v as small as desired.

e As (¢,a,e,) — 07, the ES-P-PDGD (10) recovers the
same convergence rate of the P-PDGD (5), as indicated in
the proof of Theorem 2.

e As stated in Theorem 2, the tuning order of parameters
is relevant: first set e sufficiently small, then a, and lastly
€w- This order comes mainly from the proof and can guide
us on how to tune these parameters in practice.

B. Robustness to Measurement Noise

The following corollary of Theorem 2 [9] indicates that
this algorithm is robust to small additive measurement noise.
Moreover, the numerical simulations in Section V-D verify
the robustness even when the noise is relatively large.

Corollary 1. (Structural Robustness.) For any tuple of
(e,a,e,) that induces the bound (14), under the same
conditions in Theorem 2, there exists p* > 0 such that for any
measurement noise d : R — RIM!| with sup; s, |[d(t)|] <
p*, the trajectory z(t) of the ES-P-PDGD (10) with additive
measurement noise d satisfies

lz@®)l4 < BUIz(to)ll 4> t —to) +2v, VE=>1t0.  (15)

Comparing with (14), the ES-P-PDGD (10) with small
additive measurement noise d maintains similar convergence
results, and noise d leads to an additional v term in (15).

V. NUMERICAL SIMULATIONS
A. Simulation Setup

The modified PG&E 69-bus distribution system, shown as
Figure 2, is used as the test system. There are three PV plants
at bus 35, 54 and 69, which operate in the maximum power
point tracking mode. The controllable devices include three
SVCs (located at bus 35, 42 and 67) and three DGs (located
at bus 20, 40, 50). We select bus 3, 27, 35, 50, 54 and 69
as the monitored buses. The voltage of bus 0 (slack bus) is
10.5 kV (1 p.u.), and the lower and upper bounds of voltage
magnitude are set as 0.95 p.u. and 1.05 p.u., respectively.
We use the quadratic cost function in objective (1a). For the
MEF-OVC algorithm, we set a = 0.05, ¢ = 0.02, ¢, = 0.05,
and K, =2n—1forn=1,---,9.

Although an affine system model v(x) is assumed for
theoretical analysis, we perform all simulations based on a
full nonconvex AC power flow model using Matpower [24].

B. Static Voltage Control Under Step Power Change

Consider the test scenario when the three PV plants are
suddenly shut down at time ¢ = 0 and all loads remain
fixed. Due to the curtailment of PV generation and heavy
loads, the distribution system violates the lower voltage limit

: monitored bus
| : unmonitored bus

1 2 3\4\5 6 7 8 9\1011\12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

0

36 37 38 39

Fig. 2. The modified PG&E 69-bus distribution feeder.
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Fig. 3. Voltage dynamics of the monitored buses (upper plot) and active

power outputs of DGs (lower plot) under step power change.

at many buses. We ran the proposed MF-OVC algorithm
for voltage regulation from the start time ¢ = (. The
simulation results are shown as Figure 3. It is observed
that the MF-OVC algorithm effectively brought the voltage
magnitudes of monitored buses back to the acceptable range.
The small high-frequency oscillations in voltage are caused
by the probing sinusoidal signals. It is also seen that the
DG power outputs converge to fixed values within tens of
seconds, and the power capacity constraints are satisfied all
the time. In addition, we solve the OVC model (1) with the
linearized Distflow model [1] to obtain the optimal solution
a*, which turns out to be the converged values of the MF-
OVC algorithm and thus verifies its optimality.

C. Dynamic Voltage Control Under Continuous Change

To test the MF-OVC algorithm under time-varying distur-
bance, we add a 10% random perturbation to the loads, and
a real-world PV generation profile is applied to the three PV
plants in the test system. We ran the MF-OVC algorithm for
voltage control and compared it with the case without voltage
control. The simulation results are illustrated in Figure 4.
Without voltage control, the test system frequently violates
the lower or upper voltage limits as the PV generation
fluctuates. In contrast, the proposed MF-OVC algorithm can
adapt to the continuous power disturbances and maintain the
voltage profiles within the acceptable range.

D. Impact of Measurement Noise

To study the impact of measurement noises, we apply the

noisy voltage measurement f;;-nca(t), whose deviation from
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Fig. 4. Voltage dynamics of monitored buses under continuous disturbances
(black dashed lines: upper (1.05 p.u.) and lower (0.95 p.u.) voltage limits).
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Fig. 5. Voltage dynamics of monitored buses with noisy measurements.

the base voltage value (1 p.u.) follows (16):

T () — 1= (v(2(t)) — 1) x (14 5;(t),

where v;(x(t)) denotes the true voltage magnitude, and J;
is the perturbation ratio. We assume that §; is a Gaussian
random variable with &; ~ N(0,0?), which is independent
across time t and other monitored buses. We tune the
standard deviation o from 0.1 to 0.3 to simulate different
levels of noises and test the performance of the MF-OVC
algorithm under step power changes. The simulation results
are shown as Figure 5, and the noiseless case with ¢ = 0 is
illustrated as Figure 3. As expected, larger noise amplitudes
lead to higher oscillations in the voltage dynamics. While
the MF-OVC algorithm is robust to the voltage measurement
noises and can restore the voltage profiles in all the cases.

(16)

VI. CONCLUSION

In this paper, we developed a real-time model-free optimal
voltage control algorithm based on projected primal-dual
gradient dynamics and ES control. The proposed algorithm
operates purely based on the voltage measurement and does
not require any other network information. With appro-
priate parameters, this algorithm can effectively bring the
monitored voltage magnitudes back to the acceptable range
with minimum operational cost, while respecting the power

capacity constraints all the time. Numerical simulations on
the PG&E 69-bus distribution feeder demonstrated the opti-
mality, adaptivity, and robustness of the proposed algorithm.

APPENDIX I
PROOF OF THEOREM 2
Denote s1 := [x; A], 82 := [€; p], and s := [s1; S2]. The
ES-P-PDGD (10) is reformulated in compact form as

. 31 91(817 32)
= . = = t, 5 17
’ H [1(—32 +92<t,s1>>] glt.e) AT
where the function g (81, 82) captures the dynamics (10a)-
(10c), and function gs(t, s1) is given by

- (%Uj(:lz—l—asin(wt))'sin(wnt))ne[N]_jeM
(vj (x+a sm(wt)))

] ; (18)

JEM

which associates with dynamics (10d) of & and (10e) of .
The following Lemma 1 characterizes the average map

for the function go(¢,s1). Lemma 1 can be proved by

considering the multivariate Taylor expansion of gs(t,s1)

and using [9, Lemma 7.1].

Lemma 1. The average of function go(t, s1) is given by

1 T
95" (51) = [ @alt.s)dt = ts) + O), (19)
0

v,
( aéc(f) Jne[N],jem

(vj(x))jem
common period of the sinusoidal signals sin(wt).

,and T is the minimum

We analyze the stability properties of system (17) via
averaging theory and singular perturbation theory as follows.
Step 1) Construct a compact set for analysis.

To apply general averaging theory and singular perturba-
tion theory, it usually requires that the considered trajectories
stay within predefined compact sets. Without loss of gener-
ality, we consider the compact set [(A + AB) N Z] x AB
for the initial condition s(¢y) and any desired A > 0. Here,
B denotes a closed unit ball of appropriate dimension, and
A + AB denotes the union of all sets obtained by taking
a closed ball of radius A around each point in the saddle
point set A. By Theorem 1, there exists a class-CL function
/3 such that for any initial condition z(ty) € Z, the trajectory
z(t) of the P-PDGD (5) with the feasible set X' satisfies

12Ol 4 < B([z(t)l| 4> t = to), (20)

Without loss of generality, we assume the desired conver-
gence precision v € (0,1). Using the 8 function in (20), we
define the set

Fie{s1€Z:|lsill 4 < 8( max |lpll4,0) +1}, @D
peEA+AB

vVt > tp.

which is compact. Due to the boundedness of F, there exists
a positive constant M such that F C M;B. Since £(s1)
(defined in Lemma 1) is continuous by Assumption 2, there
exists a positive constant Ms > A such that |[£(s1)]| +1 <
M, whenever ||s1|| < M;. We then study the behavior of
system (17) restricted to evolve in the compact set F x MsB.



Step 2) Study the stability of the average system.

By definition (9), the sinusoidal signals in system (17) are
given by sin(z—:/-i”t) for n € [N]. For sufficiently small £,
system (17), evolving in F x M5B, is in standard form for
the application of averaging theory [25]. By Lemma 1, we
derive the autonomous average system of system (17):

91(y1,Y2)

m = ;/OTQ“”/) it = [1<y2+e<y1>+0<a»

where y := [y1; Y2 takes the same form as s := [s1; S2].
To analyze the average system (22), we can first ignore the
small O(a)-perturbation by setting a = 0. Thus the resultant
system is in the standard form for the application of singular
perturbation theory. As ¢ — 0, we freeze the slow state
y1, then the boundary layer system of the average system
(22) with @ = 0 in the time scale 7 = t/e is given by
% = —y3 + £(y1), which is a linear system with unique
equilibrium point y5 = £(y1). Thus the reduced system is

yl = gl(ylae(yl))a (23)

which is precisely the P-PDGD (5). By Theorem 1 and [25,
Theorem 1], it follows that as € — 0%, the set A x MsB is
semi-globally practically asymptotically stable (SGPAS) for
system (22) with a = 0. Then by the structural robustness
results for continuous ordinary differential equations [9,
Proposition A.1], the set A x M5B is also SGPAS for the
average system (22) as (¢,a) — 0T, i.e., Lemma 2.

, (22)

Lemma 2. Given the precision v, there exists € > 0 such
that for any € € (0, €*), there exists a* > 0 such that for any
a € (0,a*), with initial condition y(to) € [(A+AB)N Z] x
AB, the solution y(t) of the average system (22) satisfies

llyr ()] 4 < B(lly1(to)]

The completeness of solution y(¢) for system (22) follows
[26, Lemma 5] and the structure of the set F (21). See [23]
for a detailed proof.
Step 3) Link average system (22) to original system (17).
Since the set A x M,B is SGPAS for the average system
(22) as (¢,a) — 0T, by averaging theory for perturbed
systems [9, Theorem 7], we directly obtain that for each pair
of (¢,a) inducing the bound (24), there exists €}, > 0 such
that for any ¢, € (0,¢,), the solution s(¢) of the original
system (17) restricted to F x MsB satisfies

l[s1()]] 4 < B(lIs1(to)l| 45 t —to) + v, V> to.

The completeness of solution s for system (17) is guaranteed
by the construction of Mjy. Thus Theorem 2 is proved.

at—t)+ 5 V>t Q4

(25)
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