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Abstract— To maintain voltage security with limited system
model information, we develop a model-free optimal voltage
control algorithm based on projected primal-dual gradient
dynamics and continuous-time zeroth-order method (extremum
seeking control). This proposed algorithm i) operates purely
based on voltage measurements and does not require any other
model information (model-free), ii) drives the voltage magni-
tudes back to the acceptable range while satisfying the power
capacity constraints all the time (safety), and iii) minimizes the
total operating cost (optimality). Moreover, this algorithm is
implemented in a decentralized fashion where the privacy of
controllable devices is preserved and plug-and-play operation is
enabled. We prove that the proposed algorithm is semi-globally
practically asymptotically stable and is structurally robust to
small measurement noises. Lastly, the performance of this
algorithm is further demonstrated via numerical simulations.

I. INTRODUCTION

Due to the rapidly increasing penetration of distributed

energy resources (DERs), voltage control in distribution

systems is confronted with new operational challenges, such

as frequent over-voltage issues caused by reverse power

flow, and growing uncertainty and volatility introduced by

renewable generation. Many existing methods on voltage

control [1], [2] are based on power flow models and assume

good knowledge of distribution systems. In practice, high-

accuracy network models and on-site identified parameters

are unavailable for many distribution systems. Moreover,

network reconfiguration, line faults, and other operational

factors also change the system from time to time. Hence, it

is desirable for voltage control to operate in the absence of

system models and adapt fast to time-varying environments.

The deployment of smart meters and upgraded communi-

cation infrastructures offers an opportunity to overcome these

challenges through real-time monitoring and control, which

motivates the data-driven voltage control techniques. A type

of such data-driven schemes [3]–[5] is to approximate the

nonlinear power flow relation with a linear sensitivity model

(e.g., the LinDistflow model [2]), and then to estimate the

model online using measurement and regression methods.

These schemes generally require a control center to store

a large amount of metering data and solve high-dimensional

regression problems in real-time. In contrast, model-free con-

trol, such as reinforcement learning (RL), does not explicitly
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estimate the system model but makes decisions directly

based on measurements. A number of recent works [6], [7]

propose to learn voltage control policies using various RL

techniques. However, applying RL to the control of physical

systems is still under development and has many limitations,

such as safety issues, unstable training processes, limited

or no theoretical guarantees, etc. See review article [8] and

references therein for a more comprehensive view.

An alternative type of model-free control is based on

zeroth-order (or gradient-free) methods [9]. In particular,

extremum seeking (ES) control [10], [11] is a classic

continuous-time zeroth-order method developed to solve

real-time optimization problems, which operates by using

only the output measurements. ES control attracts surg-

ing recent attention and has been applied in broad power

system applications, including energy consumption control

[12], voltage phasor regulation [13], maximum power point

tracking [14], etc. Moreover, [15], [16] propose ES control

algorithms to modulate the power injections of DERs for

voltage regulation. In [17], hardware-in-the-loop experiments

are conducted to verify the viability of a ES-based voltage

control scheme. Despite these progresses, one major limi-

tation of existing ES algorithms is that constraints are not

well addressed. Most ES methods consider unconstrained

optimization for simplicity or penalize the constraint vio-

lation in the objective. However, there are various physical

constraints, e.g., the power capacity limits, that need to be

enforced for safe operation.

Contributions. In this paper, we study the real-time volt-

age control through modulating the active and reactive power

outputs of fast time-scale controllable devices. To overcome

the challenges described above, we develop a model-free

optimal voltage control algorithm based on projected primal-

dual gradient dynamics (P-PDGD) and ES control. Specifi-

cally, by leveraging the structure of P-PDGD, the proposed

algorithm can steer the system to an optimal operating point

while satisfying the physical constraints. Then, ES control

is adopted to make this algorithm “model-free” in the sense

that the distribution system model is circumvented. The main

merits of the proposed algorithm are explained as below:

• (Safety and Optimality). The proposed algorithm drives

the voltage magnitudes back to the acceptable range

while always satisfying the power capacity constraints,

and minimizes the total operating cost.

• (Model-Free). The proposed algorithm is an end-to-end

model-free control method that operates purely based

on the voltage measurements from the monitored buses.

The model information of distribution networks and



other power injections is not needed.

• (Adaptive). By exploiting real-time measurement, this

algorithm is a feedback mechanism that can adapt fast

to changes in the dynamical system environment.

• (Decentralized). This algorithm is implemented in a

decentralized manner, where the privacy of each device

can be preserved. Moreover, it allows plug-and-play op-

eration and thus is robust to single/multi-point failures.

• (Guaranteed Performance). We mathematically prove

the semi-global practical asymptotical stability and the

structural robustness (to small measurement noise) of

the proposed algorithm, and numerically verify its ef-

fectiveness, optimality and robustness via simulations.

To the best of our knowledge, this is the first work on

voltage control that unifies all the above features. We also

emphasize that the proposed ES-P-PDGD algorithm is a

generic model-free method that can be applied to many other

multi-agent optimization and control problems.

Lastly, we mention a closely-related work [18]. It proposes

a model-free primal-dual projected gradient algorithm for

real-time optimal power flow based on discrete-time zeroth-

order methods, but it makes strong assumptions on the

problem setting and lacks explicit convergence results. In

contrast, this paper uses and studies the continuous-time

ES control dynamics, and provides clear stability guarantee.

Besides, distinguished from the projection method used in

[18], our algorithm employs the global projection and it leads

to a Lipschitz continuous projected dynamical system (see

Remark 2), which facilitates the theoretical analysis.

Notations. We use unbolded lower-case letters for scalars,

and bolded lower-case letters for column vectors. | · | denotes

the cardinality of a set. || · || denotes the L2-norm of a vector.

[x;y] := [x⊤,y⊤]⊤ denotes the column merge of vectors

x,y. R+ := [0,+∞) is the set of non-negative real values.

II. OPTIMAL VOLTAGE CONTROL PROBLEM

Consider a distribution network with the monitored bus

set M and the controllable device set C. Each bus j ∈ M
has real-time voltage measurement, and the power injection

of each device i ∈ C can be adjusted for voltage regula-

tion. Depending on the practical system configuration, the

controllable devices are flexible to locate at any buses of

the distribution network. The optimal voltage control (OVC)

problem is formulated as model (1) and explained below:

Obj. min
x

∑

i∈C

ci(xi) (1a)

s.t. xi ∈ Xi, i ∈ C (1b)

vj ≤ vj(x) ≤ v̄j , j ∈ M. (1c)

1) Decision Variable and Feasible Set: The decision vari-

able xi is the power injection of controllable device i ∈ C,

and its power capacity constraints are described with the

feasible set Xi in (1b). Define x := (xi)i∈C ,X :=
∏

i∈C Xi.
Specifically, we consider the following two types of devices

for real-time voltage control with C = Csvc ∪ Cdg:

i) Static Var Compensator (SVC) with the reactive power

injection xi := qi and the power capacity constraint (2):

Xi := {xi| qi ≤ qi ≤ q̄i}, i ∈ Csvc (2)

where q̄i and q
i

are the upper and lower limits, respectively.

ii) Distributed Generation (DG) with the active and reac-

tive power injection xi := [pi, qi]
⊤ and constraint (3):

Xi := {xi| pi ≤ pi ≤ p̄i, p
2
i + q2i ≤ s̄2i }, i ∈ Cdg (3)

where p̄i and p
i

are the upper and lower limits of active

power, and s̄i denotes the apparent power capacity.

2) Network and Voltage Constraints: vj in (1c) denotes

the voltage magnitude at bus j ∈ M, and vj and v̄j are

the lower and upper voltage limits, respectively. We use the

functional form vj(x) to describe the input-output map from

the controllable power injection x to the voltage magnitude

vj . Essentially, v(x) :=(vj(x))j∈M captures the nonconvex

power flow equations, distribution network model, and other

uncontrollable power injections; see [1], [5] for details.

3) Objective Function: The objective (1a) aims to mini-

mize the total operating cost with the cost function ci(·) for

each device i ∈ C. For instance, the quadratic cost function

ci(xi) = x⊤
i Σixi is a widely used objective [1], [5], where

Σi is the diagonal matrix of cost coefficients.

We summarize the known and unknown information in

our problem setting with the following assumption.

Assumption 1. The gradient of the individual cost function,

i.e., ∇ci(·), exists and is known to each device i ∈ C itself, as

well as the feasible set Xi. The system model, i.e., function

v(x), is unknown but the real-time voltage measurement of

v is available.

Remark 1. In this work, we consider a general convex cost

function ci(xi), while the quadratic cost function is only

adopted for simulations. Besides, we assume that the gradient

∇ci(xi) is known to each device for simplicity. Nevertheless,

the proposed voltage control algorithm is applicable to the

case when ∇ci(xi) and ci(xi) are unknown but the cost

value ci can be measured in real time. Similarly, if the real-

time measurement of network loss is available, the cost of

network loss ℓ(x) can be also included in objective (1a).

III. ALGORITHM DESIGN

In this paper, we aim to design a real-time voltage control

algorithm that satisfies the following four requirements:

1) Asymptotic voltage limits. Once a disturbance occurs,

the controller can drive the monitored voltage magni-

tudes (vj)j∈M back to the acceptable interval [vj , v̄j ].
2) Hard capacity constraints. The power injection xi of

the controllable device i ∈ C should satisfy the physical

power capacity constraints Xi at all times.

3) Optimality. The controllable devices should be regu-

lated in an economically efficient way that minimizes

the total operating cost.

4) Model-free. Information of the power network (topol-

ogy and line parameters), loads and other power injec-

tions is not required.



To this end, we firstly solve the OVC model (1) with the

projected primal-dual gradient dynamics, so that the solution

dynamics can be interpreted as the voltage controller which

meets the first three requirements above. Then we take the

fourth requirement into account and develop a model-free

voltage control algorithm based on ES control.

A. Projected Primal-Dual Gradient Dynamics

We make the following two standard assumptions on the

OVC model (1) to render it a convex optimization problem

with strong duality. We emphasize that these assumptions

are mainly for theoretical analysis, and the proposed control

algorithm can be applied to power systems with a nonlinear

power flow model, which is validated by our simulations.

Assumption 2. For all i ∈ C, the function ci(·) is convex

and has locally Lipschitz gradients, and the set Xi is closed

and convex. Also, the function vj(·) is affine for all j ∈ M.

Assumption 3. The OVC problem (1) has a finite optimum,

and the Slater’s conditions hold for the problem (1).

We employ the projected primal-dual gradient dynamics

(P-PDGD) method to solve the OVC model (1). With dual

variables λ+ :=(λ+
j )j∈M,λ− :=(λ−

j )j∈M, the saddle point

problem of the OVC model (1) is formulated as

max
λ≥0

min
x∈X

L(x,λ) =
∑

i∈C

ci(xi)

+
∑

j∈M

[

λ+
j (vj(x)− v̄j) + λ−

j (vj − vj(x))
]

,
(4)

where λ := [λ+;λ−] and L(x,λ) denotes the Lagrangian

function. Then we solve problem (4) with P-PDGD (5):

ẋi =kx
[

ProjXi

(

xi − αx

∂L(x,λ)

∂xi

)

− xi

]

, i ∈ C (5a)

λ̇+
j =kλ

[

Proj
R+

(

λ+
j + αλ(vj(x)− v̄j)

)

−λ+
j

]

, j∈M (5b)

λ̇−
j =kλ

[

Proj
R+

(

λ−
j + αλ(vj− vj(x))

)

−λ−
j

]

, j∈M (5c)

where kx, kλ, αx, αλ are positive parameters, the Lipschitz

projection operator ProjX (·) is defined as ProjX (x) :=
argmin
y∈X

||y − x||, and the gradient in (5a) is given by

∂L(x,λ)

∂xi

= ∇ci(xi) +
∑

j∈M

(λ+
j − λ−

j )
∂vj(x)

∂xi

. (6)

Denote z := [x;λ] and define Z := X × R
2|M|
+ as the

feasible set of z in (5).

Remark 2. (Projection of Dynamical System) The projection

method used in (5) is referred as global projection [19]. By

[19, Lemma 3], it ensures that z(t) ∈ Z for all time t ≥ t0
when the initial condition z(t0) ∈ Z . Note that the P-PDGD

(5) is Lipschitz continuous; it differs from other types of

discontinuous projections considered in literature, e.g., [18],

[20], [21], which project the dynamics onto the tangent cone

of the feasible set, and thus they need the analytical tools

for discontinuous dynamical systems.

The stability of the P-PDGD (5) is stated as Theorem 1.

Theorem 1. (Global Asymptotical Stability.) Under Assump-

tion 2 and 3, with initial condition z(t0) ∈ Z , the trajectory

z(t) of the P-PDGD (5) will stay within Z for all t ≥ t0,

and globally asymptotically converge to an optimal solution

z∗ := [x∗;λ∗] of the saddle point problem (4), where x∗ is

an optimal solution of the OVC problem (1).

The proof of Theorem 1 mainly follows the asymptotical

stability of globally projected (primal-dual) dynamical sys-

tems [22, Lemma 2.4] [19]. A detailed proof is provided in

the online version of this paper [23].

B. Model-Free Voltage Control Algorithm

The P-PDGD (5) cannot be implemented without knowl-

edge of the system model v(x), since there are two occasions

in the P-PDGD (5) where this model is needed:

1) The gradients
∂vj(x)
∂xi

in (6) for i ∈ C, j ∈ M;

2) The functions vj(x) in (5b) (5c) for j ∈ M.

To develop a model-free controller, accordingly, we propose

two strategies. Strategy 1): use ES control to estimate the

gradients
∂vj(x)
∂xi

for i ∈ C, j ∈ M. Strategy 2): replace vj(·)
by its real-time voltage measurement vmea

j (t) for j ∈ M.

To implement Strategy 1), we adopt the ES control method

[10] and add a small sinusoidal probing signal to each power

injection with

x̂i(t) = xi(t) + a sin(ωit), i ∈ C (7)

where a is the small amplitude1 and the sinusoidal signal is

sin(ωit) :=

{

sin(ωit), i ∈ Csvc
[sin(ωp

i t), sin(ω
q
i t)]

⊤, i ∈ Cdg.
(8)

Let N = |Csvc|+2|Cdg| be the dimensionality of the decision

variable x. Define sin(ωt) := (sin(ωit))i∈C ∈ R
N as the

column vector that collects all the sinusoidal signals. The

frequencies ω := (ωi)i∈C are selected as

ωn =
2π

εω
κn, ∀n ∈ [N ] := {1, · · · , N} (9)

where εω is a small positive parameter and κi 6= κj for all

i 6= j are rational numbers. In this way, each element xn in

x is assigned with a particular frequency ωn.

Based on the above description, the P-PDGD (5) is mod-

ified as the ES-P-PDGD (10):

ẋi=kx

[

ProjX̂i

(

xi−αxhi(xi,λ, ξ
j
i )
)

−xi

]

, i ∈ C (10a)

λ̇+
j = kλ

[

Proj
R+

(

λ+
j + αλ(µj − v̄j)

)

−λ+
j

]

, j∈M (10b)

λ̇−
j = kλ

[

Proj
R+

(

λ−
j + αλ(vj − µj)

)

−λ−
j

]

, j∈M (10c)

ξ̇
j
i =

1

ǫ

[

− ξ
j
i +

2

a
vj(x̂(t)) sin(ωit)

]

, j∈M, i ∈ C (10d)

µ̇j =
1

ǫ

[

−µj + vj(x̂(t))
]

, j∈M (10e)

1For notational simplicity, we adopt an identical amplitude a for all power
injections here. In practice, different amplitude parameters can be used.



where ǫ is a small positive parameter, and

x̂(t) := x(t) + a sin(ωt) (11a)

hi(xi,λ, ξ
j
i ) := ∇ci(xi) +

∑

j∈M

(λ+
j − λ−

j )ξ
j
i . (11b)

The key difference between P-PDGD (5) and ES-P-PDGD

(10) is the introduction of new variables ξ := (ξji )j∈M,i∈C

and µ :=(µj)j∈M. We explain the rationale and benefits of

this modification with Remark 3. To ensure the actual power

injection x̂i ∈ Xi, we replace Xi with the shrunken feasible

set X̂i in (10a). As a → 0+, X̂ recovers to X .

X̂i :=

{

q
i
+a≤ qi ≤ q̄i−a, i ∈ Csvc

p
i
+a≤ pi ≤ p̄i−a, p2i +q2i ≤(s̄i−

√
2a)2, i∈ Cdg.

Remark 3. (Fast Dynamics of ξ and µ.) In essence, ξ
j
i and

µj are the real-time approximations of the gradient
∂vj
∂xi

and

the value vj , respectively. The intuition behind is that by

setting ǫ sufficiently small, the dynamics of ξ
j
i and µj , i.e.,

(10d) (10e), operate in a faster time scale compared to the

dynamics of (x,λ). The advantages of introducing these fast

dynamics of ξ and µ include:

1) It facilitates the analysis of the algorithm via averaging

theory, since the time-variant sinusoidal signals do not

appear inside the projection operators. Moreover, the

fast dynamics are linear, which can be easily handled

by singular perturbation theory.

2) The fast dynamics (10d) (10e) can be seen as low-pass

filters, which can diminish the oscillations and improve

the transient performance of the closed-loop system.

Since x̂(t) is the actual power injection to the physical

system at time t, we can substitute vj(x̂) with the voltage

measurement vmea
j (t) in (10), i.e., Strategy 2). Consequently,

we develop the model-free optimal voltage control (MF-

OVC) algorithm as Algorithm 1, which is indeed the ES-

P-PDGD (10) with the measurement substitution.

Algorithm 1 Model-Free Optimal Voltage Control Alg.

At every time t, perform the following steps:

• Each monitored bus j ∈ M measures the local voltage

magnitude vmea
j (t), updates (λ+

j , λ
−
j , µj) according to

Equations (10b) (10c) (12a)

µ̇j =
1

ǫ

[

− µj + vmea
j (t)

]

(12b)

and broadcasts (vmea
j (t), λ+

j (t), λ
−
j (t)) to every control-

lable device i ∈ C.

• Each controllable device i ∈ C updates (xi, ξ
j
i ) by

Equation (10a) (13a)

ξ̇
j
i =

1

ǫ

[

− ξ
j
i +

2

a
vmea
j (t) sin(ωit)

]

, j∈M (13b)

and executes power injection x̂i(t) = xi(t) + a sin(ωit).

The implementation of the proposed MF-OVC algorithm is

illustrated in Figure 1. Each monitored bus j ∈ M measures

Fig. 1. Schematic of the proposed MF-OVC mechanism.

its local voltage magnitude vmea
j from the physical layer,

then updates (µj , λ
+
j , λ

−
j ) and communicates (vmea

j , λ+
j , λ

−
j )

in the cyber layer. Each controllable device i ∈ C updates

(ξji ,xi) based on the received information, and the power

injection command x̂i is executed in the physical layer. Then

the power network responses to the power injection x̂ and

presents the corresponding voltage profiles v(x̂). This forms

a closed-loop feedback control system. Although the MF-

OVC algorithm is developed based on a static OVC problem

(1), it can adapt fast to dynamical system environments and

handle voltage violation under time-varying power distur-

bances, due to the feedback mechanism and exploitation of

real-time measurements. As a result, the proposed algorithm

unifies all the merits described in the introduction section.

IV. PERFORMANCE ANALYSIS

This section presents the stability properties and the ro-

bustness to measurement noises of the MF-OVC algorithm.

A. Stability Analysis of ES-P-PDGD

Denote z := [x;λ] and X̂ :=
∏

i∈C X̂i. Let Ẑ := X̂ ×
R

2|M|
+ be the feasible set of z in the ES-P-PDGD (10), and

K := (2|Cdg|+|Csvc|+1)|M| be the dimensionality of [ξ;µ].
Denote Â as the saddle point set for the saddle point problem

(4) with X̂ , i.e., any point z∗ ∈ Â is an optimal solution of

(4) with X̂ . Denote the distance between z and Â as

||z||Â := inf
α∈Â

||z −α||.

Definition 1. A continuous function β(r, t) : R+ × R+ →
R+ is said to be of class-KL if it is zero at zero and strictly

increasing in the first argument r, and non-increasing in the

second argument t and converging to zero as t → +∞.

Theorem 2. (Semi-Global Practical Asymptotical Stability.)

Suppose that the saddle point set Â is compact. Under

Assumption 2 and 3, there exists a class-KL function β such

that for any compact set D ⊂ Ẑ×R
K of initial condition, any

desired precision ν > 0, there exists ǫ∗ > 0 such that for any

ǫ ∈ (0, ǫ∗), there exists a∗ > 0 such that for any a ∈ (0, a∗),
there exists ε∗ω > 0 such that for any εω ∈ (0, ε∗ω), the

trajectory z(t) of the ES-P-PDGD (10) satisfies

||z(t)||Â ≤ β(||z(t0)||Â, t− t0) + ν, ∀t ≥ t0. (14)



The proof of Theorem 2 is provided in Appendix I.

Remark 4. We explain the key observations as below:

• Due to the small probing sinusoidal signals a sin(ωt) in

the ES-P-PDGD (10), the state z will not converge to a fixed

point anymore, but rather to a small ν-neighborhood of Â.

This property is described by the bound (14). By setting the

parameters (ǫ, a, εω) sufficiently small, one can make this

precision ν as small as desired.

• As (ǫ, a, εω) → 0+, the ES-P-PDGD (10) recovers the

same convergence rate of the P-PDGD (5), as indicated in

the proof of Theorem 2.

• As stated in Theorem 2, the tuning order of parameters

is relevant: first set ǫ sufficiently small, then a, and lastly

εω . This order comes mainly from the proof and can guide

us on how to tune these parameters in practice.

B. Robustness to Measurement Noise

The following corollary of Theorem 2 [9] indicates that

this algorithm is robust to small additive measurement noise.

Moreover, the numerical simulations in Section V-D verify

the robustness even when the noise is relatively large.

Corollary 1. (Structural Robustness.) For any tuple of

(ǫ, a, εω) that induces the bound (14), under the same

conditions in Theorem 2, there exists ρ∗ > 0 such that for any

measurement noise d : R+ →R
|M| with supt≥t0

||d(t)|| ≤
ρ∗, the trajectory z(t) of the ES-P-PDGD (10) with additive

measurement noise d satisfies

||z(t)||Â ≤ β(||z(t0)||Â, t− t0) + 2ν, ∀t ≥ t0. (15)

Comparing with (14), the ES-P-PDGD (10) with small

additive measurement noise d maintains similar convergence

results, and noise d leads to an additional ν term in (15).

V. NUMERICAL SIMULATIONS

A. Simulation Setup

The modified PG&E 69-bus distribution system, shown as

Figure 2, is used as the test system. There are three PV plants

at bus 35, 54 and 69, which operate in the maximum power

point tracking mode. The controllable devices include three

SVCs (located at bus 35, 42 and 67) and three DGs (located

at bus 20, 40, 50). We select bus 3, 27, 35, 50, 54 and 69

as the monitored buses. The voltage of bus 0 (slack bus) is

10.5 kV (1 p.u.), and the lower and upper bounds of voltage

magnitude are set as 0.95 p.u. and 1.05 p.u., respectively.

We use the quadratic cost function in objective (1a). For the

MF-OVC algorithm, we set a = 0.05, ǫ = 0.02, εω = 0.05,

and κn = 2n− 1 for n = 1, · · · , 9.

Although an affine system model v(x) is assumed for

theoretical analysis, we perform all simulations based on a

full nonconvex AC power flow model using Matpower [24].

B. Static Voltage Control Under Step Power Change

Consider the test scenario when the three PV plants are

suddenly shut down at time t = 0 and all loads remain

fixed. Due to the curtailment of PV generation and heavy

loads, the distribution system violates the lower voltage limit

Fig. 2. The modified PG&E 69-bus distribution feeder.

Fig. 3. Voltage dynamics of the monitored buses (upper plot) and active
power outputs of DGs (lower plot) under step power change.

at many buses. We ran the proposed MF-OVC algorithm

for voltage regulation from the start time t = 0. The

simulation results are shown as Figure 3. It is observed

that the MF-OVC algorithm effectively brought the voltage

magnitudes of monitored buses back to the acceptable range.

The small high-frequency oscillations in voltage are caused

by the probing sinusoidal signals. It is also seen that the

DG power outputs converge to fixed values within tens of

seconds, and the power capacity constraints are satisfied all

the time. In addition, we solve the OVC model (1) with the

linearized Distflow model [1] to obtain the optimal solution

x∗, which turns out to be the converged values of the MF-

OVC algorithm and thus verifies its optimality.

C. Dynamic Voltage Control Under Continuous Change

To test the MF-OVC algorithm under time-varying distur-

bance, we add a 10% random perturbation to the loads, and

a real-world PV generation profile is applied to the three PV

plants in the test system. We ran the MF-OVC algorithm for

voltage control and compared it with the case without voltage

control. The simulation results are illustrated in Figure 4.

Without voltage control, the test system frequently violates

the lower or upper voltage limits as the PV generation

fluctuates. In contrast, the proposed MF-OVC algorithm can

adapt to the continuous power disturbances and maintain the

voltage profiles within the acceptable range.

D. Impact of Measurement Noise

To study the impact of measurement noises, we apply the

noisy voltage measurement ṽmea
j (t), whose deviation from



Fig. 4. Voltage dynamics of monitored buses under continuous disturbances
(black dashed lines: upper (1.05 p.u.) and lower (0.95 p.u.) voltage limits).

Fig. 5. Voltage dynamics of monitored buses with noisy measurements.

the base voltage value (1 p.u.) follows (16):

ṽmea
j (t)− 1 = (vj(x(t))− 1)× (1 + δj(t)), (16)

where vj(x(t)) denotes the true voltage magnitude, and δj
is the perturbation ratio. We assume that δj is a Gaussian

random variable with δj ∼ N (0, σ2), which is independent

across time t and other monitored buses. We tune the

standard deviation σ from 0.1 to 0.3 to simulate different

levels of noises and test the performance of the MF-OVC

algorithm under step power changes. The simulation results

are shown as Figure 5, and the noiseless case with σ = 0 is

illustrated as Figure 3. As expected, larger noise amplitudes

lead to higher oscillations in the voltage dynamics. While

the MF-OVC algorithm is robust to the voltage measurement

noises and can restore the voltage profiles in all the cases.

VI. CONCLUSION

In this paper, we developed a real-time model-free optimal

voltage control algorithm based on projected primal-dual

gradient dynamics and ES control. The proposed algorithm

operates purely based on the voltage measurement and does

not require any other network information. With appro-

priate parameters, this algorithm can effectively bring the

monitored voltage magnitudes back to the acceptable range

with minimum operational cost, while respecting the power

capacity constraints all the time. Numerical simulations on

the PG&E 69-bus distribution feeder demonstrated the opti-

mality, adaptivity, and robustness of the proposed algorithm.

APPENDIX I

PROOF OF THEOREM 2

Denote s1 := [x;λ], s2 := [ξ;µ], and s := [s1; s2]. The

ES-P-PDGD (10) is reformulated in compact form as

ṡ =

[

ṡ1
ṡ2

]

=

[

g1(s1, s2)
1
ǫ
(−s2 + g2(t, s1))

]

:= g(t, s), (17)

where the function g1(s1, s2) captures the dynamics (10a)-

(10c), and function g2(t, s1) is given by

g2 :=

[
(

2
a
vj(x+a sin(ωt)) sin(ωnt)

)

n∈[N ],j∈M
(

vj(x+ a sin(ωt))
)

j∈M

]

, (18)

which associates with dynamics (10d) of ξ and (10e) of µ.

The following Lemma 1 characterizes the average map

for the function g2(t, s1). Lemma 1 can be proved by

considering the multivariate Taylor expansion of g2(t, s1)
and using [9, Lemma 7.1].

Lemma 1. The average of function g2(t, s1) is given by

gav
2 (s1) :=

1

T

∫ T

0

g2(t, s1) dt = ℓ(s1) +O(a), (19)

where ℓ(s1) :=

[

(
∂vj(x)
∂xn

)n∈[N ],j∈M

(vj(x))j∈M

]

, and T is the minimum

common period of the sinusoidal signals sin(ωt).

We analyze the stability properties of system (17) via

averaging theory and singular perturbation theory as follows.

Step 1) Construct a compact set for analysis.

To apply general averaging theory and singular perturba-

tion theory, it usually requires that the considered trajectories

stay within predefined compact sets. Without loss of gener-

ality, we consider the compact set [(Â + ∆B) ∩ Ẑ] × ∆B

for the initial condition s(t0) and any desired ∆ > 0. Here,

B denotes a closed unit ball of appropriate dimension, and

Â + ∆B denotes the union of all sets obtained by taking

a closed ball of radius ∆ around each point in the saddle

point set Â. By Theorem 1, there exists a class-KL function

β such that for any initial condition z(t0) ∈ Ẑ , the trajectory

z(t) of the P-PDGD (5) with the feasible set X̂ satisfies

||z(t)||Â ≤ β(||z(t0)||Â, t− t0), ∀t ≥ t0. (20)

Without loss of generality, we assume the desired conver-

gence precision ν ∈ (0, 1). Using the β function in (20), we

define the set

F :=
{

s1∈Ẑ : ||s1||Â ≤ β
(

max
p∈Â+∆B

||p||Â, 0
)

+ 1
}

, (21)

which is compact. Due to the boundedness of F , there exists

a positive constant M1 such that F ⊂ M1B. Since ℓ(s1)
(defined in Lemma 1) is continuous by Assumption 2, there

exists a positive constant M2 > ∆ such that ||ℓ(s1)||+ 1 ≤
M2 whenever ||s1|| ≤ M1. We then study the behavior of

system (17) restricted to evolve in the compact set F×M2B.



Step 2) Study the stability of the average system.

By definition (9), the sinusoidal signals in system (17) are

given by sin( 2π
εω

κnt) for n ∈ [N ]. For sufficiently small εω ,

system (17), evolving in F ×M2B, is in standard form for

the application of averaging theory [25]. By Lemma 1, we

derive the autonomous average system of system (17):
[

ẏ1

ẏ2

]

=
1

T

∫ T

0

g(t,y) dt =

[

g1(y1,y2)
1
ǫ
(−y2+ℓ(y1)+O(a))

]

, (22)

where y := [y1;y2] takes the same form as s := [s1; s2].
To analyze the average system (22), we can first ignore the

small O(a)-perturbation by setting a = 0. Thus the resultant

system is in the standard form for the application of singular

perturbation theory. As ǫ → 0+, we freeze the slow state

y1, then the boundary layer system of the average system

(22) with a = 0 in the time scale τ = t/ǫ is given by
dy2

dτ
= −y2 + ℓ(y1), which is a linear system with unique

equilibrium point y∗
2 = ℓ(y1). Thus the reduced system is

ẏ1 = g1(y1, ℓ(y1)), (23)

which is precisely the P-PDGD (5). By Theorem 1 and [25,

Theorem 1], it follows that as ǫ → 0+, the set Â ×M2B is

semi-globally practically asymptotically stable (SGPAS) for

system (22) with a = 0. Then by the structural robustness

results for continuous ordinary differential equations [9,

Proposition A.1], the set Â × M2B is also SGPAS for the

average system (22) as (ǫ, a) → 0+, i.e., Lemma 2.

Lemma 2. Given the precision ν, there exists ǫ∗ > 0 such

that for any ǫ ∈ (0, ǫ∗), there exists a∗ > 0 such that for any

a ∈ (0, a∗), with initial condition y(t0) ∈ [(Â+∆B)∩Ẑ]×
∆B, the solution y(t) of the average system (22) satisfies

||y1(t)||Â ≤ β(||y1(t0)||Â, t− t0) +
ν

2
, ∀t ≥ t0. (24)

The completeness of solution y(t) for system (22) follows

[26, Lemma 5] and the structure of the set F (21). See [23]

for a detailed proof.

Step 3) Link average system (22) to original system (17).

Since the set Â ×M2B is SGPAS for the average system

(22) as (ǫ, a) → 0+, by averaging theory for perturbed

systems [9, Theorem 7], we directly obtain that for each pair

of (ǫ, a) inducing the bound (24), there exists ε∗ω > 0 such

that for any εω ∈ (0, ε∗ω), the solution s(t) of the original

system (17) restricted to F ×M2B satisfies

||s1(t)||Â ≤ β(||s1(t0)||Â, t− t0) + ν, ∀t ≥ t0. (25)

The completeness of solution s for system (17) is guaranteed

by the construction of M2. Thus Theorem 2 is proved.
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